Part Number Hot Search : 
1040CT CM800 K538YH3 TDA750 STW5098T 100M1 HT46R 80020
Product Description
Full Text Search
 

To Download UMF9N Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 UMF9N
Transistors
Power management (dual transistors)
UMF9N
2SC5585 and 2SK3019 are housed independently in a UMT package.
!Application Power management circuit
!External dimensions (Units : mm)
!Features 1) Power switching circuit in a single package. 2) Mounting cost and area can be cut in half.
(4)
0.65 1.3 0.65 0.7 0.9
(3)
0.2
(6)
1.25 2.1
!Equivalent circuits
(3) (2) (1)
ROHM : UMT6 EIAJ : SC-88
Tr2
Tr1
(4)
(5)
(6)
!Packaging specifications
Type Package Marking Code Basic ordering unit (pieces) UMF9N UMT6 F9 TR 3000
0~0.1
!Structure Silicon epitaxial planar transistor
0.15
0.1Min.
Each lead has same dimensions
(1)
2.0
(5)
(2)
1/5
UMF9N
Transistors
!Absolute maximum ratings (Ta=25C) Tr1
Limits Symbol 15 VCBO VCEO 12 VEBO 6 IC 500 Collector current ICP 1.0 PC 150(TOTAL) Power dissipation Tj 150 Junction temperature Tstg -55~+150 Range of storage temperature Parameter Collector-base voltage Collector-emitter voltage Emitter-base voltage Unit V V V mA A mW C C
1 2
1 Single pulse PW=1ms 2 120mW per element must not be exceeded. Each terminal mounted on a recommended land.
Tr2
Symbol Limits Parameter VDSS 30 Drain-source voltage VGSS 20 Gate-source voltage ID 100 Continuous Drain current 200 IDP Pulsed IDR 100 Continuous Reverse drain current IDRP 200 Pulsed Total power dissipation 150(TOTAL) PD Tch 150 Channel temperature Tstg -55~+150 Range of storage temperature Unit V V mA mA mA mA mW C C
1 1 2
1 PW10ms Duty cycle50% 2 120mW per element must not be exceeded. Each terminal mounted on a recommended land.
!Electrical characteristics (Ta=25C) Tr1
Parameter Collector-emitter breakdown voltage Collector-base breakdown voltage Emitter-base breakdown voltage Collector cut-off current Emitter cut-off current Collector-emitter saturation voltage DC current gain Transition frequency Collector output capacitance Symbol BVCEO BVCBO BVEBO ICBO IEBO VCE(sat) hFE fT Cob Min. 12 15 6 - - - 270 - - Typ. - - - - - 100 - 320 7.5 Max. - - - 100 100 250 680 - - Unit V V V nA nA mV - MHz pF Conditions IC=1mA IC=10A IE=10A VCB=15V VEB=6V IC=200mA, IB=10mA VCE=2V, IC=10mA VCE=2V, IE=-10mA, f=100MHz VCB=10V, IE=0mA, f=1MHz
Tr2
Parameter Gate-source leakage Drain-source breakdown voltage Zero gate voltage drain current Gate-threshold voltage Static drain-source on-state resistance Forward transfer admittance Input capacitance Output capacitance Reverce transfer capacitance Turn-on delay time Rise time Turn-off delay time Fall time Symbol IGSS V(BR)DSS IDSS VGS(th) RDS(on) |Yfs| Ciss Coss Crss td(on) tr td(off) tf Min. - 30 - 0.8 - - 20 - - - - - - - Typ. - - - - 5 7 - 13 9 4 15 35 80 80 Max. 1 - 1.0 1.5 8 13 - - - - - - - - Unit A V A V ms pF pF pF ns ns ns ns Conditions VGS=20V, VDS=0V ID=10A, VGS=0V VDS=30V, VGS=0V VDS=3V, ID=100A ID=10mA, VGS=4V ID=1mA, VGS=2.5V VDS=3V, ID=10mA VDS=5V, VGS=0V, f=1MHz
ID=10mA, VDD 5V, VGS=5V, RL=500, RGS=10
2/5
UMF9N
Transistors
!Electrical characteristic curves Tr1
1000
COLLECTOR CURRENT : IC (mA)
COLLECTOR SATURATION VOLTAGE : VCE(sat) (mV)
VCE=2V Pulsed
DC CURRENT GAIN : hFE
1000
Ta=125C Ta=25C Ta=-40C
1000 Ta=25C Pulsed
VCE=2V Pulsed
100
100
100
C
Ta= -40 C
Ta=12 5
C
Ta=25
IC/IB=50
10
10
10
IC/IB=20 IC/IB=10
1
1
0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1
10
100
1000
1
1
10
100
1000
BASE TO EMITTER VOLTAGE : VBE (V)
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : IC (mA)
Fig.1 Grounded emitter propagation characteristics
Fig.2 DC current gain vs. collector current
Fig.3 Collector-emitter saturation voltage vs. collector current ( )
COLLECTOR SATURATION VOLTAGE : VCE (sat) (V)
BASER SATURATION VOLTAGE : VBE (sat) (mV)
1000 IC/IB=20 Pulsed
10000
100 Ta=125C 25C -40C 10
1000
Ta=25C
Ta=-40C
TRANSITION FREQUENCY : fT (MHz)
IC/IB=20 Pulsed
1000
VCE=2V Ta=25C Pulsed
100
Ta=125C
100
10
1
1
10
100
1000
10
1
10
100
1000
1
1
10
100
1000
COLLECTOR CURRENT : IC (mA)
COLLECTOR CURRENT : IC (mA)
EMITTER CURRENT : IE (mA)
Fig.4 Collector-emitter saturation voltage vs. collector current ( )
Fig.5 Base-emitter saturation voltage vs. collector current
Fig.6 Gain bandwidth product vs. emitter current
EMITTER INPUT CAPACITANCE : Cib (pF) COLLECTOR OUTPUT CAPACITANCE : Cob (pF)
1000
TRANSITION FREQUENCY : IC (A)
IE=0A f=1MHz Ta=25C 100 Cib
10 Ta=25C Single Pulsed 1
10ms 100ms DC
1ms
0.1
10
Cob
0.01
1 0.1
1
10
100
0.001 0.01
0.1
1
10
100
EMITTER TO BASE VOLTAGE : VEB(V)
EMITTER CURRENT : VCE (V)
Fig.7 Collector output capacitance vs. collector-base voltage Emitter input capacitance vs. emitter-base voltage
Fig.8 Safe operation area
3/5
UMF9N
Transistors
Tr2
GATE THRESHOLD VOLTAGE : VGS(th) (V)
200m 100m
DRAIN CURRENT : ID (A)
STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) ()
VDS=3V Pulsed
2
50m 20m 10m 5m 2m 1m
0.5m
VDS=3V ID=0.1mA Pulsed
50
VGS=4V Pulsed
20 10 5
1.5
Ta=125C 75C 25C -25C
1
Ta=125C 75C 25C -25C
2 1 0.5 0.001 0.002
0.5
0.2m 0.1m 0 1 2 3 4
0 -50 -25
0
25
50
75
100
125 150
0.005 0.01 0.02
0.05 0.1
0.2
0.5
GATE-SOURCE VOLTAGE : VGS (V)
CHANNEL TEMPERATURE : Tch (C)
DRAIN CURRENT : ID (A)
Fig.9 Typical transfer characteristics
Fig.10 Gate threshold voltage vs. channel temperature
Fig.11 Static drain-source on-state resistance vs. drain current ( )
50
STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) ()
STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) ()
20 10 5
STATIC DRAIN-SOURCE ON-STATE RESISTANCE : RDS(on) ()
Ta=125C 75C 25C -25C
VGS=2.5V Pulsed
15
Ta=25C Pulsed
9
8 7 6 5 4 3 2 1 0 -50 -25 0 25 50 75
ID=100mA
VGS=4V Pulsed
10
ID=50mA
2 1 0.5 0.001 0.002
5
ID=0.1A ID=0.05A
0.005 0.01 0.02
0.05
0.1
0.2
0.5
0 0
5
10
15
20
100 125
150
DRAIN CURRENT : ID (A)
GATE-SOURCE VOLTAGE : VGS (V)
CHANNEL TEMPERATURE : Tch (C)
Fig.12 Static drain-source on-state resistance vs. drain current ( )
Fig.13 Static drain-source on-state resistance vs. gate-source voltage
Fig.14 Static drain-source on-state resistance vs. channel temperature
0.5
REVERSE DRAIN CURRENT : IDR (A)
0.2
FORWARD TRANSFER ADMITTANCE : |Yfs| (S)
100m 50m 20m 10m 5m 2m 1m 0.5m 0.2m 0.1m
REVERSE DRAIN CURRENT : IDR (A)
VDS=3V Pulsed
200m
VGS=0V Pulsed
200m 100m 50m 20m 10m 5m 2m 1m 0.5m 0.2m 0.1m VGS=4V
Ta=25C Pulsed
0.1 0.05 0.02 0.01 0.005 0.002 0.001 0.0001 0.0002
Ta=-25C 25C 75C 125C
Ta=125C 75C 25C -25C
0V
0.0005 0.001 0.002
0.005 0.01 0.02
0.05 0.1 0.2
0.5
0
0.5
1
1.5
0
0.5
1
1.5
DRAIN CURRENT : ID (A)
SOURCE-DRAIN VOLTAGE : VSD (V)
SOURCE-DRAIN VOLTAGE : VSD (V)
Fig.15 Forward transfer admittance vs. drain current
Fig.16 Reverse drain current vs. source-drain voltage ( )
Fig.17 Reverse drain current vs. source-drain voltage ( )
4/5
UMF9N
Transistors
50 Ta=25C f=1MHZ VGS=0V
SWITHING TIME : t (ns)
1000 tf 500 td(off)
20
CAPACITANCE : C (pF)
200 100 50 20 10 5 2 0.1 0.2
tr td(on)
Ta=25C VDD=5V VGS=5V RG=10 Pulsed
10 5
Ciss
Coss Crss
2 1 0.5 0.1
0.2
0.5
1
2
5
10
20
50
0.5
1
2
5
10
20
50
100
DRAIN-SOURCE VOLTAGE : VDS (V)
DRAIN CURRENT : ID (mA)
Fig.18 Typical capacitance vs. drain-source voltage
Fig.19 Switching characteristics
5/5
Appendix
Notes
No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD. The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered. Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set. Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices. Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer. Products listed in this document use silicon as a basic material. Products listed in this document are no antiradiation design.
The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys). Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance. About Export Control Order in Japan Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan. In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.
Appendix1-Rev1.0


▲Up To Search▲   

 
Price & Availability of UMF9N

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X