J308 SERIES N-Channel JFETs The J308 Series is a popular, low-cost device which offers superb amplification characteristics. It features high-gain, low noise (typically $< 6\,\text{nV}\sqrt{\text{Hz}}$) and low gate leakage (typically $< 2\,\text{pA}$). Of special interest, however, is performance at high frequency. Even at 450 MHz the J308 Series offers high power gain and low noise. Like all TO-92 packages offered by Siliconix, tape and reel options are available to support automated assembly. (See Section 7.) | PART
NUMBER | V _{GS(OFF)}
MAX
(V) | V _(BR) GSS
MIN
(V) | gfs
MIN
(mS) | I _{DSS}
MAX
(mA) | |----------------|------------------------------------|-------------------------------------|--------------------|---------------------------------| | J308 | -6.5 | -25 | 8 | 60 | | J309 | -4.0 | -25 | 8 | 30 | | J310 | -6.5 | -25 | 8 | 60 | For additional design information and a closer look at high-frequency characteristics, please consult performance curves NZB. TO-92 (TO-226AA) **BOTTOM VIEW** 1 DRAIN 2 SOURCE #### **SIMILAR PRODUCTS** - TO-52, See U309 Series - SOT-23, See SST308 Series - Dual, See U430 Series - Chips, See NZB Series Die ## ABSOLUTE MAXIMUM RATINGS (T_A = 25°C Unless Otherwise Noted) | PARAMETERS/TEST CONDITIONS | SYMBOL | LIMITS | UNITS | | |--|------------------|------------|-------|--| | Gate-Drain Voltage | V _{GD} | -25 | | | | Gate-Source Voltage | V _{GS} | -25 | | | | Gate Current | l _G | 10 | mA | | | Power Dissipation | P _D | 360 | mW | | | Power Derating | | 3.27 | mW/°C | | | Operating Junction Temperature Range | TJ | -55 to 135 | | | | Storage Temperature Range | T _{stg} | -55 to 150 | °c | | | Lead Temperature (1/18" from case for 10 sec.) | TL | 300 | | | # **J308 SERIES** | SPECIFICATIONS ^a | | | LIMITS | | | | | | | | | |--|----------------------|--|---------------|--------|-----------------|----------|-----------------|----------|-----------------|------|--------| | SPECIFICATIONS" | | | | | | | | | | | | | PARAMETER | SYMBOL | TEST CONDIT | rions - | TYPb | J308
MIN MAX | | J309
MIN MAX | | J310
MIN MAX | | UNIT | | STATIC | | | | | | | | | | | | | Gate-Source
Breakdown Voltage | V _{(BR)GSS} | l _G = -1 μA , V _D | s = 0 V | -35 | -25 | | -25 | | -25 | | v | | Gate-Source
Cutoff Voltage | V _{GS(OFF)} | V _{DS} = 10 V, I _D | = 1 nA | | -1 | -6.5 | -1 | -4 | -2 | -6.5 | | | Saturation Drain
Current ^c | I _{DSS} | V _{DS} = 10 V, V _{GS} | s = 0 V | | 12 | 60 | 12 | 30 | 24 | 60 | mA | | Gate Reverse
Current | I _{GSS} | V _{GS} = -15 V, V _D | | -0.002 | | -1 | | -1 | | -1 | nA | | | | T _A | = 125°C | -0.008 | | -1 | | -1 | | -1 | μΑ | | Gate Operating
Current | l _G | V _{DG} = 9 V, I _D = | 10 mA | -15 | | | | | | | pΑ | | Drain Cutoff
Current | r _{DS(ON)} | V _{GS} = 0 V, I _D = | = 1 mA | 35 | | | | | | | Ω | | Gate-Source
Forward Voltage | V _{GS(F)} | $I_G = 1 \text{ mA}$, V_{DS} | ; = 0 V | 0.7 | | 1 | | 1 | | 1 | ٧ | | DYNAMIC | | | | | | | | | | | | | Common-Source
Forward
Transconductance | 9 _{fs} | V _{DS} = 10 V, I _D = 10 mA | | 14 | 8 | | 10 | | 8 | | mS | | Common-Source
Output
Conductance | g _{os} | f = 1 kH; | | 110 | | 250 | | 250 | | 250 | μS | | Common-Source
Input Capacitance | C _{iss} | | | 4 | | 5 | | 5 | | 5 | | | Common-Source
Reverse Transfer
Capacitance | C _{rss} | V _{DS} = 10 V, V _{GS} = -10 V
f = 1 MHz | | 1.9 | | 2.5 | | 2.5 | | 2.5 | рF | | Equivalent Input
Noise Voltage | ē _n | V _{DS} = 10 V, I _D =
f = 100 H | = 10 mA
 z | 6 | | | | | | | nV/sHz | | HIGH FREQUENC | Υ | | | | | | | <u> </u> | • | | | | Common-Gate
Forward
Transconductance | 9fg | f = | 105 MHz | 15 | | | | | | | | | | | f = | 450 MHz | 13 | - | - | | | | | | | Common-Gate
Output
Conductance | g _{og} | V _{DS} = 10 V
I _D = 10 mA | 105 MHz | 0.16 | | | | | | | mS | | | l | f = | 450 MHz | 0.55 | | - | | | | | | | Common-Gate
Power Gain ^d | G _{pg} | f = | 105 MHz | 16 | | | | | | | | | | | f = | 450 MHz | 11.5 | | | | | | | dB | | Noise Figure | NF | | 105 MHz | 1.5 | | | | | | | | | | | f = | 450 MHz | 2.7 | | | | | | | | ### NOTES: 4-43 Rev. C (02/11/91) ^{a. T_A = 25°C unless otherwise noted. b. For design aid only, not subject to production testing.} c. Pulse test; PW = 300 μ S, duty cycle \leq 3%. d. Gain (G_{pg}) measured at optimum input noise match.