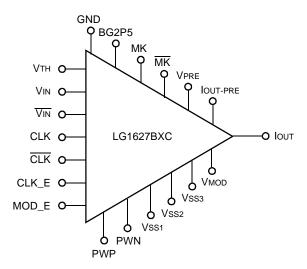


LG1627BXC Clocked Laser Driver

Features

- High data-rate clocked laser diode driver
- Clock disable mode for data feedthrough
- Adjustable high output current
- Operation up to 3 Gbits/s


Applications

- SONET/SDH transmission systems
- SONET/SDH test equipment
- Optical transmitters

Functional Description

The LG1627BXC is a gallium arsenide (GaAs) laser diode driver to be used with direct modulated laser diodes in high-speed non-return-to-zero (NRZ) transmission systems. The device is made in a highperformance 0.9 µm gate GaAs hetero-junction FET technology that utilizes high-density MIM capacitors, airbridge interconnect, and NiCr film precision resistors. The driver includes differential data and clock inputs. The high-output, low overshoot drive current and prebias can be set separately. Data retiming is accomplished by the internal flip-flop, minimizing jitter on the data. Clocking can be disabled for data feedthrough. A pulse-width control enables the user to compensate for laser turn-on delay. A 2.5 V bandgap reference is required for stable operation over temperature and varying power supply voltage.

Functional Diagram

5-6549(F).b

Figure 1. Functional Diagram

Block Diagram

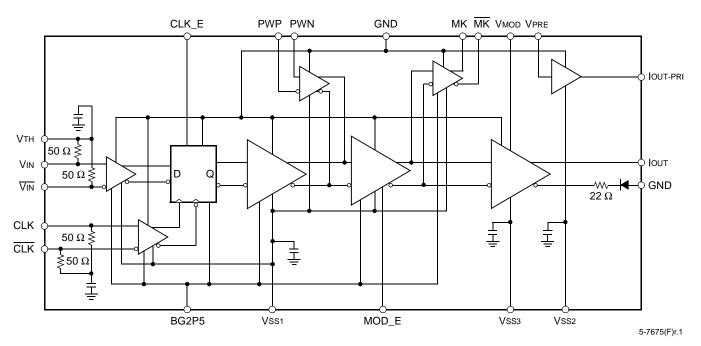


Figure 2. Block Diagram

Pin Information

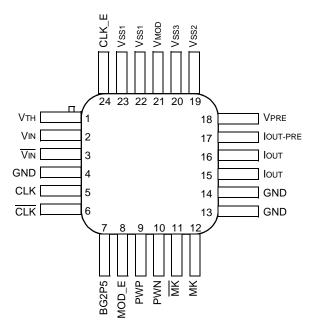


Figure 3. Pin Diagram

Table 1. Pin Descriptions

Pin	Symbol	Description
1	VTH	Capacitor to ground (data input reference).
2	VIN	Data input.
3	VIN	Complementary data input.
4, 13, 14, package bottom	GND	Ground. For optimum performance, the package bottom must be soldered to the ground plane.
5	CLK	Clock input.
6	CLK	Complementary clock input.
7	BG2P5	-2.5 V band-gap reference (National Semiconductor* p/n LM4040).
8	MOD_E	Modulation enable (connect to VSS1 to enable, float to disable).
9	PWP	Pulse width adjust positive.
10	PWN	Pulse width adjust negative.
11	MK	Complementary mark density output.
12	MK	Mark density output.
15, 16	IOUT	Output modulation current (dc coupled to laser cathode).
17	IOUT-PRE	Output prebias current.
18	VPRE	Prebias control input.
19	VSS2	VSS2 supply –5.2 V for output prebias.
20	Vss3	VSS3 supply –5.2 V for output modulation.
21	VMOD	Modulation current control input.
22, 23	VSS1	VSS1 supply –5.2 V.
24	CLK_E	Clock enable (connect to VSS1 to enable, float to disable).

^{*} National Semiconductor is a registered trademark of National Semiconductor Corporation.

5-6551(F).br.3

Absolute Maximum Ratings

Stresses in excess of the absolute maximum ratings can cause permanent damage to the device. These are absolute stress ratings only. Functional operation of the device is not implied at these or any other conditions in excess of those given in the operational sections of the data sheet. Exposure to absolute maximum ratings for extended periods can adversely affect device reliability.

Table 2. Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit
Supply Voltage	Vss	_	-5.7	V
Input Voltage	Vı	GND	Vss	V
Power Dissipation	PD	_	1	W
Storage Temperature	Tstg	-40	125	°C
Operating Case Temperature Range	Tc	0	100	°C

Recommended Operating Conditions

Table 3. Recommended Operating Conditions

Parameter	Symbol	Min	Max	Unit
Case Temperature	tCASE	0	70	°C
Power Supply	Vss	-4.7	<i>–</i> 5.7	V

Handling Precautions

Although protection circuitry has been designed into this device, proper precautions should be taken to avoid exposure to electrostatic discharge (ESD) during handling and mounting. Lucent employs a human-body model (HBM) and a charged-device model (CDM) for ESD-susceptibility testing and protection design evaluation. ESD voltage thresholds are dependent on the circuit parameters used to define the model. No industry-wide standard has been adopted for the CDM. However, a standard HBM (resistance = $1500~\Omega$, capacitance = 100~pF) is widely used and, therefore, can be used for comparison. The HBM ESD threshold presented here was obtained by using these circuit parameters.

Table 4. ESD Threshold Voltage

Human-Body Model ESD Threshold			
Device	Voltage		
LG1627BXC	>200		

Mounting and Connections

Certain precautions must be taken when using solder. For installation using a constant temperature solder, temperatures of under 300 °C may be employed for periods of time up to 5 seconds, maximum. For installation with a soldering iron (battery operated or nonswitching only), the soldering tip temperature should not be greater than 300 °C and the soldering time for each lead must not exceed 5 seconds. This device is supplied with solder on the back of the package. For optimum performance, it is recommended to solder the back of the package to ground.

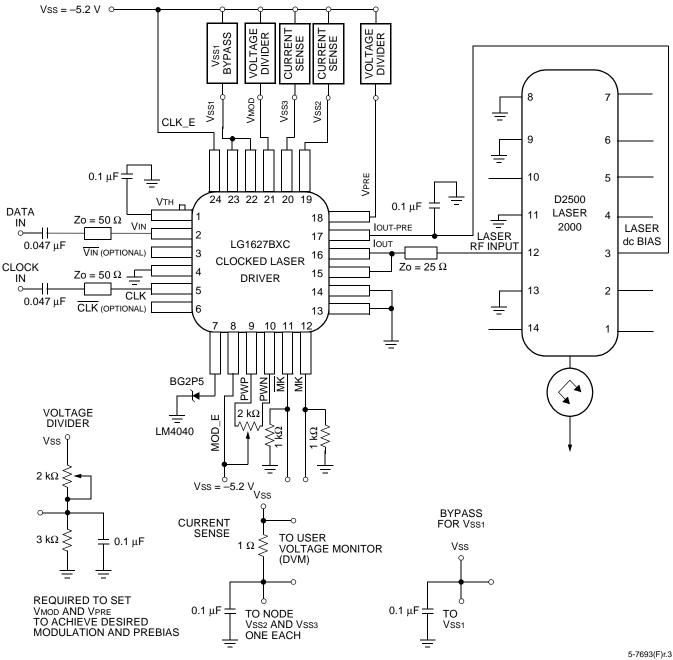
Electrical Characteristics (TA = 25 °C, VSS1 = VSS2 = VSS3 = -5.2 V, data input = 600 mV (single ended), and RL = 50 Ω)

Minimum and maximum values are testing requirements. Typical values are characteristics of the device and are the result of engineering evaluations. Typical values are for information purposes only and are not part of the testing requirements. Stresses in excess of the absolute maximum ratings can cause permanent damage to the device.

Table 5. Electrical Characteristics

Parameter	Symbol	Min	Тур	Max	Unit	
Data Input Voltage, Single Ended	VIN	300	600	1000	mV	
Power Supply Voltage	VSS1, VSS2, VSS3	-4.9	-5.2	-5.5	V	
Power Supply Current ¹	ISS1	100	140	160	mA	
Voltage Control for Output Modulation Current	VMOD	-4.0	_	-5.5	V	
Output Minimum Modulation Current	IOUT LOW	_	0	2	mA	
Output Maximum Modulation Current ²	IOUT HIGH	75	85	_	mA	
Voltage Control for Prebias Current	VPRE	-3.0	_	-5.5	V	
Output Minimum Prebias Current	IPRE LOW	_	0	0.5	mA	
Output Maximum Prebias Current ³	IPRE HIGH	50	60	_	mA	
Mark Density, 50% Duty Cycle (1 kΩ to GND)	MK	_	-0.5	_	V	
Mark Density Complement, 50% Duty Cycle (1 kΩ to GND)	MK	_	-0.5	_	V	
Pulse Width Adjust Plus	PWP	-3.0	-4.2	-5.5	V	
Pulse Width Adjust Negative	PWN	-3.0	-4.2	-5.5	V	
Output Modulation IouT = 40 mA, Clock Enabl	Output Modulation Iout = 40 mA, Clock Enabled					
Output Rise and Fall Times (20%—80%)	tR, tF	_	90	_	ps	
Jitter (rms)	_	_	4	_	ps	
Phase Margin	_	_	270	_	deg	
Output Modulation Iout = 40 mA, Clock Disabled						
Output Rise and Fall Times (20%—80%)	tR, tF	_	90	_	ps	
Jitter (rms)	_	_	6	_	ps	
Output Modulation Iout = 80 mA, Clock Enabled						
Output Rise and Fall Times (20%—80%)	tR, tF	_	100	_	ps	
Jitter (rms)	_	_	4	_	ps	
Phase Margin	_	_	270	_	deg	
Output Modulation IOUT = 80 mA, Clock Disabled						
Output Rise and Fall Times (20%—80%)	tR, tF	_	100	_	ps	
Jitter (rms)	_	_	6	_	ps	

^{1.} Excludes IPRE and average IMOD.


Power supply current Iss2 (relating to prebias) is dependent on VPRE.

Power supply current ISS3 (relating to modulation) is dependent on VMOD.

^{2.} Maximum modulation at maximum $\mathsf{V}\mathsf{MOD}$.

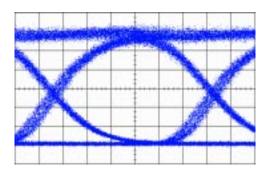
^{3.} Maximum prebias at maximum VPRE.

Typical Optical Evaluations and Performance Characteristics

Notes:

All bypass capacitors should be mounted close to the package.

For optimum performance, the package must be soldered to ground.


Mark density (MK and $\overline{\text{MK}}$) outputs are terminated with 1 k Ω pull-up resistors.

For single-ended operation, unused data and clock inputs should be ac coupled to a 50 Ω termination.

Pin 13 and pin 14 should be tied together with a separate path to the ground plane.

Figure 4. Typical Optical Evaluation of the LG1627BXC and D2500 Laser

Typical Optical Evaluations and Performance Characteristics (continued)

HORIZONTAL: 60 ps/div, VERTICAL: 1.5 mW/div

Figure 5. Typical Optical Eye-Diagram IouT = 85 mA; IouT-PRE = 5 mA

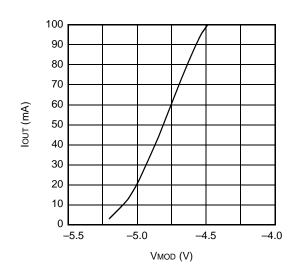
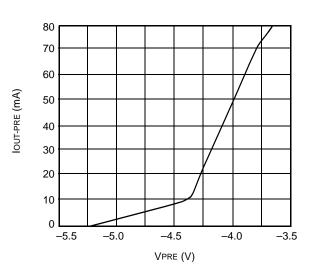
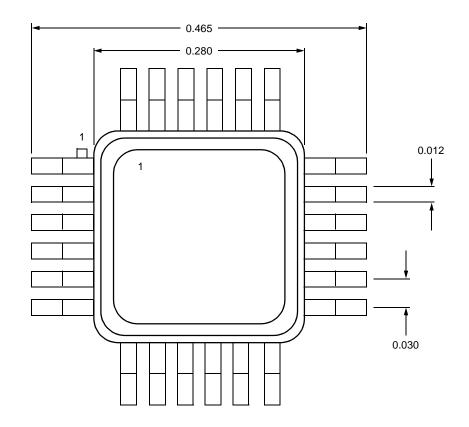
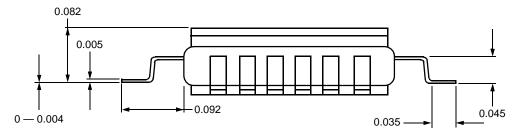


Figure 6. Typical Iout vs. VMoD


Figure 7. Typical IOUT-PRE vs. VPRE

5-7676(F)

5-7677(F)r.1

Outline Diagram

5-6555(F).a

Assembly Notes:

Standoff specifications apply to package prior to solder dipping of leads and package base.

During board assembly, use back lighting to silhouette the package. This will eliminate reflection problems with the solder on the bottom of the package.

Lead space tolerance should be set to ±0.012".

Board solder pattern for the package base should not exceed 50% of the package base area.

Insertion pressure should not exceed 125 grams.

Ordering Information

Device Code	Package	Temperature	Comcode (Ordering Number)
LG1627BXC	24-pin hermetic small outline	0 °C to 70 °C	108325754

Notes

For additional information, contact your Microelectronics Group Account Manager or the following:

INTERNET: http://www.lucent.com/micro E-MAIL: docmaster@micro.lucent.com

N. AMERICA: Microelectronics Group, Lucent Technologies Inc., 555 Union Boulevard, Room 30L-15P-BA, Allentown, PA 18103

1-800-372-2447, FAX 610-712-4106 (In CANADA: 1-800-553-2448, FAX 610-712-4106)

ASIA PACIFIC: Microelectronics Group, Lucent Technologies Singapore Pte. Ltd., 77 Science Park Drive, #03-18 Cintech III, Singapore 118256

Tel. (65) 778 8833, FAX (65) 777 7495

Microelectronics Group, Lucent Technologies (China) Co., Ltd., A-F2, 23/F, Zao Fong Universe Building, 1800 Zhong Shan Xi Road, Shanghai

CHINA: 200233 P. R. China Tel. (86) 21 6440 0468, ext. 316, FAX (86) 21 6440 0652

Microelectronics Group, Lucent Technologies Japan Ltd., 7-18, Higashi-Gotanda 2-chome, Shinagawa-ku, Tokyo 141, Japan Tel. (81) 3 5421 1600, FAX (81) 3 5421 1700

EUROPE:

Data Requests: MICROELECTRONICS GROUP DATALINE: Tel. (44) 1189 324 299, FAX (44) 1189 328 148

Technical Inquiries: GERMANY: (49) 89 95086 0 (Munich), UNITED KINGDOM: (44) 1344 865 900 (Ascot),
FRANCE: (33) 1 40 83 68 00 (Paris), SWEDEN: (46) 8 594 607 00 (Stockholm), FINLAND: (358) 9 4354 2800 (Helsinki),
ITALY: (39) 02 6608131 (Milan), SPAIN: (34) 1 807 1441 (Madrid)

Lucent Technologies Inc. reserves the right to make changes to the product(s) or information contained herein without notice. No liability is assumed as a result of their use or application. No rights under any patent accompany the sale of any such product(s) or information.

Copyright © 1999 Lucent Technologies Inc. All Rights Reserved

microelectronics group

JAPAN: