Part Number Hot Search : 
1N4767 HD74H FDG63 TFA9810 74155 MAX520 CP82C88Z TFA9810
Product Description
Full Text Search
 

To Download IRLR7833CTRRPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  www.irf.com 1 05/19/09 irlr7833pbfirlu7833pbf hexfet   power mosfet notes   through  are on page 11 applications benefits  very low rds(on) at 4.5v v gs  ultra-low gate impedance  fully characterized avalanche voltage and current  high frequency synchronous buck converters for computer processor power  high frequency isolated dc-dc converters with synchronous rectification for telecom and industrial use  lead-free d-pak irlr7833pbf i-pak irlu7833pbf v dss r ds(on) max qg 30v 4.5m 33nc absolute maximum ratings parameter units v ds drain-to-source voltage v v gs gate-to-source voltage i d @ t c = 25c continuous drain current, v gs @ 10v i d @ t c = 100c continuous drain current, v gs @ 10v a i dm pulsed drain current p d @t c = 25c maximum power dissipation  w p d @t c = 100c maximum power dissipation  linear derating factor w/c t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds mounting torque, 6-32 or m3 screw thermal resistance parameter typ. max. units r jc junction-to-case CCC 1.05 r ja junction-to-ambient (pcb mount)  CCC 50 c/w r ja junction-to-ambient CCC 110 300 (1.6mm from case) 10 lbf  in (1.1n  m) max. 140  99  560 20 30 -55 to + 175 140 0.95 71  downloaded from: http:///

2 www.irf.com s d g static @ t j = 25c (unless otherwise specified) parameter min. t y p. max. units bv dss drain-to-source breakdown voltage 30 CCC CCC v ? v dss / ? t j breakdown voltage temp. coefficient CCC 19 CCC mv/c r ds(on) static drain-to-source on-resistance CCC 3.6 4.5 CCC 4.4 5.5 v gs(th) gate threshold voltage 1.4 CCC 2.3 v ? v gs(th) / ? t j gate threshold voltage coefficient CCC -6.0 CCC mv/c i dss drain-to-source leakage current CCC CCC 1.0 CCC CCC 150 i gss gate-to-source forward leakage CCC CCC 100 gate-to-source reverse leakage CCC CCC -100 gfs forward transconductance 66 CCC CCC s q g total gate charge CCC 33 50 q gs1 pre-vth gate-to-source charge CCC 8.7 CCC q gs2 post-vth gate-to-source charge CCC 2.1 CCC q gd gate-to-drain charge CCC 13 CCC q godr gate charge overdrive CCC 9.9 CCC see fig. 16 q sw switch char g e (q gs2 + q gd ) CCC 15 CCC q oss output charge CCC 22 CCC nc t d(on) turn-on delay time CCC 14 CCC t r rise time CCC 6.9 CCC t d(off) turn-off delay time CCC 23 CCC t f fall time CCC 15 CCC c iss input capacitance CCC 4010 CCC c oss output capacitance CCC 950 CCC c rss reverse transfer capacitance CCC 470 CCC avalanche characteristics parameter units e as si n gl e p u l se a va l anc h e e ner gy mj i ar a va l anc h e c urrent   a e ar r epet i t i ve a va l anc h e e ner gy  mj diode characteristics parameter min. t y p. max. units i s continuous source current CCC CCC 140  (body diode) a i sm pulsed source current CCC CCC 560 ( bod y diode )  v sd diode forward voltage CCC CCC 1.0 v t rr reverse recovery time CCC 39 58 ns q rr reverse recovery charge CCC 37 55 nc t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) ns pf m ? ana nc mosfet symbol CCC v gs = 4.5v typ. CCC CCC i d = 12a v gs = 0v v ds = 15v clamped inductive load t j = 25c, i f = 12a, v dd = 15v di/dt = 100a/ s  t j = 25c, i s = 12a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = 15v, i d = 12a v ds = 16v, v gs = 0v v dd = 15v, v gs = 4.5v  i d = 12a v ds = 16v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 15a  v gs = 4.5v, i d = 12a  v gs = 20v v gs = -20v v ds = v gs , i d = 250a v ds = 24v, v gs = 0v v ds = 24v, v gs = 0v, t j = 125c conditions 14 max. 530 20 ? = 1.0mhz downloaded from: http:///

www.irf.com 3 fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 1. typical output characteristics fig 3. typical transfer characteristics -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 30a v gs = 10v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.7v 60s pulse width tj = 25c 2.7v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.7v 60s pulse width tj = 175c vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.7v 1 2 3 4 5 v gs , gate-to-source voltage (v) 1.0 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v 60s pulse width downloaded from: http:///

4 www.irf.com fig 8. maximum safe operating area fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage fig 7. typical source-drain diode forward voltage 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 1 02 03 04 05 0 q g total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v i d = 12a 0.0 0.5 1.0 1.5 2.0 2.5 v sd , source-to-drain voltage (v) 0.10 1.00 10.00 100.00 1000.00 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 1 10 100 1000 v ds , drain-to-source voltage (v) 1 10 100 1000 10000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 1msec 10msec operation in this area limited by r ds (on) 100sec tc = 25c tj = 175c single pulse downloaded from: http:///

www.irf.com 5 fig 11. maximum effective transient thermal impedance, junction-to-case fig 9. maximum drain current vs. case temperature fig 10. threshold voltage vs. temperature -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 0.0 0.5 1.0 1.5 2.0 2.5 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 250a 25 50 75 100 125 150 175 0 25 50 75 100 125 150 i , drain current (a) d limited by package    

  0.01 0.1 1 10 0.00001 0.0001 0.001 0.01 0.1 1 notes: 1. duty factor d = t / t 2. peak t = p x z + t 1 2 j dm thjc c p t t dm 1 2 t , rectangular pulse duration (sec) thermal response (z ) 1 thjc 0.01 0.02 0.05 0.10 0.20 d = 0.50 single pulse (thermal response) downloaded from: http:///

6 www.irf.com d.u.t. v ds i d i g 3ma v gs .3 f 50k ? .2 f 12v current regulator same type as d.u.t. current sampling resistors + - fig 13. gate charge test circuit fig 12b. unclamped inductive waveforms fig 12a. unclamped inductive test circuit t p v (br)dss i as fig 12c. maximum avalanche energy vs. drain current r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 14a. switching time test circuit v ds 90%10% v gs t d(on) t r t d(off) t f fig 14b. switching time waveforms   
 1      0.1 %          + -   25 50 75 100 125 150 starting t j , junction temperature (c) 0 2500 5000 7500 10000 12500 15000 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 8.2a 14a bottom 20a downloaded from: http:///

www.irf.com 7 fig 15. 
 



   for n-channel hexfet   power mosfets       ?       ?   ?        p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-appliedvoltage reverserecovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period    
  + - + + + - - -        ? !   " #  ?    $  %&%% ?     "     '' ? %&%% (   &     fig 16. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr downloaded from: http:///

8 www.irf.com control fet  

   

      
 
   
 
 
         
   
   
 
  !"    
 #
 $  
 %& !" 

  
    #  
  


       
 
  
    #' p loss = p conduction + p switching + p drive + p output this can be expanded and approximated by; p loss = i rms 2 r ds(on ) () + i q gd i g v in f ? ? ? ? ? ? + i q gs 2 i g v in f ? ? ? ? ? ? + q g v g f () + q oss 2 v in f ? ? ? ? "     (
  

          
  %& !" 
  
      


  
   

     %& !" 
  
 "   
   
 
 
    

  
              )    

  


  #
 
  






   
      


   

* 

 

   
   
   % +      
 
    
         
  


 

 
 

  
 %& !"   # 
    #  ,         #
    
 
  
  
-   .  
 /         
 #
   #  
  
 synchronous fet the power loss equation for q2 is approximated by; p loss = p conduction + p drive + p output * p loss = i rms 2 r ds(on) () + q g v g f () + q oss 2 v in f ? ? ? ? ? + q rr v in f ( ) *dissipated primarily in q1. for the synchronous mosfet q2, r ds(on) is an im- portant characteristic; however, once again the im- portance of gate charge must not be overlooked since it impacts three critical areas. under light load the mosfet must still be turned on and off by the con- trol ic so the gate drive losses become much more significant. secondly, the output charge q oss and re- verse recovery charge q rr both generate losses that are transfered to q1 and increase the dissipation in that device. thirdly, gate charge will impact the mosfets susceptibility to cdv/dt turn on. the drain of q2 is connected to the switching node of the converter and therefore sees transitions be-tween ground and v in . as q1 turns on and off there is a rate of change of drain voltage dv/dt which is ca-pacitively coupled to the gate of q2 and can induce a voltage spike on the gate that is sufficient to turn the mosfet on, resulting in shoot-through current . the ratio of q gd /q gs1 must be minimized to reduce the potential for cdv/dt turn on. power mosfet selection for non-isolated dc/dc converters figure a: q oss characteristic downloaded from: http:///

www.irf.com 9  

  

  0       
 -  .  

  
  
 

        
! 
 

   
     !
 "  #
$ %&'  ()*++',-./.()'0%+(&(%) ()1(2*&'+
'*1"3'' 
 
     

!
  

 downloaded from: http:///

10 www.irf.com  
   0       
 -  .  
   
        
    
   !        "      
 #$%&&'()*+*#$' ,-&#.#-$#$/#0%.'&'%/12''     
  
       
     
         
           
   downloaded from: http:///

www.irf.com 11   repetitive rating; pulse width limited by max. junction temperature.   starting t j = 25c, l = 2.6mh, r g = 25 ? , i as = 20a.  pulse width 400s; duty cycle 2%. 
 calculated continuous current based on maximum allowable junction temperature. package limitation current is 30a.  when mounted on 1" square pcb (fr-4 or g-10 material). for recommended footprint and soldering techniques refer to application note #an-994. data and specifications subject to change without notice. this product has been designed and qualified for the industrial market. qualification standards can be found on irs web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 05/2009  

  0       
 -  . tr 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) 12.1 ( .476 ) 11.9 ( .469 ) feed direction feed direction 16.3 ( .641 ) 15.7 ( .619 ) trr trl notes : 1. controlling dimension : millimeter. 2. all dimensions are shown in millimeters ( inches ). 3. outline conforms to eia-481 & eia-541. notes : 1. outline conforms to eia-481. 16 mm 13 inch note: for the most current drawing please refer to ir website at http://www.irf.com/package/ downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of IRLR7833CTRRPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X