Part Number Hot Search : 
BA20D3 SAP51 ITS4142N 75N60 EP2C5 CDRH5D28 UF2DF RCA33R
Product Description
Full Text Search
 

To Download NJG1711KC1 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 NJG1711KC1
800MHz BAND FRONT-END GaAs MMIC
nGENERAL DESCRIPTION NJG1711KC1 is a front-end GaAs MMIC including a LNA, a local amplifier and a mixer, designed mainly for 800MHz band cellular phone handsets. The ultra small & ultra thin FLP10-C1 package is applied. nFEATURES lLow Voltage Operation lLow Current Consumption lUltra Small & Ultra Thin package *LNA lHigh Small Signal Gain lLow Noise Figure lHigh Input IP3 *Mixer lHigh Conversion Gain lLow Nose Figure lHigh Input IP3 nPIN CONFIGURATION KC1 Type (Top View) 1 2 3 4 5 Orientation Mark Pin Connection 1.LNAIN 2.LNACAP 3.GND 4.IFOUT 5.VLO 6.LOIN 7.GND 8.MIXIN 9.GND 10.LNAOUT nPACKAGE OUTLINE
NJG1711KC1 +2.8V typ. LNA 2.8mA typ. Mixer 6.0mA typ. (with local amplifier operation current) FLP10-C1 (Mount Size: 2.8x3.0x0.75mm) 18.0dB typ. @fRF =820MHz 1.3dB typ. @fRF =820MHz -5.0dBm typ. @fRF =820+820.1MHz 12.0dB typ. @fRF =820MHz, fLO=706.2MHz, PLO=-10dBm 5.0dB typ.@fRF =820MHz, fLO=706.2MHz, PLO=-10dBm +2.0dBm typ. @fRF =820+820.1MHz, fLO=706.2MHz, PLO=-10dBm
10 9 8 7 6
NOTE: Please note that any information on this catalog will be subject to change.
-1-
NJG1711KC1
nABSOLUTE MAXIMUM RATINGS (Ta=+25C, Zs =Zl=50) PARAMETER LNA Voltage Mixer Voltage LOCAL Amplifier Voltage Input Power 1 Input Power 2 Power Dissipation Operating Temperature Storage Temperature SYMBOL VLNA VMIX VLO PLNAIN PLOIN PD Topr Tstg CONDITIONS RATINGS 5.0 5.0 5.0 +15 +10 550 -40~+85 -55~+125 UNITS V V V dBm dBm mW C C
VLNA=VM I X=VL O=2.8V VLNA=VM I X=VL O=2.8V
nELECTRICAL CHARACTERISTICS 1 (LNA) GENERAL CONDITIONS: Ta=+25C, VLNA=2.8V, VM I X=VL O=0V, fRF =820MHz, PRF =-35dBm, Zs =Zl=50, with test circuit PARAMETER Operating Frequency LNA Voltage LNA Operating Current Small Signal Gain Gain Flatness Noise Figure Pout at 1dB Gain Compression point Input 3rd Order Intercept point RF IN VSWR RF OUT VSWR SYMBOL freq VLNA ILNA Gain Gflat NF P-1dB IIP3 VSWRi VSWRo fRF =820.0+820.1MHz CONDITIONS MIN 810 2.5 16.0 -6.0 -11.0 TYP 820 2.8 2.8 18.0 0.5 1.3 +1.0 -5.0 1.5 1.5 MAX 885 4.5 3.3 19.0 1.0 1.5 2.0 2.0 UNITS MHz V mA dB dB dB dBm dBm
PRF , PLO=OFF fRF =810~885MHz
nELECTRICAL CHARACTERISTICS 2 (Mixer) GENERAL CONDITIONS: Ta=+25C, VLNA=0V, VM I X=VLO=2.8V, fRF =820MHz, fLO=706.2MHz, fIF =113.8MHz, PRF =-30dBm, PLO=-10dBm, Zs =Zl=50, with test circuit PARAMETER Operating Frequency Mixer Voltage Local Amplifier Voltage Mixer Operating Current Local Amplifier Operating Current Conversion Gain Noise Figure Input 3rd Order Intercept Point SYMBOL freq VMIX VLO IM I X IL O Gc NF IIP3 fRF =820.0+820.1MHz CONDITIONS MIN 810 2.5 2.5 10.5 TYP 820 2.8 2.8 5.0 1.0 12.0 5.0 +2.0 MAX 885 4.5 4.5 6.0 1.2 6.0 UNITS MHz V V mA mA dB dB dBm
PRF , PLO=OFF PRF , PLO=OFF
-2-
NJG1711KC1
nTERMINAL INFORMATION No. 1 2 3 SYMBOL LNAIN LNACAP GND FUNCTION RF input terminal of LNA. An external matching circuit is required. Terminal for the bypass capacitor of LNA. The bypass capacitor C1 as shown in test circuits, should be connected to this terminal as close as possible. Ground terminal (0V) IF signal output terminal. The IF signal is output through external matching circuit connected to this terminal. Please connect inductances L6, L7 and power supply as shown in test circuits, since this terminal is also the terminal of mixer power supply. Power supply terminal for local amplifier. Please place R1 and L9 as shown in test circuits at very close to this terminal. Local signal input terminal to local amplifier. An external matching circuit is required. Ground terminal (0V) RF signal input terminal to mixer. An external matching circuit is required. Ground terminal (0V) Signal output terminal of LNA. The RF signal from LNA is output through external matching circuit connected to this terminal. Please connect inductances L2, L3 and power supply as shown in test circuits, since this terminal is also the terminal of LNA power supply.
4
IFOUT
5 6 7 8 9
VLO LOIN GND MIXIN GND
10
LNAOUT
CAUTION 1) Ground terminal (No.3, 7, 9) should be connected to the ground plane as low inductance as possible.
- 3-
NJG1711KC1
nTYPICAL CHARACTERISTICS (LNA, fLO=706.2MHz, with test circuit)
Gain,Noise Figure vs. Frequency
20.0
Pout,Gain vs. Pin
(V
3 5 0 P-1dB(OUT)=-1.5dBm
LNA
(VLNA=2.8V,Ta=25 C) Gain
o
=2.8V,f=820MHz,Ta=25oC)
25 20
15.0
2 -5
10.0
2
Pout (dBm)
Gain (dB)
-10 -15 -20
Pout
10 5 0
NF
5.0 1
1dB Gain Compression Line 0.0 700 750 800 850 900 950 1 1000 -25 -40 -35 -30 -25 -20
P-1dB(IN)=-18.5dBm -5 -15 -10 -5 0
Frequency (MHz)
Pin (dBm)
Pout,IM3 vs. Pin
(V
20 OIP3=+12.5dBm 0
LNA
=2.8V,f=820+820.1MHz,Ta=25 C)
-15
o
Input P-1dB,Output P-1dB vs. freq
(VLNA=2.8V,Ta=25 C)
0
o
-16
-20
Pout
-17
-2
-40
-18
-60
P-1dB(IN)
-3
IM3
-19
-80 IIP3=-5.5dBm -100 -40 -35 -30 -25 -20 -15 -10 -5 0
-4
-20 800
820
840
860
880
-5 900
Pin (dBm)
Frequency (MHz)
-4-
P-1dB(OUT) (dBm)
P-1dB(OUT)
-1
Pout,IM3 (dBm)
P-1dB(IN) (dBm)
Gain (dB)
Gain
15
NF (dB)
NJG1711KC1
nTYPICAL CHARACTERISTICS (LNA, fLO=706.2MHz, with test circuit)
OIP3,IIP3 vs. Frequency
(VLNA=2.8V,Ta=25 C)
16 -4 19 18.5 18
o
Gain,Noise Figure vs. V LNA
(f=820MHz,Ta=25oC)
15
IIP3
-5
Gain
2
OIP3 (dBm)
IIP3 (dBm)
17.5
1.5
13
OIP3
-7
NF
17 16.5 16 2.5 1
12
-8
11 800
820
840
860
880
-9 900
3
3.5
4
4.5
Frequency (MHz)
VLNA (V)
I
3.1
LNA
vs. V
P-1dB vs. V
LNA
-6 -8
(f=820MHz,Ta=25 C)
6 P-1dB(OUT) 4 2 0 -2 -4 -6 P-1dB(IN) -8 -10 4.5
LNA o
3
-10
(mA)
2.9
-12 -14 -16 -18 -20
I
2.8
2.7
2.6 2.5
3
3.5
4
4.5
-22 2.5
3
3.5
4
V
LNA
(V)
VLNA (V)
Condition VLNA=2.8V VM I X=V LO=0V
The value of OIP3 and IIP3 shown in typical characteristics are calculated by 3xPout-IM3 OIP3= 2 IIP3=OIP3-Gain @Pin=-35dBm
- 5-
P-1dB(OUT) (dBm)
P-1dB(IN) (dBm)
LNA
NF (dB)
14
-6
Gain (dB)
NJG1711KC1
nTYPICAL CHARACTERISTICS (LNA, fLO=706.2MHz, with test circuit)
OIP3,IIP3 vs. V
18 16 14
LNA
Gain,I
o
LNA
vs. Temperature
3.5
(f=820+820.1MHz,Pin=-35dBm,Ta=25 C)
6 21.0 20.5 20.0 4 2
(VLNA=2.8V,f=820MHz)
OIP3
I
LNA
3.0
IIP3 (dBm)
OIP3 (dBm)
8 6 4 2 2.5
IIP3
-4 -6 -8 -10 4.5
18.5 18.0 17.5 17.0 -40 1.5 100 2.0
3
3.5
4
-20
0
20
40
60
80
VLNA (V)
Ambient Temperature (oC)
Noise Figure,P-1dB(OUT) vs. Temperature
(V
3.0
LNA
OIP3,IIP3 vs. Temperature
16.0
=2.8V,f=820MHz)
-1.0
(VLNA=2.8V,f=820+820.1MHz)
-4.0
P-1dB(OUT)
2.5 2.0 -2.0 -3.0 -4.0 -5.0
P-1dB(OUT) (dBm)
15.0
IIP3
-5.0
OIP3 (dBm)
NF (dB)
14.0
-6.0
1.5 1.0
13.0
-7.0
NF
0.5 0.0 -40 -6.0 -7.0 100
OIP3
12.0 -8.0
-20
0
20
40
60
o
80
11.0 -40
-20
0
20
40
60
80
-9.0 100
Ambient Temperature ( C)
Ambient Temperature (oC)
Condition VLNA=2.8V VM I X=V LO=0V
The value of OIP3 and IIP3 shown in typical characteristics are calculated by 3xPout-IM3 OIP3= 2 IIP3=OIP3-Gain @Pin=-35dBm
-6-
IIP3 (dBm)
I
Gain
LNA
10
-2
Gain (dB)
12
0
19.5 19.0 2.5
(mA)
NJG1711KC1
nTYPICAL CHARACTERISTICS (LNA, fLO=706.2MHz, with test circuit)
S11, S22
Zin, Zout
S21
S12
- 7-
NJG1711KC1
nTYPICAL CHARACTERISTICS (MIXER, fLO=706.2MHz, with test circuit)
Conversion Gain,Noise Figure vs. RF Frequency
14 12
14 12
Conversion Gain Noise Figure vs. LO Power
9 8 7 6
Gc Conversion Gain (dB) Conversion Gain (dB)
12 10
10 8 6 4 2 -40
NF (dB)
10
8
8
6
NF
6 4
Gc
NF
5 4 3
4 810
820
830
840
850
860
870
880
2 890
-30
-20
-10
0
10
RF Frequency (MHz)
Condition fIF=113.8MHz PRF=-30dBm PLO=-10dBm VMIX=VLO=2.8V Lower LOCAL
LO Power (dBm)
Condition fIF=113.8MHz fRF=820MHz, PRF=-30dBm fLO=706.2MHz VMIX=VLO=2.8V
OIP3,IIP3 vs. RF Frequency
18 16 14 8 20
OIP3,IIP3 vs. LO Power
5
OIP3
7 15 6
IIP3
0
IIP3 (dBm)
OIP3 (dBm)
10
-5
10 8 6
4 3 2
5
OIP3
-10
IIP3
4 2 810 1 0 890
0
-15
820
830
840
850
860
870
880
-5 -40
-20 -30 -20 -10 0 10
RF Frequency (MHz)
Condition fIF=113.8MHz PRF=-30dBm PLO=-10dBm VMIX=VLO=2.8V
LO Power (dBm)
Condition fIF=113.8MHz fRF1=820.0MHz, PRF=-30dBm fRF2=820.1MHz fLO=706.2MHz VMIX=VLO=2.8V
3xIF-IM3 OIP3= 2 IIP3=OIP3-Gc @ PRF =-30dBm
3xIF-IM3 OIP3= 2 IIP3=OIP3-Gc @ PRF =-30dBm
-8-
IIP3 (dBm)
12
5
OIP3 (dBm)
NF (dB)
NJG1711KC1
nTYPICAL CHARACTERISTICS (MIXER, fLO=706.2MHz, with test circuit)
Conversion Gain,Noise Figure vs. V MIX,VLO
14 8 22 13 7 20
IIP3,OIP3 vs. V
MIX
,V
LO
6
Conversion Gain (dB)
IIP3
4
Gc NF (dB)
12 6
OIP3 (dBm)
18
2
11
NF
5
16
0
10
4
14
OIP3
-2
9 2.5
3
3.5
4
3 4.5
12 2.5 3 3.5 4
-4 4.5
VMIX ,VLO (V)
Condition fIF=113.8MHz fRF=820MHz, PRF=-30dBm fLO=706.2MHz, P LO=-10dBm
VMIX ,VLO (V)
Condition fIF=113.8MHz fRF1=820.0MHz, PRF=-30dBm fRF2=820.1MHz fLO=706.2MHz, P LO=-10dBm
3xIF-IM3 OIP3= 2 IIP3=OIP3-Gc @ PRF =-30dBm
IF Output Power vs. RF Power
10 5
IF Output Power (dBm)
0 -5 -10 -15 -20 -25 -30 -40 -35 -30 -25 -20 -15 -10 -5 0
RF Power (dBm)
Condition fIF=113.8MHz fRF=820MHz fLO=706.2MHz, P LO=-10dBm VMIX=VLO=2.8V
- 9-
IIP3 (dBm)
NJG1711KC1
nTYPICAL CHARACTERISTICS (MIXER, fLO=706.2MHz, with test circuit)
Conversion Gain vs. RF Frequency Temperature Response
14 12
Conversion Gain vs. Local Power Temperature Response
15
Conversion Gain (dB)
10
-40 C
o o
Conversion Gain (dB)
10
-40 C -20 C 0C
o o o
8
-20 C 0C
o
6
+20 C +40 C
o o o
o
5
+20 C +40 C +60 C +90 C
o o o
o
4
+60 C +90 C
2 810
820
830
840
850
860
870
880
890
0 -40
-35
-30
-25
-20
-15
-10
-5
0
RF Frequency (MHz)
LO Power (dBm)
Condition fIF=113.8MHz PRF=-30dBm PLO=-10dBm VMIX=VLO=2.8V
Condition fIF=113.8MHz fRF=820MHz, PRF=-30dBm fLO=706.2MHz VMIX=VLO=2.8V
Noise Figure vs. Local Power Temperature Response
15
-40 C -20 C 0C
o o o
IIP3 vs. Local Power Temperature Response
4 2 0
10
+20 C +40 C +60 C +90 C
o o o
o
IIP3 (dBm)
NF (dB)
-2 -4 -6 -8
-40 C -20 C 0C +20 C +40 C +60 C +90 C
o o o o o o
o
5
0 -40
-35
-30
-25
-20
-15
-10
-5
0
-10 -40
-35
-30
-25
-20
-15
-10
-5
0
LO Power (dBm)
LO Power (dBm)
Condition fIF=113.8MHz fRF=820MHz, PRF=-30dBm fLO=706.2MHz VMIX=VLO=2.8V
Condition fIF=113.8MHz fRF1=820.0MHz,PRF=-30dBm fRF2=820.1MHz fLO=706.2MHz VMIX=VLO=2.8V
3xIF-IM3 IIP3= -Gc 2 @ PRF =-30dBm
- 10 -
NJG1711KC1
nTYPICAL CHARACTERISTICS (MIXER, fLO=706.2MHz, with test circuit)
Conversion Gain vs. V
14
MIX
,V
LO
7 6 5
Noise Figure vs. V
MIX
,V
LO
Temperature Response
13
Temperature Response
Conversion Gain (dB)
12
NF (dB)
4
-40 C
o o
11
-40 C -20 C
o
o
3 2 1 0 2.5
-20 C 0C
o
10
0C +20 C
o o
o
+20 C +40 C +60 C +90 C
o o o
o
9
+40 C +60 C
o o
8 2.5
+90 C
3
3.5
4
4.5
3
3.5
4
4.5
V
MIX
,V
LO
(V)
V
MIX
,V
LO
(V)
Condition fIF=113.8MHz fRF=820MHz,PRF=-30dBm fLO=706.2MHz, P LO=-10dBm
Condition fIF=113.8MHz fRF=820MHz fLO=706.2MHz, P LO=-10dBm
IIP3 vs. V
4 3 2
MIX
,V
LO
Temperature Response
IIP3 (dBm)
1 0 -1 -2 -3 -4 2.5
-40 C -20 C 0C +20 C +40 C +60 C +90 C
o o o o o o o
3
3.5
4
4.5
V
MIX
,V
LO
(V)
Condition fIF=113.8MHz fRF1=820.0MHz,PRF=-30dBm fRF2=820.1MHz fLO=706.2MHz, P LO=-10dBm
3xIF-IM3 IIP3= -Gc 2 @ PRF =-30dBm
- 11-
NJG1711KC1
nTYPICAL CHARACTERISTICS (MIXER, fLO=706.2MHz, with test circuit) MIXER IN PORT IMPEDANCE LOCAL IN PORT IMPEDANCE
Condition VL N A=0V VMIX=VLO=2.8V
Condition VL N A=0V VMIX=VLO=2.8V
IF OUT PORT IMPEDANCE
Condition VL N A=0V VMIX=VLO=2.8V
- 12 -
NJG1711KC1
nTEST CIRCUIT
C3 L1 RF IN Zo=50 L6 C4 R1 L9 VLO C7 LOCAL IN Zo=50 C1 1 2 C5 IF Zo=50 VMIX C6 LOCAL Amp L8 L7 3 4 5
10
VLNA L3 C2 RF OUT Zo=50
L2 LNA Mixer 9 8 7 6 L5 L4
MIXER IN Zo=50
PARTS LIST PART ID L1 L2 L3 L4 L5 L6 L7 L8 L9 C1 C2 C3 C4 C5 C6 C7 R1 800MHz BAND Lower LOCAL fLO=706.2MHz fIF =113.8MHz 33nH 39nH 12nH 15nH 4.7nH 120nH 56nH 39nH 39nH 1000pF 3pF 1000pF 11pF 1000pF 0.1uF 0.1uF 33 COMMENT TAIYO-YUDEN (HK1005) TAIYO-YUDEN (HK1005) TAIYO-YUDEN (HK1005) PANASONIC [MEC] (ELJRF) PANASONIC [MEC] (ELJRF) TAIYO-YUDEN (HK1005) TAIYO-YUDEN (HK1005) TAIYO-YUDEN (HK1005) TAIYO-YUDEN (HK1005) MURATA (GRM36) MURATA (GRM36) MURATA (GRM36) MURATA (GRM36) MURATA (GRM36) MURATA (GRM36) MURATA (GRM36) 1005 Size
(Note) Please use 1608 type inductor to improve NF characteristics.
- 13-
NJG1711KC1
nRECOMMENDED PCB DESIGN
(Top View)
RF IN
RF OUT
VL N A
C3 L3 L1 C2 L2 1 L4
VMIX
C1 C4 L7 L5 L8 C6
L6 C5
IF OUT
VLO
C7 L9
R1
MIXER IN
LOCAL IN
PCB (FR-4): t=0.2mm MICROSTRIP LINE WIDTH=0.4mm (Z0=50) PCB SIZE =23.0x17.0mm
Caution on using devices. [1] Please place R1 close to the VLO terminal (5th pin), and L9 to R1. [2] Please place C1 close to the LNACAP terminal (2nd pin). [3] Please place C3 close to L3. [4] Please place C6 close to C4. [5] Please place C7 close to L9.
- 14 -
NJG1711KC1
nMEASURING BLOCK DIAGRAM
VMIX=VLO=2.8V
MIXER IN IF OUT
Spectrum Analyzer
SG (RF)
LOCAL IN
DUT
SG (LO)
Conversion Gain Measuring Block Diagram
VMIX=VLO=2.8V 6dB BPF ATT.
Noise Source
DUT
IF OUT NF Meter
MIXER IN
LOCAL IN
BPF SG (LO)
Noise Figure Measuring Block Diagram
VMIX=VLO=2.8V SG (RF1)
Power Comb.
MIXER IN
IF OUT
Spectrum Analyzer
SG (RF2)
LOCAL IN
DUT
SG (LO)
IF, IM3 Measuring Block Diagram
- 15-
NJG1711KC1
nPACKAGE OUTLINE (FLP10-C1)
3.00.1 10 6 0.2
0.75 0.05 +0.1 0.15 -0.05
0.17 2.4 0.1 1 0.5 0.5 5 0.2 2.8 0.1
0.12
0.1
0.25 min. 0.2 min.
0.05 min.
0 .1
+0.1 0.2 -0.05
Lead material Lead surface finish Molding material UNIT Weight
: Copper : Solder plating : Epoxy resin : mm : 15mg
Cautions on using this product This product contains Gallium-Arsenide (GaAs) which is a harmful material. * Do NOT eat or put into mouth. * Do NOT dispose in fire or break up this product. * Do NOT chemically make gas or powder with this product. * To waste this product, please obey the relating law of your country. This product may be damaged with electric static discharge (ESD) or spike voltage. Please handle with care to avoid these damages.
[CAUTION] The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.
- 16 -


▲Up To Search▲   

 
Price & Availability of NJG1711KC1

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X