Part Number Hot Search : 
PCMB042T TA8416F 1N5232B BU4506DX HM112 NCE0203S TA0736A MC908GR
Product Description
Full Text Search
 

To Download SSM9960GH Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 SSM9960(G)H,J
N-CHANNEL ENHANCEMENT-MODE POWER MOSFET
Low gate-charge Simple drive requirement Fast switching G
D
BV DSS R DS(ON) ID
40V 16m 42A
S
Description
The SSM9960H is in a TO-252 package, which is widely used for commercial and industrial surface mount applications, and is well suited for low voltage applications such as DC/DC converters. The through-hole version, the SSM9960J in TO-251, is available for low-footprint vertical
GD S
TO-252 (H)
This device is available with Pb-free lead finish (second-level interconnect) as SSM9960GH or SSM9960GJ.
G
D
S
TO-251 (J)
Absolute Maximum Ratings
Symbol VDS VGS ID @ TA=25C ID @ TA=100C IDM PD @ TA=25C TSTG TJ Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V Pulsed Drain Current
1
Rating 40 20 42 26 195 45 0.36 -55 to 150 -55 to 150
Units V V A A A W W/C C C
Total Power Dissipation Linear Derating Factor Storage Temperature Range Operating Junction Temperature Range
Thermal Data
Symbol Rthj-c Rthj-a Parameter Thermal Resistance Junction-case Thermal Resistance Junction-ambient Max. Max. Value 2.8 110 Unit C/W C/W
11/16/2004 Rev.2.1
www.SiliconStandard.com
1 of 5
SSM9960(G)H,J
Electrical Characteristics @ Tj=25oC (unless otherwise specified)
Symbol BVDSS
BV DSS/ Tj
Parameter Drain-Source Breakdown Voltage
Test Conditions VGS=0V, ID=250uA
Min. 40 1 -
Typ. 0.032
Max. Units 16 25 3 1 25 100 V V/C m m V S uA uA nA nC nC nC ns ns ns ns pF pF pF
Breakdown Voltage Temperature Coefficient Reference to 25C, ID=1mA
RDS(ON) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss
Static Drain-Source On-Resistance
VGS=10V, ID=20A VGS=4.5V, ID=18A VDS=VGS, ID=250uA VDS=10V, ID=20A
30 18 6 12 9 110 23 10 1500 250 180
Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (Tj=25 C) Drain-Source Leakage Current (Tj=150 C)
o o
VDS=40V, VGS=0V VDS=32V ,VGS=0V VGS= 20V ID=20A VDS=20V VGS=4.5V VDS=20V ID=20A RG=3.3 , VGS=10V RD=1 VGS=0V VDS=25V f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance
2
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2
Test Conditions IS=45A, VGS=0V IS=20A, VGS=0V dI/dt = 100A/us
Min. -
Typ. 22 27.4
Max. Units 1.3 V
Reverse Recovery Time Reverse Recovery Charge
ns nC
Notes:
1.Pulse width limited by safe operating area. 2.Pulse width <300us , duty cycle <2%.
11/16/2004 Rev.2.1
www.SiliconStandard.com
2 of 5
SSM9960(G)H,J
200
140
T C =25 o C
10.0V 8.0V ID , Drain Current (A)
120
T C =150 o C
10V 8.0V
ID , Drain Current (A)
150
100
6.0V
100
80
6.0V
60
40
50
V G =4.0V
20
V G =4.0V
0 0.0 1.5 3.0 4.5
0
0
1
2
3
4
5
6
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
60
1.80
I D =20A T C =25C
Normalized RDS(ON)
40
I D =20A
1.60
V G =10V
1.40
RDS(ON) (m )
1.20
20
1.00
0.80
0 0 4 8 12 16
0.60 -50 0 50 100 150
V GS , Gate-to-Source Voltage (V)
T j , Junction Temperature ( o C)
Fig 3. On-Resistance vs. Gate Voltage
Fig 4. Normalized On-Resistance vs. Junction Temperature
2.5
1000
100
2
VGS(th) (V)
IS(A)
10
1.5
T j =150 o C
T j =25 C
o
1
1
0.5 0 0.0 0.4 0.8 1.2 1.6 -50 25 100 175
V SD (V)
T j , Junction Temperature ( C )
o
Fig 5. Forward Characteristic of Reverse Diode
Fig 6. Gate Threshold Voltage vs. Junction Temperature
11/16/2004 Rev.2.1
www.SiliconStandard.com
3 of 5
SSM9960(G)H,J
14
10000
f=1.0MHz
12
VGS , Gate to Source Voltage (V)
I D =20A V DS =12V V DS =16V V DS =20V Ciss
1000
10
C (pF)
8
6
Coss Crss
100
4
2
0 0 10 20 30 40
10 1 8 15 22 29
Q G , Total Gate Charge (nC)
V DS , Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
1000
1
Normalized Thermal Response (Rthjc)
DUTY=0.5
0.2
100
10us
0.1
0.1
ID (A)
0.05
100us
10
0.02
0.01
1ms
0.01
Single Pulse
PDM
T c =25 o C Single Pulse
1 0.1 1 10
t
10ms 100ms
100
T
Duty factor = t/T Peak Tj = PDM x Rthjc + Tc
0.001 0.0001 0.001 0.01 0.1 1 10 100 1000
V DS , Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
RD VDS
TO THE
D
VDS
TO THE OSCILLOSCOPE 0.5 x RATED VDS
D
OSCILLOSCOPE
G S VGS
0.5x RATED VDS
RG + 10V -
G
+
S VGS
1~ 3 mA
IG ID
Fig 11. Switching Time Circuit
Fig 12. Gate Charge Circuit
11/16/2004 Rev.2.1
www.SiliconStandard.com
4 of 5
SSM9960(G)H,J
Information furnished by Silicon Standard Corporation is believed to be accurate and reliable. However, Silicon Standard Corporation makes no guarantee or warranty, express or implied, as to the reliability, accuracy, timeliness or completeness of such information and assumes no responsibility for its use, or for infringement of any patent or other intellectual property rights of third parties that may result from its use. Silicon Standard reserves the right to make changes as it deems necessary to any products described herein for any reason, including without limitation enhancement in reliability, functionality or design. No license is granted, whether expressly or by implication, in relation to the use of any products described herein or to the use of any information provided herein, under any patent or other intellectual property rights of Silicon Standard Corporation or any third parties.
11/16/2004 Rev.2.1
www.SiliconStandard.com
5 of 5


▲Up To Search▲   

 
Price & Availability of SSM9960GH

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X