

PNP SWITCHING SILICON TRANSISTOR

Qualified per MIL-PRF-19500/290

DESCRIPTION

This family of 2N2904AL and 2N2905AL switching transistors are military qualified up to the JANS level for high-reliability applications. These devices are also available in a TO-39 package. Microsemi also offers numerous other transistor products to meet higher and lower power ratings with various switching speed requirements in both through-hole and surface-mount packages.

Important: For the latest information, visit our website http://www.microsemi.com.

FEATURES

- JEDEC registered 2N2904 through 2N2905 series.
- JAN, JANTX, JANTXV, and JANS qualifications are available per MIL-PRF-19500/290. (See <u>part nomenclature</u> for all available options.)
- RoHS compliant versions available (commercial grade only).

APPLICATIONS / BENEFITS

- General purpose transistors for high speed switching applications.
- Military and other high-reliability applications.

and JANS

Qualified Levels:

JAN, JANTX, JANTXV

TO-5 Package

Also available in:

TO-39 (TO-205AD) package (long-leaded) 2N2904 & 2N2905A

MAXIMUM RATINGS

Parameters / Test Con	Symbol	Value	Unit	
Collector-Emitter Voltage		V _{CEO}	60	V
Collector-Base Voltage		V _{CBO}	60	V
Emitter-Base Voltage		V _{EBO}	5.0	V
Thermal Resistance Junction-to-Ambier	nt	R _{eja}	195	°C/W
Thermal Resistance Junction-to-Case		R _{eJC}	50	°C/W
Collector Current		lc	600	mA
Total Power Dissipation	@ $T_A = +25 \ ^{\circ}C^{(1)}$ @ $T_C = +25 \ ^{\circ}C^{(2)}$	PT	0.8 3.0	W
Operating & Storage Junction Tempera	T_J and T_{stg}	-65 to +200	°C	

Notes: 1. For derating, see figures 1 and 2.

2. For thermal impedance, see figures 3 and 4.

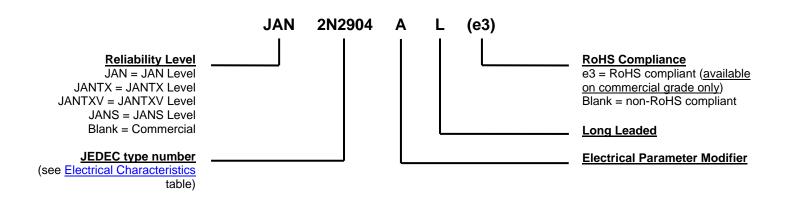
MSC – Lawrence

6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803

MSC – Ireland

Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

Website:


www.microsemi.com

MECHANICAL and PACKAGING

- CASE: Hermetically sealed, kovar base, nickel cap.
- TERMINALS: Tin/lead plate or RoHS compliant matte/tin (commercial grade only) over nickel.
- MARKING: Part number, date code, manufacturer's ID.
- POLARITY: PNP (see package outline).
- WEIGHT: Approximately 1.14 grams.
- See <u>Package Dimensions</u> on last page.

PART NOMENCLATURE

	SYMBOLS & DEFINITIONS				
Symbol	Definition				
C _{obo}	Common-base open-circuit output capacitance.				
I _{CEO}	Collector cutoff current, base open.				
I _{CEX}	Collector cutoff current, circuit between base and emitter.				
I _{EBO}	Emitter cutoff current, collector open.				
h _{FE}	Common-emitter static forward current transfer ratio.				
V _{CEO}	Collector-emitter voltage, base open.				
V _{CBO}	Collector-emitter voltage, emitter open.				
V _{EBO}	Emitter-base voltage, collector open.				

Parameters / Tes	t Conditions	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS		L	1	1	
Collector-Emitter Breakdown Cu $I_{C} = 10 \text{ mA}$	V _{(BR)CEO}	60		V	
Collector-Emitter Cutoff Voltage $V_{CE} = 60 \text{ V}$		I _{CES}		1.0	μA
Collector-Base Cutoff Current					
$V_{CB} = 60 \text{ V}$ All	Types	I _{CBO1}		10	μA
V _{CB} = 50 V 2N2	2904AL, 2N2905AL	I _{CBO2}		10	nA
$V_{CB} = 50 \text{ V} @ T_A = +150 \text{ °C} 2N2$	2904AL, 2N2905AL	I _{CBO3}		10	μA
Collector-Base Cutoff Current $V_{CB} = 50 V$ $V_{CB} = 60 V$		I _{CBO}		10 10	nΑ μA
Emitter-Base Cutoff Current $V_{EB} = 3.5 V$ $V_{EB} = 5.0 V$		I _{EBO}		50 10	nA μA
ON CHARACTERISTICS (1)					
Forward-Current Transfer Ratio					
$I_{C} = 0.1 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904AL 2N2905AL		40 75		
$I_{C} = 1.0 \text{ mA}, V_{CE} = 10 \text{ V}$	2N2904AL 2N2905AL		40 100	175 450	
I_C = 10 mA, V_{CE} = 10 V	2N2904AL 2N2905AL	h _{FE}	40 100		
I_{C} = 150 mA, V_{CE} = 10 V	2N2904AL 2N2905AL		40 100	120 300	
I_{C} = 500 mA, V_{CE} = 10 V	2N2904AL 2N2905AL		40 50		
Collector-Emitter Saturation Volt	age				
$I_{C} = 150 \text{ mA}, I_{B} = 15 \text{ mA}$ $I_{C} = 500 \text{ mA}, I_{B} = 50 \text{ mA}$		$V_{CE(sat)}$		0.4 1.6	V
Base-Emitter Saturation Voltage					
$I_{\rm C} = 150 \text{ mA}, I_{\rm B} = 15 \text{ mA}$		V _{BE(sat)}		1.3	V

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless othe	herwise noted
---	---------------

(1) Pulse Test: Pulse Width = 300 μ s, duty cycle \leq 2.0%.

 $I_{\rm C} = 500 \text{ mA}, I_{\rm B} = 50 \text{ mA}$

Downloaded from: http://www.datasheetcatalog.com/

2.6

ELECTRICAL CHARACTERISTICS @ $T_A = +25$ °C, unless otherwise noted (continued)

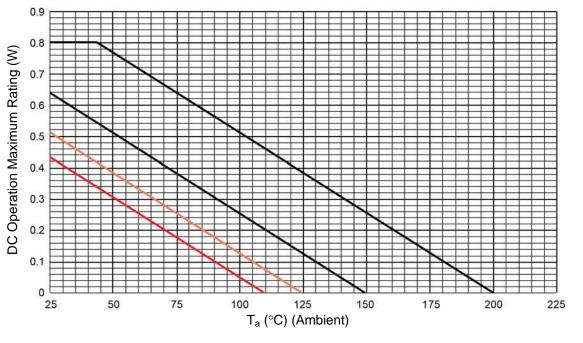
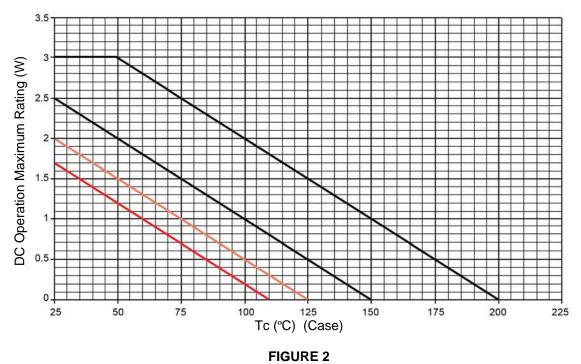
DYNAMIC CHARACTERISTICS

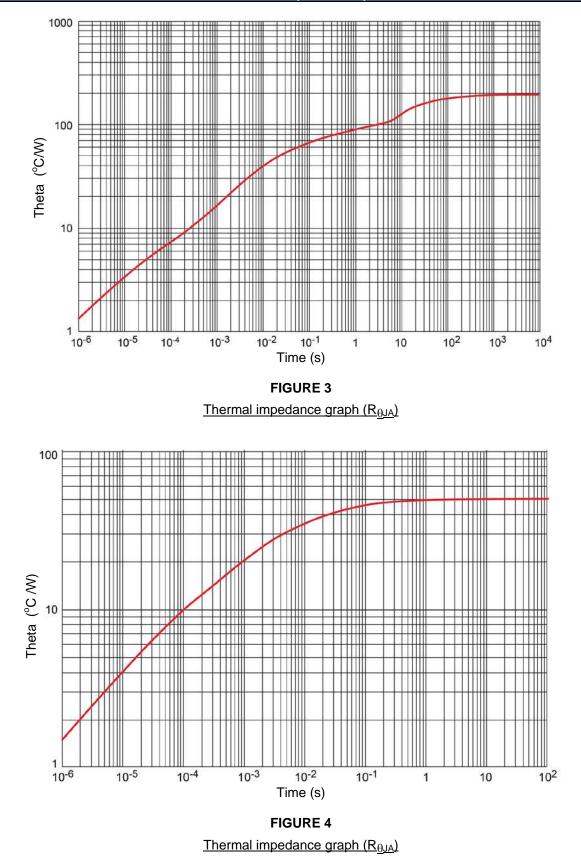
Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Small-Signal Short-Circuit Forward-Current				
Transfer Ratio				
I _C = 1.0 mA, V _{CE} = 10 V, f = 1.0 kHz	h _{fe}		100	
Small-Signal Short-Circuit Forward-Current				
Transfer Ratio	h _{fe}		2.0	
$I_{C} = 50 \text{ mA}, V_{CE} = 20 \text{ V}, \text{ f} = 100 \text{ MHz}$				
Output Capacitance	6			۶L
V_{CB} = 10 V, I_{E} = 0, 100 kHz $\leq f \leq$ 1.0MHz	C _{obo}		8.0	pF
lutput Capacitance				~ Г
V_{EB} = 2.0 V, I_C = 0, 100 kHz $\leq f \leq$ 1.0MHz	C _{ibo}		30	pF

SWITCHING CHARACTERISTICS

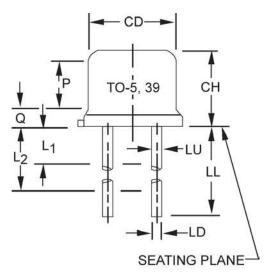
Parameters / Test Conditions	Symbol	Min.	Max.	Unit
Turn-On Time	ton		45	ns
Turn-Off Time	^t off		300	ns

GRAPHS

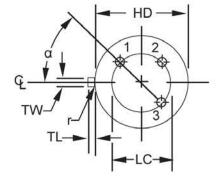




FIGURE 1 Derating (R_{0JA}) PCB

Derating (R_{0JA}) PCB



GRAPHS (continued)



PACKAGE DIMENSIONS

	Dimensions				
Symbol	In	Inch Millimeters		Note	
	Min	Max	Min	Max	
CD	0.305	0.335	7.75	8.51	
СН	0.240	0.260	6.10	6.60	
HD	0.335	0.370	8.51	9.40	
LC	0.20	0.200 TP		5.08 TP	
LD	0.016	0.021	0.41	0.53	7, 8
LL	0.500	0.750	12.70	19.05	7, 8, 12
LU	0.016	0.019	0.41	0.48	7, 8
L1		0.050		1.27	7, 8
L2	0.250		6.35		7, 8
Р	0.100		2.54		
Q		0.050		1.27	5
TL	0.029	0.045	0.74	1.14	4
TW	0.028	0.034	0.71	0.86	3
r		0.010		0.25	10
α	45° TP		45° TP		6

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. Beyond r (radius) maximum, TW shall be held for a minimum length of .011 (0.28 mm).
- 4. Dimension TL measured from maximum HD.
- 5. Body contour optional within zone defined by HD, CD, and Q.
- 6. Leads at gauge plane .054 +.001 -.000 inch (1.37 +0.03 -0.00 mm) below seating plane shall be within .007 inch (0.18 mm) radius of true position (TP) at maximum material condition (MMC) relative to tab at MMC.
- 7. Dimension LU applies between L1 and L2. Dimension LD applies between L2 and LL minimum. Diameter is uncontrolled in L1 and beyond LL minimum.
- 8. All three leads.
- 9. The collector shall be internally connected to the case.
- 10. Dimension r (radius) applies to both inside corners of tab.
- 11. In accordance with ASME Y14.5M, diameters are equivalent to Φx symbology.
- 12. For "L" suffix devices, dimension LL is 1.50 (38.10 mm) minimum, 1.75 (44.45 mm) maximum.
- 13. Lead 1 =emitter, lead 2 =base, lead 3 =collector.