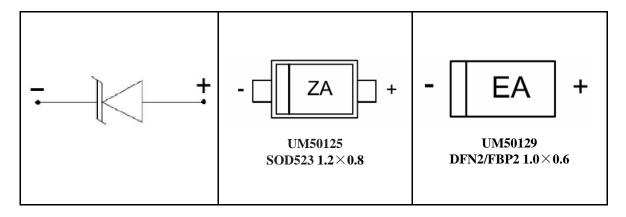


Single Line ESD Protection Diode Array UM50125 SOD523 1.2×0.8 UM50129 DFN2/FBP2 1.0×0.6

General Description

The UM50125/50129 ESD protection diode is designed to replace multilayer varistors (MLVs) in portable instrumentation, notebook computers, digital power meter, digital camera and communication systems. They feature large cross-sectional area junctions for conducting high transient currents, offer desirable electrical characteristics for board level protection, such as fast response time, lower operating voltage, lower clamping voltage and no device degradation when compared to MLVs. The UM50125/50129 ESD protection diode protects sensitive semiconductor components from damage or upset due to electrostatic discharge (ESD) and other voltage induced transient events. The UM50125 is available in SOD523 package and the UM50129 is available in DFN2/FBP2 1.0×0.6 (compatible with SOD923 & SOD882) package, both with working voltages of 12 volt. It gives designer the flexibility to protect one unidirectional line in applications where arrays are not practical. Additionally, it may be "sprinkled" around the board in applications where board space is at a premium. It may be used to meet the ESD immunity requirements of IEC 61000-4-2, ± 30 kV air, ± 30 kV contact discharge.

Applications


- Cell Phone Handsets and Accessories
- Notebooks, Desktops and Servers
- Portable Instrumentation and Accessories
- Digital Power Meter
- Digital Cameras
- Communication Systems

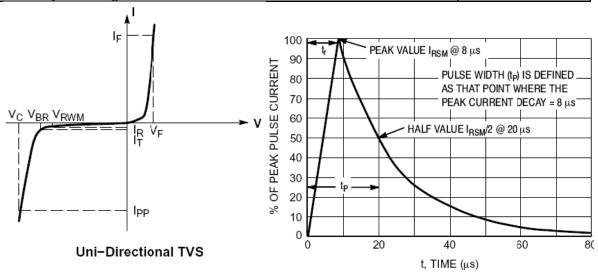
Features

- Transient protection for data lines to IEC 61000-4-2 (ESD): ±30kV (air), ±30kV (contact)
- Small package for use in portable electronics
- Suitable replacement for MLV's in ESD protection applications
- Protect one I/O or power line
- Low clamping voltage
- Stand off voltage:12V
- Low leakage current
- Solid-state silicon-avalanche technology

Pin Configurations

Top View

Ordering Information


Part Number	Working Voltage	Packaging Type	Channel	Marking Code	Shipping Qty
UM50125	12.0V	SOD523 1.2×0.8 mm ²	1	ZA	3000pcs/7 Inch Tape & Reel
UM50129	12.0V	DFN2/FBP2 1.2×0.8 mm ²	1	EA	5000pcs/7 Inch Tape & Reel

Absolute Maximum Ratings

Rating	Symbol	Value	Units
Peak Pulse Power (tp = $8/20\mu$ s)	P_{PK}	140	Watts
Maximum Peak Pulse Current (t=8/20μs)	I_{PP}	5.9	Amps
Lead Soldering Temperature	$T_{ m L}$	260 (10 sec.)	°C
Operating Temperature	T_{J}	-55 to +125	°C
Storage Temperature	T_{STG}	-55 to +150	°C

Symbol Definition

Parameter	Symbol
Maximum Reverse Peak Pulse Current	I_{PP}
Clamping Voltage @ Ipp	$V_{\rm C}$
Working Peak Reverse Voltage	$ m V_{RWM}$
Maximum Reverse Leakage Current @ V _{RWM}	I_R
Breakdown Voltage @ I _t	$ m V_{BR}$
Test Current	I_t
Forward Current	$ m I_F$
Forward Voltage @ I _F	V_{F}
Peak Power Dissipation	P_{PK}
Max. Capacitance @ $V_R = 0V$, $f = 1MHz$	C

Electrical Characteristics

(T=25°C, Device for 12.0V Reverse Stand-off Voltage)

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Reverse Stand-Off Voltage	V_{RWM}				12	V
Reverse Breakdown Voltage	V_{BR}	It = 1 mA	16		18	V
Reverse Leakage Current	I_R	$V_{RWM} = 12V, T=25^{\circ}C$			0.5	μΑ
Clamping Voltage	V_{C}	$I_{PP} = 5.9 A, t_p = 8/20 \mu S$			23	V
Junction Capacitance	C_{J}	$V_R = 0V$, $f = 1MHz$		20	30	pF

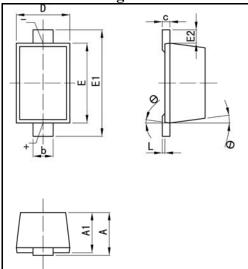
Applications Information

Device Connection Options

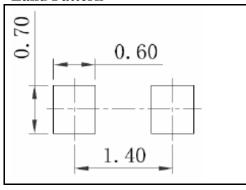
UM50125/50129 ESD protection diode is designed to protect one data, I/O, or power supply line. The device is unidirectional and may be used on lines where the signal polarity is above ground. The cathode dot should be placed towards the line that is to be protected.

Circuit Board Layout Recommendations for Suppression of ESD

Good circuit board layout is critical for the suppression of ESD induced transients. The following guidelines are recommended:

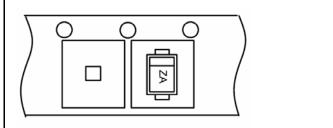

- 1. Place the TVS near the input terminals or connectors to restrict transient coupling.
- 2. Minimize the path length between the TVS and the protected line.
- 3. Minimize all conductive loops including power and ground loops.
- 4. The ESD transient return path to ground should be kept as short as possible.
- 5. Never run critical signals near board edges.
- 6. Use ground planes whenever possible. For multilayer printed-circuit boards, use ground vias.
- 7. Keep parallel signal paths to a minimum.
- 8. Avoid running protection conductors in parallel with unprotected conductor.
- 9. Minimize all printed-circuit board conductive loops including power and ground loops.
- 10. Avoid using shared transient return paths to a common ground point.

Package Information

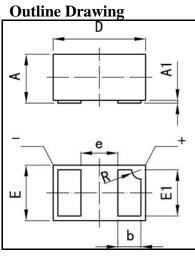

UM50125 SOD523 1.2×0.8

Outline Drawing

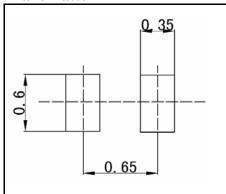
DIMENSIONS					
Symbol	MILLIMETERS		INCHES		
	Min	Max	Min	Max	
A	0.510	0.770	0.020	0.031	
A1	0.500	0.700	0.020	0.028	
b	0.250	0.350	0.010	0.014	
c	0.080	0.150	0.003	0.006	
D	0.750	0.850	0.030	0.033	
Е	1.100	1.300	0.043	0.051	
E1	1.500	1.700	0.059	0.067	
E2	0.200REF		0.008REF		
L	0.010	0.070	0.001	0.003	
θ	7° REF		7° REF		


Land Pattern

NOTES:

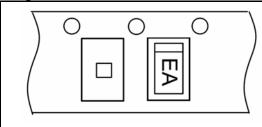

- 1. Compound dimension: 1.20×0.80;
- 2. Unit: mm;
- 3. General tolerance ± 0.05 mm unless otherwise specified;
- 4. The layout is just for reference.

Tape and Reel Orientation



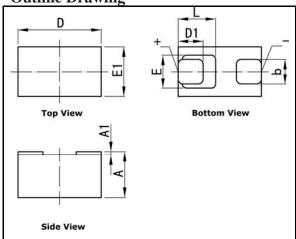
UM50129 DFN2 1.0×0.6

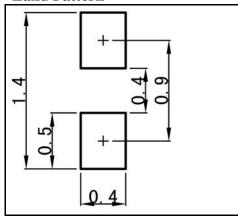
DIMENSIONS					
Symbol	MILLIMETERS		INCHES		
	Min	Max	Min	Max	
A	0.470	0.530	0.019	0.021	
A1	0.000	0.050	0.000	0.002	
b	0.200	0.300	0.008	0.012	
D	0.950	1.075	0.037	0.042	
Е	0.550	0.675	0.022	0.027	
E1	0.450	0.550	0.018	0.022	
e	0.400		0.016		
R	0.050	0.150	0.002	0.006	


Land Pattern

NOTES:

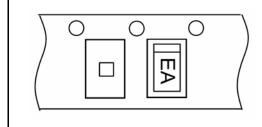
- 1. Compound dimension: 1.00×0.60;
- 2. Unit: mm;
- 3. General tolerance ± 0.025 mm unless otherwise specified;
- 4. The layout is just for reference.


Tape and Reel Orientation


UM50129 FBP2 1.0×0.6

Outline Drawing

DIMENSIONS					
Symbol	MILLIN	METERS	INCHES		
	Min	Max	Min	Max	
A		0.550		0.021	
A1	0.010	0.070	0.000	0.003	
b	0.275	0.325	0.011	0.013	
D	0.950	1.050	0.037	0.041	
D1	0.275	0.325	0.011	0.013	
Е	0.400REF		0.016REF		
E1	0.550	0.650	0.022	0.026	
L	0.450REF		0.018REF		


Land Pattern

NOTES:

- 1. Compound dimension: 1.00×0.60;
- 2. Unit: mm;
- 3. General tolerance ± 0.05 mm unless otherwise specified;
- 4. The layout is just for reference.

Tape and Reel Orientation

IMPORTANT NOTICE

The information in this document has been carefully reviewed and is believed to be accurate. Nonetheless, this document is subject to change without notice. Union assumes no responsibility for any inaccuracies that may be contained in this document, and makes no commitment to update or to keep current the contained information, or to notify a person or organization of any update. Union reserves the right to make changes, at any time, in order to improve reliability, function or design and to attempt to supply the best product possible.

Union Semiconductor, Inc

Add: 2F, No. 3, Lane 647 Songtao Road, Shanghai 201203

Tel: 021-51093966 Fax: 021-51026018

Website: www.union-ic.com