Part Number Hot Search : 
MAX1682 S1033 90000 S1608 MC12015 2SK22 GR3GB E222M
Product Description
Full Text Search
 

To Download NJW4303 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NJW4303
PWM 3-PHASE DC BRUSHLESS MOTOR CONTROLLER
GENERAL DESCRIPTION The NJW4303 is a 3-Phase Brushless DC Motor Control pre-driver IC with PWM control. It generates the most optimal current flow patterns by receiving rotor magnetic pole detection signals from hall elements of 3-phase brushless motor. Operational voltage range for the IC has margin as 9.0V to 35V(maximum voltage of 40V), and it fits for a 12V/24V power supply. It is possible to put practical use such as speed control by internal oscillation circuit, and torque limiter control by current sensory circuit. With NJW4303, high reliability of various motor drive controls can be realized by a variety of function and a substantial protection circuit. FEATURES * Maximum Supply Voltage * Operating Voltage * 3-Phase Full-Wave PWM Predriver * Low-side Gate Voltage Clamp * Internal PWM Oscillation Circuit * Current Protection Circuit * Low-Voltage Protection Circuit * Forward/Reverse Direction PACKAGE OUTLINE
NJW4303V
: 40V : 9.0 V to 35V : Hi-side: Pch-FET/ Low-side: Nch-FET : Gate Voltage=18V max. : Frequency Setting by External Capacitor : Current limit=0.25V10% : Changeable while Rotating : Controllable Dead-Time Settings : Using External Capacitor : Stop with S/S Pin
* Soft-Start Function * ON/OFF Function * Brake Function * Lock Protection System * Thermal Shutdown Circuit * 120/60 Phase Difference Change Function * Multi-FG Output : 2bit Input Change Type * Bi-CDMOS Technology * Package Outline : SSOP32 PIN CONNECTION
1pin
VREF H1+ H1H2+ H2H3+ H3N.C FG FR BR N1 N2 DEC S/S VERR VCC UH VH WH N.C N.C GND UL VL WL N.C ILIMIT FRC Ct OSC GND
1.VREF 2.H1+ 3.H14.H2+ 5.H26.H3+ 7.H38.N.C 9.FG 10.FR 11.BR 12.N1 13.N2 14.DEC 15.S/S 16.VERR
17.GND 18.OSC 19.Ct 20.FRC 21.ILIMIT 22.N.C 23.WL 24.VL 25.UL 26.GND 27.N.C 28.N.C 29.WH 30.VH 31.UH 32.VCC
Ver. 2009-11-13
-1-
NJW4303
PIN FUNCTION LIST
Pin# 1 2 3 4 5 6 7 8,22,27,28 9 10 11 12 13 14 15 16 17,26 18 Terminal Name VREF H1+ H1H2+ H2H3+ H3N.C. FG FR BR N1 N2 DEC S/S VERR GND OSC Function 5V Output Voltage Terminal Hall Element Input Terminal H1+ Hall Element Input Terminal H1Hall Element Input TerminalH2+ Hall Element Input Terminal H2Hall Element Input Terminal H3+ Hall Element Input Terminal H3No Connection FG pulse Output Terminal Forward/Reverse Direction Input Terminal Short Brake Input Terminal FG Pattern Switching Terminal1 FG Pattern Switching Terminal2 Hall Input Phase Switching Terminal Start and Stop input Terminal Error Amp Voltage Input Terminal Logic Ground Terminal PWM Control Capacitor Terminal Lock Protection Capacitor Connection Terminal Dead-Time Capacitor Connection Terminal Over Current Sensing Terminal Output Terminal WL Output Terminal VL Output Terminal UL Output Terminal WH Output Terminal VH Output Terminal UH Motor Voltage Supply Terminal Outputs Supply Voltage of 5V Use with H1Use with H1+ Use with H2Use with H2+ Use with H3Use with H3+ No Connection Output Rotary Signal L, or Open=Forward Direction, H=Reverse Direction L, or Open=Rotation, H=Short Brake Set FG Pattern by Combination with N2. Cf. the below table Set FG Pattern by Combination with N1. Cf. the below table L, or Open=120 Hall Input, H=60 Hall Input L, or Open=Start, H=Stop Set Output ON Duty H=Output ON Duty 100%, L=Output ON Duty 0% Pull-up to VREF PIN in nonuse Connecting with Ground Insert a Capacitor between Grounds. Set PWM frequency depending on the value of the Capacitor Insert a Capacitor between Grounds. Depending on the value of the Capacitor, set On/Off timer for the Output at the time of activated Lock Protection. Insert a Capacitor between Grounds. Depending on the value of the Capacitor, set Output Dead Band at the time of FR switching Connect to the ground side of the external driver Connect to Nch Gate Driver Connect to Nch Gate Driver Connect to Nch Gate Driver Connect to Pch Gate Driver Connect to Pch Gate Driver Connect to Pch Gate Driver Connect motor power source to the terminal Remark
19
Ct
20 21 23 24 25 29 30 31 32
FRC ILIMIT WL VL UL WH VH UH VCC
* All Ground Pins must be connected at the outside. * Electrical potential of all unused output pins must be fixed at the outside.
FG Pattern by combination with N1 and N2 No. 1 2 3 4 N1 H H L/OPEN L/OPEN N2 H L/OPEN H L/OPEN FG 1/2 Frequency Signal from H1 Signal from H1 1/2 Frequency Signal from 3 Hall Compound Signals 3 Hall Compound Signals
-2-
NJW4303
BLOCK DIAGLAM
FG VREF VCC
VREF
UVLO
TSD
UH
S/S DEC N1 N2 H1+ H1H2+ H2H3+ H3+ VH
Rotor Position Decode
WH
+ UL
+ -
FR FRC BR
Dead Time
VL
OSC
Saw Oscillator
WL
PWM Logic
VERR GND
+ Lock Detect
+ -
ILIMIT
Ct
-3-
NJW4303
ABSOLUTE MAXIMUM RATINGS PARAMETER Supply Voltage Hi-side Output Terminal Voltage FG Terminal Voltage LIMIT Terminal Voltage VERR Terminal Voltage Hall Input Terminal Voltage Logic Input Terminal Voltage Reference Voltage Output Current Hi-side Output Current Low-side Output Current FG Output Current Power Dissipation Operating Ambient Temperature Storage Temperature SYMBOL VCC VOH VFG VLIM VVERR VIH VIN IREF IOH IOL IFG PD Topr Tstg RATINGS 40 40 7 3.5 6 4.5 7 30 40 40 15 1190 -40 to +85 -50 to +150 UNIT V V V V V V V mA mA mA mA mW C C Remark VCC PIN UH, VH, WH PIN FG PIN ILIMIT PIN VERR PIN H1+, H1-, H2+, H2-, H3+, H3- PIN BR, FR, DEC, N1/N2, S/S PIN VREF PIN UH, VH, WH PIN UL, VL, WL PIN FG PIN Board Mounted (Ta=25C)
Mounted on designated board based on EIA/JEDEC. (114.3x76.2x1.6mm: 2Layers, FR-4) RECOMMENDED OPERATIONAL CONDITIONS PARAMETER Logic Supply Voltage SYMBOL VCC TEST CONDITION MIN. 9.0 TYP. 24.0 MAX. 35.0 (Ta=25C) UNIT V
-4-
NJW4303
ELECTRICAL CHARACTERISTICS VCC=24V, VIH1+= VIH3+=3.0V, VIH1-= VIH2-= VIH3-=2.0V, VIH2+=1.0V, VIN= VLIM= VCT=0V, VVERR=4.5V, VOSC=4.5V0.5V, CVREF=1uF, Ta=25C PARAMETER SYMBOL TEST CONDITION MIN. GENERAL Supply current 1 ICC1 VCC=12V Supply current 2 ICC2 THERMAL SHUTDOWN BLOCK Thermal shutdown operating TTSD1 Thermal shutdown recovery TTSD2 Thermal shutdown hysteresis TTSD UNDER VOLTAGE LOCK OUT BLOCK VCC Decreasing UVLO operating voltage VUVLO1 6.3 VCC Increasing UVLO recovery voltage VUVLO2 6.8 UVLO hysteresis voltage VUVLO LOCK PROTECTION BLOCK (Ct PIN) High level voltage VHCt 3.30 Low level voltage VLCt 0.90 Lock charge current ICHGCt 2.5 Lock discharge current IDCHGCt 0.25 ICHGCt/IDCHGCt Lock charge/discharge current REFERENCE VOLTAGE BLOCK (VREF PIN) Reference voltage supply VREF IVREF=1mA 4.5 IVREF=1 to 10 mA Load regulation VLOVREF VCC=9 to 35V, IVREF=1 mA Line regulation VLIVREF HALL AMP BLOCK (H1+, H1-, H2+, H2-, H3+, H3- PIN) 10 Hysteresis Voltage range VHYSIH Input bias current IBIH Per each input HI-SIDE BLOCK (UH, VH, WH PIN) Hi-side output voltage VOLH IOH=30 mA Hi-side leak current IOLEAKH VOH=35V LOW-SIDE BLOCK (UL, VL, WL PIN) Low-side output H voltage1 VOHL1 IOLSOURCE=30 mA ,VCC=12V 8.0 Low-side output H voltage2 VOHL2 IOLSOURCE=30 mA 8.0 Low-side output L voltage VOLL IOLSINK=30 mA Low-side clamp voltage VCLL IOLSOURCE=0.1 mA ,VCC=35V FG OUTPUT (FG PIN) Output voltage VFGL IFG=10 mA Leak current ILEAKFG VFG=5V -
TYP. 5.3 6.4 170 135 35 6.8 7.3 0.5 3.55 1.00 5.5 0.55 10 5.0 15 50 30 0.5 10.0 10.0 0.5 0.3 -
MAX. 8.3 9.4 7.3 7.8 3.80 1.30 9.0 0.90 5.5 60 100 50 1.5 1.0 1 1.0 18 0.7 1
UNIT mA mA C C C V V V
uA uA V mV mV mV uA V uA V V V V V uA
-5-
NJW4303
ELECTRICAL CHARACTERISTICS VCC=24V, VIH1+= VIH3+=3.0V, VIH1-= VIH2-= VIH3-=2.0V, VIH2+=1.0V, VIN= VLIM= VCT=0V, VVERR=4.5V, VOSC=4.5V0.5V, CVREF=1uF, Ta=25C PARAMETER SYMBOL TEST CONDITION MIN. OVER CURRENT SENSOR BLOCK (ILIMIT PIN) Sense voltage VDETLIM 0.225 Input bias current IBILM ERROR AMP BLOCK (VERR PIN) PWM0% sense voltage VPWM1VERR PWMDUTY=0% PWM100% sense voltage VPWM2VERR PWMDUTY=100% 3.6 Input bias current IBVERR OSCILLATOR BLOCK (OSC PIN) Saw wave peak voltage VPOSC 2.7 Saw wave bottom voltage VBOSC 1.00 OSC charge current ICHGOSC 30 OSC discharge current IDCHGOSC 1 Oscillation frequency fOSC COSC=1000pF FR DEAD TIME BLOC (FRC PIN) High level voltage VHFRC 3.15 Low level voltage VLFRC 0.9 FRC charge current ICHGFRC 16 FRC discharge current IDCHGFRC 8 FRC dead band time1 tDFRC1 CFRC=1uF FRC dead band time2 tDFRC2 CFRC=1uF CONTOROL INPUT BLOCK (FR, BR, DEC, N1, N2, S/S PIN) Input High level current IHIN VIN=4.5V,per each input 25 Input low level current ILIN VIN=0V,per each input Pull-down resistance RIN PIN OPERATIONAL CONDITIONS PARAMETER SYMBOL TEST CONDITION HALLAMP INPUT (H1+, H1-, H2+, H2-, H3+, H3- PIN) Peak to peak Hall Input Sensitivity VMIH Hall Input voltage range VICMIH CONTOROL INPUT (FR, BR, DEC, N1, N2, S/S PIN) High level voltage VHIN Low level voltage VLIN VERR INPUT (VERR PIN) Input voltage range VICMVERR
TYP. 0.250 1.6 1.6 3.0 1.35 50 2 28 3.5 1.0 26 18 140 100 40 110
MAX. 0.275 5.0 0.5 5.0 3.3 1.60 70 3 3.85 1.2 36 28 60 1 -
UNIT V uA V V uA V V uA mA kHz V V uA uA ms ms uA uA k
MIN. 0.1 0 2 0 0
TYP. -
MAX. 3.5 5 0.8 4.5
UNIT V V V V V
-6-
NJW4303
PIN / CIRCUIT OPERATIONAL DEFINITION Hall Input Pin Input Common-Mode Voltage Definition (Hall Amp Block)
Hall Input Hysteresis Voltage Definition (Hall Amp Block)
VICMIH VIH 3.5V 3.5V
LOGIC INVERSION V HYSIH LOGIC INVERSION
0V
Input pins thresh operational Definition (FR, BR, N1, N2, DEC, S/S PIN)
V IN 5V 2.0V
Undefined
HIGH Level Voltage
0V
FR Dead Time Definition (FR Dead Time Block)
ROTATING DIRECTION
RVS
(REVERSE)
STOP
FWD
STOP
RVS
(REVERSE)
(FORWARD)
VFR
2V 0.8V
VFRC VVREF
TIME t
0.8V
LOW Level Voltage
0V
TIME t
tDFRC1
tDFRC2
Oscillation Frequency Definition(Oscillation Bloc)
VOSC
tCHGOSC
Time t
tDCHGOSC
PWM 100% Sensory Voltage / PWM 100% Sensory Voltage Definition (Error Amplifier Block)
VVERR
V V
Full speed ( = PWM 100%) variable speed control VVERR VOSC stop ( = PWM 0%)
POSC
BOSC
-7-
NJW4303
Sensing Voltage/ Reset Voltage Definition (Over Current Sensing Block)
V OSC V DET LIM
V ILIMIT time
V OL (V UL,V VL,V WL) Motor Action
Active
L
Active
time
Rotation
STOP
Rotation
time
Lock Protection Detection/ Reset Time Definition (Lock Protection Block)
VCt
V HCt V LCt tDCt tRCt
time
THERMAL SHUTDOWN OPERATIONSL DEFINITION (Thermal shutdown block)
TSD RESET TEMP (NORMAL OPERATION)
HYSTERESIS TEMP
TSD OPERATING TEMP (OUTPUT STOP)
0C
85C
120C 150C 170C
TEMP
UNDER VOLTAGE PROTECTION OPERATIONAL DEFENITION (UNDER VOLTAGE PROTECTION BLOCK)
VCC 35.0V 9.0V VUVLO2
HYSTERESIS VOLTAGE UVLO RESET VOLTAGE (NORMAL OPERATION)
VUVLO1
UVLO OPERATING VOLTAGE (OUTPUT STOP)
0V
-8-
NJW4303
TRUTH TABLE INPUT VS OUTPUT TRUTH TABLE1 (DEC=L, H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X")
H1 H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H2 L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L H3 L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H BR TSD UVLO S/S VERR FR DEC N1 N2 UH Hi-Z Hi-Z L L Hi-Z Hi-Z L Hi-Z Hi-Z Hi-Z Hi-Z L Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z VH Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L WH L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z UL H L L L L H L L H H L L H L L L L H VL L H H L L L L L L L H H L H H L L L WL L L L H H L H H L L L L L L L H H L FG L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z VREF COMMENT
L
OFF
OFF
L
H
L
L
L
L
ON
FR="L" FWD Rotation
L
OFF
OFF
L
H
H
L
L
L
ON
FR="H" REV Rotation
L
OFF
OFF
L
H
X
L
L
L
ON
FRC="L" FWD Rotation
L
OFF
OFF
L
X
X
L
L
L
L
L
L
ON
LOCK PROTECTION Operation
L
OFF
OFF
L
X
X
L
L
L
L
L
L
ON
OVER CURRENT Operation
L
OFF
OFF
L
L
X
L
L
L
L
L
L
ON
VERR="L" PWM Operation
L
X
X
H
X
X
L
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
ON
S/S="H" STOP Operation
L
X
ON
X
X
X
L
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
ON
UVLO=ON UVLO Operation
L
ON
X
X
X
X
L
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
ON
TSD=ON TSD Operation
H
X
X
X
X
X
L
L
L
L
L
L
L
L
L
ON
BR="H" BRAKE Operation
INPUT VS OUTPUT TRUTH TABLE2 (DEC=L, Invalid Code Pattern) (H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X")
H1 H L H L H2 H L H L H3 H L H L BR L H TSD UVLO X X X X S/S X X VERR X X FR X X DEC L L N1 L L N2 L L UH Hi-Z L VH Hi-Z L WH Hi-Z L UL L L VL L L WL L L FG L Hi-Z L Hi-Z VREF ON ON COMMENT
Invalid Code Pattern Invalid Code Pattern BR="H" BARKE Operation
-9-
NJW4303
INPUT VS OUTPUT TRUTH TABLE3 (DEC=H, H1+>H1-, H2+>H2-, H3+>H3-="H", Don't Care="X")
H1 H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H2 L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L H3 L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L L L H H H L BR TSD UVLO S/S VERR FR DEC N1 N2 UH Hi-Z Hi-Z L L Hi-Z Hi-Z L Hi-Z Hi-Z Hi-Z Hi-Z L Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z VH Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L WH L L Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z L L Hi-Z Hi-Z Hi-Z Hi-Z UL H L L L L H L L H H L L VL L H H L L L L L L L H H WL L L L H H L H H L L L L FG Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L Hi-Z L VREF COMMENT
L
OFF
OFF
L
H
L
H
L
L
ON
FR="L" FWD Rotation
L
OFF
OFF
L
H
H
H
L
L
ON
FR="H" REV Rotation
L
OFF
OFF
L
X
X
H
L
L
L
L
L
ON
LOCK PROTECTION Operation
L
OFF
OFF
L
X
X
H
L
L
L
L
L
ON
OVER CURRENT Operation
L
OFF
OFF
L
L
X
H
L
L
L
L
L
ON
VERR="L" PWM Operation
L
X
X
H
X
X
H
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
ON
S/S="H" STOP Operation
L
X
ON
X
X
X
H
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
ON
UVLO=ON UVLO Operation
L
ON
X
X
X
X
H
L
L
Hi-Z
Hi-Z
Hi-Z
L
L
L
ON
TSD=ON TSD Operation
H
X
X
X
X
X
H
L
L
L
L
L
L
L
L
ON
BR="H" BRAKE Operation
INPUT VS OUTPUT TRUTH TABLE4 (DEC=H, Invalid Code Pattern) (H1+>H1-, H2+>H2-,H3+>H3-="H", Don't Care="X")
H1 H L H L H2 L H L H H3 H L H L BR L H TSD UVLO X X X X S/S X X VERR X X FR X X DEC H H N1 L L N2 L L UH Hi-Z L VH Hi-Z L WH Hi-Z L UL L L VL L L WL L L FG L Hi-Z L Hi-Z VREF ON ON COMMENT
Invalid Code Pattern Invalid Code Pattern BR="H" BARKE Operation
- 10 -
NJW4303
TIMING CHART
Codes used in Hall input: Logics of H1, H2, H3 are expressed with each 3-colum starting from the top. High Logic = 1, Low Logic = 0
1. Normal FunctionPWM Function
ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720
H1 H2 HALL INPUT H3 code 100 110 010 011 001 101 100 110 010 011 001 101
DEC(=L) FR(=L) N1(=L) N2(=L) FG
UH Hi-SIDE VH WH
UL LOW-SIDE VL WL
TORQUE CONTROL INPUT
VERR OSC
Fullspeed (PWMDUTY=100%)
Reduced Speed (PWMDUTY=70%)
- 11 -
NJW4303
2. NORMAL FUNCTIONFORWARD/REVERSE SWITCHING while rotating
ELECTRIC DEGREE POSITION (deg) 0 H1 H2 HALL INPUT H3 code 100 110 010 010 110 100 101 001 011 011 001 101 60 120 180 240 300 360 420 480 540 600 660 720
DEC(=L) N1(=L) N2(=L) FG
FR FORWARD/REVERS INPUT FRC
UH Hi-SIDE VH WH
UL LOW-SIDE VL WL
FR=L
Deadtime
FR=H
Deadtime
FR=L
- 12 -
NJW4303
3. NORMAL FUNCTIONBRAKE CONTROLBRAKE RESET
ELECTRIC DEGREE POSITION (deg) 0 H1 H2 H3 code 100 110 010 011 001 101 100 110 010 011 001 101 60 120 180 240 300 360 420 480 540 600 660 720
HALL INPUT
DEC(=L) FR(=L) N1(=L) N2(=L) FG
BRAKE INPUT
BR
UH Hi-SIDE VH WH
UL LOW-SIDE VL WL
motor rotate function BR=L
Deadtime
Brake function BR=H
Deadtime
motor rotate function BR=L
- 13 -
NJW4303
4. NORMAL FUNCTIONLOCK PROTECTIONLOCK RESET
ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720
H1 H2 H3 code DEC(=L) FR(=L) N1(=L) N2(=L) FG 100 110 010 011 011 011 011 001 101 100 110 010
HALL INPUT
CT PIN OUTPUT
CT
UH HI-SIDE VH WH
UL LOW-SIDE VL WL
motor rotate function
Lock function
motor rotate function
- 14 -
NJW4303
5. NORMAL FUNCTIONLOW VOLTAGE PROTECTIONNORMAL FUNCTION
ELECTRIC DEGREE POSITION (deg) 0 VCC 60 120 180 240 300 360 420 480 540 600 660 720
H1 H2 HALL INPUT H3
code DEC(=L) FR(=L) N1(=L) N2(=L) FG
100
110
010
011
001
101
100
110
010
011
001
101
UH HI-SIDE VH WH
Hi-Z Hi-Z Hi-Z
UL LOW-SIDE VL WL
TORQUE CONTROL INPUT
VERR OSC
Fullspeed
motor stop (UVLO ON)
Fullspeed
- 15 -
NJW4303
6. NORMAL FUNCTIONSTOP FUNCTION (S/S=H)NORMAL FUNCTION
ELECTRIC DEGREE POSITION (deg) 0 VCC S/S 60 120 180 240 300 360 420 480 540 600 660 720
H1 H2 HALL INPUT H3 code 100 110 010 011 001 101 100 110 010 011 001 101
DEC(=L) FR(=L) N1(=L) N2(=L) FG
UH HI-SIDE VH WH
Hi-Z Hi-Z Hi-Z
UL LOW-SIDE VL WL
TORQUE CONTROL INPUT
VERR OSC
Fullspeed
motor stop (STOP ON)
Fullspeed
- 16 -
NJW4303
7. SOFT START FUNCTION
ELECTRIC DEGREE POSITION (deg) 0 60 120 180 240 300 360 420 480 540 600 660 720
VCC VREF
H1 H2 HALL INPUT H3 code DEC (=L) FR(=L) N1(=L) N2(=L) FG 110 110 010 011 001 101 100 110 010 011 001 101
UH Hi-SIDE VH WH
UL LOW-SIDE VL WL VERR
TORQUE CONTROL INPUT
VERR OSC OFF Soft Start (PWM) Full speed (no PWM)
- 17 -
NJW4303
8. FG OUTPUT TIMING CHART
OUTPUT TIMING CHART 1 (120 deg Input Mode)
ELECTRIC DEGREE POSITION (deg) 0 H1 HALL INPUT DEC=L or open (120 deg input mode) H2 H3 code 101 100 110 010 011 001 101 100 110 010 011 001 60 120 180 240 300 360 420 480 540 600 660 720
N1=H, N2=H N1=H, N2=L FG OUTPUT N1=L, N2=H N1=L, N2=L
OUTPUT TIMING CHART 2 (60 deg Input Mode)
ELECTRIC DEGREE POSITION (deg) 0 H1 HALL INPUT DEC=H (60 deg input mode) H2 H3 code 100 110 111 011 001 000 100 110 111 011 001 000 60 120 180 240 300 360 420 480 540 600 660 720
N1=H, N2=H N1=H, N2=L FG OUTPUT N1=L, N2=H N1=L, N2=L
* When the status of N1/N2 is H/H or L/H, FG output is not synchronized with Hall input, because FG output is produced by using a frequency divider.
- 18 -
NJW4303
FUNCTION DESCRIPTION Lock Protection Block - Detect/Reset Time Lock Protection can be done by charging/discharging to the capacitor CCt. Lock Protection Detect time (tDCt) and Reset time (tRCt) are determined by the value of either Ct charging current (ICHGCt) or Ct discharging current (IDCHGCt) and the value of the external capacitor CCt. To adjust Detect/Reset Time, change the value of CCt. The calculation formula for Detect/Reset Time can be described in equation below: adjustment range for CCt is 0.1F to 10F.
Symbol Detect Time Reset Time tDCt tRCt tDCt 4.6 106 CCt
6 tRCt 0.46 10 CCt
Formula
Comments
Figure1: Lock Protection Detect/ Reset Time Calculating Formula When the motor is rotating, electric charge of CCt capacitor discharging is produced repeatedly by input from hall signal. However, when we set the motor to low speed using the speed control application, input time from hall signal is longer, with this, Ct voltage level will increase and malfunction can be expected. When this occurs, it is recommended to add Ct discharge circuit by using FG signal output. Please refer to typical application circuit 2. VREF Reference Voltage Block - How to use VREF When using VREF pin, make sure that it is not oscillating. Use the recommended VCC operational condition. 10k 10k Hall Amp Block - Capacitor H1+/H2+/H3 Input from hall signal requires more than that of the Hall Input Sensitivity (VMIH=100mV). H1- to H3Hall Amp pin connecting Taking measures in keeping noise immunity, when using FG output, Block FG jitter can be expected. When this occurs, it is recommended to add capacitors more than 0.01F between Hall input pins. 20k 10k Hall Amp Block - How to use Hall IC Hall IC Hall input pins H1-, H2- and H3- are biased to VREF/2. To keep Hall IC Output voltage within the Hall Input voltage range (VICMIH), it needs to add 2 pieces of biased resistor for every H1+, H2+ and H3+ pins. Figure2: Hall IC application Oscillation Block - Oscillation Frequency OSC pin produce Oscillating wave by charging/discharging to the capacitor COSC. Oscillating frequency (fOSC) is modulated by COSC, and determined by charging time (tCHGOSC) and discharging time (tDCHGOSC). The oscillation frequency depends on tCHGOSC in great deal compare to tDCHGOSC, so that the calculation formula for oscillation frequency can be described in equation below: adjustment range for COSC is 330pF to 2200pF.
Symbol Formula FOSC 28 10-6 / COSC Comments
Oscillation Frequency
fOSC
Figure3: Oscillation Frequency Calculating Formula FR Dead Time Block - Dead Band Time FR Dead band time is divided in two types depending on giving conditions. The two dead band time are determined by the value of either FRC charged current or FRC discharge current IDCHGFRC, and the value of an external capacitor. To adjust the dead band time, change the value of CFRC. FR dead band time can be expressed as following: adjustment range for CFRC is more than 1pF.
Symbol FR Dead Band Time1 FR Dead Band Time2 tDFRC1 tDFRC2 tDFRC1 140 10 CFRC tDFRC2 140 10 CFRC
3 3
Formula
Comments
FR : H L (open) FR : L (open) H
Figure4: Dead Band Time Calculating Formula
- 19 -
NJW4303
TYPICAL APPLICATION CIRCUIT 1
VM RFG FG-OUT FG
+
CVREF VREF VCC
CVCC
+
+
GND
VREF
UVLO
UH
TSD
S/S DEC N1 N2 H1+ H1H2+ H2H3+ H3VH
3Phase Motor N S S N
H
+ -
Rotor Position Decode
WH
H
+ UL + -
H
FRC CFRC FR BR
Dead Time
VL
OSC COSC
Saw Oscillator
WL
PWM Logic
VERR CVERR GND
+ Lock Detect
+ -
ILIMIT
Lowpass Filter
Cct
- 20 -
NJW4303
TYPICAL APPLICATION CIRCUIT 2
VM
+ +
CVREF VREF VCC
CVCC
+
GND
VREF
UVLO
UH
TSD
S/S DEC N1 N2 H1+ H1H2+ H2H3+ H3VH
3Phase Motor N S S N
H
+ -
Rotor Position Decode
WH
H
+ UL + -
H
FRC CFRC FR BR
Dead Time
VL
OSC COSC
Saw Oscillator
WL
PWM Logic
RFG CVERR
VERR GND
+ Lock Detect
+ -
ILIMIT
Lowpass Filter
FG
V-IN
Ct
Cct
COMP1 C1 R2
V-FG
Comparator
FG-IN
R1
+
FG-OUT
C1=22nF R1=10k R2=40k R3=10k D1:1S2076 COMP1:NJM2903
+
D1 R3
- 21 -
NJW4303
TYPICAL CHARACTERISTICS
VCC vs ICC 10 Tj=25[oC] 9 8 7 6 ICC [mA] 5 4 3 2 1 0 0 5 10 15 20 VCC [V] 25 30 35 40
VREF[V] 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0 5 10 15 20 VCC [V] 25 30 35 40 6.0 Tj=25[ oC] IVREF =1[mA] VCC vs VREF
IREF vs VREF 5.50 5.40 5.30 5.20 5.10 VREF[V] 5.00 4.90 4.80 4.70 4.60 4.50 0 5 10 15 IREF [mA]
IOLSINK vs VOLL 1.0 0.9 0.8 0.7 0.6 VOLL[V] 0.5 0.4 0.3 0.2 0.1 0.0 0 5 10 15 20 25 30 35 40 45 IOLSINK[mA] VOHL[V] Tj=25[ oC] VCC =24[V] 11.0 10.8 10.6 10.4 10.2 10.0 9.8 9.6 9.4 9.2 9.0 0 5 10 15 Tj=25[oC] VCC =24[V]
IOH vs VOLH 1.0 Tj=25[oC] VCC =24[V]
Tj=25[oC] VCC =24[V]
0.9 0.8 0.7 0.6 VOLH[V] 0.5 0.4 0.3 0.2 0.1 0.0
20
25
30
0
5
10
15
20
25
30
35
40
45
IOH [mA]
IOLSOURCE vs VOHL
20
25
30
35
40
45
IOLSOURCE[mA]
- 22 -
NJW4303
TYPICAL CHARACTERISTICS
VCC vs VOHL 15 14 13 12 11 VOHL [V] Tj=25[ oC] IOLSOURCE=0.1[mA]
IFG vs VFGL 1.0 0.9 0.8 0.7 0.6 VFGL[V] 0.5 0.4 0.3 0.2 0.1 0.0 Tj=25[ oC] VCC =24[V]
10 9 8 7 6 5 5 10 15 20 VCC [V] 25 30 35 40
0
2
4
6
8 IFG[mA]
10
12
14
16
VCt vs ICHGCt 9.00 8.50 8.00 7.50 7.00 6.50 6.00 5.50 5.00 4.50 4.00 3.50 3.00 2.50 0.50 1.00 1.50 2.00 VCt [V] VOSC vs ICHGOSC 52.0 Tj=25[oC] VCC =24[V] 51.5
2.0 2.5 Tj=25[ oC] VCC =24[V]
VCt vs IDCHGCt 0.90 Tj=25[oC] VCC =24[V]
Tj=25[ C] VCC =24[V]
o
0.85 0.80 0.75 0.70 0.65 IDCHGCt [uA] 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 2.50 3.00 3.50 4.00 0.50
ICHGCt [uA]
1.00
1.50
2.00 VCt [V]
2.50
3.00
3.50
4.00
VOSC vs IDCHGOSC
51.0
1.5
ICHGOSC[uA]
50.5
50.0
IDCHGOSC[mA]
1.0
49.5
0.5
49.0
48.5 1.00 1.50 2.00 VOSC [V] 2.50 3.00 3.50
0.0 1.00 1.50 2.00 VOSC [V] 2.50 3.00 3.50
- 23 -
NJW4303
TYPICAL CHARACTERISTICS
VFRC vs ICHGFRC 36 34 32 30 28 ICHGFRC[uA] 26 24 22 20 18 16 0.0 1.0 2.0 VFRC [V] 3.0 4.0 5.0 Tj=25[ oC] VCC =24[V]
28 26 24 22 20 IDCHGFRC[uA] 18 16 14 12 10 8 0.0 1.0 2.0 VFRC [V] 3.0 4.0 5.0 Tj=25[oC] VCC =24[V] VFRC vs IDCHGFRC
Ct vs tCHGCt 5.0 4.5 4.0 3.5 3.0 tCHGCt[ms] 2.5 2.0 1.5 1.0 0.5 0.0 0.1 1.0 C t [uF] C OSC vs fOSC
Tj=25[ C] VCC =24[V]
o
Ct vs tDCHGCt 50
Tj=25[ C] VCC =24[V]
o
Tj=25[ C] VCC =24[V]
o
45 40 35 30 25 20 15 10 5 0 10.0
tDCHGCt[ms]
0.1
1.0 C t [uF]
VCC vs fOSC
10.0
1000
30.0 Tj=25[ oC] COSC =1000[pF] 29.5
100 fOSC[kHz]
fOSC[kHz]
29.0
28.5
10
28.0
27.5
1 100 1000 C OSC[pF] 10000
27.0 5 10 15 20 VCC [V] 25 30 35 40
- 24 -
NJW4303
TYPICAL CHARACTERISTICS
CFRC vs fDFRC1 2000 1800 1600 1400 1200 fDFRC1 [ms] 1000 800 600 400 200 0 0 2 4 6 C FRC[uF] 8 10 12 fDRC2 [ms]
Tj=25[ C] VCC =24[V]
o
CFRC vs fDFRC2 2000 1800 1600 1400 1200 1000 800 600 400 200 0 0 2 4 6 C FRC[uF] 8 10 12
Tj=25[ C] VCC =24[V]
o
12 VCC =12[V] 10
Tj vs ICC1
12 VCC =24[V] 10
Tj vs ICC2
8 ICC1 [mA]
8
6
ICC2 [mA]
6
4
4
2
2
0 -50 -25 0 25 50 Tj [ C]
o
0
75
100
125
150
-50
-25
0
25
50 Tj [ oC]
75
100
125
150
Tj vs VUVLO1 9.0 VCC Decreasing 8.5 8.0
8.5 9.0 VCC Increasing
Tj vs VUVLO2
8.0
7.5 VUVLO1 [V]
VUVLO2 [V]
7.5
7.0 6.5
7.0
6.5
6.0 5.5
6.0
5.5
5.0 -50 -25 0 25 50 Tj [oC] 75 100 125 150
5.0 -50 -25 0 25 50 Tj [ oC] 75 100 125 150
- 25 -
NJW4303
TYPICAL CHARACTERISTICS
Tj vs VREF 5.5 5.4 5.3
40 50 Tj vs VHY SIH
VCC =24[V] IVREF =1[mA]
VCC =24[V] 45
5.2
VHYSIH [mV]
5.1 VREF [V] 5.0 4.9 4.8 4.7 4.6 4.5 -50 -25 0 25 50 Tj [ oC] 75 100 125 150
35
30
25
20
15
10 -50 -25 0 25 50 Tj [ oC] 75 100 125 150
Tj vs IBIH 1.5 1.4 1.3 1.2 1.1 1.0 0.9 IBIH [nA] 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 Tj [oC] 75 100 125 150 VCC =24[V]
Tj vs VOLH 1.0 0.9 0.8 0.7 0.6 VOLH [V] 0.5 0.4 0.3 0.2 0.1 0.0 -50 -25 0 25 50 Tj [oC] 75 100 125 150 VCC =24[V] IOH =30[mA]
Tj vs VOHL 11.0 VCC =24[V] 10.5 IOLSOURCE=30[mA]
0.8 0.7 0.6 1.0 0.9 VCC =24[V] IOLSINK=30[mA]
Tj vs VOLL
10.0 VOHL2 [V]
9.5
VOLL [V]
0.5 0.4
9.0
0.3
8.5
0.2 0.1
8.0 -50 -25 0 25 50 Tj [ C]
o
75
100
125
150
0.0 -50 -25 0 25 50 Tj [oC] 75 100 125 150
- 26 -
NJW4303
TYPICAL CHARACTERISTICS
Tj vs VFGL 1.00 0.90 0.80 0.70 0.60 0.50 0.40 0.30 0.20 0.10 0.00 -50 -25 0 25 50 Tj [oC] 75 100 125 150 0.225 -50 -25 0 25 50 Tj [oC] 75 100 125 150 0.235 VDETLIM [V] VFGL [V] 0.255 VCC =24[V] IFG=10[mA] 0.265 0.275 VCC =24[V] Tj vs VDETLIM
0.245
Tj vs ICHGOSC 70 VCC =24[V] 65 VOSC =2.5[V] 3.0 VCC =24[V] 2.8 2.6 60 2.4 55 IDCHGOSC [mA] ICHGOSC [uA] 2.2 2.0 1.8 1.6 40 1.4 35 1.2 1.0 -50 -25 0 25 50 Tj [oC] 75 100 125 150 -50 -25 0 VOSC =2.5[V]
Tj vs IDCHGOSC
50
45
30
25
50 Tj [oC]
75
100
125
150
Tj vs fOSC 34 VCC =24[V] 32 COSC =1000[pF]
Tj vs RIN 250 VCC =24[V]
200
30
fOSC [kHz]
26
RIN [kohm]
28
150
100
24
50
22
20 -50 -25 0 25 50 Tj [ oC] 75 100 125 150
0 -50 -25 0 25 50 Tj [ oC] 75 100 125 150
- 27 -
NJW4303
TYPICAL CHARACTERISTICS
Tj vs VHCt 3.80 3.75 3.70 1.20 3.65 3.60 VHCt [V] 3.55 3.50 3.45 1.00 3.40 3.35 3.30 -50 -25 0 25 50 Tj [ C]
o
Tj vs VLCt 1.30 VCC =24[V] 1.25
VCC =24[V]
1.15 VLCt [V] 75 100 125 150
1.10
1.05
0.95
0.90 -50 -25 0 25 50 Tj [ oC] 75 100 125 150
Tj vs ICHGCt 9.0 8.5 8.0 7.5 7.0 6.5 VCC =24[V] VCt =2.5[V]
Tj vs IDCHGCt 0.90 0.85 0.80 0.75 0.70 0.65 IDCHGCt [uA] 0.60 0.55 0.50 0.45 0.40 0.35 0.30 0.25 VCC =24[V] VCt =2.5[V]
ICHGCt [uA]
6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 -50 -25 0 25 50 Tj [oC] 75 100 125 150
-50
-25
0
25
50 Tj [oC]
75
100
125
150
[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.
- 28 -


▲Up To Search▲   

 
Price & Availability of NJW4303

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X