Part Number Hot Search : 
M1330 MICAL10 UHE1A472 100NB M62004L LBS20801 C4641 MC331
Product Description
Full Text Search
 

To Download IRG7PH30K10PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 96156A
IRG7PH30K10PBF
INSULATED GATE BIPOLAR TRANSISTOR Features
* * * * * * * * * Low VCE (ON) Trench IGBT Technology Low Switching Losses Maximum Junction Temperature 175 C 10 S short Circuit SOA Square RBSOA 100% of the parts tested for ILM Positive VCE (ON) Temperature Co-Efficient Tight Parameter Distribution Lead Free Package
C
VCES = 1200V IC = 23A, TC = 100C
G E
tSC 10s, TJ(max) =175C
n-channel
C
VCE(on) typ. = 2.05V
Benefits
* High Efficiency in a Wide Range of Applications * Suitable for a Wide Range of Switching Frequencies due to Low VCE (ON) and Low Switching Losses * Rugged Transient Performance for Increased Reliability * Excellent Current Sharing in Parallel Operation
E C G TO-247AC
G Gate
C Collector
E Emitter
Absolute Maximum Ratings
Parameter
VCES IC @ TC = 25C IC @ TC = 100C INOMINAL ICM ILM VGE PD @ TC = 25C PD @ TC = 100C TJ TSTG Collector-to-Emitter Voltage Continuous Collector Current Continuous Collector Current Nominal Current Pulse Collector Current Vge = 15V Clamped Inductive Load Current Vge = 20V Continuous Gate-to-Emitter Voltage Maximum Power Dissipation Maximum Power Dissipation Operating Junction and Storage Temperature Range Soldering Temperature, for 10 sec. Mounting Torque, 6-32 or M3 Screw 300 (0.063 in. (1.6mm) from case) 10 lbf*in (1.1 N*m)
Max.
1200 33 23 9.0
Units
V
A
c
27 36 30 210 110 -55 to +175 C V W
Thermal Resistance
Parameter
RJC (IGBT) RCS RJA Thermal Resistance Junction-to-Case-(each IGBT)
f
Min.
--- --- ---
Typ.
--- 0.24 40
Max.
0.70 --- ---
Units
C/W
Thermal Resistance, Case-to-Sink (flat, greased surface) Thermal Resistance, Junction-to-Ambient (typical socket mount)
1
www.irf.com
06/23/09
IRG7PH30K10PBF
Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
V(BR)CES
V(BR)CES/TJ
Min.
1200 -- -- -- -- 5.0 -- -- -- -- --
Typ.
-- 1.27 2.05 2.56 2.65 -- -16 6.2 1.0 400 --
Max. Units
-- -- 2.35 -- -- 7.5 -- -- 25 -- 100 V
Conditions
VGE = 0V, IC = 250A
Collector-to-Emitter Breakdown Voltage
Temperature Coeff. of Breakdown Voltage
e
Ref.Fig
V/C VGE = 0V, IC = 1mA (25C-175C) IC = 9.0A, VGE = 15V, TJ = 25C V IC = 9.0A, VGE = 15V, TJ IC = 9.0A, VGE = 15V, TJ
VCE(on) VGE(th)
VGE(th)/TJ
Collector-to-Emitter Saturation Voltage Gate Threshold Voltage Threshold Voltage temp. coefficient Forward Transconductance Collector-to-Emitter Leakage Current Gate-to-Emitter Leakage Current
e d = 150C d = 175C d
CT6 CT6 5,6,7 8,9,10
gfe ICES IGES
V VCE = VGE, IC = 400A mV/C VCE = VGE, IC = 400A (25C - 175C) S VCE = 50V, IC = 9.0A, PW = 80s A nA VGE = 0V, VCE = 1200V VGE = 0V, VCE = 1200V, TJ = 175C VGE = 30V
8,9 10,11
Switching Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Qg Qge Qgc Eon Eoff Etotal td(on) tr td(off) tf Eon Eoff Etotal td(on) tr td(off) tf Cies Coes Cres RBSOA SCSOA Total Gate Charge (turn-on) Gate-to-Emitter Charge (turn-on) Gate-to-Collector Charge (turn-on) Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Turn-On Switching Loss Turn-Off Switching Loss Total Switching Loss Turn-On delay time Rise time Turn-Off delay time Fall time Input Capacitance Output Capacitance Reverse Transfer Capacitance Reverse Bias Safe Operating Area Short Circuit Safe Operating Area
Min.
-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
Typ.
45 8.7 20 530 380 910 14 24 110 38 850 750 1600 12 23 130 270 1070 63 26
Max. Units
68 13 30 760 600 1360 31 41 130 56 -- -- -- -- -- -- -- -- -- -- pF VGE = 0V ns J ns J nC IC = 9.0A
d
Conditions
Ref.Fig 18 CT1
VGE = 15V VCC = 600V IC = 9.0A, VCC = 600V, VGE = 15V
RG = 22, L = 1000H, LS = 150nH,TJ = 25C
Energy losses include tail & diode reverse recovery
d
CT4
IC = 9.0A, VCC = 600V, VGE = 15VAd RG = 22, L = 1000H, LS = 150nH,TJ = 25C
CT4
IC = 9.0A, VCC = 600V, VGE=15VAd RG=22, L=1000H, LS=150nH, TJ = 175C
Energy losses include tail & diode reverse recovery
12,14 CT4 WF1, WF2 13,15 CT4 WF1 WF2 17
IC = 9.0A, VCC = 600V, VGE=15V TJ = 175C
RG = 22, L = 1000H, LS = 150nH
d
VCC = 30V f = 1.0Mhz TJ = 175C, IC = 36A VCC = 960V, Vp =1200V Rg = 10, VGE = +20V to 0V, TJ =175C
4 CT2
FULL SQUARE 10 -- -- s
VCC = 600V, Vp =1200V ,TJ = 150C, Rg = 22, VGE = +15V to 0V
16, CT3 WF4
Notes: VCC = 80% (VCES), VGE = 20V, L = 200H, RG = 51. Pulse width 400s; duty cycle 2%. Refer to AN-1086 for guidelines for measuring V(BR)CES safely. R is measured at TJ of approximately 90C.
2
www.irf.com
IRG7PH30K10PBF
35 30 25 20 15 10 5 0 25 50 75 100 T C (C) 125 150 175
225 200 175 150
IC (A)
Ptot (W)
125 100 75 50 25 0 0 25 50 75 100 125 150 175 T C (C)
Fig. 1 - Maximum DC Collector Current vs. Case Temperature
100
Fig. 2 - Power Dissipation vs. Case Temperature
100
10sec
10
IC (A)
100sec 1msec
IC (A)
DC
10
1
Tc = 25C Tj = 175C Single Pulse
0.1 1 10 100 VCE (V) 1000 10000
1 10 100 VCE (V) 1000 10000
Fig. 3 - Forward SOA TC = 25C, TJ 175C; VGE =15V
40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
Fig. 4 - Reverse Bias SOA TJ = 175C; VGE =20V
40 35 30 25
ICE (A)
VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
ICE (A)
20 15 10 5 0 0 2 4 6 8 10 12 14 16 18
20 15 10 5 0 0 2 4 6 8 10 12 14 16 18
Fig. 5 - Typ. IGBT Output Characteristics TJ = -40C; tp = 80s
VCE (V)
Fig. 6 - Typ. IGBT Output Characteristics TJ = 25C; tp = 80s
VCE (V)
www.irf.com
3
IRG7PH30K10PBF
40 35 30 25 VGE = 18V VGE = 15V VGE = 12V VGE = 10V VGE = 8.0V
VCE (V)
18 16 14 12 10 8 6 4 2 0 ICE = 4.5A ICE = 18A ICE = 9.0A
ICE (A)
20 15 10 5 0 0 2 4 6 8 10 12 14 16 18
5
10 VGE (V)
15
20
VCE (V)
Fig. 7 - Typ. IGBT Output Characteristics TJ = 175C; tp = 80s
18 16 14 12 14 12 10
Fig. 8 - Typical VCE vs. VGE TJ = -40C
VCE (V)
10 8 6 4 2 0 5 10 VGE (V)
VCE (V)
ICE = 4.5A ICE = 9.0A ICE = 18A
8 6 4 2 0
ICE = 4.5A ICE = 9.0A ICE = 18A
15
20
5
10 VGE (V)
15
20
Fig. 9 - Typical VCE vs. VGE TJ = 25C
40 35 30 1600 2000
Fig. 10 - Typical VCE vs. VGE TJ = 175C
EON
Energy (J)
25
ICE (A)
1200 EOFF
20 15 10 5 0 0
T J = 25C T J = 175C
800
400
0 5 VGE (V) 10 15 5 10 IC (A) 15 20
Fig. 11- Typ. Transfer Characteristics VCE = 50V; tp = 10s
Fig. 12 - Typ. Energy Loss vs. IC TJ = 175C; L = 1000H; VCE = 600V, RG = 22; VGE = 15V
4
www.irf.com
IRG7PH30K10PBF
1000
1000 EON
tF
Swiching Time (ns)
Energy (J)
900
100
tdOFF tR
800
700
tdON
600
EOFF
10 0 5 10 IC (A) 15 20
0
10
20
30
40
50
RG ()
Fig. 13 - Typ. Switching Time vs. IC TJ = 175C; L = 1000H; VCE = 600V, RG = 22; VGE = 15V
1000 tF
Fig. 14 - Typ. Energy Loss vs. RG TJ = 175C; L = 1000H; VCE = 600V, ICE = 9.0A; VGE = 15V
48 60
40
Swiching Time (ns)
50 Tsc
100
Time (s)
tdOFF tR 10 tdON
32 Isc 24
40
Current (A)
30
16
20
1 0 10 20 30 40 50 RG ()
8 8 10 12 VGE (V) 14 16
10
Fig. 15 - Typ. Switching Time vs. RG TJ = 175C; L = 1000H; VCE = 600V, ICE = 9.0A; VGE = 15V
10000
VGE, Gate-to-Emitter Voltage (V)
Fig. 16 - VGE vs. Short Circuit Time VCC = 600V; TC = 150C
16 14 12 10 8 6 4 2 0 VCES = 600V VCES = 400V
1000
Capacitance (pF)
Cies
100 Coes 10 Cres
1 0 100 200 300 400 500 VCE (V)
0
10
20
30
40
50
Q G, Total Gate Charge (nC)
Fig. 17 - Typ. Capacitance vs. VCE VGE= 0V; f = 1MHz
Fig. 18- Typical Gate Charge vs. VGE ICE = 9.0A; L = 1.0mH
www.irf.com
5
IRG7PH30K10PBF
1 D = 0.50
Thermal Response ( Z thJC )
0.20 0.1 0.10 0.05 0.02 0.01 0.01 SINGLE PULSE ( THERMAL RESPONSE )
J J 1 R1 R1 2 R2 R2 R3 R3 3 R4 R4 C 1 2 3 4 4
Ri (C/W)
0.01068 0.18156 0.31802 0.19105
0.000005 0.000099 0.001305 0.009113
i (sec)
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.001 0.01 0.1
0.001 1E-006
1E-005
0.0001
t1 , Rectangular Pulse Duration (sec)
Fig 19. Maximum Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
IRG7PH30K10PBF
L
L
0
DUT 1K
VCC
80 V +
-
DUT Rg
Vclamped
Fig.C.T.1 - Gate Charge Circuit (turn-off)
Fig.C.T.2 - RBSOA Circuit
DIODE CLAMP
L
VCC
Rg
DUT / DRIVER
VCC
Fig.C.T.3 - S.C. SOA Circuit
Fig.C.T.4 - Switching Loss Circuit
R = VCC
ICM
C f rce o
100K D1 22K C sense
DUT
Rg
VCC
Gf orce DUT E sense 0.0075
E f rce o
Fig.C.T.5 - Resistive Load Circuit
Fig.C.T.6 - BVCES Filter Circuit
www.irf.com
7
IRG7PH30K10PBF
900 800 700 600 500 VCE (V) 400 300 200 100 0 -100 -5 0
Eoff Loss 5% V CE 5% ICE 90% ICE
18 tf 16 14 12 10
700 600 500 400 VCE (V)
ICE (A)
35 30 tr 25 20 15
10% test current
8 6 4 2 0 -2 10 5 time(s)
300 200 100 0
Eon Loss
10
5% V CE
5 0 -5
-100 -1.8
-0.8
0.2
1.2
2.2
3.2
time (s)
Fig. WF2 - Typ. Turn-on Loss Waveform @ TJ = 175C using Fig. CT.4
Fig. WF1 - Typ. Turn-off Loss Waveform @ TJ = 175C using Fig. CT.4
800 700 600 500 Vce (V) 400 300 200 100 0 -100 -5 0 5 Time (uS)
Fig. WF4 - Typ. S.C. Waveform @ TJ = 150C using Fig. CT.3
80 VCE ICE 70 60 50 Ice (A) 40 30 20 10 0 -10
10
8
www.irf.com
ICE (A)
90% test current
TEST CURRENT
IRG7PH30K10PBF
TO-247AC Package Outline
Dimensions are shown in millimeters (inches)
TO-247AC Part Marking Information
@Y6HQG@) UCDTADTA6IADSAQ@"A XDUCA6TT@H7GA GPUA8P9@A$%$& 6TT@H7G@9APIAXXA"$A! DIAUC@A6TT@H7GAGDI@AACA Ir)AAQAAvAhriyAyvrAvv vqvphrAAGrhqArrA DIU@SI6UDPI6G S@8UDAD@S GPBP 6TT@H7G GPUA8P9@ Q6SUAIVH7@S
,5)3(
A "$C $%AAAAAAAAAAA$&
96U@A8P9@ @6SA A2A! X@@FA"$ GDI@AC
TO-247AC package is not recommended for Surface Mount Application. Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ Data and specifications subject to change without notice. This product has been designed and qualified for Industrial market. Qualification Standards can be found on IR's Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/2009
www.irf.com
9


▲Up To Search▲   

 
Price & Availability of IRG7PH30K10PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X