FEATURES

DESCRIPTION

The RDC-19220/2S is a low-cost, versatile, state-of-the-art 16-bit monolithic Resolver-to-Digital (R/D) Converter. This single chip converter offers programmable features such as resolution, bandwidth and velocity output scaling.

Resolution programming allows selection of 10, 12, 14, or 16 bits, with accuracies to 1.3 minutes. This feature combines the high tracking rate of a 10-bit converter with the precision and low-speed velocity resolution of a 16-bit converter in one package.

The internal Synthesized Reference section eliminates errors due to quadrature voltage. Previously, a 6 degree phase shift caused problems for a 16-bit converter. The synthesized reference capability ensures operation with a phase shift up to 45 degrees. The velocity output (VEL) from the RDC-19220/2S, which can be used to replace a tachometer, is a 4 V signal referenced to ground. The full-scale value of VEL is set by the user with a single resistor.

The RDC-19220/2S converter is available with operating temperature ranges of 0° to $+70^{\circ} \mathrm{C},-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, and -55° to $+125^{\circ} \mathrm{C}$.

APPLICATIONS

The low cost, small size, high accuracy, and versatile performance of the RDC-19220/2S converter makes it ideal for use in modern high performance industrial control systems. Typical applications include motor control, radar antenna positioning, machine tool control, robotics, and process control. Class K and MIL-PRF-38534 processing is available for space and military applications.

Data Device Corporation 105 Wilbur Place
Bohemia, New York 11716
631-567-5600 Fax: 631-567-7358
www.ddc-web.com

- Accuracy up to 1.3 Arc Minutes
- Internal Synthesized Reference
- +5 Volt Only Option
- Programmable:
- Resolution: 10-, 12-, 14-, or 16-Bit
- Bandwidth
- Tracking Rate
- Differential Resolver Input Mode
- Velocity Output Eliminates Tachometer
- Built-In-Test ($\overline{\mathrm{BIT}}$) Output, No 180° Hangup
- -55° to $+125^{\circ} \mathrm{C}$ Operating Temperature
- Class K and MIL-PRF-38534 Options

FOR MORE INFORMATION CONTACT:

FIGURE 1. RDC-19220/2S BLOCK DIAGRAM

TABLE 1. RDC-19220/2S SPECIFICATIONS
These specifications apply over the rated power supply, temperature,
and reference frequency ranges; 10% signal amplitude variation \& 10% harmonic distortion.

[^0]

THEORY OF OPERATION

The RDC-19220/2S series of converter is a single CMOS custom monolithic chip. It is implemented using mixed signal CMOS technology which merges precision analog circuitry with digital logic to form a complete high-performance tracking resolver-todigital converter. For user flexibility and convenience, the converter bandwidth, dynamics, and velocity scaling are externally set with passive components.

FIGURE 1 is the RDC-19220/2S Functional Block Diagram. The converter operates with $\pm 5 \mathrm{~V}$ DC power supplies. Analog signals are referenced to analog ground, which is at ground potential. The converter is made up of two main sections; a converter and a digital interface. The converter front-end consists of sine and cosine differential input amplifiers. These inputs are protected to $\pm 25 \mathrm{~V}$ with $2 \mathrm{k} \Omega$ resistors and diode clamps to the $\pm 5 \mathrm{~V}$ DC supplies. These amplifiers feed the high accuracy Control Transformer (CT). Its other input is the 16-bit digital angle ϕ. Its output is an analog error angle, or difference angle, between the two inputs. The CT performs the ratiometric trigonometric computation of $\operatorname{SIN} \theta \operatorname{COS} \phi-\operatorname{COS} \theta \operatorname{SIN} \phi=\operatorname{SIN}(\theta-\phi)$ using amplifiers, switches, logic and capacitors in precision ratios.

Note: The transfer function of the CT is normally trigonometric, but in LVDT mode the transfer function is triangular (linear) and could thereby convert any linear transducer output.

The converter accuracy is limited by the precision of the computing elements in the CT. For enhanced accuracy, the CT in these converters use capacitors in precision ratios, instead of the more conventional precision resistor ratios. Capacitors used as computing elements with op-amps need to be sampled to eliminate voltage drifting. Therefore, the circuits are sampled at a high rate $(70 \mathrm{kHz})$ to eliminate this drifting and at the same time to cancel out the op-amp offsets.

The error processing is performed using the industry standard technique for type II tracking R/D converters. The DC error is integrated yielding a velocity voltage which in turn drives a volt-age-controlled oscillator (VCO). This VCO is an incremental integrator (constant voltage input to position rate output) which, together with the velocity integrator, forms a type II servo feedback loop. A lead in the frequency response is introduced to stabilize the loop and a lag at higher frequency is introduced to reduce the gain and ripple at the carrier frequency and above. The settings of the various error processor gains and break frequencies are done with external resistors and capacitors so that the converter loop dynamics can be easily controlled by the user.

TRANSFER FUNCTION AND BODE PLOT

The dynamic performance of the converter can be determined from its Transfer Function Block Diagrams and its Bode Plots (open and closed loop). These are shown in FIGURES 2, 3, and 4.

The open loop transfer function is as follows:

$$
\text { Open Loop Transfer Function }=\frac{A^{2}\left(\frac{S}{B}+1\right)}{S^{2}\left(\frac{S}{10 B}+1\right)}
$$

where: $\quad A$ is the gain coefficient

$$
A^{2}=A_{1} A_{2}
$$

B is the frequency of lead compensation

The components of gain coefficient are error gradient, integrator gain, and VCO gain. These can be broken down as follows:

$$
\begin{aligned}
- \text { Error Gradient }= & 0.011 \text { volts per LSB }(C T+\text { Error } \\
& \begin{array}{l}
\text { Amp+Demod with } 2 \text { Vrms input })
\end{array} \\
- \text { Integrator gain }= & \frac{C_{S} F_{S}}{1.1 \mathrm{C}_{\mathrm{BW}}} \text { volts per second per volt }
\end{aligned}
$$

- VCO Gain $=\frac{1}{1.25 R_{v} C_{v c o}}$ LSBs per second per volt
where: $\quad C_{s}=10 \mathrm{pF}$
$\mathrm{F}_{\mathrm{s}}=70 \mathrm{kHz}$ when $\mathrm{Rs}=30 \mathrm{k} \Omega$
$\mathrm{F}_{\mathrm{s}}=100 \mathrm{kHz}$ when $\mathrm{Rs}=20 \mathrm{k} \Omega$
$\mathrm{F}_{\mathrm{s}}=125 \mathrm{kHz}$ when $\mathrm{Rs}=15 \mathrm{k} \Omega$
$\mathrm{C}_{\mathrm{vco}}=50 \mathrm{pF}$
R_{V}, R_{B}, and $C_{B W}$ are selected by the user to set velocity scaling and bandwidth.

FIGURE 2.TRANSFER FUNCTION BLOCK DIAGRAM \#1

GENERAL SETUP CONDITIONS

DDC has external component selection software which considers all the criteria below and, in a simple fashion, asks the key parameters (carrier frequency, resolution, bandwidth, and tracking rate) to derive the external component values.

The following recommendations should be considered when installing the RDC-19220/2S Resolver-to-Digital (R/D) converter:

1) When setting the bandwidth (BW) and Tracking Rate (TR) (selecting five external components), the system requirements need to be considered. For the greatest noise immunity, select the minimum BW and TR the system will allow.
2) Power supplies are $\pm 5 \mathrm{~V}$ DC. For lowest noise performance it is recommended that a $0.1 \mu \mathrm{~F}$ or larger cap be connected from each supply to ground near the converter package.
3) Resolver inputs and velocity output are referenced to AGND. This pin should be connected to GND near the converter package. Digital currents flowing through ground will not disturb the analog signals.
4) The $\overline{\text { BIT }}$ output, which is active low, is activated by an error of approximately 100 LSBs. During normal operation, for step inputs or on power up, a large error can exist.

FIGURE 3. TRANSFER FUNCTION BLOCK DIAGRAM \#2

FIGURE 4. BODE PLOTS
5) Setup of bandwidth and velocity scaling for the optimized critically damped case should proceed as follows:

$$
\left.\begin{array}{l}
\text { - Select the desired } f_{B W} \text { (closed loop), based on overall } \\
\text { system dynamics. } \\
\text { - Select fcarrier } \geq 3.5 f_{B W} \\
\text { - Compute } R_{v}=55 \mathrm{k} \Omega \times \frac{\left\{\begin{array}{c}
\text { For the converter max tracking rate value, } \\
\text { see the row indicated in TABLE 3. }
\end{array}\right.}{\text { Application max rate }}
\end{array}\right\} \begin{aligned}
& \text { - Compute } C_{B W}(\mathrm{pF})=\frac{3.2 \times \mathrm{F}_{\mathrm{S}}(\mathrm{~Hz}) \times 10^{8}}{\mathrm{R}_{\mathrm{V}} \times\left(\mathrm{f}_{\mathrm{BW}}\right)^{2}} \\
& \text { - Where } \mathrm{FS}=70 \mathrm{kHz} \text { for } \begin{array}{l}
\mathrm{R}_{\mathrm{S}}=30 \mathrm{k} \Omega \\
100 \mathrm{kHz} \text { for } \mathrm{R}_{\mathrm{S}}=20 \mathrm{k} \Omega \\
125 \mathrm{kHz} \text { for } \mathrm{R}_{\mathrm{S}}=15 \mathrm{k} \Omega
\end{array} \\
& \text { - Compute } \mathrm{R}_{\mathrm{B}}=\frac{0.9}{\mathrm{C}_{\mathrm{BW}} \times \mathrm{f}_{\mathrm{BW}}} \\
& \text { - Compute } \frac{\mathrm{C}_{\mathrm{BW}}}{10}
\end{aligned}
$$

6) Selecting a $f_{B W}$ that is too low relative to the maximum application tracking rate can create a spin-around condition in which the converter never settles. The relationship to insure against spin-around is as follows (TABLE 2.):

TABLE 2. TRACKING/BW RELATIONSHIP	
RPS (MAX)/BW	RESOLUTION
1	10
0.50	12
0.25	14
0.125	16

7) RDC-19222 package only:

When using the built-in -5 V inverter connect as shown:

FIGURE 5. -5V BUILT-IN INVERTER
The current drain from the +5 V supply doubles. No external -5 V supply is needed. The power supply $47 \mu \mathrm{f}$ caps shown may be substituted with $10 \mu \mathrm{f}$ caps if the P/S lines are clean (min noise).

When using the built-in -5 V inverter, the maximum tracking rate should be scaled for a velocity output of 3.5 V max. Use the following equation to determine tracking rate used in the formula in Step 5:

$$
\frac{\text { TR (required) } \times(4.0)}{(3.5)}=\text { Tracking rate used in calculation }
$$

Note: When using the highest BW and Tracking Rates, use of the -5 V inverter is not recommended.

Data Device Corporation
www.ddc-web.com

HIGHER TRACKING RATES AND CARRIER FREQUENCIES

Tracking rate (nominally 4 V) is limited by two factors: velocity voltage saturation and maximum internal clock rate (nominally $1,333,333 \mathrm{~Hz}$). An understanding of their interaction is essential to extending performance.

The General Setup Considerations section makes note of the selection of Rv for the desired velocity scaling. Rv is the input resistor to an inverting integrator with a 50 pF nominal feedback capacitor. When it integrates to -1.25 V , the converter counts up 1 LSB and when it integrates to +1.25 V , the converter counts down 1 LSB . When a count is taken, a charge is dumped on the capacitor such that the voltage on it changes 1.25 V in a direction to bring it to 0 V . The output counts per second per volt input is therefore:

$$
\frac{1}{\left(R_{v} \times 50 p F \times 1.25\right)}
$$

As an example:
Calculate Rv for the maximum counting rate, at a VEL voltage of 4 V .

For a 12-bit converter there are 2^{12} or 4096 counts per rotation. $1,333,333 / 4096=325$ rotations per second or 333,333 counts per second per volt.

$$
R_{V}=\frac{1}{(333,333 \times 50 \mathrm{pF} \times 1.25)}=48 \mathrm{k} \mathrm{Ohms}
$$

The maximum rate capability of the RDC-19220/2S is set by R_{S}.
When $R_{S}=30 \mathrm{kHz}$ it is nominally $1,333,333$ counts/second, which equates to 325 rps (rotations per second). This is the absolute maximum; it is recommended to only run at < 90% of this rate (as given in TABLE 3), therefore the minimum R_{V} will be limited to 55 kOhms .

TABLE 3. MAX TRACKING RATE (MIN) IN RPS						
R_{C}	R_{S}	RESOLUTION				Depending on the resolution, select one of the values from this row, for use in converter max tracking rate formula. (See formula in Step 5.)
		10	12	14	16	
30k or open*	30 k	1152	288	72	18	

Carrier frequency is shown in TABLE 4.

TABLE 4. CARRIER					
FREQUENCY (MAX) IN KHZ					
$\mathbf{R}_{\mathbf{C}}$	$\mathbf{R}_{\mathbf{S}}$	RESOLUTION			
		$\mathbf{1 0}$	$\mathbf{1 2}$	$\mathbf{1 4}$	$\mathbf{1 6}$
30k or open**	30 k	10	10	5	5

*The use of a high quality thin-film resistor will provide better temperature stability than leaving open.

TABLE 5. TRANSFORMERS

P/N	TYPE	FREQUENCY (HZ)*	IN (VRMS)*	OUT (VRMS)**	ANGLE ACCURACY***	LENGTH (IN)	WIDTH (IN)	HEIGHT (IN)	FIGURE NUMBER
52034	S - R	400	11.8	2	1	0.81	0.61	0.3	6A
52035	S-R	400	90	2	1	0.81	0.61	0.3	6A
52036	R - R	400	11.8	2	1	0.81	0.61	0.3	6B
52037	$\mathrm{R}-\mathrm{R}$	400	26	2	1	0.81	0.61	0.3	6B
52038	R - R	400	90	2	1	0.81	0.61	0.3	6B
B-426	Reference	400	115	3.4	N/A	0.81	0.61	0.32	6C
52039-X	Synchro	60	90	2	1	1.1	1.14	. 42	6D
24133-X	Reference	60	115	$3 / 6$ ****	N/A	1.125	1.125	. 42	6D

* $\pm 10 \%$ Frequency (Hz) and Line-to-Line input voltage (Vrms) tolerances
** 2 Vrms Output Magnitudes are -2 Vrms $\pm 0.5 \%$ full scale
*** Angle Accuracy (Max Minutes)
**** 3 Vrms to ground or 6 Vrms differential ($\pm 3 \%$ full scale)
Dimensions are for each individual main and teaser
60 Hz Synchro transformers are active (requires $\pm 15 \mathrm{Vdc}$ power supplies)
400 Hz transformer temperature range: $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
60 Hz transformer (52039-X, 24133-X) temperature ranges: add to part number -1 or -3 ,
$-1=-55^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$3=0$ to $+70^{\circ} \mathrm{C}$

FIGURE 6A. TRANSFORMER LAYOUT AND SCHEMATIC (SYNCHRO INPUT - 52034/52035)

FIGURE 6B. TRANSFORMER LAYOUT AND SCHEMATIC (RESOLVER INPUT - 52036/52037/52038)

FIGURE 6C. TRANSFORMER LAYOUT AND SCHEMATIC (REFERENCE INPUT - B-426)

The mechanical outline is the same for the synchro input transformer (52039) and the reference input transformer (24133), except for the pins. Pins for the reference transformer are shown in parenthesis (). An asterisk * indicates that the pin is omitted.

FIGURE 6D. 60 HZ SYNCHRO AND REFERENCE TRANSFORMER DIAGRAMS
(SYNCHRO INPUT - 52039 / REFERENCE INPUT - 24133)

FIGURE 7.TYPICAL TRANSFORMER CONNECTIONS

TYPICAL INPUTS

FIGURES 8 through 10 illustrate typical input configurations

FIGURE 8. TYPICAL CONNECTIONS, 2 VOLT RESOLVER, DIRECT INPUT

$\frac{\mathrm{R} 2}{\mathrm{R} 1+\mathrm{R} 2}=\frac{2}{\mathrm{XVolt}}$
$R 1+R 2$ should not load the Resolver too much; it is recommended that $R 2=10 k$.
R1 + R2 Ratio Errors will result in Angular Errors,
2 cycle, 0.1\% Ratio Error = 0.029 ${ }^{\circ}$ Peak Error.

FIGURE 9. TYPICAL CONNECTIONS, X-VOLT RESOLVER, DIRECT INPUT

S1 and S3, S2 and S4, and RH and RL should be ideally twisted shielded, with the shield tied to AGND at the converter.

FIGURE 10A. DIFFERENTIAL RESOLVER INPUT

S1 and S3, S2 and S4, and RH and RL should be ideally twisted shielded, with the shield tied to AGND at the converter.
For DDC-49530: $\mathrm{Ri}=70.8 \mathrm{k} \Omega$, 11.8 V input, synchro or resolver.
For DDC-49590: $\mathrm{Ri}=270 \mathrm{k} \Omega, 90 \mathrm{~V}$ input, synchro or resolver.
Maximum addition error is 1 LSB.
FIGURE 10B. DIFFERENTIAL RESOLVER INPUT, USING DDC-49530 (11.8 V) OR DDC-49590 (90 V)

S1, S2, and S3 should be triple twisted shielded; RH and RL should be twisted shielded, In both cases the shield should be tied to AGND at the converter.

FIGURE 10C. SYNCHRO INPUT

S1, S2, and S3 should be triple twisted shielded; RH and RL should be twisted shielded, In both cases the shield should be tied to AGND at the converter.
90 V input $=\mathrm{DDC}-49590: \mathrm{Ri}=270 \mathrm{k} \Omega, 90 \mathrm{~V}$ input, synchro or resolver.
11.8 V input = DDC-49530: $\mathrm{Ri}=70.8 \mathrm{k} \Omega, 11.8 \mathrm{~V}$ input, synchro or resolver.

Maximum addition error is 1 LSB.
FIGURE 10D. SYNCHRO INPUT, USING DDC-49530 (11.8 V) OR DDC-49590 (90 V)

DC INPUTS

As noted in TABLE 1 the RDC-19220/2S will accept DC inputs. It is necessary to set the REF input to DC by tying +REF to +5 V and -REF to GND or -5 V . (With DC inputs, the $\overline{\mathrm{BIT}}$ output is not valid.)

VELOCITY TRIMMING

RDC-19220/2S specifications for velocity scaling, reversal error, and offset are contained in TABLE 1. Velocity scaling and offset are externally trimmable for applications requiring tighter specifications than those available from the standard unit. FIGURE 11 shows the setup for trimming these parameters with external potentiometers. It should also be noted that when the resolution is changed, velocity scaling is also changed. Since the VEL output is from an integrator with capacitor feedback, the VEL voltage cannot change instantaneously. Therefore, when changing resolution while moving, there will be a transient with a magnitude proportional to the velocity and a duration determined by the converter bandwidth.

FIGURE 11. VELOCITY TRIMMING

SYNTHESIZED REFERENCE

The synthesized reference section of the RDC-19220/2S eliminates errors caused by quadrature voltage which is due to a phase shift between the reference and the signal lines. Quadrature voltages in a resolver or synchro are by definition the resulting 90° fundamental signal in the nulled out error voltage (e) in the converter. Due to the inductive nature of synchros and resolvers, their signals lead the reference signal (RH and RL) by about 6°.

When an uncompensated reference signal is used to demodulate the control transformer's output, quadrature voltages are not completely eliminated. As shown in FIGURE 1, the converter synthesizes its own $\operatorname{COS}(\omega t+\alpha)$ reference signal from the $\operatorname{SIN} \theta$ $\operatorname{COS}(\omega t+\alpha), \operatorname{Cos} \theta-\operatorname{COS}(\omega t+\theta)$ signal inputs and from the

COS ω t reference input. The phase angle of the synthesized reference is determined by the signal input. The reference input is used to choose between the $+180^{\circ}$ and -180° phases. The synthesized reference will always be exactly in phase with the signal input, and quadrature errors will therefore be reduced. The synthesized reference circuit also eliminates the 180° false error null hang up.

Due to the inductive nature of resolvers, the output signals typically lead the reference by 6°, and a 6° phase shift will cause problems for a 1.3 / 2.3 arc minute accuracy converter. A synthesized reference will always be exactly in phase with the signal input.

LVDT (LINEAR VARIABLE DIFFERENTIAL TRANSFORMER) MODE

As shown in TABLE 1 the RDC-19220/2S unit can be made to operate as a LVDT-to-digital converter by connecting Resolution Control inputs A and B to " 0 ," " 1 ," or the -5 volt supply. In this mode the RDC-19220/2S functions as a ratiometric tracking linear converter. When linear AC inputs are applied from an LVDT the converter operates over one quarter of its range. This results in two less bits of resolution for LVDT mode than are provided in resolver mode.

The LVDT output signals will need to be scaled to be compatible with the converter input. FIGURE 12B is a schematic of an input scaling circuit applicable to 3 -wire LVDTs. The value of the scaling constant "a" is selected to provide an input of 2 Vrms at full stroke of the LVDT. The value of scaling constant "b" is selected to provide an input of 1 Vrms at null of the LVDT. Suggested components for implementing the input scaling circuit are a quad opamp, such as a 4741 type, and precision thin-film resistors of 0.1% tolerance. FIGURE 12A illustrates a 2-wire LVDT configuration.

Data output of the RDC-19220/2S is Binary Coded in LVDT mode. The most negative stroke of the LVDT is represented by ALL ZEROS and the most positive stroke of the LVDT is represented by ALL ONES. The most significant 2 bits (2 MSBs) may be used as overrange indicators. Positive overrange is indicated by code " 01 " and negative overrange is indicated by code " 11 " (see TABLE 6).

TABLE 6. 12-BIT LVDT OUTPUT CODE FOR FIGURE 12B				
LVDT OUTPUT	MSB			
+ over full travel	01	$x x x x$	$x x x x$	LSB
+ full travel -1 LSB	00	1111	1111	1111
+0.5 travel	00	1100	0000	0000
+1 LSB	00	1000	0000	0001
null	00	1000	0000	0000
- 1 LSB	00	0111	1111	1111
-0.5 travel	00	0100	0000	0000
- full travel	00	0000	0000	0000
- over full travel	11	xxxx	xxxx	xxxx

FIGURE 12A. 2-WIRE LVDT DIRECT INPUT

Notes:

1. $\mathrm{R}^{\prime} \geq 10 \mathrm{k} \Omega$
2. Consideration for the value of R is LVDT loading.
3. RMS values given

$$
\operatorname{SIN}=1+\frac{a}{2}\left(V_{A}-V_{B}\right)
$$

$$
\operatorname{COS}=1-\frac{a}{2}\left(V_{A}-V_{B}\right)
$$

FIGURE 12B. 3-WIRE LVDT SCALING CIRCUIT

INHIBIT, ENABLE, AND CB TIMING

The Inhibit ($\overline{\mathrm{INH}}$) signal is used to freeze the digital output angle in the transparent output data latch while data is being transferred. Application of an inhibit signal does not interfere with the continuous tracking of the converter. As shown in FIGURE 13, angular output data is valid 150 ns maximum after the application of the negative inhibit pulse.

Output angle data is enabled onto the tri-state data bus in two bytes. Enable MSBs ($\overline{\mathrm{EM}}$) is used for the most significant 8 bits and Enable LSBs $(\overline{\mathrm{EL}})$ is used for the least significant 8 bits. As shown in FIGURE 14, output data is valid 150 ns maximum after the application of a negative enable pulse. The tri-state data bus returns to the high impedance state 100 ns maximum after the rising edge of the enable signal.

The Converter Busy (CB) signal indicates that the tracking converter output angle is changing 1 LSB. As shown in FIGURE 15, output data is valid 50 ns maximum after the middle of the CB pulse. The CB pulse width is $1 / 40 \mathrm{Fs}$, which is nominally 375 ns .

BUILT-IN-TEST (로T)

The Built-In-Test output ($\overline{\mathrm{BIT}}$) monitors the level of error from the demodulator. This signal is the difference in the input and output angles and ideally should be zero; if it exceeds approximately 100 LSBs (of the selected resolution) the logic level at BIT will change from a logic 1 to a logic 0 .

This condition will occur during a large step and reset after the converter settles out. $\overline{\mathrm{BIT}}$ will also change to logic 0 for an overvelocity condition, because the converter loop cannot maintain input-output or if the converter malfunctions where it cannot maintain the loop at a null. $\overline{\mathrm{BIT}}$ will also be set low for a detected Loss-of-Signal (LOS) and/or a Loss-of-Reference (LOR). The $\overline{\mathrm{BIT}}$ signal may pulse during certain error conditions, i.e., when the converter is in a spin around condition or the signal amplitude is on the threshold of LOS.

LOS will be detected if both sin and cos input voltages are less than 500 mV peak. LOR will be detected if the differential reference voltage is less than 500 mV peak.

FIGURE 15. CONVERTER BUSY TIMING

PIN OUT FUNCTION TABLES BY MODEL NUMBER

The following tables detail pin out functions by the DDC model number.

The RDC-19220S has differential inputs but requires both $\pm 5 \mathrm{~V}$ power supplies.

The RDC-19222S has differential inputs and can be used with $\pm 5 \mathrm{~V}$ or +5 V only.

TABLE 7. RDC-19220S (40-PIN) PIN OUTS

$\#$	NAME	DESCRIPTION	$\#$	NAME	DESCRIPTION
1	A	Resolution Control	40	+5 V	Power Supply
2	B	Resolution Control	39	EL	Enable LSBs
3	INH	Inhibit	38	Bit 16	LSB
4	+REF	+Reference Input	37	Bit 8	
5	-REF	-Reference Input	36	Bit 15	
6	-VCO	Neg. VCO Input	35	Bit 7	
7	-VSUM	Vel Sum Point	34	Bit 14	
8	VEL	Velocity Output	33	Bit 6	
9	+C	Signal Input	32	Bit 13	
10	COS	Signal Input	31	Bit 5	
11	-C	Signal Input	30	Bit 12	
12	+S	Signal Input	29	Bit 4	
13	+SIN	Signal Input	28	Bit 11	
14	-S	Signal Input	27	Bit 3	
15	-5 V	Power Supply	26	Bit 10	
16	RS	Sampling Set	25	Bit 2	
17	R	Current Set	24	Bit 9	
18	EM	Enable MSBs	23	Bit 1	MSB
19	A GND	Analog Ground	22	CB	Converter Busy
20	GND	Ground	21	BIT	Built-In-Test

TABLE 8. RDC-19222S (44-PIN) PIN OUTS

$\#$	NAME	DESCRIPTION	$\#$	NAME	DESCRIPTION
1	EL	Enable LSBs	44	BIT 16	LSB
2	+5 V	Power Supply (see note)	43	BIT 8	
3	A	Resolution Control	42	Bit 15	
4	B	Resolution Control	41	Bit 7	
5	INH	Inhibit	40	Bit 14	
6	+REF	+Reference Input	39	Bit 6	
7	-REF	-Reference Input	38	Bit 13	
8	-VCO	Neg. VCO Input	37	Bit 5	
9	-VSUM	Vel Sum Point	36	Bit 12	
10	VEL	Velocity Output	35	Bit 4	
11	+C	Signal Input	34	Bit 11	
12	COS	Signal Input	33	Bit 3	
13	-C	Signal Input	32	Bit 10	
14	+S	Signal Input	31	Bit 2	
15	SIN	Signal Input	30	Bit 9	
16	-S	Signal Input	29	Bit 1	MSB
17	-5 V	Power Supply	28	CB	Converter Busy
18	RS	Sampling Set	27	BIT	Built-in-Test
19	RC	Current Set	26	+5C (+5V)	Pos. Supply Cap
20	EM	Enable MSBs	25	+CAP	Pos. Terminal
21	A GND	Analog Ground	24	GND	Ground
22	$-5 \mathrm{C}(-5 \mathrm{~V})$	Neg. Supply Cap	23	-CAP	Neg. Terminal

Note: When using the built-in -5 V inverter: connect pin 2 to 26 , pin 17 to 22 , and a $10 \mu \mathrm{~F} / 10$ VDC capacitor from pin 23 (negative terminal) to pin 25 (positive terminal). Connect a $47 \mu \mathrm{~F} / 10 \mathrm{VDC}$ capacitor from -5 V to GND. The current drain from the +5 V supply doubles. No external -5 V supply is needed.

FIGURE 16. RDC-19220S (40-PIN DDIP) CERAMIC PACKAGE MECHANICAL OUTLINE

FIGURE 17. RDC-19222S (44-PIN PLASTIC J-LEAD) MECHANICAL OUTLINE

FIGURE 18. RDC-19222S (44-PIN CERAMIC J-LEAD) MECHANICAL OUTLINE

FIGURE 19. (DDC-55688-1) LAYOUT AND RESISTOR VALUES (R1 AND R2 = $10 \mathrm{~K} \Omega 1.0 \%$ TOL, ABSOLUTE TC $= \pm 100$ PPM MAX)

FIGURE 20. (DDC-49530, DDC-49590, DDC-57470) LAYOUT AND RESISTOR VALUES (SEE TABLE 9)

DIMENSIONS SHOWN ARE IN INCHES (MM).

FIGURE 21. 16-PIN THIN-FILM RESISTOR NETWORK DIP MECHANICAL OUTLINE (DDC-49530, DDC-55688-1)

TABLE 9. FRONT-END THIN-FILM RESISTOR NETWORKS (SEE FIGURE 20)
DDC-49530, DDC-57470 RESISTOR VALUES (11.8 V INPUTS)

SYMBOL	ABS VALUE (Ω)	TOL $(\%)$	REL TO	REL VALUE ($\Omega)$	TOL $(\%)$	TCR(PPM)
R1	70.8 k	0.1				25
R2			R1	12 k	0.02	2
R3			R4	12 k	0.02	2
R4			R1	70.8 k	0.02	2
R5			R1	70.8 k	0.02	2
R6			R1	35.4 k	0.02	2
R7			R6	6.9282 k	0.02	2
R8			R6	5.0718 k	0.02	2
R9			R11	5.0718 k	0.02	2
R10			R11	6.9282 k	0.02	2
R11			R1	70.8 k	0.02	2

DDC-49590 RESISTOR VALUES (90 V INPUTS)

R1	270 k	0.1				25
R2			R1	6 k	0.02	2
R3			R4	6 k	0.02	2
R4			R1	270 k	0.02	2
R5			R1	270 k	0.02	2
R6			R1	135 k	0.02	2
R7			R6	3.4641 k	0.02	2
R8			R6	2.5359 k	0.02	2
R9			R11	2.5359 k	0.02	2
R10			R11	3.4641 k	0.02	2
R11			R1	270 k	0.02	2

FIGURE 22. 16-PIN THIN-FILM RESISTOR NETWORK FLAT-PACK MECHANICAL OUTLINE
(DDC-57470)

FIGURE 23. 16-PIN THIN-FILM RESISTOR NETWORK DIP MECHANICAL OUTLINE - CERAMIC PACKAGE (DDC-49590)

ORDERING INFORMATION

RDC-19222S - XXXX (Plastic Package: 44-pin J-Lead)
Supplemental Process Requirements:
T = Tape and Reel
Blank = None of the Above
Accuracy:
$2=4$ minutes +1 LSB
$3=2$ minutes +1 LSB
$5=1$ minute +1 LSB (maximum reference frequency $=5 \mathrm{kHz}$)
Process Requirements:
$0=$ No Burn-In
$9=$ Solder Dip, without Burn-In
Temperature Grade:
$2=-40$ to $+85^{\circ} \mathrm{C}$
$3=0$ to $+70^{\circ} \mathrm{C}$

RDC-1922XS - XXXX (Ceramic Package)

Supplemental Process Requirements:

T = Tape and Reel (Not available in 40-pin DDIP package)
S = Pre-Cap Source Inspection
L $=100 \%$ Pull Test
Q = Pre-Cap Source and 100% Pull Test
K = One Lot Date Code
W = One Lot Date Code and Pre-Cap Source Inspection
$Y=$ One Lot Date Code and 100% Pull Test
Z = One Lot Date Code, Pre-Cap Source Inspection and 100\% Pull Test Blank = None of the Above

Accuracy:
$3=2$ minutes +1 LSB
Process Requirements:
$0=$ Standard DDC Processing, without Burn-In
1 = MIL-PRF-38534 Compliant
$2=$ Standard DDC Processing, with Burn-In
$3=$ MIL-PRF-38534 Compliant, with PIND testing
4 = MLL-PRF-38534 Compliant, with Solder Dip
$5=$ MIL-PRF-38534 Compliant, with PIND testing, and Solder Dip
$6=$ Standard DDC Processing, with PIND testing, and Burn-In
7 = Standard DDC Processing, with Solder Dip, and Burn-In
9 = Standard DDC Processing, with Solder Dip, without Burn-In
Temperature Grade / Data Requirements:
$1=-55$ to $+125^{\circ} \mathrm{C}$
$4=-55$ to $+125^{\circ} \mathrm{C}$, with Variables Test Data

- Package:
$0=40-$ Pin DDIP, (" +5 volt only" power supply feature - not available)
$2=44-$ Pin J-Lead

STANDARD DDC PROCESSING		
TEST	MIL-STD-883	
	METHOD(S)	CONDITION(S)
INSPECTION	2009,2017	-
SEAL	1014	A and C
TEMPERATURE CYCLE	1010	C
CONSTANT ACCELERATION	2001	3000 g
BURN-IN	1015, Table 1	-

ORDERING INFORMATION (CONTINUED)

RDC-19229S - 4XXX (Class K Processed Part Ordering Information)

Mandatory Process Requirements Selection: (One of the following must be selected)
L = 100\% Pull Test
Q = Pre-Cap Source and 100\% Pull Test (Contact factory for availability)
$\mathrm{Y}=$ One Lot Date Code and 100\% Pull Test
Z = One Lot Date Code, Pre-Cap Source Inspection and 100\% Pull Test (Contact factory for availability)
Accuracy:
3 = 2 minutes +1 LSB
Process Requirements: (Burn-In is in accordance with MIL-STD-883 Class K)
$6=320$ hour Burn-In at $+125^{\circ} \mathrm{C}$, with PIND testing
$8=320$ hour Burn-In at $+125^{\circ} \mathrm{C}$, with PIND testing and Solder Dip
Temperature Grade / Data Requirements:
$4=-55$ to $+125^{\circ} \mathrm{C}$, with Variables Test Data
Package:
9 = Screened to Class K, 44-Pin J-Lead ceramic package

THIN-FILM RESISTOR NETWORKS: (Operating temperature range: -55 to $+125^{\circ} \mathrm{C}$) DDC-49530 $=11.8 \mathrm{~V}$ input, DIP
DDC-57470 $=11.8 \mathrm{~V}$ input, surface mount
DDC-49590 $=90 \mathrm{~V}$ input, DIP
DDC-55688-1 = 2 V direct, DIP

External Component Selection Software (refer to General Setup Conditions section) can be downloaded from DDC's web site: www.ddc-web.com.

The information in this data sheet is believed to be accurate; however, no responsibility is assumed by Data Device Corporation for its use, and no license or rights are granted by implication or otherwise in connection therewith. Specifications are subject to change without notice.

Please visit our web site at www.ddc-web.com for the latest information.

105 Wilbur Place, Bohemia, New York, U.S.A. 11716-2482

For Technical Support - 1-800-DDC-5757 ext. 7382

Headquarters, N.Y., U.S.A. - Tel: (631) 567-5600, Fax: (631) 567-7358
Southeast, U.S.A. - Tel: (703) 450-7900, Fax: (703) 450-6610
West Coast, U.S.A. - Tel: (714) 895-9777, Fax: (714) 895-4988
United Kingdom - Tel: +44-(0)1635-811140, Fax: +44-(0)1635-32264
Ireland - Tel: +353-21-341065, Fax: +353-21-341568
France - Tel: +33-(0)1-41-16-3424, Fax: +33-(0)1-41-16-3425
Germany - Tel: +49-(0)8141-349-087, Fax: +49-(0)8141-349-089
Japan - Tel: +81-(0)3-3814-7688, Fax: +81-(0)3-3814-7689
World Wide Web - http://www.ddc-web.com

[^0]: Notes: 1. Unused data bits are set to logic " 0 ."
 2. In LVDT mode, bit 16 is LSB for 14-bit resolution or bit 12 is LSB for 10-bit resolution
 3. Accuracy in LVDT mode is $0.15 \%+1$ LSB of full scale.
 4. If the frequency is between 47 Hz and 1 kHz , then there may be 1 LSB of jitter at quadrant boundaries.
 5. The maximum phase shift tolerance will degrade linearly from 45 degrees at 400 Hz to 30 degrees at 60 Hz .
 6. See text, General Setup Considerations.
 7. When using internally generated -5 V the internal -5 V charge pump when measured at the converter pin, may be as low as -20% (or -4 V).
 8.-XX5 accuracy is 1 minute +1 LSB up to 5 kHz max.
 9. A signal less than 500 mV will assert BIT.

