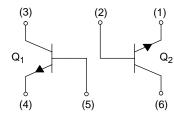
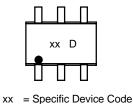
General Purpose Transistor


NPN Silicon

Moisture Sensitivity Level: 1 ESD Rating: Human Body Model – 4 kV Machine Model – 400 V

ON

ON Semiconductor®


http://onsemi.com

(5) (1

1 2 3 SOT-363/SC-88 CASE 419B STYLE 1

MARKING DIAGRAM

D = Date Code

ORDERING INFORMATION

Device	Package	Shipping		
MBT2222ADW1T1	SOT-363	3000/Tape & Reel		

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	40	Vdc
Collector–Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage	V_{EBO}	6.0	Vdc
Collector Current – Continuous	Ι _C	600	mAdc

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Package Dissipation (Note 1) $T_A = 25^{\circ}C$	P _D	150	mW
Thermal Resistance, Junction to Ambient	$R_{\theta JA}$	833	°C/W
Junction and Storage Temperature	T _J , T _{stg}	-55 to +150	°C

1. Device mounted on FR4 glass epoxy printed circuit board using the minimum recommended footprint.

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Collector-Emitter Saturation Voltage (Note 2)

Base-Emitter Saturation Voltage (Note 2)

2. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

 $(I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}) \\ (I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$

 $(I_{C} = 150 \text{ mAdc}, I_{B} = 15 \text{ mAdc})$

 $(I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc})$

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector–Emitter Breakdown Voltage $(I_C = 10 \text{ mAdc}, I_B = 0)$	V _{(BR)CEO}	40	-	Vdc
Collector–Base Breakdown Voltage $(I_C = 10 \ \mu Adc, I_E = 0)$	V _{(BR)CBO}	75	-	Vdc
Emitter–Base Breakdown Voltage $(I_E = 10 \ \mu Adc, I_C = 0)$	V _{(BR)EBO}	6.0	-	Vdc
Collector Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	ICEX	_	10	nAdc
$ Collector Cutoff Current \\ (V_{CB} = 60 \ Vdc, \ I_E = 0) \\ (V_{CB} = 60 \ Vdc, \ I_E = 0, \ T_A = 125^\circ C) $	I _{CBO}	- -	0.01 10	μAdc
Emitter Cutoff Current ($V_{EB} = 3.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	100	nAdc
Base Cutoff Current (V _{CE} = 60 Vdc, V _{EB(off)} = 3.0 Vdc)	I _{BL}	-	20	nAdc
ON CHARACTERISTICS				
DC Current Gain ($I_C = 0.1 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) ($I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}, T_A = -55^{\circ}\text{C}$) ($I_C = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) (Note 2) ($I_C = 150 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc}$) (Note 2) ($I_C = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc}$) (Note 2)	h _{FE}	35 50 75 35 100 50 40	- - - 300 -	_

0.3

1.0

1.2

2.0

Vdc

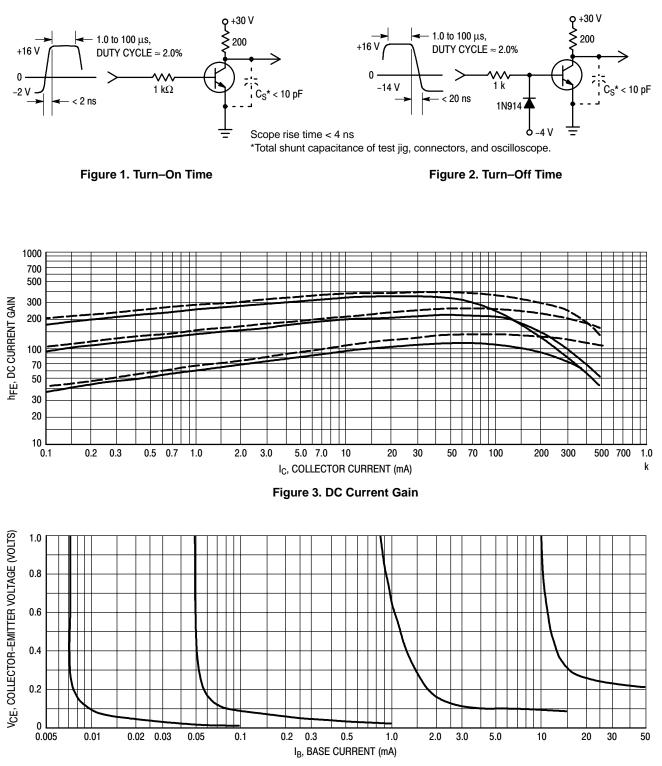
Vdc

_ _

0.6

_

 $V_{\text{CE(sat)}}$


V_{BE(sat)}

SMALL-SIGNAL CHARACTERISTICS

Current–Gain – Bandwidth Product (Note 3) (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)			300	-	MHz
Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)		C _{obo}	-	8.0	pF
Input Capacitance ($V_{EB} = 0.5 \text{ Vdc}$, $I_C = 0$, f = 1.0 MHz)		C _{ibo}	-	25	pF
Input Impedance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, $f = 1.0 \text{ kHz}$)		h _{re}		8.0 4.0	X 10 ⁻⁴
$ Small–Signal Current Gain \\ (I_C = 1.0 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) \\ (I_C = 10 mAdc, V_{CE} = 10 Vdc, f = 1.0 kHz) $		h _{fe}	50 75	300 375	-
Output Admittance ($I_C = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, f = 1.0 kHz) ($I_C = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$, f = 1.0 kHz)		h _{oe}	5.0 25	35 200	μmhos
Collector Base Time Constant ($I_E = 20 \text{ mAdc}$, $V_{CB} = 20 \text{ Vdc}$, f = 31.8 MHz)		rb, C _c	_	150	ps
Noise Figure (I _C = 100 μ Adc, V _{CE} = 10 Vdc, R _S = 1.0 kΩ, f = 1.0 kHz)		NF	_	4.0	dB
SWITCHING CHARACTERISTI	cs				
Delay Time	(V _{CC} = 30 Vdc, V _{BE(off)} = -0.5 Vdc,	t _d	-	10	
Rise Time	$I_{\rm C} = 150 \text{ mAdc}, I_{\rm B1} = 15 \text{ mAdc})$	t _r	-	25	ns
Storage Time	(V _{CC} = 30 Vdc, I _C = 150 mAdc,	t _s	-	225	
Fall Time	$I_{B1} = I_{B2} = 15 \text{ mAdc}$	t _f	-	60	ns

3. f_{T} is defined as the frequency at which $|h_{fe}|$ extrapolates to unity.

SWITCHING TIME EQUIVALENT TEST CIRCUITS

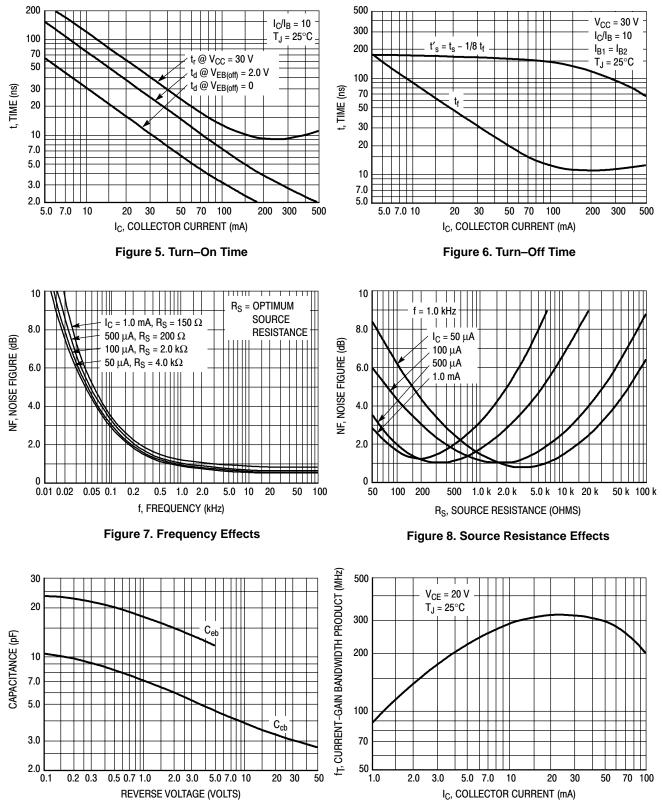


Figure 9. Capacitances

Figure 10. Current–Gain Bandwidth Product

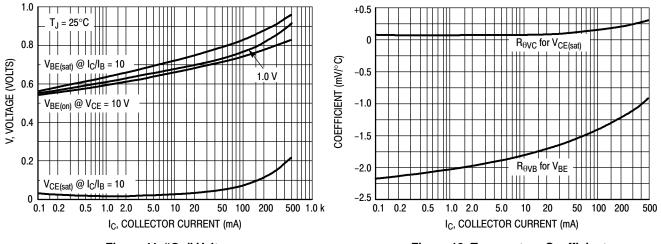
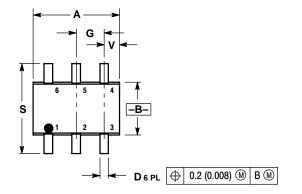
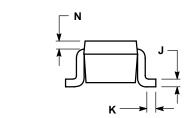



Figure 11. "On" Voltages

Figure 12. Temperature Coefficients


PACKAGE DIMENSIONS

SOT-363/SC-88 CASE 419B-01 ISSUE G

С

н

 DIMEN Y14.5N	isioning 1, 1982. Rolling			NG PER A I.	٩N
	INC	HES	MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
C	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н		0.004		0.10	
J	0.004	0.010	0.10	0.25	
K	0.004	0.012	0.10	0.30	
Ν	0.008 REF		0.20	REF	
S	0.079	0.087	2.00	2.20	
V	0.012	0.016	0.30	0.40	

STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2

ON Semiconductor and **W** are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax:** 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.