QUICKSWITCH ${ }^{\circledR}$ PRODUCTS
IDTQS4A101

FEATURES:

- Low ON resistance: $\operatorname{rds}(0 \mathrm{~N})=5 \Omega$
- Wide bandwidth: 1.4 GHz (-3dB point)
- Crosstalk: 122dB at $50 \mathrm{KHz},-80 \mathrm{~dB}$ at $5 \mathrm{MHz},-65 \mathrm{~dB}$ at 30 MHz
- Off-isolation: -100 dB at $50 \mathrm{KHz},-75 \mathrm{~dB}$ at $5 \mathrm{MHz},-45 \mathrm{~dB}$ at 30MHz
- Single 5V supply
- Bidirectional signal flow
- TTL-compatible control inputs
- Ultra-low quiescent current: $3 \mu \mathrm{~A}$
- Switch turn on time of $6.5 n \mathrm{~s}$
- Available in QSOP package

APPLICATIONS:

- High-speed video signal switching/routing
- Audio signal switching/routing
- Data acquisition
- ATE systems
- Telecomm routing
- Token Ring transceivers
- High-speed networking

DESCRIPTION:

The QS4A101 is a high-performance CMOS analog four-channel SPST switch with individual enables. This device provides a set of four high-speed CMOS switches connecting inputs to outputs. The low ON resistance of the QS4A101 allows inputs to be connected to outputs with low insertion loss and high bandwidth.

The QS4A101, with 1.4 GHz bandwidth, is ideal for high-performance video signal switching, audio signal switching, and telecomm routing applications. Low power dissipation makes this device ideal for battery operated and remote instrumentation applications.

The QS4A101 is offered in the QSOP package which has several advantages over conventional packages such as PDIP and SOIC, including:

- Reduced signal delays due to denser component packaging on circuit boards
- Reduced system noise due to less pin inductance

The QS4A101 is characterized for operation at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

FUNCTIONAL BLOCK DIAGRAM

PIN CONFIGURATION

QSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Supply Voltage to Ground	-0.5 to +7	V
VTERM $^{(3)}$	DC Switch Voltage Vs	-0.5 to +7	V
-	Analog Input Voltage	-0.5 to +7	V
VTERM $^{(3)}$	DC Input Voltage VIn	-0.5 to +7	V
VAC	AC Input Voltage (pulse width $\leq 20 \mathrm{~ns})$	-3	V
Iout	DC Output Current	120	mA
PmaX	Maximum Power Dissipation	0.7	W
TSTG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. Vcc terminals.
3. All terminals except Vcc

PIN DESCRIPTION

Pin Names	$\mathrm{I} / 0$	Description
$\mathrm{A}_{1}-\mathrm{A}_{4}$	$\mathrm{I} / 0$	Port A
$\mathrm{B}_{1}-\mathrm{B}_{4}$	$\mathrm{I} / 0$	Port B
$\overline{\mathrm{E}}_{1}-\bar{E}_{4}$	I	Port Switch Enable

FUNCTION TABLE(1)

$\overline{\mathbf{E}}$	A	B	Function
L	H	H	Connect
L	L	L	Connect
H	X	X	Disconnect

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions	Max.	Unit
ICC	Supply Current	VCC = Max., VIN = GND or VcC	3	$\mu \mathrm{~A}$

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5 \mathrm{~V} \pm 5 \%$

Symbol	Parameter	Test Conditions	Min.	Typ. ${ }^{(1)}$	Max.	Unit
Analog Switch						
VIN	Analog Signal Range ${ }^{(2)}$		-0.5	1	Vcc-1	V
ros(on)	Drain-source ON resistance ${ }^{(2,3)}$	$\mathrm{Vcc}=$ Min., $\mathrm{VIN}=0 \mathrm{~V}$, $\mathrm{ION}=30 \mathrm{~mA}$	-	5	7	Ω
		$\mathrm{Vcc}=\mathrm{Min}$., VIN $=2.4 \mathrm{~V}$, Ion $=15 \mathrm{~mA}$	-	13	17	
IC(OFF)	Channel OffLeakage Current	$\mathrm{A}=\mathrm{Vcc}$ or $0 \mathrm{~V}, \mathrm{~B}=0 \mathrm{~V}$ or Vcc, $\overline{\mathrm{E}}=\mathrm{Vcc}$	-	1	-	nA
IC(ON)	Channel On Leakage Current	$A=B=0 V$ (each channel is turned on sequentially)	-	1	-	nA
Digital Control						
VIH	Input HIGH Voltage	Guaranteed Logic HIGH for Control Pins	2	-	-	V
VIL	InputLOW Voltage	Guaranteed Logic LOW for Control Pins	-	-	0.8	V
Dynamic Characteristics						
ton(E)	Enable Turn-On Time \bar{E} to A, B	$\begin{aligned} & \hline \mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF} \\ & \text { (See Switching Time) } \\ & \hline \end{aligned}$	0.5	-	6.5	ns
toff(E)	Enable Turn-OffTime \bar{E} to A, B	$\mathrm{RL}=1 \mathrm{~K} \Omega, C \mathrm{~L}=100 \mathrm{pF}$ (See Switching Time)	0.5	-	6	ns
tPD	Group Delay ${ }^{(2,4 a)}$	$\mathrm{RL}=1 \mathrm{~K} \Omega, \mathrm{CL}=100 \mathrm{pF}$	-	-	250	ps
f3ab	-3dB Bandwidth	VIN $=0$ to 1V, 1Vp-p, RL = 75Ω	-	1.4	-	GHz
	Off-isolation	$\mathrm{VIN}=0$ to $1 \mathrm{~V}, 1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=5.5 \mathrm{MHz}$	-	-80	-	dB
Xtalk	Crosstalk	$\mathrm{VIN}=0$ to $1 \mathrm{~V}, 1 \mathrm{Vp}-\mathrm{p}, \mathrm{RL}=75 \Omega, \mathrm{f}=30 \mathrm{MHz}$	-	-75	-	dB
C(OFF)	Switch Off Capacitance	$\overline{\mathrm{E}}=\mathrm{Vcc}, \mathrm{Vin}=$ Vout $=0 \mathrm{~V}$	-	5	-	pF
C (ON)	Switch On Capacitance	$\overline{\mathrm{E}}=0 \mathrm{~V}, \mathrm{VIN}=$ Vout $=0 \mathrm{~V}$	-	10	-	pF
QCI	Charge Injection		-	1.5	-	pC

NOTES:

1. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V}, \mathrm{TA}=25^{\circ} \mathrm{C}$.
2. Max value is guaranteed but not production tested.
3. Measured by voltage drop between A and C pins at indicated current through the switch ON resistance is determined by the lower of the voltages on the two (A, B) pins.
4. The bus switch contributes no group delay other than the RC delay of the ON resistance of the switch and load capacitance. Group delay of the bus switch, when used in a system, is determined by the driving circuit on the driving side of the switch and its interaction with the load on the driven side.

TYPICALCHARACTERISTICS

Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation = $20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Off-isolation and Crosstalk vs. Frequency

NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation = $20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Off-isolation and Crosstalk vs. Frequency
NOTES:

1. Crosstalk $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$
2. Off-isolation = $20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Insertion Loss vs. Frequency

NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

TYPICALCHARACTERISTICS (CONTINUED)

Insertion Loss vs. Frequency

NOTE:

1. Insertion Loss $=20 \log |\mathrm{Vo} / \mathrm{Vs}|$

Ron LINK
On-Resistance vs. VIN

TEST CIRCUITS

TEST CIRCUITS (CONTINUED)

Insertion Loss

NOTES:

1. Insertion Loss $=20 \log |V o / V s|$
2. All unused pins are grounded.

Crosstalk
NOTES:

1. Crosstalk $=20 \log |V o / V s|$
2. All unused pins are grounded.

NOTE:

1. Off-isolation $=20 \log |V o / V s|$

ORDERING INFORMATION

