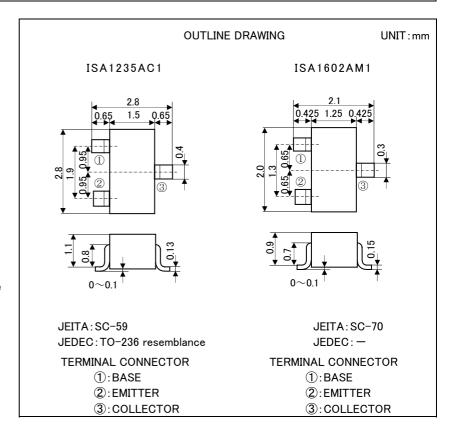
FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON PNP EPITAXIAL TYPE

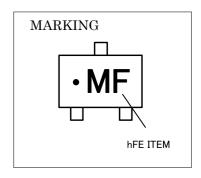
DESCRIPTION

ISA1235AC1 ISA1602AM1 is super mini package resin sealed silicon PNP epitaxial type transistor.


These are designed for low frequency voltage amplify application .

FEATURE

- •Excellent linearity of DC forward current gain.
- Small collector to emitter saturation voltage VCE(sat)=-0.3Vmax

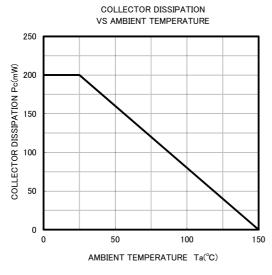

APPLICATION

For small type machine low frequency voltage amplify application.

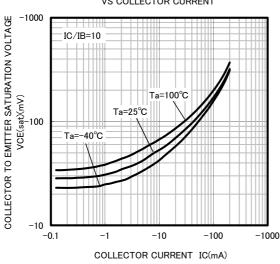
MAXIMUM RATINGS (Ta=25°C)

Symbol	Parameter	Ratings		UNIT
	Farailleter	ISA1235AC1	ISA1602AM1	UNIT
V_{CBO}	Collector to Base voltage	-60		V
V_{EBO}	Collector to Emitter voltage	-6		V
V_{CEO}	Emitter to Base voltage	-50		V
Ic	Collector current	-200		mΑ
Pc	Collector dissipation	200		mW
Tj	Junction temperature	+150		°C
Tstg	Storage temperature	−55 ~ +150		°C

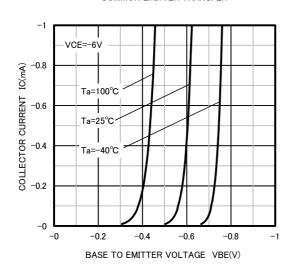
ELECTRICAL CHARACTERISTICS (Ta=25°C)

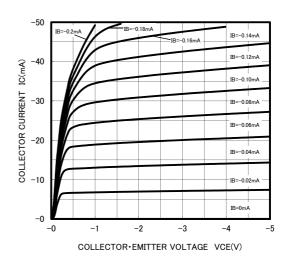

Symbol	Parameter	Test conditions	Limits			LINIT
			Min	Ave	Max	UNIT
$V_{(BR)CEO}$	Collector to Emitter Breakdown voltage	$I_c=-100 \mu A, R_{BE}=\infty$	-50	_	1	٧
I _{CBO}	Collector cut off current	V_{CB} =-60V, I $_{E}$ =0	_	_	-0.1	μΑ
I _{EBO}	Emitter cut off current	V_{EB} =-6V, I $_{C}$ =0	_	_	-0.1	μΑ
h _{FE} *	DC forward current gain	V_{CE} =-6V, I $_{C}$ =-1mA	150	_	500	_
h _{FE}	DC forward current gain	V_{CE} =-6V, I _C =-0.1mA	90	_	_	-
$V_{CE(sat)}$	Collector to Emitter saturation voltage	$I_{C} = -100 \text{mA}, I_{B} = -10 \text{mA}$	_	_	-0.3	٧
f_{T}	Gain bandwidth product	V_{CE} =-6V, I _E =10mA	_	200	_	MHz
Cob	Collector output capacitance	V_{CB} =-6V, I _E =0,f=1MHz	_	4.0	_	pF
NF	Noise Figure	V_{CE} =-6V, I _E =0.3mA, f=100Hz, RG=10k Ω	_	_	20	dB

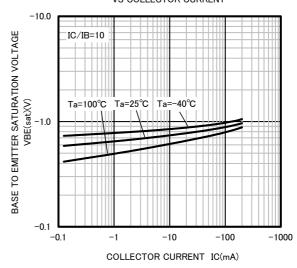
^{*:} It shows hFE classification in below table.

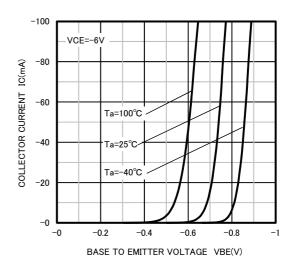

	E	F	
hFE	150~300	250~500	

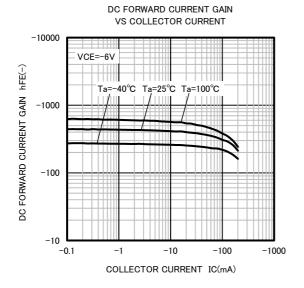
FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON PNP EPITAXIAL TYPE

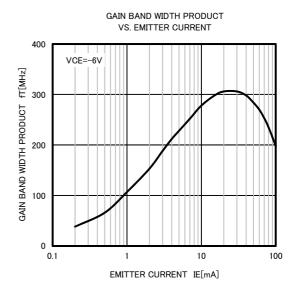

TYPICAL CHARACTERISTICS

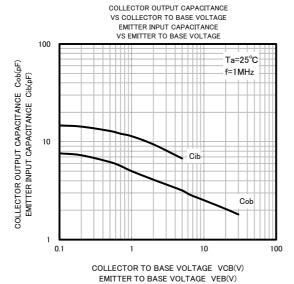

COLLECTOR TO EMITTER SATURATION VOLTAGE VS COLLECTOR CURRENT

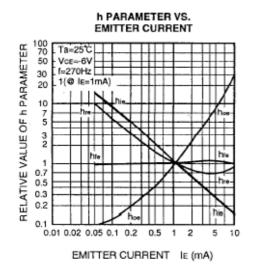

COMMON EMITTER TRANSFER

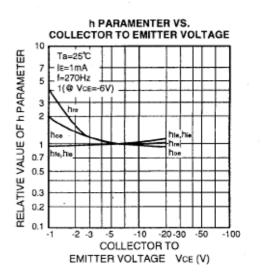

COMMON EMITTER OUTPUT


BASE TO EMITTER SATURATION VOLTAGE VS COLLECTOR CURRENT




COMMON EMITTER TRANSFER


FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON PNP EPITAXIAL TYPE



FOR LOW FREQUENCY AMPLIFY APPLICATION SILICON PNP EPITAXIAL TYPE

COMMON EMITTER h PARAMETER (TYPICAL VALUE)

Symbol	Parameter	Test conditions	Limits	Unit
hie	Closed loop small signal input impedance	Ta=25°C VCE=-6V IE=1mA f=270Hz	7.0	kΩ
hre	Open loop small signal reverse voltage amplification factor		0.1	× 10 ⁻³
hfe	Closed loop small signal forward current amplification factor		250	_
hoe	Open loop small signal output admitance		18	μs

6-41 Tsukuba, Isahaya, Nagasaki, 854-0065 Japan

Keep safety first in your circuit designs!

ISAHAYA Electronics Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (1) placement of substitutive, auxiliary, (2) use of non-farmable material or (3) prevention against any malfunction or mishap.

Notes regarding these materials

- These materials are intended as a reference to our customers in the selection of the ISAHAYA products best suited to the customer's application; they don't convey any license under any intellectual property rights, or any other rights, belonging
- Customer's application; they don't convey any license under any intellectual property rights, or any other rights, belonging ISAHAYA or third party.

 ISAHAYA or third party.

 ISAHAYA Electronics Corporation assumes no responsibility for any damage, or infringement of any third party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by ISAHAYA Electronics Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact ISAHAYA Electronics Corporation or an authorized ISAHAYA products distributor for the latest product information before purchasing product listed
- ISAHAYA Electronics Corporation products are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact ISAHAYA electronics corporation or an authorized ISAHAYA products distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of ISAHAYA Electronics Corporation is necessary to reprint or reproduce in whole or in part these
- If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or re-export contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 •Please contact ISAHAYA Electronics Corporation or authorized ISAHAYA products distributor for further details on these
- materials or the products contained therein.