J308 SERIES N-Channel JFETs

The J308 Series is a popular, low-cost device which offers superb amplification characteristics. It features high-gain, low noise (typically $< 6\,\text{nV}\sqrt{\text{Hz}}$) and low gate leakage (typically $< 2\,\text{pA}$). Of special interest, however, is performance at high frequency. Even at 450 MHz the J308 Series offers high power gain and low noise. Like all TO-92 packages offered by Siliconix, tape and reel options are available to support automated assembly. (See Section 7.)

PART NUMBER	V _{GS(OFF)} MAX (V)	V _(BR) GSS MIN (V)	gfs MIN (mS)	I _{DSS} MAX (mA)
J308	-6.5	-25	8	60
J309	-4.0	-25	8	30
J310	-6.5	-25	8	60

For additional design information and a closer look at high-frequency characteristics, please consult performance curves NZB.

TO-92 (TO-226AA)

BOTTOM VIEW

1 DRAIN 2 SOURCE

SIMILAR PRODUCTS

- TO-52, See U309 Series
- SOT-23, See SST308 Series
- Dual, See U430 Series
- Chips, See NZB Series Die

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C Unless Otherwise Noted)

PARAMETERS/TEST CONDITIONS	SYMBOL	LIMITS	UNITS	
Gate-Drain Voltage	V _{GD}	-25		
Gate-Source Voltage	V _{GS}	-25		
Gate Current	l _G	10	mA	
Power Dissipation	P _D	360	mW	
Power Derating		3.27	mW/°C	
Operating Junction Temperature Range	TJ	-55 to 135		
Storage Temperature Range	T _{stg}	-55 to 150	°c	
Lead Temperature (1/18" from case for 10 sec.)	TL	300		

J308 SERIES

SPECIFICATIONS ^a			LIMITS								
SPECIFICATIONS"											
PARAMETER	SYMBOL	TEST CONDIT	rions -	TYPb	J308 MIN MAX		J309 MIN MAX		J310 MIN MAX		UNIT
STATIC											
Gate-Source Breakdown Voltage	V _{(BR)GSS}	l _G = -1 μA , V _D	s = 0 V	-35	-25		-25		-25		v
Gate-Source Cutoff Voltage	V _{GS(OFF)}	V _{DS} = 10 V, I _D	= 1 nA		-1	-6.5	-1	-4	-2	-6.5	
Saturation Drain Current ^c	I _{DSS}	V _{DS} = 10 V, V _{GS}	s = 0 V		12	60	12	30	24	60	mA
Gate Reverse Current	I _{GSS}	V _{GS} = -15 V, V _D		-0.002		-1		-1		-1	nA
		T _A	= 125°C	-0.008		-1		-1		-1	μΑ
Gate Operating Current	l _G	V _{DG} = 9 V, I _D =	10 mA	-15							pΑ
Drain Cutoff Current	r _{DS(ON)}	V _{GS} = 0 V, I _D =	= 1 mA	35							Ω
Gate-Source Forward Voltage	V _{GS(F)}	$I_G = 1 \text{ mA}$, V_{DS}	; = 0 V	0.7		1		1		1	٧
DYNAMIC											
Common-Source Forward Transconductance	9 _{fs}	V _{DS} = 10 V, I _D = 10 mA		14	8		10		8		mS
Common-Source Output Conductance	g _{os}	f = 1 kH;		110		250		250		250	μS
Common-Source Input Capacitance	C _{iss}			4		5		5		5	
Common-Source Reverse Transfer Capacitance	C _{rss}	V _{DS} = 10 V, V _{GS} = -10 V f = 1 MHz		1.9		2.5		2.5		2.5	рF
Equivalent Input Noise Voltage	ē _n	V _{DS} = 10 V, I _D = f = 100 H	= 10 mA z	6							nV/sHz
HIGH FREQUENC	Υ							<u> </u>	•		
Common-Gate Forward Transconductance	9fg	f =	105 MHz	15							
		f =	450 MHz	13	-	-	 				
Common-Gate Output Conductance	g _{og}	V _{DS} = 10 V I _D = 10 mA	105 MHz	0.16							mS
	l	f =	450 MHz	0.55		-					
Common-Gate Power Gain ^d	G _{pg}	f =	105 MHz	16							
		f =	450 MHz	11.5							dB
Noise Figure	NF		105 MHz	1.5							
		f =	450 MHz	2.7							

NOTES:

4-43 Rev. C (02/11/91)

<sup>a. T_A = 25°C unless otherwise noted.
b. For design aid only, not subject to production testing.</sup>

c. Pulse test; PW = 300 μ S, duty cycle \leq 3%. d. Gain (G_{pg}) measured at optimum input noise match.