FSCQ1265RT

Green Mode Fairchild Power Switch (FPS ${ }^{\top}{ }^{\text {M }}$) for Quasi-Resonant Switching Converter

Features

- Optimized for Quasi-Resonant Converter (QRC)
- Advanced Burst-Mode operation for under 1 W standby power consumption
- Pulse by Pulse Current Limit (7A)
- Over load protection (OLP) - Auto restart
- Over voltage protection (OVP) - Auto restart
- Abnormal Over Current Protection (AOCP) - Latch
- Internal Thermal Shutdown (TSD) - Latch
- Under Voltage Lock Out (UVLO) with hysteresis
- Low Startup Current (typical : 25uA)
- Low Operating Current (typical : 6mA)
- Internal High Voltage SenseFET
- Built-in Soft Start (20ms)
- Extended Quasi-resonant Switching for Wide Load Range

Application

- CTV
- DVD Receiver
- Audio Power Supply

Description

In general, Quasi-Resonant Converter (QRC) shows lower EMI and higher power conversion efficiency compared to the conventional hard switched converter with a fixed switching frequency. Therefore, it is well suited for applications that are sensitive to the noise, such as color TV and audio. The FSCQ1265RT is an integrated Pulse Width Modulation (PWM) controller and Sense FET specifically designed for Quasi-resonant off-line Switch Mode Power Supplies (SMPS) with minimal external components. The PWM controller includes integrated fixed frequency oscillator, under voltage lockout, leading edge blanking (LEB), optimized gate driver, internal soft start, temperature compensated precise current sources for a loop compensation and self protection circuitry. Compared with discrete MOSFET and PWM controller solution, it can reduce total cost, component count, size and weight simultaneously increasing efficiency, productivity, and system reliability. This device is a basic platform well suited for cost effective designs of Quasi resonant switching flyback converters.

OUTPUT POWER TABLE		
PRODUCT	$230 \mathrm{VAC} \pm 15 \%^{(2)}$	$85-265 \mathrm{VAC}$
	Open Frame $^{(1)}$	Open Frame $^{(1)}$
FSCQ0765RT	100 W	85 W
FSCQ1265RT	170 W	140 W
FSCQ1565RT	210 W	170 W

Table 1. Notes: 1. Maximum practical continuous power in an open frame design at $50^{\circ} \mathrm{C}$ ambient. 2. 230 VAC or 100/115 VAC with doubler.

Typical Circuit

Figure 1. Typical Flyback Application

Internal Block Diagram

Figure 2. Functional Block Diagram of FSCQ1265RT

Pin Definitions

Pin Number	Pin Name	Pin Function Description
1	Drain	High voltage power SenseFET drain connection.
2	GND	This pin is the control ground and the SenseFET source.
3	Vcc	This pin is the positive supply input. This pin provides internal operating current for both start-up and steady-state operation.
4	Vfb	This pin is internally connected to the inverting input of the PWM comparator. The collector of an opto-coupler is typically tied to this pin. For stable operation, a capacitor should be placed between this pin and GND. If the voltage of this pin reaches 7.5V, the over load protection triggers resulting in shutdown of the FPS.
5	Sync	This pin is internally connected to the sync detect comparator for quasi resonant switching. In normal quasi-resonant operation, the threshold of the sync comparator is 4.6V/2.6V. Meanwhile, the sync threshold is changed to $3.0 \mathrm{~V} / 1.8 \mathrm{~V}$ in extended quasi-resonant operation.

Pin Configuration

Figure 3. Pin Configuration (Top View)

Absolute Maximum Ratings

($\mathrm{Ta}=25^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter	Symbol	Value	Unit
Drain-Source (GND) Voltage ${ }^{(1)}$	VDSS	650	V
Drain-Gate Voltage (RGS=1M ${ }^{\text {) }}$	VDGR	650	V
Gate-Source (GND) Voltage	VGS	± 30	V
Drain Current Pulsed ${ }^{(2)}$	IDM	36	ADC
Single Pulsed Avalanche Energy ${ }^{(3)}$	EAS	950	mJ
Continuous Drain Current ($\mathrm{Tc}=25^{\circ} \mathrm{C}$)	ID	5.3	ADC
Continuous Drain Current (TC=100 ${ }^{\circ} \mathrm{C}$)	ID	3.4	ADC
Supply Voltage	VCC	20	V
Analog Input Voltage Range	$\mathrm{V}_{\text {sync }}$	-0.3 to 13V	V
	VFB	-0.3 to VCC	V
Total Power Dissipation	PD	50	W
Operating Junction Temperature	TJ	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	TA	-25 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	TSTG	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance	Rthjc	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Notes:

1. $\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
2. Repetitive rating: Pulse width limited by maximum junction temperature
3. $\mathrm{L}=21 \mathrm{mH}, \mathrm{VDD}=50 \mathrm{~V}, \mathrm{RG}=25 \Omega$, starting $\mathrm{Tj}=25^{\circ} \mathrm{C}$

Electrical Characteristics (SenseFET Part)

($\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Drain-Source Breakdown Voltage	BVDSS	VGS $=0 \mathrm{~V}, \mathrm{ID}=250 \mu \mathrm{~A}$	650	-	-	V
Zero Gate Voltage Drain Current	IDSS	VDS = Max, Rating, VGS = 0V	-	-	200	$\mu \mathrm{A}$
		$\begin{aligned} & \text { VDS }=0.8^{*} \text { Max., Rating } \\ & \text { VGS }=0 \mathrm{~V}, \mathrm{TC}=85^{\circ} \mathrm{C} \end{aligned}$	-	-	300	$\mu \mathrm{A}$
Static Drain-source on Resistance ${ }^{\text {(Note) }}$	RDS(ON)	$\mathrm{VGS}=10 \mathrm{~V}, \mathrm{ID}=2.3 \mathrm{~A}$	-	0.75	0.9	Ω
Input Capacitance	Ciss	$\begin{aligned} & V_{G S}=0 V, V_{D S}=25 V, \\ & f=1 \mathrm{MHz} \end{aligned}$	-	2400	3120	pF
Output Capacitance	Coss		-	175	227	
Reverse Transfer Capacitance	Crss		-	32	41	
Turn on Delay Time	td(on)	VDD= 0.5BVDSS, ID= 7.0A (MOSFET switching times are essentially independent of operating temperature)	-	42	94	ns
Rise Time	tr		-	106	222	
Turn Off Delay Time	td (off)		-	330	670	
Fall Time	tf		-	110	230	
Total Gate Charge (Gate-Source+Gate-Drain)	Qg	VGS $=10 \mathrm{~V}, \mathrm{ID}=7.0 \mathrm{~A}$, VDS $=0.5 B V_{\text {DSS }}$ (MOSFET Switching times are essentially independent of operating temperature)	-	98	127	nC
Gate-Source Charge	Qgs		-	13	17	
Gate-Drain (Miller) Charge	Qgd		-	40	52	

Note:

1. Pulse test : Pulse width $\leq 300 \mu \mathrm{~S}$, duty $\leq 2 \%$

Electrical Characteristics
($\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
UVLO SECTION						
Vcc Start Threshold Voltage	Vstart	VFB = GND	14	15	16	V
Vcc Stop Threshold Voltage	Vstop	$V_{F B}=$ GND	8	9	10	V
SENSEFET SECTION						
Drain To PKG Breakdown Voltage (Note4)	BVpkg	$60 \mathrm{HZ} \mathrm{AC} \mathrm{Ta}=,25^{\circ} \mathrm{C}$	3500	-	-	V
Drain To Source Breakdown Voltage	BVdss	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	650	-	-	V
Drain To Source Leakage Current	Idss	Vdrain $=400 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$	-	-	200	uA
OSCILLATOR SECTION						
Initial Frequency	Fosc	-	18	20	22	kHz
Voltage Stability	Fstable	$12 \mathrm{~V} \leq \mathrm{Vcc} \leq 23 \mathrm{~V}$	0	1	3	\%
Temperature Stability (Note2)	\triangle FOSC	$-25^{\circ} \mathrm{C} \leq \mathrm{Ta} \leq 85^{\circ} \mathrm{C}$	0	± 5	± 10	\%
Maximum Duty Cycle	Dmax	-	92	95	98	\%
Minimum Duty Cycle	Dmin	-	-	-	0	\%
FEEDBACK SECTION						
Feedback Source Current	IFB	$\mathrm{VFB}=0.8 \mathrm{~V}$	0.5	0.65	0.8	mA
Shutdown Feedback Voltage	VSD	$\mathrm{Vfb} \geq 6.9 \mathrm{~V}$	7.0	7.5	8.0	V
Shutdown Delay Current	IDELAY	$\mathrm{VFB}=5 \mathrm{~V}$	4	5	6	$\mu \mathrm{A}$
PROTECTION SECTION						
Over Voltage Protection	Vovp	Vsync $\geq 11 \mathrm{~V}$	11	12	13	V
Over Current Latch Voltage (Note2)	Vocl	-	0.9	1.0	1.1	V
Thermal Shutdown Temp (Note4)	TSD	-	140		-	${ }^{\circ} \mathrm{C}$

Note:

1. These parameters is the current flowing in the Control IC.
2. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
3. These parameters indicate Inductor Current.
4. These parameters, although guaranteed at the design, are not tested in mass production.

Electrical Characteristics (Continued)
($\mathrm{Ta}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
Sync SECTION						
Sync Threshold in normal QR (H)	VSH1	$\mathrm{Vcc}=16 \mathrm{~V}, \mathrm{Vfb}=5 \mathrm{~V}$	4.2	4.6	5.0	V
Sync Threshold in normal QR (L)	VSL1	$\mathrm{Vcc}=16 \mathrm{~V}, \mathrm{Vfb}=5 \mathrm{~V}$	2.3	2.6	2.9	V
Sync Threshold in extended QR (H)	VsH2	$\mathrm{Vcc}=16 \mathrm{~V}, \mathrm{Vfb}=5 \mathrm{~V}$	2.7	3.0	3.3	V
Sync Threshold in extended QR (L)	VSL2	$\mathrm{Vcc}=16 \mathrm{~V}, \mathrm{Vfb}=5 \mathrm{~V}$	1.6	1.8	2.0	V
Extended QR enable frequency	FSYH		-	90	-	kHz
Extended QR disable frequency	FSYL		-	45	-	kHz
BURST MODE SECTION						
Burst Mode Enable Feedback Voltage	VBEN		0.25	0.40	0.55	V
Burst Mode Feedback Source Current	IBFB		60	100	140	uA
Burst Mode switching Time	TBS	$\mathrm{VFB}=0 \mathrm{~V}$	1.2	1.4	1.6	ms
Burst Mode Hold Time	TBH	$\mathrm{VFB}=0 \mathrm{~V}$	1.2	1.4	1.6	ms
SOFTSTART SECTION						
Soft start Time (Note2)	Tss		18	20	22	ms
CURRENT LIMIT(SELF-PROTECTION)SECTION						
Peak Current Limit (Note3)	ILIM	-	6.16	7.0	7.84	A
Burst Mode Peak Current Limit (Note4)	IBPK	-	0.6	1.0	1.4	A
TOTAL DEVICE SECTION						
Startup Current	ISTART	VCC $=$ VSTART-0.1V	-	25	50	uA
Sustain Latch Current	ISL	$\mathrm{VCC}=\mathrm{V}$ STOP-0.1V	-	50	100	uA
Operating Supply Current (Note1) - In normal operation - In burst mode (without switching)						
	IOP	$\mathrm{Vfb}=2 \mathrm{~V}, \mathrm{VcC}=18 \mathrm{~V}$	-	6	8	mA
	IOB	$\mathrm{Vfb}=\mathrm{GND}, \mathrm{VcC}=18 \mathrm{~V}$	-	0.25	0.50	mA

Note:

1. These parameters is the current flowing in the Control IC.
2. These parameters, although guaranteed, are tested only in EDS (wafer test) process.
3. These parameters indicate Inductor Current.
4. These parameters, although guaranteed at the design, are not tested in mass production.

Comparison Between KA5Q12656RT and FSCQ1265RT

Function	KA5Q12656RT	FSCQ1265RT	FSCQ1265RT Advantages
Startup Current	Max. 200uA	Max. 50uA	Lower standby power consumption
Operating supply Current	Typ. 10mA	Typ. 7mA	Operating current is reduced in burst operation to minimize standby power consumption - Normal operation : 6mA - Burst mode with switching : 6mA - Burst mode without switching : 0.25mA
Peak Curent Limit	$6 A$	7 A	
Switching in Burst mode	Quasi-resonant switching	Fixed frequency switching (20kHz)	
Output regulation in standby mode	Vcc control with hysteresis	Output voltage feedback control	Easy to determine the output voltage in the standby mode
Output Voltage drop in burst mode	about half	Any level	Lower power consumption in the standby mode through larger output voltage drop
Primary side regulation	Available	N/A	
Soft start	N/A	Available	Internal soft-start (20ms)
Extended Quasi-resonant switching	N/A	Available	- Guarantees wide load range - Improved efficiency at high line input

Electrical characteristics

Stop Threshold Voltage

Burst-mode Supply Current(Non-Switching)

Initial Frequency

Electrical characteristics

Electrical characteristics

Sync. Threshold in Normal QR(L)

Functional Description

1. Startup : Figure 4 shows the typical startup circuit and transformer auxiliary winding for FSCQ1265RT application. Before FSCQ1265RT begins switching, FSCQ1265RT consumes only startup current (typically 25uA) and the current supplied from the AC line charges the external capacitor $\left(\mathrm{C}_{\mathrm{a}} 1\right)$ that is connected to the Vcc pin. When Vcc reaches start voltage of 15 V ($\mathrm{V}_{\text {START }}$), FSCQ1265RT begins switching, and the current consumed by FSCQ1265RT increases to 4 mA . Then, FSCQ1265RT continues its normal switching operation and the power required for this device is supplied from the transformer auxiliary winding, unless Vcc drops below the stop voltage of 9 V ($\mathrm{V}_{\text {Stор }}$). To guarantee the stable operation of the control IC, Vcc has under voltage lockout (UVLO) with 6 V hysteresis. Figure 5 shows the relation between the FSCQ1265RT operating supply current and the supply voltage (Vcc).

Figure 4. Startup circuit

Figure 5. Relation between operating supply current and Vcc voltage

The minimum average of the current supplied from the AC is given by

$$
I_{\text {sup }}{ }^{\text {avg }}=\left(\frac{\sqrt{2} \cdot V_{a c}{ }^{m i n}}{\pi}-\frac{V_{\text {start }}}{2}\right) \cdot \frac{1}{R_{s t r}}
$$

where $V_{a c}{ }^{m i n}$ is the minimum input voltage, $\mathrm{V}_{\text {start }}$ is the FSCQ1265RT start voltage (15 V) and $\mathrm{R}_{\text {str }}$ is the startup resistor. The startup resistor should be chosen so that Isup ${ }^{\text {avg }}$ is larger than the maximum startup current $(50 \mathrm{uA})$.
Once the resistor value is determined, the maximum loss in the startup resistor is obtained as

Loss $=\frac{1}{R_{s t r}} \cdot\left(\frac{\left(V_{a c}{ }^{\text {max }}\right)^{2}+V_{\text {start }}{ }^{2}}{2}-\frac{2 \sqrt{2} \cdot V_{s t a r t} \cdot V_{a c}{ }^{\text {max }}}{\pi}\right)$
where $V_{a c}{ }^{\text {max }}$ is the maximum input voltage. The startup resistor should have proper rated dissipation wattage.
2. Synchronization : FSCQ1265RT employs quasi-resonant switching technique to minimize the switching noise and loss. In this technique, a capacitor (Cr) is added between the MOSFET drain and source as shown in Figure 6. The basic waveforms of quasi-resonant converter are shown in Figure 7. The external capacitor lowers the rising slop of drain voltage to reduce the EMI caused when the MOSFET turns off. In order to minimize the MOSFET switching loss, the MOSFET should be turned on when the drain voltage reaches its minimum value as shown in Figure 7.

Figure 6. Synchronization circuit

Figure 7. Quasi-resonant operation waveforms

The minimum drain voltage is indirectly detected by monitoring the Vcc winding voltage as shown in Figure 6 and 8. The voltage divider $\mathrm{R}_{\mathrm{SY} 1}$ and $\mathrm{R}_{\mathrm{SY} 2}$ should be chosen so that the peak voltage of sync signal $\left(\mathrm{V}_{\text {sypk }}\right)$ is lower than the OVP voltage (12 V) in order to avoid triggering OVP in normal operation. It is typical to set $\mathrm{V}_{\text {sypk }}$ to be lower than OVP voltage by 3-4 V . In order to detect the optimum time to turn on MOSFET, the sync capacitor (CSY) should be determined so that T_{R} is the same with T_{Q} as shown in Figure 8. The T_{R} and T_{Q} are given as, respectively

$$
\begin{aligned}
& T_{R}=R_{S Y 2} \cdot C_{S Y} \cdot \ln \left(\frac{V_{c o}}{2.6} \cdot \frac{R_{S Y 2}}{R_{S Y 1}+R_{S Y 2}}\right) \\
& T_{Q}=\pi \cdot \sqrt{L_{m} \cdot C_{e o}} \\
& V_{c o}=\frac{N_{a} \cdot\left(V_{o}+V_{F O}\right)}{N_{s}}-V_{F a}
\end{aligned}
$$

where L_{m} is the primary side inductance of the transformer, N_{S} and N_{a} are the number of turns for the output winding and Vcc winding, respectively, V_{Fo} and $\mathrm{VFa}_{\mathrm{Fa}}$ are the diode forward voltage drops of the output winding and Vcc winding, respectively, and C_{e} is the sum of the output capacitance of MOSFET and external capacitor Cr .

Figure 8. Normal quasi-resonant operation waveforms

Figure 9. Extended quasi-resonant operation

In general, quasi-resonant converter has a limitation in a wide load range application, since the switching frequency increases as the output load decreases, resulting in a severe switching loss in the light load condition. In order to get over this limitation, FSCQ1265RT employs extended quasiresonant switching operation. Figure 9 shows the mode change between normal quasi-resonant operation and extended quasi-resonant operation. In the normal quasiresonant operation, the FSCQ1265RT enters into the extended quasi-resonant operation when the switching frequency exceeds 90 kHz as the load reduces. Then, the MOSFET is turned on, when the drain voltage reaches the
second minimum level as shown in Figure 10, which reduces the switching frequency. Once FSCQ1265RT enters into extended quasi-resonant operation, the first sync signal is ignored. After the first sync signal is applied, the sync threshold levels are changed from 4.6 V and 2.6 V to 3 V and 1.8 V , respectively, and the MOSFET turn-on time is synchronized to the second sync signal. The FSCQ1265RT goes back to its normal quasi-resonant operation when the switching frequency reaches 45 kHz as the load increases.

Figure 10. Extended quasi-resonant operation waveforms
3. Feedback Control : FSCQ1265RT employs current mode control, as shown in Figure 11. An opto-coupler (such as the H11A817A) and shunt regulator (such as the KA431) are typically used to implement the feedback network. Comparing the feedback voltage with the voltage across the Rsense resistor plus an offset voltage makes it possible to control the switching duty cycle. When the reference pin voltage of the KA431 exceeds the internal reference voltage of 2.5 V , the H11A817A LED current increases, thus pulling down the feedback voltage and reducing the duty cycle. This event typically happens when the input voltage is increased or the output load is decreased.
3.1 Pulse-by-pulse current limit: Because current mode control is employed, the peak current through the Sense FET is limited by the inverting input of PWM comparator (Vfb *) as shown in Figure 11. The feedback current (IFB) and internal resistors are designed so that the maximum cathode voltage of diode D_{2} is about 2.8 V , which occurs when all IFB flows through the internal resistors. Since D_{1} is blocked when the feedback voltage (Vfb) exceeds 2.8 V , the maximum voltage of the cathode of D2 is clamped at this voltage, thus clamping Vfb*. Therefore, the peak value of the current through the Sense FET is limited.
3.2 Leading edge blanking (LEB) : At the instant the internal Sense FET is turned on, there usually exists a high current spike through the Sense FET, caused by external resonant capacitor across the MOSFET and secondary-side rectifier reverse recovery. Excessive voltage across the $\mathrm{R}_{\text {sense }}$ resistor would lead to incorrect feedback operation in the current mode PWM control. To counter this effect, the FSCQ1265RT employs a leading edge blanking (LEB) circuit. This circuit inhibits the PWM comparator for a short time (TLEB) after the Sense FET is turned on.

Figure 11. Pulse width modulation (PWM) circuit
4. Protection Circuit : The FSCQ1265RT has several self protective functions such as over load protection (OLP), abnormal over current protection (AOCP), over voltage protection (OVP) and thermal shutdown (TSD). OLP and OVP are auto-restart mode protection, while TSD and AOCP are latch mode protection. Because these protection circuits are fully integrated into the IC without external components, the reliability can be improved without increasing cost.
-Auto-restart mode protection: Once the fault condition is detected, switching is terminated and the Sense FET remains off. This causes Vcc to fall. When Vcc falls down to the under voltage lockout (UVLO) stop voltage of 9 V , the protection is reset and FSCQ1265RT consumes only startup current (25 uA). Then, Vcc capacitor is charged up, since the current supplied through the startup resistor is larger than the current that FPS consumes. When Vcc reaches the start voltage of 15V, FSCQ1265RT resumes its normal operation. If the fault condition is not removed, the SenseFET remains off and Vcc drops to stop voltage again. In this manner, the auto-restart can alternately enable and disable the switching of the power Sense FET until the fault condition is eliminated (see Figure 12).
-Latch mode protection: Once protection triggers, switching is terminated and the Sense FET remains off until the AC power line is un-plugged. Then, Vcc continues charging and discharging between 9 V and 15 V . The latch is reset only when Vcc is discharged to 6 V by un-plugging the Ac power line.

Figure 12. Auto restart mode protection
4.1 Over Load Protection (OLP) : Overload is defined as the load current exceeding its normal level due to an unexpected abnormal event. In this situation, the protection circuit should trigger in order to protect the SMPS. However, even when the SMPS is in the normal operation, the over load protection circuit can be triggered during the load transition. In order to avoid this undesired operation, the over load protection circuit is designed to trigger after a specified time to determine whether it is a transient situation or an overload situation. Because of the pulse-by-pulse current limit capability, the maximum peak current through the Sense FET is limited, and therefore the maximum input power is restricted with a given input voltage. If the output consumes more than this maximum power, the output voltage (Vo) decreases below the set voltage. This reduces the current through the opto-coupler LED, which also reduces the opto-coupler transistor current, thus increasing the feedback voltage (Vfb). If Vfb exceeds 2.8 V , D 1 is blocked and the 5 uA current source starts to charge CB slowly up to Vcc. In this condition, Vfb continues increasing until it reaches 7.5 V , when the switching operation is terminated as shown in Figure 13. The delay time for shutdown is the time required to charge CB_{B} from 2.8 V to 7.5 V with 5 uA . In general, a $20 \sim 50 \mathrm{~ms}$ delay time is typical for most applications. This protection is implemented in auto restart mode.

Figure 13. Over load protection
4.2 Abnormal Over Current Protection (AOCP) : When the secondary rectifier diodes or the transformer pins are shorted, a steep current with extremely high di/dt can flow through the SenseFET during the LEB time. Even though the FSCQ1265RT has OLP (Over Load Protection), it is not enough to protect the FSCQ1265RT in that abnormal case, since sever current stress will be imposed on the SenseFET until OLP triggers. The FSCQ1265RT has an internal AOCP (Abnormal Over Current Protection) circuit as shown in Figure 14. When the gate turn-on signal is applied to the power Sense FET, the AOCP block is enabled and monitors the current through the sensing resistor. The voltage across the resistor is then compared with a preset AOCP level. If the sensing resistor voltage is greater than the AOCP level, the set signal is applied to the latch, resulting in the shutdown of SMPS. This protection is implemented in latch mode.

Figure 14. AOCP block
4.3 Over voltage Protection (OVP) : If the secondary side feedback circuit were to malfunction or a solder defect caused an open in the feedback path, the current through the opto-coupler transistor becomes almost zero. Then, Vfb climbs up in a similar manner to the over load situation,
forcing the preset maximum current to be supplied to the SMPS until the over load protection triggers. Because more energy than required is provided to the output, the output voltage may exceed the rated voltage before the over load protection triggers, resulting in the breakdown of the devices in the secondary side. In order to prevent this situation, an over voltage protection (OVP) circuit is employed. In general, the peak voltage of the sync signal is proportional to the output voltage and the FSCQ1265RT uses sync signal instead of directly monitoring the output voltage. If sync signal exceeds 12 V , an OVP is triggered resulting in a shutdown of SMPS. In order to avoid undesired triggering of OVP during normal operation, the peak voltage of sync signal should be designed to be below 12V. This protection is implemented in auto restart mode.
4.4 Thermal Shutdown (TSD) : The SenseFET and the control IC are built in one package. This makes it easy for the control IC to detect the abnormal over temperature of the SenseFET. When the temperature exceeds approximately $150^{\circ} \mathrm{C}$, the thermal shutdown triggers. This protection is implemented in latch mode.
5. Soft Start : The FSCQ1265RT has an internal soft start circuit that increases PWM comparator inverting input voltage together with the SenseFET current slowly after it starts up. The typical soft start time is 20 msec . The pulse width to the power switching device is progressively increased to establish the correct working conditions for transformers, inductors, and capacitors. It also helps to prevent transformer saturation and reduce the stress on the secondary diode during startup. For a fast build up of the output voltage, an offset is introduced in the soft-start reference current.
6. Burst operation : In order to minimize the power consumption in the standby mode, FSCQ1265RT employs burst operation. Once FSCQ1265RT enters into burt mode, FSCQ1265RT allows all output voltages and effective switching frequency to be reduced. Figure 15 shows the typical feedback circuit for C-TV applications. In normal operation, the picture on signal is applied and the transistor Q_{1} is turned on, which de-couples $\mathrm{R}_{3}, \mathrm{D}_{\mathrm{Z}}$ and D 1 from the feedback network. Therefore, only $\mathrm{V}_{\mathrm{o} 1}$ is regulated by the feedback circuit in normal operation and determined by R_{1} and R_{2} as

$$
\mathrm{V}_{01}{ }^{\text {norm }}=2.5 \cdot\left(\frac{R_{1}+R_{2}}{R_{2}}\right)
$$

In standby mode, the picture on signal is disabled and the transistor Q_{1} is turned off, which couples $\mathrm{R}_{3}, \mathrm{Dz}$ and D_{1} to the reference pin of KA431. Then, Vo2 is determined by the zener diode breakdown voltage. Assuming that the forward voltage drop of D_{1} is $0.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{O} 2}$ in standby mode is approximately given by

$$
V_{o 2}{ }^{\text {stby }}=\mathrm{V}_{\mathrm{Z}}+0.7+2.5
$$

Figure 15. Typical feedback circuit to drop output voltage in standby mode

Figure 16 shows the burst mode operation waveforms. When the picture ON signal is disabled, Q_{1} is turned off and R_{3} and Dz are connected to the reference pin of KA431 through D_{1}. Before V_{02} drops to $V_{02}{ }^{\text {stby }}$, the voltage on the reference pin of KA431 is higher than 2.5 V , which increases the current through the opto LED. This pulls down the feedback voltage (V_{FB}) of FSCQ1265RT and forces FSCQ1265RT to stop switching. If the switching is disabled longer than 1.4 ms , FSCQ1265RT enters into burst operation and the operating current is reduced from 4 mA (Iop) to 0.35 mA (Iob). Since there is no switching, V_{02} decrease until it reaches $V_{02}{ }^{\text {stby }}$. As V_{02} reaches $V_{02}{ }^{\text {stby }}$, the current through the opto LED decreases allowing the feedback voltage to rise. When the feedback voltage reaches 0.4 V , FSCQ1265RT resumes switching with a predetermined peak drain current of 0.9 A . After burst switching for 1.4 ms , FSCQ1265RT stops switching and checks the feedback voltage. If the feedback voltage is below 0.4 V , FSCQ1265RT stops switching until the feedback voltage increases to 0.4 V . If the feedback voltage is above 0.4 V , FSCQ1265RT goes back to the normal operation.

Figure 16. Waveforms of burst operation

Typical application circuit

Application	Output power	Input voltage	Output voltage (Max current)
C-TV	132 W	$(0.5 \mathrm{~A})$	
			8.5 V
		$(85-265 \mathrm{Vac})$	$15 \mathrm{~V}(0.5 \mathrm{~A})$
			$140 \mathrm{~V}(0.6 \mathrm{~A})$
		$24 \mathrm{~V}(1.5 \mathrm{~A})$	

Features

- High efficiency (>80\% at 85 Vac input)
- Wider load range through the extended quasi-resonant operation
- Low standby mode power consumption (<1W)
- Low component count
- Enhanced system reliability through various protection functions
- Internal soft-start (20 ms)

Key Design Notes

- 24 V output is designed to drop to around 7 V in standby mode

1. Schematic

2. Transformer Schematic Diagram

3.Winding Specification

No	Pin (s $\rightarrow \mathbf{f})$	Wire	Turns	Winding Method
N_{24}	$18-17$	$0.65^{\phi} \times 2$	8	Space Winding
$\mathrm{N}_{\mathrm{p}} 1$	$1-3$	$0.1^{\phi} \times 10 \times 2$	20	Center Winding
$\mathrm{N}_{140 \mathrm{~V} / 2}$	$16-15$	$0.1^{\phi} \times 10 \times 2$	23	Center Winding
Np_{2}	$3-4$	$0.1^{\phi} \times 10 \times 2$	20	Center Winding
$\mathrm{N}_{140 \mathrm{~V} / 2}$	$15-14$	$0.1^{\phi} \times 10 \times 2$	22	Center Winding
$\mathrm{N}_{8.5 \mathrm{~V}}$	$12-13$	$0.6^{\phi} \times 1$	3	Space Winding
$\mathrm{N}_{15 \mathrm{~V}}$	$11-10$	$0.6^{\phi} \times 1$	6	Space Winding
N_{a}	$7-6$	$0.3^{\phi} \times 1$	13	Space Winding

4.Electrical Characteristics

	Pin	Specification	Remarks
Inductance	$1-4$	$315 \mathrm{uH} \pm 5 \%$	$1 \mathrm{kHz}, 1 \mathrm{~V}$
Leakage Inductance	$1-4$	10 uH Max	$2^{\text {nd }}$ all short

5. Core \& Bobbin

Core : EER 4042
Bobbin : EER4042(18Pin)
Ae : $153 \mathrm{~mm}^{2}$

6.Demo Circuit Part List

Part	Value	Note	Part	Value	Note
Fuse			C210	470pF / 1kV	Ceramic Capacitor
FUSE	250V / 5A		C301	$3.3 \mathrm{nF} / 1 \mathrm{kV}$	AC Ceramic Capacitor
NTC			Inductor		
RT101	5D-11		BEAD101	BEAD	
Resistor			BEAD201	5 uH	3A
R101	$100 \mathrm{k} \Omega$	0.25 W	Diode		
R102	$150 \mathrm{k} \Omega$	0.25 W	D101	1N4937	1A, 600V
R103	5.1Ω	0.25 W	D102	1N4937	1A, 600V
R104	$1.5 \mathrm{k} \Omega$	0.25 W	D103	1N4148	0.15A, 50V
R105	470Ω	0.25 W	D104	Short	
R106	$1 \mathrm{k} \Omega$	1 W	D105	Open	
R107	Open		ZD101	1N4746	18V, 1W
R201	$1 \mathrm{k} \Omega$	0.25 W	ZD102	Open	
R202	$1 \mathrm{k} \Omega$	0.25 W	ZD201	1N5231	5.1V, 0.5W
R203	$39 \mathrm{k} \Omega$	0.25 W	D201	1N4148	0.15A, 50V
R204	$4.7 \mathrm{k} \Omega$	0.25 W, 1\%	D202	EGP30J	3A, 600V
R205	$240 \mathrm{k} \Omega$	0.25 W, 1\%	D203	EGP30D	3A, 200V
R206	$10 \mathrm{k} \Omega$	0.25 W	D204	EGP20D	2A, 200V
R207	$5.1 \mathrm{k} \Omega$	0.25 W	D205	EGP20D	2A, 200V
R208	$1 \mathrm{k} \Omega$	0.25 W			
VR201	$30 \mathrm{k} \Omega$		Bridge Diode		
Capacitor			BD101	GSIB660	6A, 600V
C101	330n/275Vac	Box Capacitor	Line Filter		
C102	330uF / 400V	Electrolytic	LF101		14mH
C103	10uF / 50V	Electrolytic	Transformer		
C104	10uF / 50V	Electrolytic	T101	EER4042	
C105	$2.7 \mathrm{nF} / 50 \mathrm{~V}$	Film Capacitor	Switch		
C106	$47 \mathrm{nF} / 50 \mathrm{~V}$	Film Capacitor	SW201	ON/OFF	For MCU Signal
C107	1nF / 1kV	Film Capacitor	IC		
C108	Open		IC101	FSCQ1265RT	TO220F-5L
C201	150uF / 160V	Electrolytic	OPT101	817A	
C202	47uF / 160V	Electrolytic	Q201	KA431LZ	TO-92
C203	1000uF / 35V	Electrolytic	Q202	KSC945	
C204	1000uF / 35V	Electrolytic			
C205	1000uF / 35V	Electrolytic			
C206	150nF / 50V	Film Capacitor			
C207	470pF / 1kV	Ceramic Capacitor			
C208	470pF / 1kV	Ceramic Capacitor			
C209	470pF / 1kV	Ceramic Capacitor			

7. Layout

Figure 17. Layout Considerations for FSCQ1265RT

Figure 18. Layout Considerations for FSCQ1265RT

Package Dimensions

TO-220F-5L(Forming)

Ordering Information

Product Number	Package	Marking Code	BVdss	Rds(ON) Max.
FSCQ1265RTYDTU	TO-220F-5L (Forming)	CQ1265RT	650 V	0.9Ω

[^0]
DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: YDTU : Forming Type

