

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Data Sheet

High-Performance, 16-Bit Digital Signal Controllers and Microcontrollers

© 2009-2011 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U S A, and other countries

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2009-2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-143-8

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

High-Performance, 16-bit Digital Signal Controllers and Microcontrollers

Operating Range:

- Up to 60 MIPS Operation (at 3.0V-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

High-Performance MCU CPU: (All Devices)

- Modified Harvard Architecture
- C Compiler Optimized Instruction Set
- 16-bit Wide Data Path
- 24-bit Wide Instructions
- Linear Program Memory Addressing up to 4M Instruction Words
- · Linear Data Memory Addressing up to 64 Kbytes
- 73 Base Instructions: mostly with an effective instruction execution throughput of one instruction per cycle
- Flexible and Powerful Indirect Addressing mode
- · Software Stack
- 16x16 Integer Multiply Operations
- 32/16 and 16/16 Integer Divide Operations
- Up to ±16-bit Shifts

Additional High-Performance DSC CPU Features:

(dsPIC33EPXXXMU806/810/814 Devices Only)

- 11 Additional Instructions
- Two 40-bit Accumulators with Rounding and Saturation Options
- Additional Flexible and Powerful Addressing modes:
 - Modulo
 - Bit-Reversed
- Single-Cycle Multiply and Accumulate:
 - Accumulator write back for DSP operations
 - Dual data fetch
- Single-Cycle shifts for up to 40-bit Data
- 16x16 Fractional Multiply/Divide Operations

Direct Memory Access (DMA):

- 15-Channel Hardware DMA:
 - Allows for transfer of data to/from any data memory location
- Up to 4 Kbytes Dual Ported DMA Buffer Area (DPSRAM) to store data transferred via DMA:
 - Allows for fast data transfer between RAM and a peripheral while CPU is executing code (no cycle stealing)
- Most Peripherals Support DMA

Interrupt Controller:

- 13-Cycle Fixed Latency or 9- to 13-Cycle Variable Latency (user-selectable)
- Up to 116 Available Interrupt Sources
- · Up to Five External Interrupts
- Seven Programmable Priority Levels
- Seven Processor Exceptions

Timers/Capture/Compare/PWM:

- Timer/Counters, up to Nine 16-bit Timers:
 - Can pair up to make four 32-bit timers
 - One timer runs as a Real-Time Clock with an external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to 16 channels):
 - Independent 16-bit time base
 - Capture on up, down or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
 - Synchronous, Triggered and Cascaded modes
- Output Compare (up to 16 channels):
 - Independent 16-bit time base
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode
 - Synchronous, Triggered and Cascaded modes
- Hardware Real-Time Clock and Calendar (RTCC):
 - Provides clock, calendar, and alarm functions

Digital I/O:

- · Peripheral Pin Select (PPS) Functionality
- · Wake-up/Interrupt-on-Change for up to 122 pins
- Output Pins can drive from 3.0V to 3.6V
- Up to 5V Output with Open Drain Configuration
- Up to 8 or 10 mA sink on I/O pins
- Up to 8 mA or 12 mA source on I/O pins

On-Chip Flash and SRAM:

- Flash Program Memory (up to 512 Kbytes)
- Flash Auxiliary Memory (up to 24 Kbytes):
 Can be used as Bootloader space or for EEPROM emulation without stalling the CPU
- Data SRAM (up to 52 Kbytes)
- Read/Write Security for Program Flash and Auxiliary Memory

System Management:

- Flexible Clock Options:
 - External, crystal, resonator, internal RC
 - Fully integrated Phase-Locked Loop (PLL)
 - Extremely low jitter PLL
 - Auxiliary PLL for USB clocking
 - Reference clock output
- Programmable Power-up Timer
- Oscillator Start-up Timer
- · Watchdog Timer with its own RC Oscillator
- Fail-Safe Clock Monitor
- Multiple Reset Sources

Power Management:

- On-chip 1.8V Voltage Regulator
- Switch between Clock Sources in Real Time
- · Idle, Sleep, and Doze modes with Fast Wake-up

CMOS Flash Technology:

- Low-Power, High-Speed Flash Technology
- Fully Static Design
- 3.3V (±10%) Operating Voltage
- Industrial and Extended Temperature
- Low-Power Consumption

Analog-to-Digital Converters (ADCs):

- 10-bit, 1.1 Msps or 12-bit, 500 Ksps Conversion:
 - Two and four simultaneous samples (10-bit mode)
 - Up to 32 input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of 13 trigger sources
 - Conversions in Sleep mode
 - ±2 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity
- Additional 10-bit, 1.1 Msps ADC, with up to 16 Input Channels

Data Converter Interface (DCI) Module: (dsPIC33EPXXXMU806/810/814 Devices Only)

- Codec Interface
- Supports I²S and AC'97 Protocols
- Up to 16-bit Data Words, up to 16 Words per Frame:
 - 4-word deep TX and RX buffers

Comparator Module:

- Three Analog Comparators with Programmable Input/Output Configuration
- · Blanking and Filtering Options
- Internal or External Voltage References

Motor Control Peripherals: (dsPIC33EPXXXMU806/810/814 Devices Only)

- Motor Control PWM:
 - Two master time base modules can control dual 3-phase motors simultaneously
 - Up to seven PWM generators
 - Two PWM outputs per PWM generator
 - Individual period and duty cycle for each PWM output
 - Dead-time insertion and correction
 - Duty cycle, dead time, phase shift and frequency resolution of 8.32 ns
 - Seven independent Fault and current-limit inputs
 - Center-Aligned, Edge-Aligned, Push-Pull, Multi-Phase, Variable Phase, Fixed Off-time, Current Reset and Current Limit modes
 - Output override control
 - Output Chopping (gated) mode
 - Special Event Triggers

Motor Control Peripherals (Continued): (dsPIC33EPXXXMU806/810/814 Devices Only)

- Quadrature Encoder Interface (QEI):
 - 32-bit position counter
 - 32-bit Index pulse counter
 - 32-bit Interval timer
 - 16-bit velocity counter
 - 32-bit Position Initialization/Capture/Compare High register
 - 32-bit Position Compare Low register
 - x4 Quadrature Count mode
 - External Up/Down Count mode
 - External Gated Count mode
 - External Gated Timer mode
 - Internal Timer mode

Communication Modules:

- USB On-The-Go (OTG):
 - USB v2.0 On-The-Go (OTG) compliant
 - Dual role capable can act as either Host or Peripheral
 - Low-speed (1.5 Mbps) and Full-speed (12 Mbps) USB operation in Host mode
 - High-precision PLL for USB
 - Supports up to 32 endpoints (16 bidirectional):
- USB module can use any RAM location on the device as USB endpoint buffers:
 - On-chip USB transceiver
 - Interface for Off-chip USB transceiver
 - On-chip pull-up and pull-down resistors
- 4-wire SPI (up to four modules):
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C[™] (up to two modules):
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
 - IPMI support
 - SMBus support

Communication Modules (Continued):

- UART (up to four modules):
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN bus support
 - IrDA® encoding and decoding in hardware
 - High-Speed Baud mode
 - Hardware Flow Control with CTS and RTS
- Enhanced CAN (ECAN[™]) 2.0B active (up to two modules):
 - Up to eight transmit and up to 32 receive buffers
 - 16 receive filters and three masks
 - Loopback, Listen Only and Listen All
 - Messages modes for diagnostics and bus monitoring
 - Wake-up on CAN message
 - Automatic processing of Remote Transmission Requests
 - FIFO mode using DMA
 - DeviceNet[™] addressing support
- Parallel Master Slave Port (PMP/EPSP):
 - Supports 8-bit or 16-bit data
 - Supports up to 16 address lines
- Programmable Cyclic Redundancy Check (CRC):
 - Programmable bit length for the CRC generator polynomial (up to 32-bit length)
 - 4x32, 8x16 or 16x8 FIFO for data input

Packaging:

- 64-pin QFN (9x9x0.9 mm)
- 64-pin TQFP (10x10x1 mm)
- 100-pin TQFP (12x12x1 mm)
- 100-pin TQFP (14x14x1 mm)
- 121-pin BGA (10x10x1.2 mm)
- 144-pin LQFP (20x20x1.4 mm)
- 144-pin TQFP (16x16x1 mm)

Note: See Table 1 for exact peripheral features per device.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 PRODUCT FAMILIES

The device names, pin counts, memory sizes and peripheral availability of each device are listed in Table 1. Their pinout diagrams appear on the following pages.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 CONTROLLER FAMILIES TABLE 1:

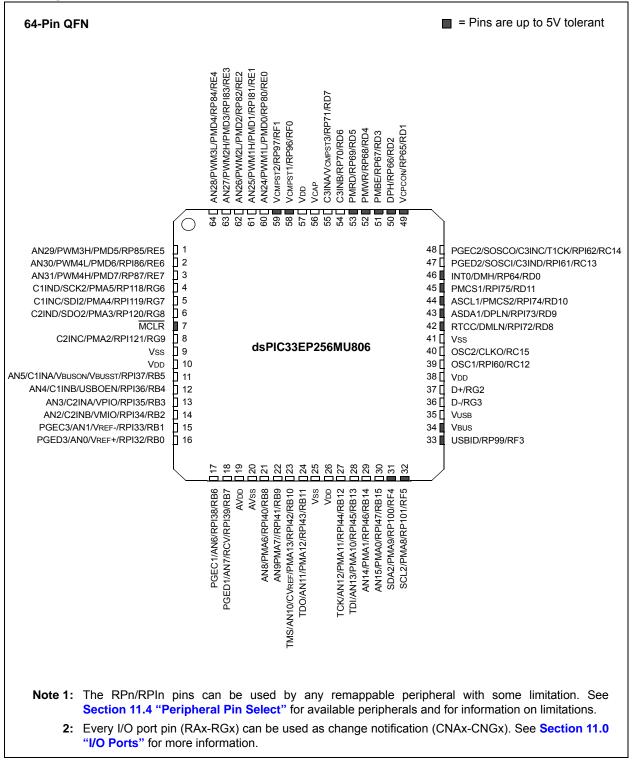
								Re	mapp	bable	Peri	pher	als									1	
Device	Pins	Packages	Program Flash Memory (Kbyte) ⁽¹⁾	RAM (Kbyte) ⁽²⁾	16-bit Timer ^(3,4)	Input Capture	Output Compare (with PWM)	Motor Control PWM (Channels) ⁽⁵⁾	QEI	UART with IrDA [®]	IdS	ECANTM	External Interrupts ⁽⁶⁾	DMA Controller (Channels)	DCI	Analog Comparators/ Inputs Per Comparator ⁽⁷⁾	RTCC	I ² C TM	CRC Generator	10-bit/12-bit ADC ⁽³⁾	NSB	Parallel Master Port	I/O Pins
dsPIC33EP256MU806	64	QFN, TQFP	280	28	9	16	16	8	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 24 ch	1	Y	51
dsPIC33EP256MU810	100 121	TQFP BGA	280	28	9	16	16	12	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	83
dsPIC33EP256MU814	121	TQFP, LQFP	280	28	9	16	16	14	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	122
dsPIC33EP512MU810	100 121	TQFP BGA	536	52	9	16	16	12	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	83
dsPIC33EP512MU814	121	TQFP, LQFP	536	52	9	16	16	14	2	4	4	2	5	15	1	3/4	1	2	1	2 ADC, 32 ch	1	Y	122
PIC24EP256GU810	100 121	TQFP BGA	280	28	9	16	16	0	0	4	4	2	5	15	0	3/4	1	2	1	2 ADC, 32 ch	1	Y	83
PIC24EP256GU814	144	TQFP, LQFP	280	28	9	16	16	0	0	4	4	2	5	15	0	3/4	1	2	1	2 ADC, 32 ch	1	Y	122
PIC24EP512GU810	100 121	TQFP BGA	536	52	9	16	16	0	0	4	4	2	5	15	0	3/4	1	2	1	2 ADC, 32 ch	1	Y	83
PIC24EP512GU814	144	TQFP, LQFP	536	52	9	16	16	0	0	4	4	2	5	15	0	3/4	1	2	1	2 ADC, 32 ch	1	Y	122

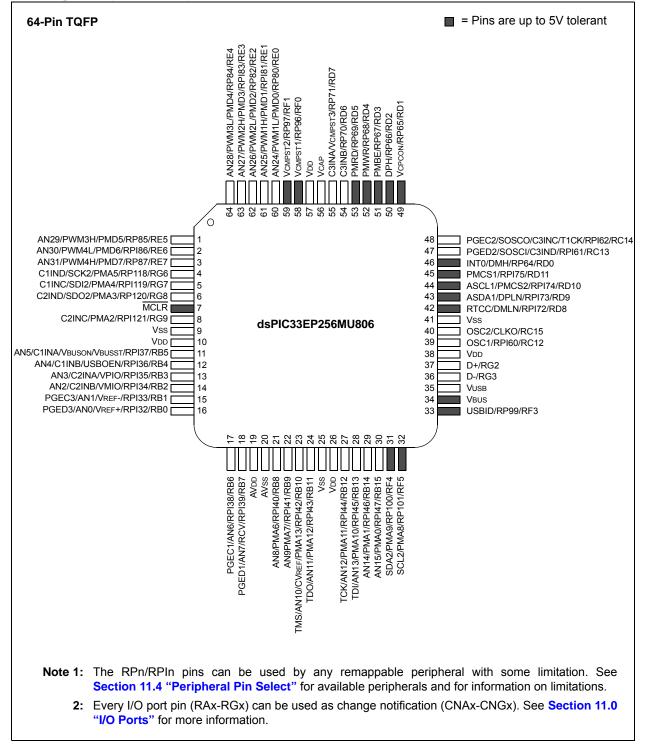
RAM size is inclusive of 4 Kbytes of DMA RAM (DPSRAM) for all devices. 2:

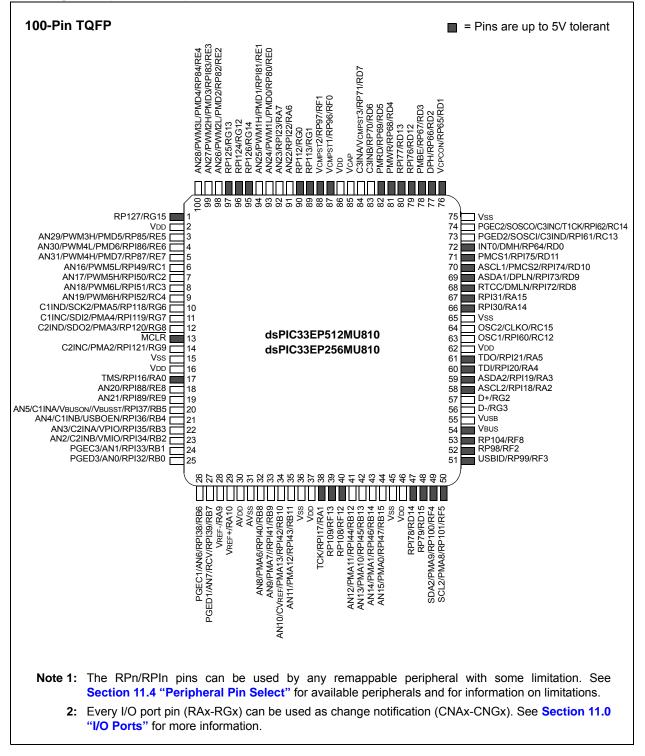
3: Up to eight of these timers can be combined into four 32-bit timers.

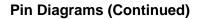
Eight out of nine timers are remappable. 4:

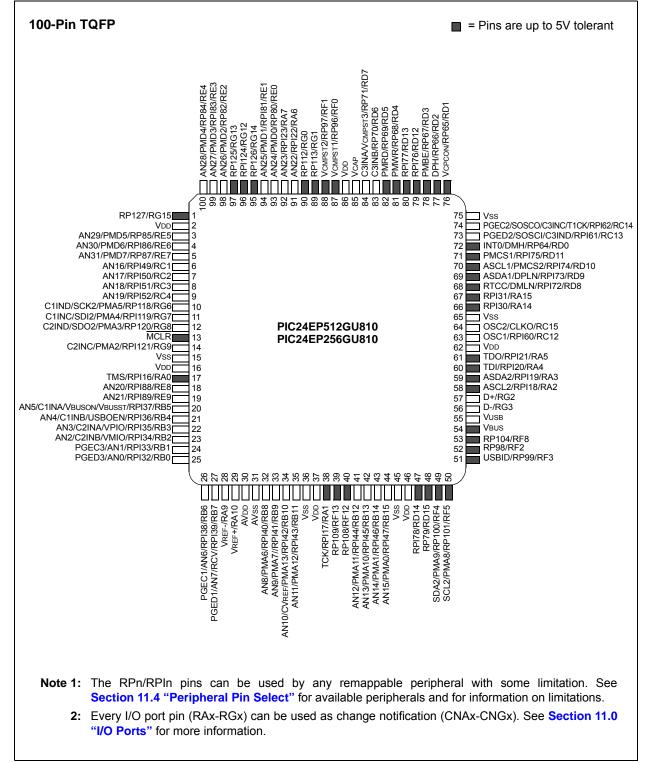
5: PWM faults and Sync signals are remappable.


6: Four out of five interrupts are remappable.


7: Comparator output is remappable.


The ADC2 module supports 10-bit mode only. 8:


dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814


Pin Diagrams

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

121-	Pin BGA ⁽	1)				33EP256 33EP512			= Pins a	are up to	5V tolera
	1	2	3	4	5	6	7	8	9	10	11
	C RE4	O RE3	RG13	O RE0	RG0	RF1	O Vdd	NC	RD12	RD2	RD1
	NC	RG15	O RE2	O RE1	O RA7	RF0	O VCAP	RD5	RD3	⊖ Vss	O RC14
	O RE6		RG12	RG14	O RA6	NC	O RD7	RD4	NC	O RC13	RD11
	O RC1	O RE7	O RE5	NC	NC	NC	O RD6	RD13	RD0	NC	R D10
	O RC4	C RC3	O RG6	O RC2	NC	RG1	NC	RA15	RD8	RD9	RA14
	MCLR	O RG8	O RG9	O RG7	⊖ Vss	NC	NC	O Vdd	O RC12	⊖ Vss	O RC15
	C RE8	O RE9	RA0	NC	O VDD	⊖ Vss	⊖ Vss	NC	RA5	RA3	RA4
	O RB5	O RB4	NC	NC	NC	O Vdd	NC	V BUS	O Vusb	O RG2	RA2
	O RB3	O RB2	O RB7	O AVDD	O RB11	RA1	O RB12	NC	NC	RF8	O RG3
	O RB1	O RB0	O RA10	O RB8	NC	RF12	O RB14	O Vdd	RD15	RF3	RF2
	C RB6	O RA9) AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5

TABLE 2:	PIN NAMES: dsPIC33EP256MU810 AND dsPIC33EP512MU810
	DEVICES ^(1,2)

Pin Number	Full Pin Name	Pin Number	Full Pin Name
A1	AN28/PWM3L/PMD4/RP84/RE4	E8	RPI31/RA15
A2	AN27/PWM2H/PMD3/RPI83/RE3	E9	RTCC/DMLN/RPI72/RD8
A3	RP125/RG13	E10	ASDA1/DPLN/RPI73/RD9
A4	AN24/PWM1L/PMD0/RP80/RE0	E11	RPI30/RA14
A5	RP112/RG0	F1	MCLR
A6	VCMPST2/RP97/RF1	F2	C2IND/SDO2/PMA3/RP120/RG8
A7	VDD	F3	C2INC/PMA2/RPI121/RG9
A8	No Connect	F4	C1INC/SDI2/PMA4/RPI119/RG7
A9	RPI76/RD12	F5	Vss
A10	DPH/RP66/RD2	F6	No Connect
A11	VCPCON/RP65/RD1	F7	No Connect
B1	No Connect	F8	VDD
B2	RP127/RG15	F9	OSC1/RPI60/RC12
B3	AN26/PWM2L/PMD2/RP82/RE2	F10	Vss
B4	AN25/PWM1H/PMD1/RPI81/RE1	F11	OSC2/CLKO/RC15
B5	AN23/RPI23/RA7	G1	AN20/RPI88/RE8
B6	VCMPST1/RP96/RF0	G2	AN21/RPI89/RE9
B7	VCAP	G3	TMS/RPI16/RA0
B8	PMRD/RP69/RD5	G4	No Connect
B9	PMBE/RP67/RD3	G5	VDD
B10	Vss	G6	Vss
B11	PGEC2/SOSCO/C3INC/T1CK/RPI62/RC14	G7	Vss
C1	AN30/PWM4L/PMD6/RPI86/RE6	G8	No Connect
C2	VDD	G9	TDO/RPI21/RA5
C3	RPI124/RG12	G10	ASDA2/RPI19/RA3
C4	RP126/RG14	G10	TDI/RPI20/RA4
C5	AN22/RPI22/RA6	H1	AN5/C1INA/VBUSON/VBUSST/RPI37/RB5
C6	No Connect	H2	AN4/C1INB/USBOEN/RPI36/RB4
C7	C3INA/Vcmpst3/RP71/RD7	H3	No Connect
C8	PMWR/RP68/RD4	H4	No Connect
C9	No Connect	H5	No Connect
C10	PGED2/SOSCI/C3IND/RPI61/RC13	H6	VDD
C10	PMCS1/RPI75/RD11	H7	No Connect
	AN16/PWM5L/RPI49/RC1	H8	VBUS
D1			
D2		H9	Vusb D+/RG2
D3	AN29/PWM3H/PMD5/RP85/RE5	H10	
D4	No Connect	H11	ASCL2/RPI18/RA2
D5	No Connect	J1	AN3/C2INA/VPIO/RPI35/RB3
D6	No Connect	J2	
D7	C3INB/RP70/RD6	J3	PGED1/AN7/RCV/RPI39/RB7
D8	RPI77/RD13		AVDD
D9	INT0/DMH/RP64/RD0	J5	AN11/PMA12/RPI43/RB11
D10	No Connect		TCK/RPI17/RA1
D11	ASCL1/PMCS2/RPI74/RD10	J7	AN12/PMA11/RPI44/RB12
E1	AN19/PWM6H/RPI52/RC4		No Connect
E2	AN18/PWM6L/RPI51/RC3	J9	No Connect
E3	C1IND/SCK2/PMA5/RP118/RG6	J10	RP104/RF8
E4	AN17/PWM5H/RPI50/RC2	J11	D-/RG3
E5	No Connect	K1	PGEC3/AN1/RPI33/RB1
E6	RP113/RG1	K2	PGED3/AN0/RPI32/RB0
E7	No Connect	K3	VREF+/RA10

PIO/RPI35/RB3 IIO/RPI34/RB2 CV/RPI39/RB7 RPI43/RB11 RPI44/RB12 PI33/RB1 PI32/RB0

The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for Note 1: available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

TABLE 2:PIN NAMES: dsPIC33EP256MU810 AND dsPIC33EP512MU810
DEVICES^(1,2) (CONTINUED)

Pin Number	Full Pin Name		Pin Number	Full Pin Name
K4	AN8/PMA6/RPI40/RB8		L3	AVss
K5	No Connect		L4	AN9/PMA7//RPI41/RB9
K6	RP108/RF12		L5	AN10/CVREF/PMA13/RPI42/RB10
K7	AN14/PMA1/RPI46/RB14		L6	RP109/RF13
K8	VDD		L7	AN13/PMA10/RPI45/RB13
K9	RP79/RD15		L8	AN15/PMA0/RPI47/RB15
K10	USBID/RP99/RF3		L9	RPI78/RD14
K11	RP98/RF2	1	L10	SDA2/PMA9/RP100/RF4
L1	PGEC1/AN6/RPI38/RB6	1	L11	SCL2/PMA8/RP101/RF5
L2	VREF-/RA9			

L2 VREF-/R

Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

						1EP2560 1EP5120					
	1	2	3	4	5	6	7	8	9	10	11
A	RE4	O RE3	RG13	O RE0	RG0	RF1	O Vdd	NC	RD12	RD2	RD1
в	NC	RG15	O RE2	O RE1	O RA7	RF0	O VCAP	RD5	RD3	⊖ Vss	O RC14
с	O RE6	O VDD	RG12	RG14	O RA6	NC	O RD7	RD4	NC	O RC13	RD11
D	O RC1	O RE7	O RE5	NC	NC	NC	O RD6	RD13	RD0	NC	R D10
E	O RC4	O RC3	O RG6	O RC2	NC	RG1	NC	RA15	RD8	RD9	RA14
F	MCLR	O RG8	O RG9	O RG7	⊖ Vss	NC	NC		O RC12	⊖ Vss	O RC15
G	O RE8	O RE9	RA0	NC		⊖ Vss	⊖ Vss	NC	RA5	RA3	RA4
н	O RB5	O RB4	NC	NC	NC		NC	V BUS	O Vusb	O RG2	RA2
J	O RB3	O RB2	O RB7		O RB11	RA1	O RB12	NC	NC	RF8	O RG3
к	O RB1	O RB0	O RA10	O RB8	NC	RF12	O RB14		RD15	RF3	RF2
L	O RB6	O RA9	O AVss	O RB9	O RB10	RF13	O RB13	O RB15	RD14	RF4	RF5

TABLE 3: PIN NAMES: PIC24EP256GU810 AND PIC24EP512GU810 DEVICES^(1,2)

	DEVICES	
Pin Number	Full Pin Name	
A1	AN28/PMD4/RP84/RE4	
A2	AN27/PMD3/RPI83/RE3	
A3	RP125/RG13	
A4	AN24/PMD0/RP80/RE0	
A5	RP112/RG0	
A6	VCMPST2/RP97/RF1	
A7	VDD	
A8	No Connect	
A9	RPI76/RD12	
A10	DPH/RP66/RD2	
A11	VCPCON/RP65/RD1	
B1	No Connect	
B2	RP127/RG15	
B3	AN26/PMD2/RP82/RE2	
B4	AN25/PMD1/RPI81/RE1	
B5	AN23/RPI23/RA7	
B6	VCMPST1/RP96/RF0	
B7	VCAP	
B8	PMRD/RP69/RD5	
B0 B9	PMBE/RP67/RD3	
B10	Vss	
B11	PGEC2/SOSCO/C3INC/T1CK/RPI62/RC14	
C1	AN30/PMD6/RPI86/RE6	
C2	VDD	
C3	RPI124/RG12	
C4	RP126/RG14	
C5	AN22/RPI22/RA6	
C6	No Connect	
C7	C3INA/VCMPST3/RP71/RD7	
C8	PMWR/RP68/RD4	
C9	No Connect	
C10	PGED2/SOSCI/C3IND/RPI61/RC13	
C11	PMCS1/RPI75/RD11	
D1	AN16/RPI49/RC1	
D2	AN31/PMD7/RP87/RE7	
D3	AN29/PMD5/RP85/RE5	
D4	No Connect	
D5	No Connect	
D6	No Connect	
D7	C3INB/RP70/RD6	
D8	RPI77/RD13	
D9	INT0/DMH/RP64/RD0	
D10	No Connect	
D11	ASCL1/PMCS2/RPI74/RD10	
E1	AN19/RPI52/RC4	
E2	AN18/RPI51/RC3	
E3	C1IND/SCK2/PMA5/RP118/RG6	
E4	AN17/RPI50/RC2	
E5	No Connect	
E6	RP113/RG1	
E7	No Connect	
	The PDn/PDIn pine can be used by any remembels period	

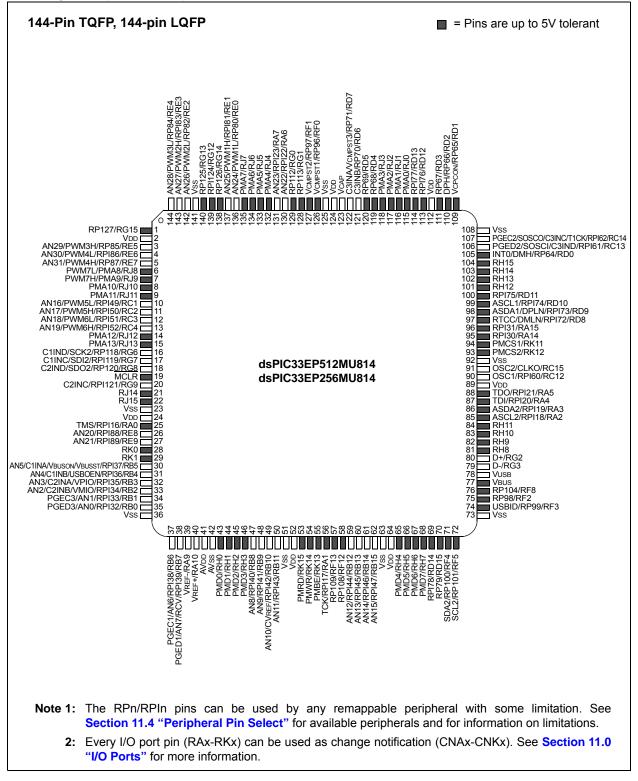
Pin Number	Full Pin Name
E8	RPI31/RA15
E9	RTCC/DMLN/RPI72/RD8
E10	ASDA1/DPLN/RPI73/RD9
E11	RPI30/RA14
F1	MCLR
F2	C2IND/SDO2/PMA3/RP120/RG8
F3	C2INC/PMA2/RPI121/RG9
F4	C1INC/SDI2/PMA4/RPI119/RG7
F5	Vss
F6	No Connect
F7	No Connect
F8	VDD
F9	OSC1/RPI60/RC12
F10	Vss
F11	OSC2/CLKO/RC15
G1	AN20/RPI88/RE8
G2	AN21/RPI89/RE9
G3	TMS/RPI16/RA0
G4	No Connect
G5	VDD
G6	Vss
G7	Vss
G8	No Connect
G9	TDO/RPI21/RA5
G10	ASDA2/RPI19/RA3
G11	TDI/RPI20/RA4
H1	AN5/C1INA/VBUSON/VBUSST/RPI37/RB5
H2	AN4/C1INB/USBOEN/RPI36/RB4
H3	No Connect
H4	No Connect
H5	No Connect
H6	Vdd
H7	No Connect
H8	VBUS
H9	Vusb
H10	D+/RG2
H11	ASCL2/RPI18/RA2
J1	AN3/C2INA/VPIO/RPI35/RB3
J2	AN2/C2INB/VMIO/RPI34/RB2
J3	PGED1/AN7/RCV/RPI39/RB7
J4	AVDD
J5	AN11/PMA12/RPI43/RB11
J6	TCK/RPI17/RA1
J7	AN12/PMA11/RPI44/RB12
J8	No Connect
J9	No Connect
J10	RP104/RF8
J11	D-/RG3
K1	PGEC3/AN1/RPI33/RB1
	PGED3/ANI/RPI32/RB0
K2	

Note 1:

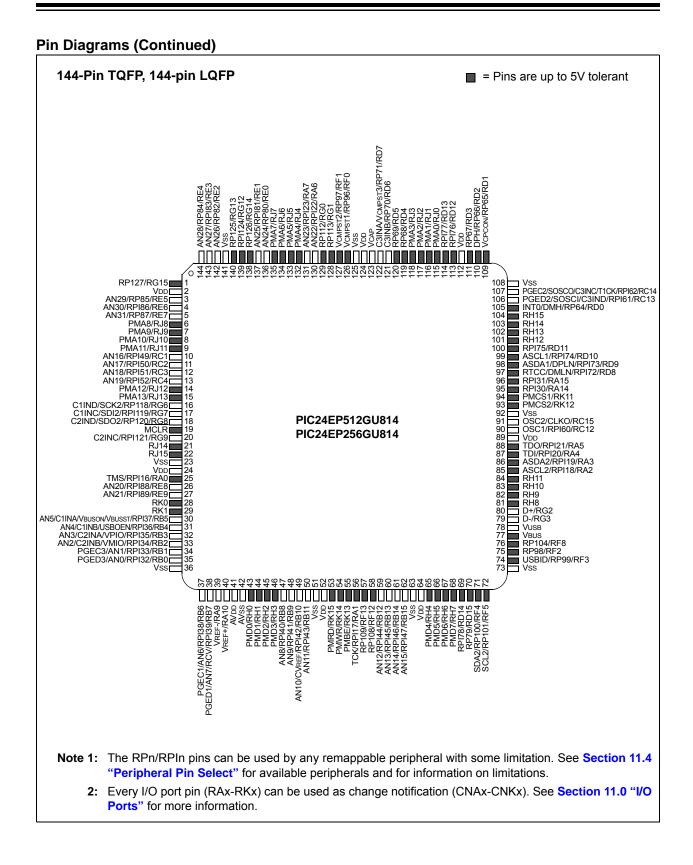
The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.

2: Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information.

PIN NAMES: PIC24EP256GU810 AND PIC24EP512GU810 DEVICES^(1,2) (CONTINUED) TABLE 3:


Pin Number	Full Pin Name
K4	AN8/PMA6/RPI40/RB8
K5	No Connect
K6	RP108/RF12
K7	AN14/PMA1/RPI46/RB14
K8	VDD
K9	RP79/RD15
K10	USBID/RP99/RF3
K11	RP98/RF2
L1	PGEC1/AN6/RPI38/RB6
L2	VREF-/RA9

Pin Number	Full Pin Name
L3	AVss
L4	AN9/PMA7/RPI41/RB9
L5	AN10/CVREF/PMA13/RPI42/RB10
L6	RP109/RF13
L7	AN13/PMA10/RPI45/RB13
L8	AN15/PMA0/RPI47/RB15
L9	RPI78/RD14
L10	SDA2/PMA9/RP100/RF4
L11	SCL2/PMA8/RP101/RF5


Note 1: The RPn/RPIn pins can be used by any remappable peripheral with some limitation. See Section 11.4 "Peripheral Pin Select" for available peripherals and for information on limitations.

Every I/O port pin (RAx-RGx) can be used as change notification (CNAx-CNGx). See Section 11.0 "I/O Ports" for more information. 2:

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

Table of Contents

dsPl	C33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Product Families	6
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	123
6.0	Resets	127
7.0	Interrupt Controller	131
8.0	Direct Memory Access (DMA)	145
9.0	Oscillator Configuration	161
10.0	Power-Saving Features	173
11.0	I/O Ports	187
12.0	Timer1	
13.0	Timer2/3, Timer4/5, Timer6/7 and Timer8/9	
14.0	Input Capture	255
15.0	Output Compare	
16.0	High-Speed PWM Module (dsPIC33EPXXXMU806/810/814 Devices Only)	
17.0	Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810/814 Devices Only)	
18.0	Serial Peripheral Interface (SPI)	
19.0		
20.0	Universal Asynchronous Receiver Transmitter (UART)	
21.0	Enhanced CAN (ECAN™) Module	
22.0	USB On-The-Go (OTG) Module	
	10-bit/12-bit Analog-to-Digital Converter (ADC)	
	Data Converter Interface (DCI) Module (dsPIC33EPXXXMU806/810/814 Devices Only)	
25.0	Comparator Module	
26.0	Real-Time Clock and Calendar (RTCC)	
27.0	Programmable Cyclic Redundancy Check (CRC) Generator	419
28.0	Parallel Master Port (PMP)	
29.0	Special Features	
30.0	Instruction Set Summary	441
31.0	Development Support	451
32.0	Electrical Characteristics	455
33.0	Packaging Information	527
Appe	endix A: Revision History	
Index	٢	553
The I	Microchip Web Site	559
Custo	omer Change Notification Service	559
Custo	omer Support	559
	ler Response	
Prod	uct Identification System	561

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

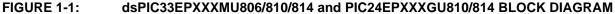
- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.


1.0 DEVICE OVERVIEW


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive resource. To complement the information in this data sheet, refer to the related section of the "*dsPIC33E/PIC24E Family Reference Manual*", which is available from the Microchip web site (www.microchip.com)
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device-specific information for the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Digital Signal Controller (DSC) and Microcontroller (MCU) devices. The dsPIC33EPXXXMU806/810/814 devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance 16-bit MCU architecture.

Figure 1-1 illustrates a general block diagram of the
core and peripheral modules in the
dsPIC33EPXXXMU806/810/814 and
PIC24EPXXXGU810/814 families of devices.

Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

Pin Name	Pin Type	Buffer Type	PPS	Description
AN0-AN31	I	Analog	No	Analog input channels.
CLKI	I	ST/ CMOS	No	External clock source input. Always associated with OSC1 pin function Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
CLKO	0	—	No	Always associated with OSC2 pin function.
OSC1	I	ST/ CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.
OSC2	I/O	_	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.
SOSCI	Ι	ST/ CMOS	No	32.768 kHz low-power oscillator crystal input; CMOS otherwise.
SOSCO	0	—	No	32.768 kHz low-power oscillator crystal output.
IC1-IC16	Ι	ST	Yes	Capture inputs 1 through 16.
OCFA OCFB OCFC OC1-OC16	 0	ST ST ST	Yes Yes Yes Yes	Compare Fault A input (for Compare channels). Compare Fault B input (for Compare channels). Compare Fault C input (for Compare channels). Compare outputs 1 through 16.
INT0		ST	No	External interrupt 0.
INT0 INT1		ST	Yes	External interrupt 1.
INT2	i	ST	Yes	External interrupt 2.
INT3	I	ST	Yes	External interrupt 3.
INT4	I	ST	Yes	External interrupt 4.
RA0-RA7, RA9, RA10, RA14, RA15	I/O	ST	No	PORTA is a bidirectional I/O port.
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.
RC1-RC4, RC12-RC15	I/O	ST	No	PORTC is a bidirectional I/O port.
RD0-RD15	I/O	ST	No	PORTD is a bidirectional I/O port.
RE0-RE9	I/O	ST	No	PORTE is a bidirectional I/O port.
RF0-RF5, RF8 RF12, RF13	I/O	ST	No	PORTF is a bidirectional I/O port.
RG0, RG1 RG2, RG3 RG6-RG9, RG12-RG15	I/O I I/O	ST ST ST	No No No	PORTG is a bidirectional I/O port. PORTG input pins. PORTG is a bidirectional I/O port.
RH0-RH15	I/O	ST	No	PORTH is a bidirectional I/O port.
RJ0-RJ15	I/O	ST	No	PORTJ is a bidirectional I/O port.
RK0-RK1, RK11-RK15	I/O	ST	No	PORTK is a bidirectional I/O port.

TABLE 1-1: **PINOUT I/O DESCRIPTIONS**

PPS = Peripheral Pin Select TTL = TTL input buffer

Note 1: This pin is available on dsPIC33EPXXXMU806/810/814 devices only.

TABLE 1-	LE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)					
Pin	Name	Pin Type	Buffer Type	PPS	Description	
T1CK		Ι	ST	No	Timer1 external clock input.	
T2CK		I	ST	Yes	Timer2 external clock input.	
T3CK		I	ST	Yes	Timer3 external clock input.	
T4CK		I	ST	Yes	Timer4 external clock input.	
T5CK		I.	ST	Yes	Timer5 external clock input.	
T6CK		I	ST	Yes	Timer6 external clock input.	
T7CK		I	ST	Yes	Timer7 external clock input.	
T8CK		I	ST	Yes	Timer8 external clock input.	
T9CK		Ι	ST	Yes	Timer9 external clock input.	
U1CTS		I	ST	Yes	UART1 clear to send.	
U1RTS		ò	_	Yes	UART1 ready to send.	
U1RX		Ĩ	ST	Yes	UART1 receive.	
U1TX		ò	_	Yes	UART1 transmit.	
U2CTS U2RTS		 0	ST	Yes Yes	UART2 clear to send. UART2 ready to send.	
U2RTS			ST		UART2 receive.	
		1		Yes		
U2TX		0	—	Yes	UART2 transmit.	
U3CTS		Ι	ST	Yes	UART3 clear to send.	
U3RTS		0	—	Yes	UART3 ready to send.	
U3RX		I	ST	Yes	UART3 receive.	
U3TX		0		Yes	UART3 transmit.	
U4CTS		Ι	ST	Yes	UART4 clear to send.	
U4RTS		0	_	Yes	UART4 ready to send.	
U4RX		I	ST	Yes	UART4 receive.	
U4TX		0		Yes	UART4 transmit.	
SCK1		I/O	ST	Yes	Synchronous serial clock input/output for SPI1.	
SDI1			ST	Yes	SPI1 data in.	
SDO1		Ō	_	Yes	SPI1 data out.	
SS1		I/O	ST	Yes	SPI1 slave synchronization or frame pulse I/O.	
SCK2		1/0	ST	Yes	Synchronous serial clock input/output for SPI2.	
SDI2		"O	ST	Yes	SPI2 data in.	
SD02		ò	_	Yes	SPI2 data out.	
SS2		1/0	ST	Yes	SPI2 slave synchronization or frame pulse I/O.	
SCK3		I/O	ST	Yes	Synchronous serial clock input/output for SPI3.	
SDI3		"U	ST		SPI3 data in.	
SD03		ò	_	Yes	SPI3 data out.	
SS3		1/0	ST	Yes	SPI3 slave synchronization or frame pulse I/O.	
SCK4		I/O	ST	Yes	Synchronous serial clock input/output for SPI4.	
SCK4 SDI4			ST	Yes	SPI4 data in.	
SDI4 SDO4					SPI4 data m. SPI4 data out.	
SD04 SS4		0 I/O	 ST	Yes Yes	SPI4 data out. SPI4 slave synchronization or frame pulse I/O.	
ASCL1		I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.	
ASDA1		I/O	ST	No	Alternate synchronous serial data input/output for I2C1.	
SCL2		I/O	ST	No	Synchronous serial clock input/output for I2C2.	
SDA2		I/O	ST	No	Synchronous serial data input/output for I2C2.	
ASCL2		I/O	ST	No	Alternate synchronous serial clock input/output for I2C2.	
ASDA2		I/O	ST	No	Alternate synchronous serial data input/output for I2C2.	
Legend:	CMOS = CM					
	ST = Schmitt Trigger input with CMOS levels O = Output I = Input					
	PPS = Peripheral Pin Select TTL = TTL input buffer					

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: This pin is available on dsPIC33EPXXXMU806/810/814 devices only.

TABLE 1-1: PIN	IOUT I/	O DESC	RIPT	IONS (CONTINUED)	
Pin Name	Pin Type	Buffer Type	PPS	Description	
TMS	I	ST	No	JTAG Test mode select pin.	
TCK	I	ST	No	JTAG test clock input pin.	
TDI	I	ST	No	JTAG test data input pin.	
TDO	0		No	JTAG test data output pin.	
INDX1 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Index1 Pulse input.	
HOME1 ⁽¹⁾	1	ST	Yes	Quadrature Encoder Home1 Pulse input.	
QEA1 ⁽¹⁾	1	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer	
QEB1 ⁽¹⁾	I	ST	Yes	External Clock input in Timer mode. Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer	
CNTCMP1 ⁽¹⁾	0		Yes	External Gate input in Timer mode. Quadrature Encoder Compare Output 1.	
INDX2 ⁽¹⁾		ST			
HOME2 ⁽¹⁾		_	Yes	Quadrature Encoder Index2 Pulse input.	
$QEA2^{(1)}$		ST	Yes	Quadrature Encoder Home2 Pulse input.	
QEAZ"		ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Clock input in Timer mode.	
QEB2 ⁽¹⁾	I	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer	
				External Gate input in Timer mode.	
CNTCMP2 ⁽¹⁾	0		Yes	Quadrature Encoder Compare Output 2.	
COFS ⁽¹⁾	I/O	ST	Yes	Data Converter Interface frame synchronization pin.	
CSCK ⁽¹⁾	I/O	ST	Yes	Data Converter Interface serial clock input/output pin.	
CSDI ⁽¹⁾	I	ST	Yes	Data Converter Interface serial data input pin.	
CSDO ⁽¹⁾	0		Yes	Data Converter Interface serial data output pin.	
C1RX	I	ST	Yes	ECAN1 bus receive pin.	
C1TX	0	—	Yes	ECAN1 bus transmit pin.	
C2RX	I	ST	Yes	ECAN2 bus receive pin.	
C2TX	0		Yes	ECAN2 bus transmit pin.	
RTCC	0		No	Real-Time Clock Alarm Output.	
CVREF	0	ANA	No	Comparator Voltage Reference Output.	
C1INA-C1IND	I	ANA	No	Comparator 1 Inputs	
C1OUT	0		Yes	Comparator 1 Output.	
C2INA-C2IND	I	ANA	No	Comparator 2 Inputs.	
C2OUT	0		Yes	Comparator 2 Output.	
C3INA-C3IND	I	ANA	No	Comparator 3 Inputs.	
C3OUT	0		Yes	Comparator 3 Output.	
PMA0	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and	
				Output (Master modes).	
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and	
				Output (Master modes).	
PMA2 -PMA13	0	—	No	Parallel Master Port Address Bits 2 - 13 (Demultiplexed Master Modes).	
PMBE	0	—	No	Parallel Master Port Byte Enable Strobe.	
PMCS1, PMCS2	0	—	No	Parallel Master Port Chip Select 1 and 2 Strobe.	
PMD0-PMD7	I/O	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or Address/	
				Data (Multiplexed Master modes).	
PMRD	0	—	No	Parallel Master Port Read Strobe.	
PMWR	0		No	Parallel Master Port Write Strobe.	
Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power					
				MOS levels O = Output I = Input	
PPS = Pe				TTL = TTL input buffer	
	·				

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: This pin is available on dsPIC33EPXXXMU806/810/814 devices only.

Pin Name	Pin Type	Buffer Type	PPS	Description		
FLT1-FLT7 ⁽¹⁾	I	ST	Yes	PWM Fault input 1 through 7.		
DTCMP1-DTCMP7 ⁽¹⁾	I	ST	Yes	PWM Dead Time Compensation Input.		
PWM1L-PWM7L ⁽¹⁾	0		No	PWM Low output 1 through 7.		
PWM1H-PWM7H ⁽¹⁾	0		No	PWM High output 1 through 7.		
SYNCI1, SYNCI2 ⁽¹⁾	I I	ST	Yes	PWM Synchronization Inputs 1 and 2.		
SYNCO1, SYNCO2 ⁽¹⁾	0		Yes	PWM Synchronization Output 1 and 2.		
VBUS	Ι	Analog	No	USB Bus Power Monitor.		
VUSB	Р	_	No	USB Internal Transceiver Supply. If the USB module is not being used		
				this pin must be connected to VDD.		
VBUSON	0		No	USB Host and On-The-Go (OTG) Bus Power Control Output.		
D+	I/O	Analog	No	USB D+ I/O pin.		
D-	I/O	Analog	No	USB D- I/O pin.		
JSBID	I I	ST	No	USB OTG ID Detect.		
JSBOEN	0		No	USB Output Enabled Control (for external transceiver).		
VBUSST	Ĩ	ST	No	USB Boost Controller Overcurrent Detection.		
VCPCON	Ó	_	No	USB Boost Controller PWM Signal.		
VCMPST1	Ĩ	ST	No	USB External Comparator 1 Input.		
VCMPST2	i	ST	No	USB External Comparator 2 Input.		
VCMPST3	i	ST	No	USB External Comparator 3 Input.		
VMIO	I/O	ST	No	USB Differential Minus Input/Output (external transceiver).		
VPIO	1/O	ST	No	USB Differential Plus Input/Output (external transceiver).		
DMH	0		No	D- External Pull-up Control Output.		
DPH	ŏ		No	D+ External Pull-up Control Output.		
DMLN	ŏ		No	D- External Pull-down Control Output.		
DPLN	0		No	D+ External Pull-down Control Output.		
RCV	I	ST	No	USB Receive Input (from external transceiver).		
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.		
PGEC1	"0	ST	No	Clock input pin for programming/debugging communication channel 1		
PGED2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 2.		
PGEC2	"U	ST	No	Clock input pin for programming/debugging communication channel 2.		
PGED3	1/O	ST	No	Data I/O pin for programming/debugging communication channel 2.		
PGEC3	"0	ST	No	Clock input pin for programming/debugging communication channel 3		
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the		
NOLI		01		device.		
4VDD (2)	Р	Р	No	Positive supply for analog modules. This pin must be connected at all		
-		-		times.		
AVss	Р	Р	No	Ground reference for analog modules.		
VDD	Р		No	Positive supply for peripheral logic and I/O pins.		
VCAP	P		No	CPU logic filter capacitor connection.		
Vss	P		No	Ground reference for logic and I/O pins.		
VREF+		Analog	No	Analog voltage reference (high) input.		
VREF-		Analog	No	Analog voltage reference (low) input.		

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

O = Output

I = Input

TTL = TTL input buffer

Note 1: This pin is available on dsPIC33EPXXXMU806/810/814 devices only.

2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS AND MICROCONTROLLERS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com)
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of 16-bit DSC and microcontrollers requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins (regardless if ADC module is not used)

(see Section 2.2 "Decoupling Capacitors")
• VCAP

(see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")

- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used

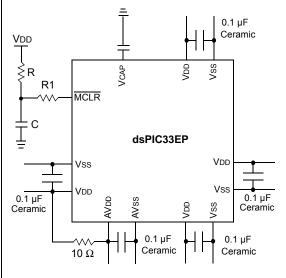
(see Section 2.6 "External Oscillator Pins")

Additionally, the following pins may be required:

- VUSB pin is used when utilizing the USB module. If the USB module is not used, VUSB must be connected to VDD.
- VREF+/VREF- pins is used when external voltage reference for ADC module is implemented

Note: The AVDD and AVSS pins must be connected independent of the ADC voltage reference source.

2.2 Decoupling Capacitors


The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, VUSB, AVDD and AVSs is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10-20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended to use ceramic capacitors.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, above tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB track inductance.

^{© 2009-2011} Microchip Technology Inc.

2.2.1 TANK CAPACITORS

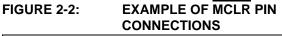
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

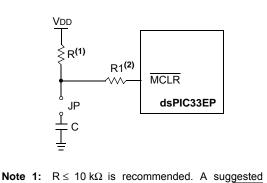
2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 1 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor greater than 4.7 μ F (10 μ F is recommended), 16V connected to ground. The type can be ceramic or tantalum. See **Section 32.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceeds one-quarter inch (6 mm). See Section 29.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:


- Device Reset
- · Device Programming and Debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the $\overline{\text{MCLR}}$ pin during programming and debugging operations.

Place the components as shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

- Iote 1: R ≤ 10 kΩ is recommended. A suggested
starting value is 10 kΩ Ensure that the MCLR
pin VIH and VIL specifications are met.
 - 2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into \underline{MCLR} from the external capacitor C, in the event of \underline{MCLR} pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the \underline{MCLR} pin VIH and VIL specifications are met.

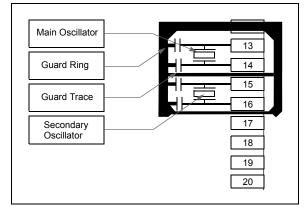
2.5 ICSP Pins

The PGECx and PGEDx pins are used for ICSP and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] PICkit[™] 3, MPLAB ICD 3, or MPLAB REAL ICE[™].

For more information on MPLAB ICD 3 and MPLAB REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.


- "Using MPLAB[®] ICD 3" (poster) DS51765
- "MPLAB[®] ICD 3 Design Advisory" DS51764
- "MPLAB[®] REAL ICE™ In-Circuit Emulator User's Guide" DS51616
- *"Using MPLAB[®] REAL ICE™"* In-Circuit Emulator (poster) DS51749

2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator. For details, see **Section 9.0 "Oscillator Configuration"** for details.

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 3 MHz < FIN < 5.5 MHz to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration Word.

2.8 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and unused pins and drive the output to logic low.

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 2. "CPU" (DS70359) in the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 CPU have a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for digital signal processing. The CPU has a 24-bit instruction word, with a variable length opcode field. The Program Counter (PC) is 24 bits wide and addresses up to 4M x 24 bits of user program memory space.

An instruction prefetch mechanism helps maintain throughput and provides predictable execution. Most instructions execute in a single-cycle effective execution rate, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction, PSV accesses, and the table instructions. Overhead free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

3.1 Registers

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices have sixteen 16-bit Working registers in the programmer's model. Each of the Working registers can act as a data, address or address offset register. The 16th Working register (W15) operates as a software Stack Pointer for interrupts and calls.

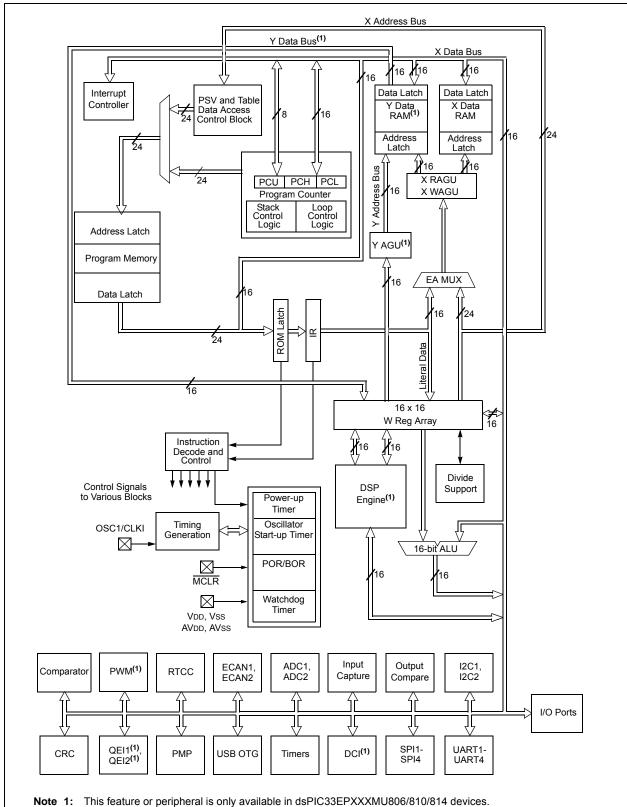
3.2 Instruction Set

The dsPIC33EPXXXMU806/810/814 instruction set has two classes of instructions: the MCU class of instructions and the DSP class of instructions. The PIC24EPXXXGU810/814 instruction set has the MCU class of instructions and does not support DSP instructions. These two instruction classes are seamlessly integrated into the architecture and execute from a single execution unit. The instruction set includes many addressing modes and was designed for optimum C compiler efficiency.

3.3 Data Space Addressing

The base data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operate solely through the X memory AGU, which accesses the entire memory map as one linear data space. On dsPIC33EPXXXMU806/ 810/814 devices, certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device specific.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary. The program-to-dataspace mapping feature, known as Program Space Visibility (PSV), lets any instruction access program space as if it were data space. Moreover, the Base Data Space address is used in conjunction with a read or write page register (DSRPAG or DSWPAG) to form an Extended Data Space (EDS) address. The EDS can be addressed as 8 Mwords or 16 Mbytes. Refer to **Section 3. "Data Memory"** (DS70595) and **Section 4. "Program Memory"** (DS70613) in the *"dsPIC33E/ PIC24E Family Reference Manual"* for more details on EDS, PSV and table accesses.


On dsPIC33EPXXXMU806/810/814 devices, overhead-free circular buffers (Modulo Addressing) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundarychecking overhead for DSP algorithms. The X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reverse Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms. PIC24EPXXXGU810/814 devices do not support Modulo and Bit-Reverse Addressing.

3.4 Addressing Modes

The CPU supports these addressing modes:

- Inherent (no operand)
- Relative
- Literal
- Memory Direct
- Register Direct
- Register Indirect

Each instruction is associated with a predefined Addressing mode group, depending upon its functional requirements. As many as six Addressing modes are supported for each instruction.

FIGURE 3-1: dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 CPU BLOCK DIAGRAM

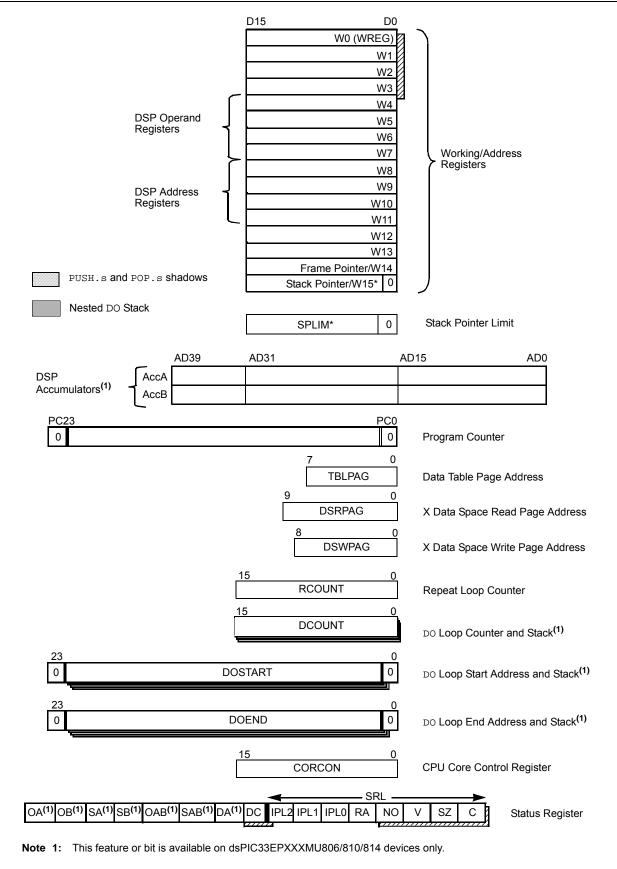
3.5 **Programmer's Model**

The programmer's model for the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 is shown in Figure 3-2. All registers in the programmer's model are memory mapped and can be manipulated directly by instructions. Table 3-1 lists a description of each register.

In addition to the registers contained in the programmer's model, the dsPIC33EPXXXMU806/810/ 814 and PIC24EPXXXGU810/814 devices contain control registers for Modulo Addressing (dsPIC33EPXXXMU806/810/814 devices only), Bit-Reversed Addressing (dsPIC33EPXXXMU806/810/ 814 devices only) and interrupts. These registers are described in subsequent sections of this document.

All registers associated with the programmer's model are memory mapped, as shown in Table 4-1.

Register(s) Name	Description
W0 through W15	Working register array
ACCA, ACCB	40-bit DSP Accumulators
PC	23-bit Program Counter
SR	ALU and DSP Engine Status register
SPLIM	Stack Pointer Limit Value register
TBLPAG	Table Memory Page Address register
DSRPAG	Extended Data Space (EDS) Read Page register
DSWPAG	Extended Data Space (EDS) Write Page register
RCOUNT	REPEAT Loop Count register
DCOUNT ⁽¹⁾	DO Loop Count register
DOSTARTH ^(1,2) , DOSTARTL ^(1,2)	DO Loop Start Address register (High and Low)
DOENDH ⁽¹⁾ , DOENDL ⁽¹⁾	DO Loop End Address register (High and Low)
CORCON	Contains DSP Engine, DO Loop control and trap status bits


TABLE 3-1: PROGRAMMER'S MODEL REGISTER DESCRIPTIONS

Note 1: This register is available on dsPIC33EPXXXMU806/810/814 devices only.

2: The DOSTARTH and DOSTARTL registers are read-only.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

3.6 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R -0	R/W-0
0A ⁽¹⁾	OB ⁽¹⁾	SA ^(1,4)	SB ^(1,4)	OAB ⁽¹⁾	SAB ⁽¹⁾	DA ⁽¹⁾	DC
bit 15				·		•	bit 8
R/W-0 ^(2,3)	R/W-0 ^(2,3)	R/W-0 ^(2,3)	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0>		RA	N	OV	Z	С
bit 7				·			bit 0
Legend:				U = Unimpler	nented bit, read	as '0'	
R = Readable bit		W = Writable I	bit	C = Clearable bit			

R = Readable b	it W = Writable bit	C = Clearable bit	
-n = Value at PO	DR '1'= Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	OA: Accumulator A Overflow Status bit ⁽¹⁾		

	 1 = Accumulator A has overflowed 0 = Accumulator A has not overflowed
bit 14	OB: Accumulator B Overflow Status bit ⁽¹⁾ 1 = Accumulator B has overflowed 0 = Accumulator B has not overflowed
bit 13	 SA: Accumulator A Saturation 'Sticky' Status bit^(1,4) 1 = Accumulator A is saturated or has been saturated at some time 0 = Accumulator A is not saturated
bit 12	 SB: Accumulator B Saturation 'Sticky' Status bit^(1,4) 1 = Accumulator B is saturated or has been saturated at some time 0 = Accumulator B is not saturated
bit 11	OAB: OA OB Combined Accumulator Overflow Status bit ⁽¹⁾ 1 = Accumulators A or B have overflowed 0 = Neither Accumulators A or B have overflowed
bit 10	 SAB: SA SB Combined Accumulator 'Sticky' Status bit⁽¹⁾ 1 = Accumulators A or B are saturated or have been saturated at some time 0 = Neither Accumulator A or B are saturated
bit 9	DA: Do Loop Active bit ⁽¹⁾ 1 = DO loop in progress 0 = DO loop not in progress
bit 8	 DC: MCU ALU Half Carry/Borrow bit 1 = A carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data) of the result occurred 0 = No carry-out from the 4th low order bit (for byte-sized data) or 8th low order bit (for word-sized data) of the result occurred

- **Note 1:** This bit is available on dsPIC33EPXXXMU806/810/814 devices only.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
 - **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾ 111 = CPU Interrupt Priority Level is 7 (15, user interrupts disabled) 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C: MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1.
 - 3: The IPL<2:0> Status bits are read only when NSTDIS = 1 (INTCON1<15>).
 - **4:** A data write to the SR register can modify the SA and SB bits by either a data write to SA and SB or by clearing the SAB bit. To avoid a possible SA or SB bit write race condition, the SA and SB bits should not be modified using bit operations.

R/W-0	U-0	R/W-0 R/W-0	R/W-0	R-0	R-0	R-0
VAR		US<1:0> ⁽¹⁾	EDT ^(1,2)		DL<2:0> ⁽¹⁾	
bit 15						bit 8
R/W-0	R/W-0	R/W-1 R/W-0	R/C-0	R-0	R/W-0	R/W-0
SATA ⁽¹⁾	SATB ⁽¹⁾	SATDW ⁽¹⁾ ACCSAT ⁽¹⁾) IPL3 ⁽³⁾	SFA	RND ⁽¹⁾	IF ⁽¹⁾
bit 7						bit (
Legend:						
R = Readabl	e hit	W = Writable bit	U = Unimplen	nented hit re	ad as '0'	
-n = Value at		'1' = Bit is set	'0' = Bit is clea		x = Bit is unkn	own
		1 - Dit 13 36t		areu		OWIT
bit 15		e Exception Processing Late exception processing enable				
		ception processing enabled				
bit 14	Unimplemer	nted: Read as '0'				
bit 13-12	US<1:0>: DS 11 = Reserve	SP Multiply Unsigned/Signed	d Control bits			
		gine multiplies are mixed-si	an			
	01 = DSP en	igine multiplies are unsigned igine multiplies are signed				
bit 11	EDT: Early D	O Loop Termination Control	bit ^(1,2)			
	1 = Terminate 0 = No effect	e executing DO loop at end c	of current loop ite	eration		
bit 10-8	DL<2:0>: DO 111 = 7 DO k	Loop Nesting Level Status	bits			
	•					
	•					
	•					
	$001 = 1 \text{ DO } \mathbf{k}$ $000 = 0 \text{ DO } \mathbf{k}$	•				
bit 7		Saturation Enable bit				
	1 = Accumula	ator A saturation enabled				
	0 = Accumula	ator A saturation disabled				
bit 6		Saturation Enable bit				
		ator B saturation enabled ator B saturation disabled				
bit 5		a Space Write from DSP En	gine Saturation	Enable bit		
bit 0		ce write saturation enabled				
	0 = Data spa	ce write saturation disabled				
bit 4		cumulator Saturation Mode	Select bit			
		iration (super saturation)				
1.1.0		iration (normal saturation)	L:L o(3)			
bit 3		nterrupt Priority Level Status rrupt priority level is greater				
		rrupt priority level is 7 or les				
		e on dsPIC33EPXXXMU806	6/810/814 device	es only.		
2: Th	nis bit is always	read as '0'.				
· ·						

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

- bit 2 SFA: Stack Frame Active Status bit
 - 1 = Stack frame is active. W14 and W15 address 0x0000 to 0xFFFF, regardless of DSRPAG and DSW-PAG values
 - 0 = Stack frame is not active. W14 and W15 address of EDS or Base Data Space
- bit 1 RND: Rounding Mode Select bit
 - 1 = Biased (conventional) rounding enabled
 - 0 = Unbiased (convergent) rounding enabled
- bit 0 IF: Integer or Fractional Multiplier Mode Select bit 1 = Integer mode enabled for DSP multiply 0 = Fractional mode enabled for DSP multiply
- Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.
 - 2: This bit is always read as '0'.
 - 3: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The core CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit divisor division.

3.7.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier, the ALU supports unsigned, signed, or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit signed x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 1. 32-bit signed/16-bit signed divide
- 2. 32-bit unsigned/16-bit unsigned divide
- 3. 16-bit signed/16-bit signed divide
- 4. 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine (dsPIC33EPXXXMU806/810/814 Devices Only)

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a 40-bit barrel shifter and a 40-bit adder/subtracter (with two target accumulators, round and saturation logic).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- Fractional or integer DSP multiply (IF)
- · Signed, unsigned, or mixed-sign DSP multiply (US)
- Conventional or convergent rounding (RND)
- · Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACC-SAT)

TABLE 3-2:	DSP INSTRUCTIONS
	SUMMARY

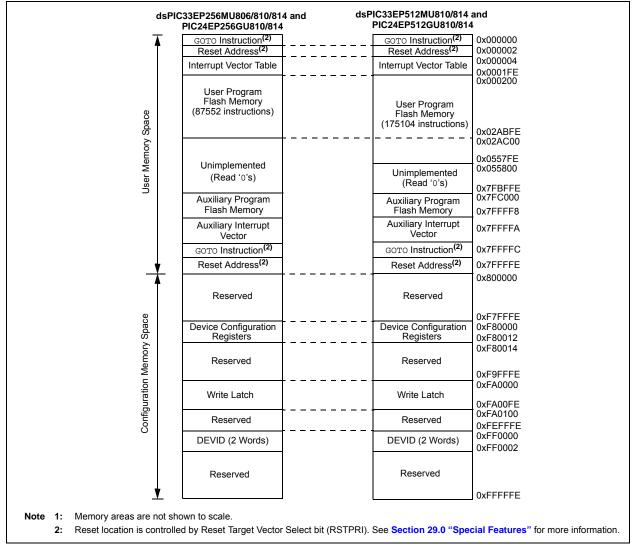
Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	$A = x^2$	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 4. "Program Memory" (DS70613) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

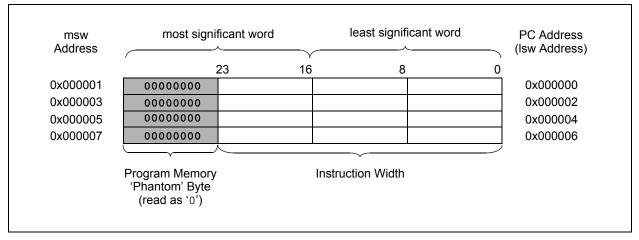

4.1 Program Address Space

The program address memory space of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit PC during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33EPXXXMU806/810/ 814 and PIC24EPXXXGU810/814 devices is shown in Figure 4-1.

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices the reserve addresses between 0x00000 and 0x000200 for hardcoded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at address 0x000000 of the primary Flash memory or at address 0x7FC000 of the auxiliary Flash memory, with the actual address for the start of code at address 0x000002 of the primary Flash memory or at address 0x7FC002 of the auxiliary Flash memory. Reset Target Vector Select bit (RSTPRI) in the FPOR Configuration register controls whether primary or auxiliary Flash Reset location is used.

A more detailed discussion of the interrupt vector tables is provided in **Section 7.1** "Interrupt Vector **Table**".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 CPU has a separate 16-bit wide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps are shown in Figure 4-3, Figure 4-4, Figure 4-5 and Figure 4-6.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a base data space address range of 64 Kbytes or 32K words.

The base data space address is used in conjunction with a read or write page register (DSRPAG or DSWPAG) to form an extended data space, which has a total address range of 16 MBytes.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices implement up to 56 Kbytes of data memory. If an EA point to a location outside of this area, an all-zero word or byte is returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

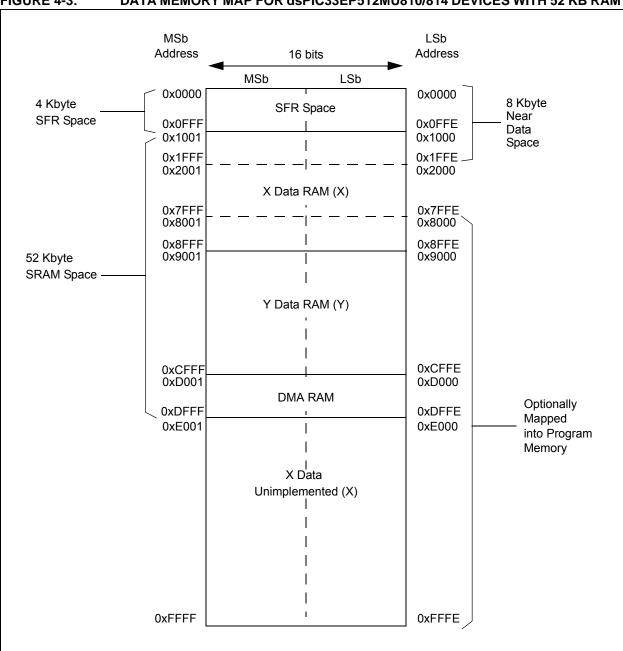
To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] results in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

A data byte read, reads the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decode but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction underway is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

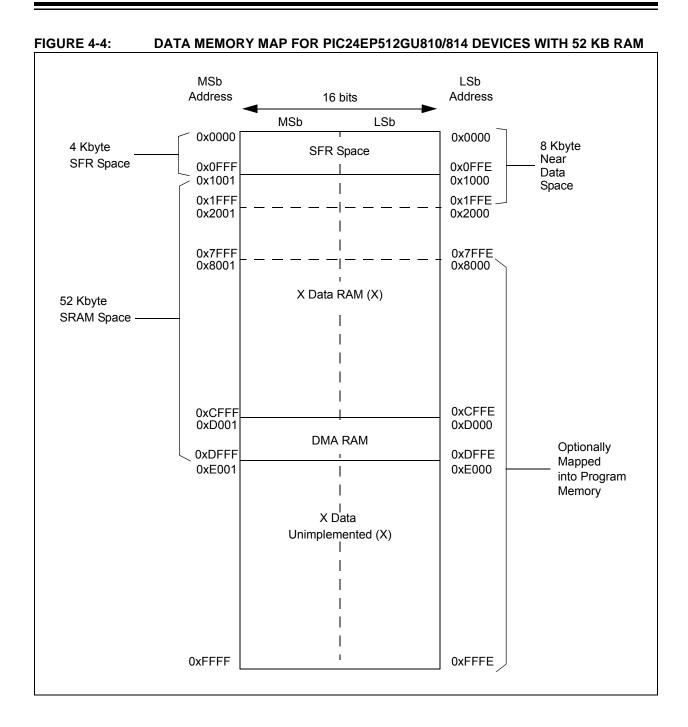
All byte loads into any W register are loaded into the LSB. The MSB is not modified.

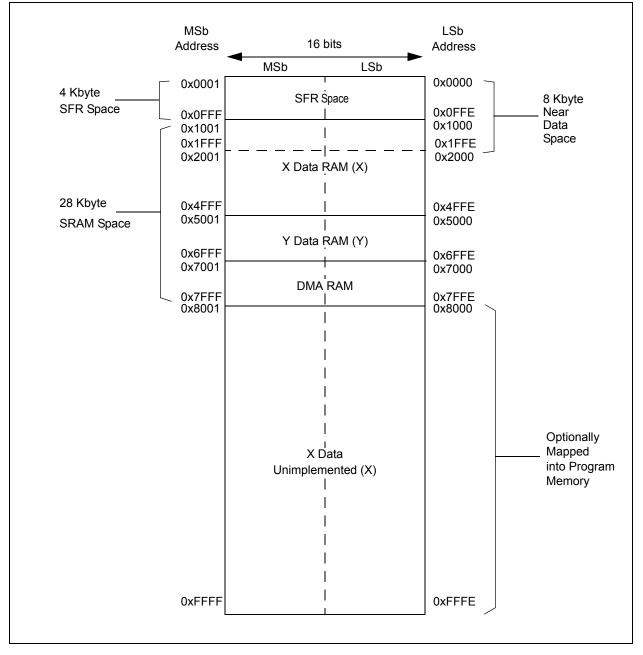
A Sign-Extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternatively, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a Zero-Extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE


The first 4 Kbytes of the Near Data Space, from 0x0000 to 0x0FFF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.


Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.


4.2.4 NEAR DATA SPACE

The 8 Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable through a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode using a working register as an Address Pointer.

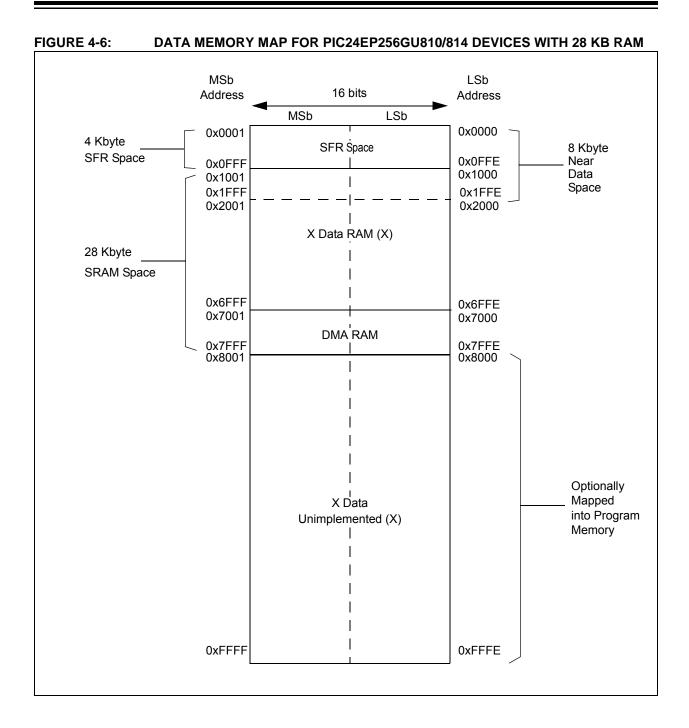


FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33EP512MU810/814 DEVICES WITH 52 KB RAM

FIGURE 4-5: DATA MEMORY MAP FOR dsPIC33EP256MU806/810/814 DEVICES WITH 28 KB RAM

4.2.5 X AND Y DATA SPACES

The dsPIC33EPXXXMU806/810/814 core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The PIC24EPXXXGU810/814 devices do not have a Y data space and a Y AGU. For these devices, the entire data space is treated as X data space.

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space. Modulo Addressing and Bit-Reversed Addressing are not present in PIC24EPXXXGU810/ 814 devices.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

4.2.6 DMA RAM

Each dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 device contains 4 Kbytes of dual ported DMA RAM located at the end of Y data RAM and is part of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA Controller module. DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note 1: DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

> 2: On PIC24EPXXXGU810/814 devices, DMA RAM is located at the end of X data RAM and is part of X data space.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000								W0 (WR	EG)								0000
W1	0002								W1									0000
W2	0004								W2									0000
W3	0006								W3									0000
W4	8000								W4									0000
W5	000A								W5									0000
W6	000C								W6									0000
W7	000E								W7									0000
W8	0010								W8									0000
W9	0012								W9									0000
W10	0014								W10									0000
W11	0016								W11									0000
W12	0018								W12									0000
W13	001A								W13									0000
W14	001C								W14									0000
W15	001E		W14 W15														0000	
SPLIM	0020								SPLIN	1								0000
ACCAL	0022								ACCA	L								0000
ACCAH	0024								ACCA	Н								0000
ACCAU	0026			Sig	gn-extensior	of ACCA<	39>						ACC	CAU				0000
ACCBL	0028								ACCB	L								0000
ACCBH	002A								ACCB	Н								0000
ACCBU	002C			Sig	gn-extensior	n of ACCB<	39>						ACC	CBU				0000
PCL	002E								PCL								_	0000
PCH	0030	_	_	-			_	_	—	_				PCH				0000
DSRPAG	0032	_	_	_	_	_	_					DSRF	PAG					0001
DSWPAG	0034	_	_				_						DSWPAG					0001
RCOUNT	0036								RCOUN	T								0000
DCOUNT	0038								DCOUN	T								0000
DOSTARTL	003A							D	OSTARTL									0000
DOSTARTH	003C	_		_		_	—							DOST	TARTH			0000
DOENDL	003E	•							DOENDL			•						0000
DOENDH	0040	_	_	_	_	_	_	_	_	_	_			DOE	NDH			0000

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

TABLE 4-1: CPU CORE REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY (CONTINUED)

												•		,				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	_	US<	1:0>	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	SFA	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	_	_		BWM	<3:0>			YWM<	:3:0>			XWM<	<3:0>		0000
XMODSRT	0048		XMODSRT<15:0> —														0000	
XMODEND	004A																0001	
YMODSRT	004C							YMC	DSRT<15:0	>							—	0000
YMODEND	004E							YMO	DEND<15:0	>							_	0001
XBREV	0050	BREN							XBF	REV<14:0>								0000
DISICNT	0052	_	_							DISICNT<	13:0>							0000
TBLPAG	0054	_	_		-	_	-	_	-				TBLPA	G<7:0>				0000
MSTRPR	0058								MSTRPR<	:15:0>								0000
Logondu		implomente	d rood oo '	o' Deastur	luce ere ek	ours in hours	dealmal											

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70616C-page 50

TABLE	4-2:	CPU C	CORE RE	EGISTEI	R MAP I	FOR PIC	24EPX	XXGU81	0/814 D	EVICES	ONLY			-				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
W0	0000							-	W0 (WR	EG)		-				-		0000
W1	0002								W1									0000
W2	0004								W2									0000
W3	0006								W3									0000
W4	0008								W4									0000
W5	000A								W5									0000
W6	000C								W6									0000
W7	000E								W7									0000
W8	0010								W8									0000
W9	0012								W9									0000
W10	0014		W10 W11														0000	
W11	0016			W11														0000
W12	0018								W12									0000
W13	001A								W13									0000
W14	001C								W14									0000
W15	001E								W15									0000
SPLIM	0020								SPLIN	1							T	0000
PCL	002E							-	PCL								—	0000
PCH	0030	_	—	—	—	—	—	—	_	—				PCH				0000
DSRPAG	0032	_	—	—	—	—	—					DSRPA	G<9:0>					0001
DSWPAG	0034	_	—	_	—	—	_	—				DS	SWPAG<8:0)>				0001
RCOUNT	0036								RCOUNT<	15:0>	1	1	1	1	1	1		0000
SR	0042	_	_						DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	VAR	—	_	_	_		—	_	_		_	_	IPL3	SFA	_	—	0020
DISICNT	0052	—	_							DISICNT<	<13:0>							0000
TBLPAG	0054	—	_		_	_		—	_				TBLPA	G<7:0>				0000
MSTRPR	0058		ad read as						MSTRPR<	15:0>								0000

D1 4 0 EOD DIOGAEDWWWOLIOAA/044 DEWIOEO ONIL W

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	RTCIF	DMA5IF	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_	_	_	_	QEI2IF	_	PSESMIF	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	_	—	U3TXIF	U3RXIF	U3EIF		0000
IFS6	080C	—	_	—	—	_	—	_	—	_	—	_	PWM7IF	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	_	—	—	—	—	_	0000
IFS8	0810	—	ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF	—	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	—	RTCIE	DMA5IE	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	—	—	—	—	QEI2IE	—	PSESMIE	—	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	—	0000
IEC5	082A	PWM2IE	PWM1IE	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE		_	U3TXIE	U3RXIE	U3EIE	_	0000
IEC6	082C	_	—	_	_	_	_	_	—	_	—		PWM7IE	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE		_	_	_	_	_	0000
IEC8	0830	—	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	—	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840	—		T1IP<2:0>	•	_		OC1IP<2:03	>	_		IC1IP<2:0>		—	1	NT0IP<2:0	>	4444
IPC1	0842	_		T2IP<2:0>	,	_		OC2IP<2:03	>	_		IC2IP<2:0>		_	D	MA0IP<2:0)>	4444
IPC2	0844	_	ι	U1RXIP<2:)>	_		SPI1IP<2:0	>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_		NVMIP<2:0	>	_		DMA1IP<2:0)>	_		AD1IP<2:0>			ι	J1TXIP<2:0	>	4444
IPC4	0848	_		CNIP<2:02	>	_		CMIP<2:0>	•	_		MI2C1IP<2:0	>	_	S	I2C1IP<2:0)>	4444
IPC5	084A	_		IC8IP<2:0	>	_		IC7IP<2:0>	•	_		AD2IP<2:0>		_	1	NT1IP<2:0	>	4444
IPC6	084C	—		T4IP<2:0>	•	—		OC4IP<2:0	>	—		OC3IP<2:0>		—	D	MA2IP<2:0)>	4444
IPC7	084E	—	l	U2TXIP<2:)>	—		U2RXIP<2:0)>	—		INT2IP<2:0>	•	—		T5IP<2:0>		4444
IPC8	0850	—		C1IP<2:0>	•	_		C1RXIP<2:0)>	_		SPI2IP<2:0>		—	S	PI2EIP<2:0)>	4444
IPC9	0852	—		IC5IP<2:0	>	—		IC4IP<2:0>	•	—		IC3IP<2:0>		—	D	MA3IP<2:0)>	4444
IPC10	0854	—		OC7IP<2:0	>	—		OC6IP<2:0	>	—		OC5IP<2:0>		—		IC6IP<2:0>	•	4444
IPC11	0856	—		T6IP<2:0>	•		DMA4IP<2:0>			—		PMPIP<2:0>		_	(OC8IP<2:0	>	4444
IPC12	0858	_		T8IP<2:0>	•	_	MI2C2IP<2:0>			_		SI2C2IP<2:0	>	_		T7IP<2:0>		4444
IPC13	085A		(C2RXIP<2:)>	_	INT4IP<2:0>			_		INT3IP<2:0>	•	_		T9IP<2:0>		4444
IPC14	085C	_		DCIEIP<2:()>	_		QEI1IP<2:0	>	_		PSEMIP<2:0	>			C2IP<2:0>		4444
IPC15	085E	—	_	_	_			RTCIP<2:0	>	_		DMA5IP<2:0	>	_		DCIIP<2:0>	>	0444
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>		_	_	_	_	4440

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
IPC17	0862	_	(C2TXIP<2:	0>	_		C1TXIP<2:0	>	_		DMA7IP<2:0:	>	_	D	MA6IP<2:0)>	4444
IPC18	0864	_	-	QEI2IP<2:0)>	_	_	_	_	_	-	PSESMIP<2:0)>		_	_	_	4040
IPC20	0868	_	l	U3TXIP<2:	0>	_	I	J3RXIP<2:0	>	_		U3EIP<2:0>		_	_			4440
IPC21	086A	_		U4EIP<2:0	>	_		JSB1IP<2:0	>	_			_	_	_			4400
IPC22	086C	-		SPI3IP<2:0)>	_	Ś	SPI3EIP<2:0	>	_		U4TXIP<2:0	•	_	U	4RXIP<2:0	>	4444
IPC23	086E	_	F	WM2IP<2:	0>	_	F	PWM1IP<2:0)>	_		IC9IP<2:0>			(DC9IP<2:0>	>	4444
IPC24	0870	_	F	WM6IP<2:	0>	_	F	PWM5IP<2:0)>	_		PWM4IP<2:0	>		P	WM3IP<2:0)>	4444
IPC25	0872	_	_		_	_	_	_			_	l	_	l	P	WM7IP<2:0)>	0004
IPC29	087A	_	[DMA9IP<2:	0>	_	[DMA8IP<2:0	>		_		_			_	_	4400
IPC30	087C	_		SPI4IP<2:0)>	_	S	SPI4EIP<2:0	>	_		DMA11IP<2:0	>	_	DI	MA10IP<2:0	0>	4444
IPC31	087E	_		IC11IP<2:0)>	_		OC11IP<2:0	>	_		IC10IP<2:0>		_	C	C10IP<2:0	>	4444
IPC32	0880	_	D	MA13IP<2	:0>	_	D	MA12IP<2:0)>	_		IC12IP<2:0>		_	C	C12IP<2:0	>	4444
IPC33	0882	_		IC13IP<2:0)>	_	(OC13IP<2:0	>	_	_		_	_	DI	MA14IP<2:0	0>	4404
IPC34	0884	—		IC15IP<2:0)>	—	(OC15IP<2:0	>	—		IC14IP<2:0>		_	C	C14IP<2:0	>	4444
IPC35	0886	—	—	—	—	—		ICDIP<2:0>		_		IC16IP<2:0>		_	C	C16IP<2:0	>	0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	-	_	_		INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	_	_	_	_	_	_		_	UAE	DAE	DOOVR		_	_	_	0000
INTCON4	08C6	—	—	_	_	—		—	_	_		_	—	_	_	—	SGHT	0000
INTTREG	08C8	_	_	_	_		ILR<	:3:0>					VECNUM<	7:0>				0000

TABLE 4-3: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	RTCIF	DMA5IF	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_	_	_	_	QEI2IF	_	PSESMIF	—	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF		0000
IFS5	080A	PWM2IF	PWM1IF	IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	_	_	U3TXIF	U3RXIF	U3EIF		0000
IFS6	080C	_	_	_	_	_	_	_	—	_	_	_	_	PWM6IF	PWM5IF	PWM4IF	PWM3IF	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	_	_	_		_		0000
IFS8	0810	_	ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF	_	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	RTCIE	DMA5IE	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	—	—	—	—	QEI2IE	—	PSESMIE	—	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	—	0000
IEC5	082A	PWM2IE	PWM1IE	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	_	—	U3TXIE	U3RXIE	U3EIE	—	0000
IEC6	082C	—	—	—	—	—	—	—	—	_	—	_	—	PWM6IE	PWM5IE	PWM4IE	PWM3IE	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE	_	—	—	—	—	—	0000
IEC8	0830	_	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	—	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840	_		T1IP<2:0	>	_		OC1IP<2:02	>	_		IC1IP<2:0>		_	1	NT0IP<2:0	>	4444
IPC1	0842	_		T2IP<2:0	>	_		OC2IP<2:0	>	_		IC2IP<2:0>		_	D	MA0IP<2:0)>	4444
IPC2	0844	_	I	U1RXIP<2:	0>	_		SPI1IP<2:0	>	_		SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846			NVMIP<2:0)>	_		DMA1IP<2:0	>	—		AD1IP<2:0>	•	—	ι	11TXIP<2:0	>	4444
IPC4	0848	—		CNIP<2:0	>	—		CMIP<2:0>		—		MI2C1IP<2:0	>	—	S	I2C1IP<2:0)>	4444
IPC5	084A	_		IC8IP<2:0	>	_		IC7IP<2:0>		_		AD2IP<2:0>	•	_	1	NT1IP<2:0	>	4444
IPC6	084C	_		T4IP<2:0	>	_		OC4IP<2:02	>	_		OC3IP<2:0>	•	_	D	MA2IP<2:0)>	4444
IPC7	084E	_		U2TXIP<2:	0>	_		U2RXIP<2:0	>	_		INT2IP<2:0>	•	_		T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:02	>	—		C1RXIP<2:0	>	_		SPI2IP<2:0>	•	_	S	PI2EIP<2:0)>	4444
IPC9	0852	—		IC5IP<2:0	>	—		IC4IP<2:0>		—		IC3IP<2:0>		—	D	MA3IP<2:0)>	4444
IPC10	0854	_		OC7IP<2:0)>	_	OC6IP<2:0>			_		OC5IP<2:0>	•	_		IC6IP<2:0>	•	4444
IPC11	0856	_		T6IP<2:0	>	_	DMA4IP<2:0>			_		PMPIP<2:0>	•	_	(DC8IP<2:0	>	4444
IPC12	0858	—		T8IP<2:0	>	—		MI2C2IP<2:0)>	_		SI2C2IP<2:0	>	—		T7IP<2:0>		4444
IPC13	085A		(C2RXIP<2:	0>	_		INT4IP<2:0	>	_		INT3IP<2:0>	•	_		T9IP<2:0>		4444
IPC14	085C			DCIEIP<2:	0>	_		QEI1IP<2:0	>	_		PSEMIP<2:0	>	_		C2IP<2:0>		4444
IPC15	085E	—	—	—	—	_		RTCIP<2:0	>	_		DMA5IP<2:0	>	_		DCIIP<2:0>	>	0444
IPC16	0860	_		CRCIP<2:0)>			U2EIP<2:0>	>			U1EIP<2:0>						4440

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC17	0862	_	(C2TXIP<2:	0>	_		C1TXIP<2:0	>	_		DMA7IP<2:0	>		D	MA6IP<2:0)>	4444
IPC18	0864	_		QEI2IP<2:0)>	_	_	_		_	l	PSESMIP<2:0)>		_	_	—	4040
IPC20	0868	_	l	U3TXIP<2:(0>	_		U3RXIP<2:0	>	_		U3EIP<2:0>			_	_	—	4440
IPC21	086A	_		U4EIP<2:0	>	_		USB1IP<2:0	>	_	_		_	_	_	_	_	4400
IPC22	086C	_		SPI3IP<2:0)>	_		SPI3EIP<2:0	>	_		U4TXIP<2:0	>		U	4RXIP<2:0	>	4444
IPC23	086E	_	F	WM2IP<2:	0>	_		PWM1IP<2:0	>	_		IC9IP<2:0>			(DC9IP<2:0	>	4444
IPC24	0870	_	F	WM6IP<2:	0>	_		PWM5IP<2:0	>	-		PWM4IP<2:0	<		P	WM3IP<2:0)>	4444
IPC29	087A	_	[DMA9IP<2:	0>	_		DMA8IP<2:0	>	_	-	_	_	_	_	_	_	4400
IPC30	087C	_		SPI4IP<2:0)>	_		SPI4EIP<2:0	>	_		DMA11IP<2:0	~	_	DI	MA10IP<2:	0>	4444
IPC31	087E	_		IC11IP<2:0)>	_		OC11IP<2:0	>	_		IC10IP<2:0>		_	C	C10IP<2:0	>	4444
IPC32	0880	_	D	MA13IP<2	:0>	_	[) MA12IP<2:0)>	_		IC12IP<2:0>		_	C	C12IP<2:0	>	4444
IPC33	0882	_		IC13IP<2:0)>	_		OC13IP<2:0	>	_	-	_	_	_	DI	MA14IP<2:	0>	4404
IPC34	0884	_		IC15IP<2:0)>	_		OC15IP<2:0	>	_		IC14IP<2:0>		_	C	C14IP<2:0	>	4444
IPC35	0886	_	_	_		_		ICDIP<2:0>		_		IC16IP<2:0>		_	C	C16IP<2:0	>	0444
INTCON1	08C0	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	08C2	GIE	DISI	SWTRAP	_	_	_	_	_	_	-	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	_	—	_	_	_	_	_	UAE	DAE	DOOVR	—	_	_	—	0000
INTCON4	08C6		_		_	_		_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8		_	_	_	_		ILR	<3:0>	•			VEC	CNUM<7:0>				0000

TABLE 4-4: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	RTCIF	DMA5IF	DCIIF	DCIEIF	QEI1IF	PSEMIF	C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_	_	—	_	QEI2IF	_	PSESMIF	_	C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_	0000
IFS5	080A	PWM2IF	PWM1IF	IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	_	_	U3TXIF	U3RXIF	U3EIF	_	0000
IFS6	080C	_					_		_	_		_	_	_	_	PWM4IF	PWM3IF	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	_	_	_			_	0000
IFS8	0810	_	ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF	_	DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826	_	RTCIE	DMA5IE	DCIIE	DCIEIE	QEI1IE	PSEMIE	C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	_		_	_	QEI2IE	_	PSESMIE	_	C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	PWM2IE	PWM1IE	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE	_	_	U3TXIE	U3RXIE	U3EIE		0000
IEC6	082C	_					_		_	_		_	_	_	_	PWM4IE	PWM3IE	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE DMA11IE DMA10IE D		DMA9IE	DMA8IE	_	_	_		_	_	0000	
IEC8	0830	_	ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE	_	DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840	_		T1IP<2:0>		_		OC1IP<2:0	>	_		IC1IP<2:0>		_		NT0IP<2:0>		4444
IPC1	0842	_		T2IP<2:0>	•			OC2IP<2:0	>	_		IC2IP<2:0>		_	C	MA0IP<2:0	>	4444
IPC2	0844	_		U1RXIP<2:)>	_		SPI1IP<2:0	>	_	:	SPI1EIP<2:0	>	_		T3IP<2:0>		4444
IPC3	0846	_		NVMIP<2:0	>		[DMA1IP<2:0)>	_		AD1IP<2:0	•	_	ι	J1TXIP<2:0	>	4444
IPC4	0848	_		CNIP<2:0	>	_		CMIP<2:0>		_		MI2C1IP<2:0	>	_	s	SI2C1IP<2:0	>	4444
IPC5	084A	_		IC8IP<2:0	>	_		IC7IP<2:0>		_		AD2IP<2:0	•	_		NT1IP<2:0>		4444
IPC6	084C	_		T4IP<2:0>		_		OC4IP<2:0	>	_		OC3IP<2:02	>	_	C	MA2IP<2:0	>	4444
IPC7	084E	_		U2TXIP<2:0)>	_	l	J2RXIP<2:0)>	_		INT2IP<2:0	>	_		T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0>	•		(C1RXIP<2:0)>	_		SPI2IP<2:0	>	_	S	PI2EIP<2:0	>	4444
IPC9	0852	_		IC5IP<2:02	>	_		IC4IP<2:0>		_		IC3IP<2:0>		_	C	MA3IP<2:0	>	4444
IPC10	0854	_		OC7IP<2:0	>	_		OC6IP<2:0	>	_		OC5IP<2:02	>	_		IC6IP<2:0>		4444
IPC11	0856	_		T6IP<2:0>		_	DMA4IP<2:0>			_		PMPIP<2:0	>	_		OC8IP<2:0>		4444
IPC12	0858	_		T8IP<2:0>	•		MI2C2IP<2:0>			_		SI2C2IP<2:0	>	_		T7IP<2:0>		4444
IPC13	085A			C2RXIP<2:)>	_	INT4IP<2:0>			_		INT3IP<2:0	>	—		T9IP<2:0>		4444
IPC14	085C	_		DCIEIP<2:0)>	_	QEI1IP<2:0>			_		PSEMIP<2:0	>	_		C2IP<2:0>		4444
IPC15	085E	_	—	—	_	_	RTCIP<2:0>			_		DMA5IP<2:0	>	_		DCIIP<2:0>		0444
IPC16	0860	_		CRCIP<2:0	>	_		U2EIP<2:0	>	_		U1EIP<2:0>	•	_	_	_	_	4440
Legend:		unimalam	ontod room	log '0' Dog	et values are		ovodooim											

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

Bit 15	l	Bit 13 C2TXIP<2:0 QEI2IP<2:0 J3TXIP<2:0 U4EIP<2:0 SPI3IP<2:0)>)> >	Bit 11 — — —	_	Bit 9 C1TXIP<2:0 —	Bit 8	Bit 7 —	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1 MA6IP<2:0>	Bit 0	All Resets
- - - -	l	QEI2IP<2:0 J3TXIP<2:0 U4EIP<2:0)>)> >	_	_	C1TXIP<2:0	>		[DMA7IP<2:0	>	_	D	MA6IP<2.0>	>	4444
	l	J3TXIP<2:0)> >										2			
		U4EIP<2:0	>	—	l		_	—	Р	SESMIP<2:0)>	_	_	_	—	4040
_						J3RXIP<2:0)>	—		U3EIP<2:0>		_	_	_	_	4440
		SPI3IP<2:0		—	ι	JSB1IP<2:0	>	_	_	_	_	_	_	_	_	4400
	F)>		5	SPI3EIP<2:0)>	—	1	U4TXIP<2:0>	>	_	U	4RXIP<2:0>	•	4444
		WM2IP<2:	0>		F	WM1IP<2:0)>	—		IC9IP<2:0>		_	(C9IP<2:0>		4444
_	-	-				-	-	_	F	PWM4IP<2:0	>	-	P	WM3IP<2:0	>	0044
_	[DMA9IP<2:0	0>	_	[DMA8IP<2:0)>	_	-	_	_	-	-	-	_	4400
_		SPI4IP<2:0)>	_	5	SPI4EIP<2:0)>	—	C	MA11IP<2:0	>	_	DI	MA10IP<2:0	>	4444
_		IC11IP<2:0	>		(C111P<2:0	>	—		IC10IP<2:0>		_	С)C10IP<2:0>	•	4444
_	D	MA13IP<2:	:0>		D	MA12IP<2:	0>	—		IC12IP<2:0>		_	С)C12IP<2:0>	•	4444
_		IC13IP<2:0	>		(DC13IP<2:0	>	—	_	_	_	_	DI	MA14IP<2:0	>	4404
_		IC15IP<2:0	>		(DC15IP<2:0	>	—		IC14IP<2:0>		_	С)C14IP<2:0>	•	4444
_	_	_		_		ICDIP<2:0>	>	_		IC16IP<2:0>		_	С)C16IP<2:0>	•	0444
ISTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
GIE	DISI	SWTRAP	-	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	8000
_	_	_	_	_				_	UAE	DAE	DOOVR	_	_	_	_	0000
_	_			_				_	_	_	_	_	_	_	SGHT	0000
	_	_	_	_		ILR	<3:0>				VE	CNUM<7:0>				0000
- - IST G	- - TDIS IE - -		- IC13IP<2:0 - IC15IP<2:0 - IC15IP<2:0 - IC15IP<2:0 - IC15IP<2:0 - IC15IP<2:0 - IC13IP<2:0 -	IC13IP<2:0> IC13IP<2:0> IC15IP<2:0> IC15IP<2:0> IC15IP IC15IP	IC13IP<2:0> IC15IP<2:0>	IC13IP<2:0> — () IC15IP<2:0> — () IC15IP<2:0> — () IC15IP<2:0> — () IC15IP — — () IC15IP — — — () IC15IP — — — () IC15IP OVAERR OVBERR COVAERR OVATE IDISI OVBERR OVAERR COVBERR OVATE IE DISI SWTRAP — — III — — — —	Image: Second secon	IC13IP<2:0> — OC13IP<2:0> IC15IP<2:0> — OC15IP<2:0> — — — CDISIP<2:0> — — — CDISIP<2:0> — — — CDISIP<2:0> TDIS OVAERR OVBERR COVAERR OVATE OVBTE COVTE IE DISI SWTRAP — — — — — — — — — — — — —	IC13IP<2:0> — OC13IP<2:0> — IC15IP<2:0> — OC15IP<2:0> — IC15IP<2:0> — ICDIP<2:0> — IC15IP — — ICDIP<2:0> — IC15IP ICDIP ICDIP ICDIP ICDIP IC15IP ICDIP ICDIP ICDIP ICDIP <td>IC13IP<2:> — OC13IP<2:> — — IC15IP<2:> — OC15IP<2:> — — IC15IP<2:> — OC15IP<2:> — — IC15IP — — ICDIP — — IC15IP — — ICDIP ICDIP — — IC15IP OVAERR OVBERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR IE DISI SWTRAP — — — — — — — III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII</td> <td>- IC13IP<2:0> - OC13IP<2:0> - - - - IC15IP<2:0> - OC15IP<2:0> - IC14IP<2:0> - - - - - IC16IP<2:0> - IC16IP<2:0> - - - - - IC16IP<2:0> - IC16IP<2:0> TDIS OVAERR OVBERR COVAERR OVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR DMACERR IE DISI SWTRAP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td> <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	IC13IP<2:> — OC13IP<2:> — — IC15IP<2:> — OC15IP<2:> — — IC15IP<2:> — OC15IP<2:> — — IC15IP — — ICDIP — — IC15IP — — ICDIP ICDIP — — IC15IP OVAERR OVBERR COVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR IE DISI SWTRAP — — — — — — — III IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	- IC13IP<2:0> - OC13IP<2:0> - - - - IC15IP<2:0> - OC15IP<2:0> - IC14IP<2:0> - - - - - IC16IP<2:0> - IC16IP<2:0> - - - - - IC16IP<2:0> - IC16IP<2:0> TDIS OVAERR OVBERR COVAERR OVBERR OVATE OVBTE COVTE SFTACERR DIV0ERR DMACERR IE DISI SWTRAP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

TABLE 4-5: INTERRUPT CONTROLLER REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IFS0	0800	NVMIF	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0802	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	DMA2IF	IC8IF	IC7IF	AD2IF	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0804	T6IF	DMA4IF	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	DMA3IF	C1IF	C1RXIF	SPI2IF	SPI2EIF	0000
IFS3	0806	_	RTCIF	DMA5IF	_	_	_		C2IF	C2RXIF	INT4IF	INT3IF	T9IF	T8IF	MI2C2IF	SI2C2IF	T7IF	0000
IFS4	0808	_	_		_	_	_			C2TXIF	C1TXIF	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	_	0000
IFS5	080A	_		IC9IF	OC9IF	SPI3IF	SPI3EIF	U4TXIF	U4RXIF	U4EIF	USB1IF	_	_	U3TXIF	U3RXIF	U3EIF	_	0000
IFS7	080E	IC11IF	OC11IF	IC10IF	OC10IF	SPI4IF	SPI4EIF	DMA11IF	DMA10IF	DMA9IF	DMA8IF	_	_	_	_	_	_	0000
IFS8	0810		ICDIF	IC16IF	OC16IF	IC15IF	OC15IF	IC14IF	OC14IF	IC13IF	OC13IF		DMA14IF	DMA13IF	DMA12IF	IC12IF	OC12IF	0000
IEC0	0820	NVMIE	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0822	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE	IC8IE	IC7IE	AD2IE	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0824	T6IE	DMA4IE	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	DMA3IE	C1IE	C1RXIE	SPI2IE	SPI2EIE	0000
IEC3	0826		RTCIE	DMA5IE	_	_	_		C2IE	C2RXIE	INT4IE	INT3IE	T9IE	T8IE	MI2C2IE	SI2C2IE	T7IE	0000
IEC4	0828	_	_		_	_	_			C2TXIE	C1TXIE	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	_	0000
IEC5	082A	_	_	IC9IE	OC9IE	SPI3IE	SPI3EIE	U4TXIE	U4RXIE	U4EIE	USB1IE		_	U3TXIE	U3RXIE	U3EIE	_	0000
IEC7	082E	IC11IE	OC11IE	IC10IE	OC10IE	SPI4IE	SPI4EIE	DMA11IE	DMA10IE	DMA9IE	DMA8IE		_	_	_	_	_	0000
IEC8	0830		ICDIE	IC16IE	OC16IE	IC15IE	OC15IE	IC14IE	OC14IE	IC13IE	OC13IE		DMA14IE	DMA13IE	DMA12IE	IC12IE	OC12IE	0000
IPC0	0840	_		T1IP<2:0>	>	_		OC1IP<2:0	>	_		IC1IP<2:0>	•	_		INT0IP<2:0>	>	4444
IPC1	0842	_		T2IP<2:0>	>	_		OC2IP<2:0	>	_		IC2IP<2:0>		_	C	MA0IP<2:0	>	4444
IPC2	0844	_	ι	J1RXIP<2:	0>		:	SPI1IP<2:0	>	_	:	SPI1EIP<2:0)>	_		T3IP<2:0>		4444
IPC3	0846	_	1	NVMIP<2:0)>		0	MA1IP<2:0)>	_		AD1IP<2:0>	>	_	ι	J1TXIP<2:0	>	4444
IPC4	0848	_		CNIP<2:0	>	_		CMIP<2:0>	>	_	I	MI2C1IP<2:0)>	_	S	SI2C1IP<2:0	>	4444
IPC5	084A	_		IC8IP<2:0	>	-		IC7IP<2:0>	>	_		AD2IP<2:0>	>	_		INT1IP<2:0>	>	4444
IPC6	084C	_		T4IP<2:0>	>			OC4IP<2:0	>	_		OC3IP<2:0	>	_	C	0MA2IP<2:0	>	4444
IPC7	084E	_	ι	J2TXIP<2:	0>		ι	J2RXIP<2:0)>	_		INT2IP<2:0	>	_		T5IP<2:0>		4444
IPC8	0850	_		C1IP<2:0	>	_	(C1RXIP<2:0)>	_		SPI2IP<2:0	>	_	S	PI2EIP<2:0	>	4444
IPC9	0852	_		IC5IP<2:0	>	-		IC4IP<2:0>	>	_		IC3IP<2:0>	•	_	C	MA3IP<2:0	>	4444
IPC10	0854	_	(OC7IP<2:0)>			OC6IP<2:0	>	_		OC5IP<2:03	>	_		IC6IP<2:0>		4444
IPC11	0856	_		T6IP<2:0>	>	_	0)MA4IP<2:()>	_		PMPIP<2:0	>	_		OC8IP<2:0>	>	4444
IPC12	0858	_		T8IP<2:0>	>	_	N	112C2IP<2:0)>	_	:	SI2C2IP<2:0)>	_		T7IP<2:0>		4444
IPC13	085A		C	2RXIP<2:	0>	_	MI2C2IP<2:0>			_		INT3IP<2:0	>	_		T9IP<2:0>		4444
IPC14	085C	_	—	_	_	_	— — — —			_	_	—	_	_		C2IP<2:0>		0004
IPC15	085E	_	_	_	_	_				_		DMA5IP<2:0)>	_	—	_	_	0440
IPC16	0860	_	(CRCIP<2:0)>	_	U2EIP<2:0>			_		U1EIP<2:0>	>	_	_	_	_	4440
IPC17	0862	_	C	C2TXIP<2:)>	_	(C1TXIP<2:0)>	_		DMA7IP<2:0)>	_	C	MA6IP<2:0	>	4444
IPC20	0868	_	ι	J3TXIP<2:)>	_	ι	J3RXIP<2:0)>	_		U3EIP<2:0	>	_	_	_	_	4440

-10.17

TABLE	4-6:	INTI	ERRUP	T CON	TROLLE	R REGIS	STER N	IAP FOI	R PIC24	EPXXXG	U810/81	4 DEVIC	ES ONL	Y (CON	TINUED)		
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IPC21	086A	_		U4EIP<2:0)>	_	l	JSB1IP<2:0)>	_	_	_	_		_		_	4400
IPC22	086C	_		SPI3IP<2:0)>	_	u,	SPI3EIP<2:0	0>	_		U4TXIP<2:0	>	_	ι	J4RXIP<2:0	>	4444
IPC23	086E	_	_	_	_	_	_	_	_	_		IC9IP<2:0>		_		OC9IP<2:0>		0044
IPC29	087A	_	[DMA9IP<2	:0>	_	[DMA8IP<2:0)>	_	_	_	_	_	_	_	_	4400
IPC30	087C	_		SPI4IP<2:0)>	_	5	SPI4EIP<2:0> OC11IP<2:0>				DMA11IP<2:	0>	_	D	MA10IP<2:0)>	4444
IPC31	087E	_		IC11IP<2:0)>	_	(IC10IP<2:0	>	_	0	DC10IP<2:0	>	4444
IPC32	0880		D	MA13IP<2	::0>	-	D	MA12IP<2:	0>	—		IC12IP<2:0	>	_	0)C12IP<2:0	>	4444
IPC33	0882			IC13IP<2:0)>	-				—	—	_	_	_	D	MA14IP<2:0)>	4404
IPC34	0884	_		IC15IP<2:0)>	_	(C15IP<2:0)>	_		IC14IP<2:0	>	_	0	DC14IP<2:0	>	4444
IPC35	0886	_	-	_		_		ICDIP<2:0	>	_		IC16IP<2:0	>	_	0	DC16IP<2:0	>	4444
INTCON1	08C0	NSTDIS		_		_		_	_	_	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	—	0000
INTCON2	08C2	GIE	DISI	SWTRAP	-	-	-	_	_	_	—	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	8000
INTCON3	08C4	_	—	_	_	_	_	_	_	_	UAE	DAE	DOOVR	_	_	_	_	0000
INTCON4	08C6	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	SGHT	0000
INTTREG	08C8	_		_		_		ILF	R<3:0>				VE	ECNUM<7:0	>			0000

TABLE 4-6: INTERRUPT CONTROLLER REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY (CONTINUED)

TABLE 4	4-7:		RITHR	OUGH	TIMER9	REGIS		Ρ										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								XXXX
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106			•		•			Timer2	Register				•				xxxx
TMR3HLD	0108						Time	r3 Holding I	Register (fo	r 32-bit time	er operations	only)						xxxx
TMR3	010A								Timer3	Register								xxxx
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T3CON	0112	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKP	6<1:0>	—	—	TCS	—	0000
TMR4	0114								Timer4	Register								xxxx
TMR5HLD	0116		Timer5 Register														xxxx	
TMR5	0118		Timer5 Register														xxxx	
PR4	011A		Timer5 Register Period Register 4														FFFF	
PR5	011C		Period Register 4 Period Register 5 Period Register 5														FFFF	
T4CON	011E	TON	_	TSIDL	_	_	_	1	1		TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T5CON	0120	TON	_	TSIDL	—	_	—				TGATE	TCKP	6<1:0>	_	_	TCS	—	0000
TMR6	0122								Timer6	Register								xxxx
TMR7HLD	0124						Ti	mer7 Holdir	ng Register	(for 32-bit c	perations or	ıly)						xxxx
TMR7	0126								Timer7	Register								xxxx
PR6	0128								Period F	Register 6								FFFF
PR7	012A								Period F	Register 7								FFFF
T6CON	012C	TON	—	TSIDL	—	—	—	-	-	-	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T7CON	012E	TON	—	TSIDL	—	—	—	-	-	-	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000
TMR8	0130								Timer8	Register								xxxx
TMR9HLD	0132						Ti	mer9 Holdir	ng Register	(for 32-bit c	perations or	ıly)						xxxx
TMR9	0134									Register								xxxx
PR8	0136									Register 8								FFFF
PR9	0138								Period F	Register 9								FFFF
T8CON	013A	TON	—	TSIDL	—	-	—	—	—	—	TGATE	TCKP	S<1:0>	T32	_	TCS	—	0000
T9CON	013C	TON	—	TSIDL	—	—	—	—	—	—	TGATE	TCKP	S<1:0>	—	—	TCS	—	0000

TABLE 4-7: TIMER1 THROUGH TIMER9 REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

	-	_	-				-	-				D:4 5	Dit 4	Dit 0	Dit 0	Dit 4	Bit 0	All
File Name		Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit U	Resets
IC1CON1	0140	—	—	ICSIDL		CTSEL<2:0	>	-	—	—	ICI<	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC1CON2	0142	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—		SI	/NCSEL<4	:0>		000D
IC1BUF	0144							Inp		1 Buffer Reg	,							XXXX
IC1TMR	0146							1	Input Cap	ture 1 Timer	·							0000
IC2CON1	0148	—	—	ICSIDL		CTSEL<2:0	>	-	—	-	ICI<	:0>	ICOV	ICBNE	(1005)	ICM<2:0>		0000
IC2CON2	014A	—		_					IC32		TRIGSTAT	_		SI	/NCSEL<4	:0>		000D
IC2BUF	014C							Inp		2 Buffer Reg								XXXX
IC2TMR	014E							1	Input Cap	ture 2 Timer		-			1			0000
IC3CON1	0150	—	—	ICSIDL	I	CTSEL<2:0	>	-	—	-	ICI<1	:0>	ICOV	ICBNE	(11005)	ICM<2:0>		0000
IC3CON2	0152	—		_					IC32		TRIGSTAT	_		SI	/NCSEL<4	:0>		000D
IC3BUF	0154							Inp		3 Buffer Reg								XXXX
IC3TMR	0156							r	Input Cap	ture 3 Timer					r			0000
IC4CON1	0158	—	—	ICSIDL		CTSEL<2:0	>	-	—	—	ICI<	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC4CON2	015A	—	—	—	—	-	—	—	IC32	ICTRIG	TRIGSTAT	—		SI	/NCSEL<4	:0>		000D
IC4BUF	015C							Inp		4 Buffer Reg								XXXX
IC4TMR	015E			,					Input Cap	ture 4 Timer			1		1			0000
IC5CON1	0160		—	ICSIDL		CTSEL<2:0	>		—	—	ICI<	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC5CON2	0162	—		—	—	_	—	—	IC32		TRIGSTAT	—		S١	/NCSEL<4	:0>		000D
IC5BUF	0164							Inp		5 Buffer Reg								XXXX
IC5TMR	0166			·	1				Input Cap	ture 5 Timer	·		1	1	1			0000
IC6CON1	0168		—	ICSIDL		CTSEL<2:0	>		—	—	ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC6CON2	016A	—		—	—	_	—	—	IC32		TRIGSTAT	—		S١	/NCSEL<4	:0>		000D
IC6BUF	016C							Inp	<u> </u>	6 Buffer Reg	·							xxxx
IC6TMR	016E			·	1				Input Cap	ture 6 Timer			1	1	1			0000
IC7CON1	0170	—	—	ICSIDL		CTSEL<2:0	>	—	-	-	ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7CON2	0172	—	—	—	—	—		—	IC32	ICTRIG	TRIGSTAT	—		SI	/NCSEL<4	:0>		000D
IC7BUF	0174							Inp	ut Capture	7 Buffer Reg	gister							xxxx
IC7TMR	0176				T				Input Cap	ture 7 Timer	r		1	r				0000
IC8CON1	0178	—	—	ICSIDL	1	CTSEL<2:0	>	—	—	—	ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8CON2	017A	—	—	—	—	—	—	—	IC32	ICTRIG	TRIGSTAT	—		SI	/NCSEL<4	:0>		000D
IC8BUF	017C							Inp	ut Capture	8 Buffer Reg	gister							xxxx
IC8TMR	017E								Input Cap	ture 8 Timer	·							0000
IC9CON1	0180	_		ICSIDL		CTSEL<2:0	>	_	—	—	ICI<	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC9CON2	0182		—	—	—	_	—	—	IC32	ICTRIG	TRIGSTAT			SI	/NCSEL<4	:0>		000D
IC9BUF	0184							Inp	ut Capture	9 Buffer Reg	gister							xxxx
IC9TMR	0186								Input Cap	ture 9 Timer								0000
IC10CON1	0188	-	_	ICSIDL	I	CTSEL<2:0	>	—	—	-	ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC10CON2	018A	—	—	-	-	_	—	—	IC32	ICTRIG	TRIGSTAT	-		SI	/NCSEL<4	:0>		000D

TABLE 4-8: INPUT CAPTURE 1 THROUGH INPUT CAPTURE 16 REGISTER MAP

TABLE 4-8: **INPUT CAPTURE 1 THROUGH INPUT CAPTURE 16 REGISTER MAP (CONTINUED)**

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC10BUF	018C							Inpu	t Capture 1	0 Buffer Re	gister							xxxx
IC10TMR	018E								Input Captu	ure 10 Time	r							0000
IC11CON1	0190	—	—	ICSIDL	10	CTSEL<2:0	>	—	—	—	ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC11CON2	0192	_	_	—	_	—	_	_	IC32	ICTRIG	TRIGSTAT			S١	NCSEL<4	:0>		000D
IC11BUF	0194							Inpu	it Capture 1	1 Buffer Re	gister							xxxx
IC11TMR	0196								Input Capt	ure 11 Time	r							0000
IC12CON1	0198		_	ICSIDL	10	CTSEL<2:0	>	_	—	_	ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC12CON2	019A	—	—	_		_	—		IC32	ICTRIG	TRIGSTAT			SI	NCSEL<4	:0>		000D
IC12BUF	019C							Inpu	t Capture 1	2 Buffer Re	gister							xxxx
IC12TMR	019E		Input Capture 12 Timer — ICSIDL ICTSEL<2:0> — — ICI<1:0> ICOV ICBNE ICM<2:0>															0000
IC13CON1	01A0		_	ICSIDL	Input Capture 12 Timer SIDL ICTSEL<2:0> — — ICI<1:0> ICOV ICBNE ICM<2:0>													
IC13CON2	01A2	—	—															000D
IC13BUF	01A4		- ICSIDL ICTSEL<2:0> ICI<1:0> ICOV ICBNE ICM<2:0>															xxxx
IC13TMR	01A6								Input Captu	ure 13 Time	r							0000
IC14CON1	01A8	_	_	ICSIDL	10	CTSEL<2:0	>	_	—	_	ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC14CON2	01AA	—	—	_		_	—		IC32	ICTRIG	TRIGSTAT			SI	NCSEL<4	:0>		000D
IC14BUF	01AC							Inpu	t Capture 1	4 Buffer Re	gister							xxxx
IC14TMR	01AE								Input Captu	ure 14 Time	r							0000
IC15CON1	01B0	_	_	ICSIDL	10	CTSEL<2:0	>	_	—	_	ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC15CON2	01B2	—	—	_		_	—		IC32	ICTRIG	TRIGSTAT			SI	NCSEL<4	:0>		000D
IC15BUF	01B4							Inpu	t Capture 1	5 Buffer Re	gister							xxxx
IC15TMR	01B6								Input Captu	ure 15 Time	r							0000
IC16CON1	01B8	_	_	ICSIDL	10	CTSEL<2:0	>	_	—	_	ICI<1	:0>	ICOV	ICBNE		ICM<2:0>		0000
IC16CON2	01BA	—	_	-	-	-	_	_	IC32	ICTRIG	TRIGSTAT	-		SI	NCSEL<4	:0>		000D
IC16BUF	01BC							Inpu	t Capture 1	6 Buffer Re	gister							xxxx
IC16TMR	01BE								Input Captu	ure 16 Time	r							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70616C-page 62

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1CON1	0900	_	_	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC1CON2	0902	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC1RS	0904							Out	out Compare	e 1 Seconda	ry Register							XXXX
OC1R	0906								Output Co	mpare 1 Reg	gister							XXXX
OC1TMR	0908								Timer V	alue 1 Regis	ter							xxxx
OC2CON1	090A	—	-	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC2CON2	090C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC2RS	090E							Out	out Compare	e 2 Seconda	ry Register							XXXX
OC2R	0910								Output Co	mpare 2 Reg	gister							XXXX
OC2TMR	0912								Timer V	alue 2 Regis	ter							XXXX
OC3CON1	0914	_	_	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC3CON2	0916	FLTMD	Output Compare 3 Secondary Register															000C
OC3RS	0918																	xxxx
OC3R	091A		Output Compare 3 Register Timer Value 3 Register															xxxx
OC3TMR	091C		Output Compare 3 Register Timer Value 3 Register — OCSIDL OCTSEL<2:0> ENFLTC ENFLTA OCFLTC OCFLTA TRIGMODE OCM<2:0>															xxxx
OC4CON1	091E	_	Output Compare 3 Register Timer Value 3 Register — OCSIDL OCTSEL<2:0> ENFLTC ENFLTA OCFLTC OCFLTA TRIGMODE OCCM<2:0>															0000
OC4CON2	0920	FLTMD	Timer Value 3 Register — OCSIDL OCTSEL<2:0> ENFLTC ENFLTB ENFLTA OCFLTC OCFLTA TRIGMODE OCM<2:0> D FLTOUT FLTTRIEN OCINV — DCB<1:0> OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL<4:0>															000C
OC4RS	0922		•	•				Out	out Compare	e 4 Seconda	ry Register	•						XXXX
OC4R	0924								Output Co	mpare 4 Reg	gister							XXXX
OC4TMR	0926								Timer V	alue 4 Regis	ter							XXXX
OC5CON1	0928	_	_	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC5CON2	092A	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC5RS	092C		•	•				Out	out Compare	e 5 Seconda	ry Register	•						XXXX
OC5R	092D								Output Co	mpare 5 Reg	gister							xxxx
OC5TMR	0930								Timer V	alue 5 Regis	ter							XXXX
OC6CON1	0932	_	_	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC6CON2	0934	FLTMD	FLTOUT	FLTTRIEN	OCINV	-	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC6RS	0936		•	•	•			Out	out Compare	e 6 Seconda	ry Register		•					xxxx
OC6R	0938								Output Co	mpare 6 Reg	gister							xxxx
OC6TMR	093A								Timer V	alue 6 Regis	ter							XXXX
OC7CON1	093C	_	—	OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC7CON2	093E	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC7RS	0940							Out	out Compare	e 7 Seconda	ry Register	•						xxxx
OC7R	0942								Output Co	mpare 7 Reg	gister							xxxx
OC7TMR	0944								Timer V	alue 7 Regis	ter							XXXX

TABLE 4-9: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP

TABLE 4-9: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC8CON1	0946	_	_	OCSIDL	C	CTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC8CON2	0948	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC8RS	094A							Out	out Compare	e 8 Seconda	ry Register							xxxx
OC8R	094C								Output Co	mpare 8 Re	gister							xxxx
OC8TMR	094E								Timer V	alue 8 Regis	ter							xxxx
OC9CON1	0950	_	_	OCSIDL	C	CTSEL<2:0	×	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC9CON2	0952	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC9RS	0954							Out	out Compare	e 9 Seconda	ry Register							XXXX
OC9R	0956								Output Co	mpare 9 Re	gister							xxxx
OC9TMR	0958								Timer V	alue 9 Regis	ter							XXXX
OC10CON1	095A	_	_	OCSIDL	C	CTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC10CON2	095C	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC10RS	095E		Output Compare 10 Secondary Register Output Compare 10 Register Timer Value 10 Register															xxxx
OC10R	0960		Output Compare 10 Register															xxxx
OC10TMR	0962		Timer Value 10 Register — OCSIDL OCTSEL<2:0> ENFLTC ENFLTA OCFLTC OCFLTA TRIGMODE OCM<2:0>															xxxx
OC11CON1	0964	_	— OCSIDL OCTSEL<2:0> ENFLTC ENFLTA OCFLTC OCFLTA TRIGMODE OCM<2:0>															0000
OC11CON2	0966	FLTMD	OCSIDL OCTSEL<2:0> ENFLTC ENFLTB ENFLTA OCFLTC OCFLTB OCFLTA TRIGMODE OCM<2:0> FLTOUT FLTTRIEN OCINV — DCB<1:0> OC32 OCTRIG TRIGSTAT OCTRIS SYNCSEL<4:0>															000C
OC11RS	0968							Outp	out Compare	11 Seconda	ary Register							xxxx
OC11R	096A								Output Cor	mpare 11 Re	gister							XXXX
OC11TMR	096C								Timer Va	alue 11 Regi	ster							XXXX
OC12CON1	096E	_	_	OCSIDL	С	CTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC12CON2	0970	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC12RS	0972							Outp	out Compare	12 Seconda	ary Register							XXXX
OC12R	0974								Output Cor	mpare 12 Re	egister							xxxx
OC12TMR	0976								Timer Va	lue 12 Regi	ster							XXXX
OC13CON1	0978	_	_	OCSIDL	C	CTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC13CON2	097A	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC13RS	097C							Outp	out Compare	13 Seconda	ary Register							xxxx
OC13R	097E								Output Cor	mpare 13 Re	egister							xxxx
OC13TMR	0980								Timer Va	lue 13 Regi	ster							XXXX
OC14CON1	0982	_	_	OCSIDL	C	CTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC14CON2	0984	FLTMD	FLTOUT	FLTTRIEN	OCINV	—	DCB<	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC14RS	0986		•					Outp	ut Compare	14 Seconda	ary Register		•					xxxx
OC14R	0988								Output Cor	mpare 14 Re	egister							XXXX
OC14TMR	098A								Timer Va	alue 14 Regi	ster							xxxx

IABLE 4	-9.	001		JIVIPARE		OUGH	OUTPU		PARE	O REGI			NTINUE)				
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC15CON1	098C	_		OCSIDL	C	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC15CON2	098E	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC15RS	0990		Output Compare 15 Secondary Register Output Compare 15 Register															xxxx
OC15R	0992		Output Compare 15 Register															xxxx
OC15TMR	0994																	xxxx
OC16CON1	0996	_	_	OCSIDL	С	OCTSEL<2:0	>	ENFLTC	ENFLTB	ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>		0000
OC16CON2	0998	FLTMD	FLTOUT	FLTTRIEN	OCINV	_	DCB	<1:0>	OC32	OCTRIG	TRIGSTAT	OCTRIS		SY	NCSEL<4:0	>		000C
OC16RS	099A							Outp	out Compare	16 Seconda	ary Register							XXXX
OC16R	099C								Output Cor	mpare 16 Re	gister							xxxx
OC16TMR	099E								Timer Va	alue 16 Regis	ster							XXXX

TABLE 4-9: OUTPUT COMPARE 1 THROUGH OUTPUT COMPARE 16 REGISTER MAP (CONTINUED)

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2009-2011 Microchip Technology Inc.

TABLE 4-10: PWM REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PTCON	0C00	PTEN	_	PTSIDL	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYI	NCSRC<2	2:0>		SEV	TPS<3:0>		0000
PTCON2	0C02	—	—	—	—	—	_	—	_	—	—	—	—	—	F	PCLKDIV<2:0	0>	0000
PTPER	0C04								PTPER<15	0>								FFF8
SEVTCMP	0C06								SEVTCMP<1	5:0>								0000
MDC	0C0A								MDC<15:0	>								0000
STCON	0C0E	—	—	_	SESTAT	SEIEN	EIPU	SYNCPOL	SYNCOEN	SYNCEN	SYI	NCSRC<2	2:0>		SEV	TPS<3:0>		0000
STCON2	0C10	—	—	—	—	—	_	—	_	—	—	—	—	—	F	PCLKSEL<2:	0>	0000
STPER	0C12								STPER<15	0>								FFF8
SSEVTCMP	0C14							S	SEVTCMP<	15:0>								0000
CHOP	0C1A	CHPCLKEN	—	—	—	—	—					CHOPCI	K<9:0>					0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal

TABLE 4-11: PWM GENERATOR 1 REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON1	0C20	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON1	0C22	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDA	T<1:0>	SWAP	OSYNC	0000
FCLCON1	0C24	IFLTMOD		(CLSRC<4:	0>		CLPOL	CLMOD		FL	TSRC<4:()>		FLTPOL	FLTMO	D<1:0>	0000
PDC1	0C26								PDC1<15:0)>								0000
PHASE1	0C28								PHASE1<15	:0>								0000
DTR1	0C2A	—	—		DTR1<13:0>													0000
ALTDTR1	0C2C	—	—		ALTDTR1<13:0>													0000
SDC1	0C2E								SDC1<15:0)>								0000
SPHASE1	0C30							;	SPHASE1<1	5:0>								0000
TRIG1	0C32								TRGCMP<18	5:0>								0000
TRGCON1	0C34		TRGDI	V<3:0>		—	—	—	_	—	_			TRG	STRT<5:0	>		0000
PWMCAP1	0C38							F	WMCAP1<1	5:0>								0000
LEBCON1	0C3A	PHR	PHF	PLR	PLF	FLTLEBEN CLLEBEN — — — BCH BCL BPHH BPHL BPLH BPLL 0000												0000
LEBDLY1	0C3C	—	_	—	—	LEB<11:0> 000												0000
AUXCON1	0C3E	_	-	-			BLANKS	SEL<3:0>		_	_		CHOPCI	_K<3:0>		CHOPHEN	CHOPLEN	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

-12:	PWW G	ENERA	IUR Z R	EGISTE		FOR as	PIC33EP		00/810/	614 DE	VICES	ONL					
Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
0C40	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
0C42	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDA	AT<1:0>	SWAP	OSYNC	0000
0C44	IFLTMOD		C	LSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMC	D<1:0>	0000
0C46								PDC2<15:0>									0000
0C48							Р	HASE2<15:0	>								0000
0C4A	-	-			DTR2<13:0> 0000 ALTDTR2<13:0> 0000												
0C4C	—	—			ALTDTR2<13:0> 0000												
0C4E								SDC2<15:0>									0000
0C50							SF	PHASE2<15:0)>								0000
0C52							TF	RGCMP<15:0)>								0000
0C54		TRGDI	V<3:0>		—	_	_	_	—	_			TRO	SSTRT<5:	0>		0000
0C58							PV	VMCAP2<15:	0>								0000
0C5A	PHR	PHF	PLR	PLF	FLTLEBEN	LEBEN — — — BCH BCL BPHH BPLH BPLL 0000											
0C5C	_	_	_	_	LEB<11:0> 0000												
0C5E	_	_	_	_	BLANKSEL<3:0> — — CHOPSEL<3:0> CHOPHEN CHOPLEN 000											0000	
	Addr. 0C40 0C42 0C44 0C46 0C48 0C4A 0C4C 0C4E 0C50 0C52 0C52 0C58 0C5A 0C5C	Addr. Bit 15 0C40 FLTSTAT 0C42 PENH 0C44 IFLTMOD 0C46 0C47 IFLTMOD 0C48 0C44 0C45 0C46 0C47 0C48 0C49 0C40 0C41 0C42 0C43 0C44 0C45 0C50 0C53 0C54 0C55 0C55 0C55	Addr. Bit 15 Bit 14 0C40 FLTSTAT CLSTAT 0C42 PENH PENL 0C44 IFLTMOD 0C46 0C47 IFLTMOD 0C48 0C44 0C46 0C48 0C46 0C48	Addr. Bit 15 Bit 14 Bit 13 0C40 FLTSTAT CLSTAT TRGSTAT 0C42 PENH PENL POLH 0C44 IFLTMOD	Addr. Bit 15 Bit 14 Bit 13 Bit 12 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN 0C42 PENH PENL POLH POLL 0C44 IFLTMOD CLSRC<4:0	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN 0C42 PENH PENL POLH POLL PMOD 0C44 IFLTMOD CLSRC<4:0> 0C46 0C46	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN 0C42 PENH PENL POLH POLL PMOD<1:0> 0C44 IFLTMOD CLSRC<4:0> 0C46 CLSRC<4:0> 0C46 0C46 0C46 0C47 0C48 0C47	Addr.Bit 15Bit 14Bit 13Bit 12Bit 11Bit 10Bit 9 $0C40$ FLTSTATCLSTATTRGSTATFLTIENCLIENTRGIENITB $0C42$ PENHPENLPOLHPOLLPMOD<1:0>OVRENH $0C44$ IFLTMODCLSRC<4:0>CLPOLCLPOL $0C46$ CLSRC<4:0>CLPOL $0C46$ </td <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL 0C44 IFLTMOD CLSRC<4:0> CLPOL CLPOL CLMOD 0C46 CLSRC<4:0> CLPOL CLMOD 0C44 IFLTMOD CLSRC<4:0> PHASE2<15:0> PDC2<15:0> 0C48 PHASE2<15:0> PHASE2<15:0> 0C44 - - AL 0C44 - - SDC2<15:0> 0C44 - - SDC2<15:0> 0C42 - - AL 0C45 TRGDIV<3:0> - - 0C50 TRGDIV<3:0> -<!--</td--><td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<</td> 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDA 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD OVRENA OVRENA</td> <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLT 0C46 PDC2<15:0> OVRENH OVRENT OVRENT 0C44 </td> <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDA 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0</td> OC46 FLTSRC<4:0	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL 0C44 IFLTMOD CLSRC<4:0> CLPOL CLPOL CLMOD 0C46 CLSRC<4:0> CLPOL CLMOD 0C44 IFLTMOD CLSRC<4:0> PHASE2<15:0> PDC2<15:0> 0C48 PHASE2<15:0> PHASE2<15:0> 0C44 - - AL 0C44 - - SDC2<15:0> 0C44 - - SDC2<15:0> 0C42 - - AL 0C45 TRGDIV<3:0> - - 0C50 TRGDIV<3:0> - </td <td>Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<</td> 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDA 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD OVRENA OVRENA	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLT 0C46 PDC2<15:0> OVRENH OVRENT OVRENT 0C44	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDA 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> OC48 0C44 CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> OC44 0C44 CLSRC<4:0> DTR2<13:0> CL 0C44 - - - ALTDTR2<13:0> SDC2 SDC2	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP — MTBS 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<(1:0> CLD/ 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> OC44 0C46	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTC — MTBS CAM 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> CLDAT<1:0	Addr. Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP — MTBS CAM XPRES 0C42 PENH PENL POLH POLL PMOD<1:0> OVRENL OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTPOL	Addr. Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 0C40 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC – MTBS CAM XPRES IUE 0C42 PENH PENL POLH POL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP OSYNC 0C44 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTPOL FLTMOD<1:0> SWAP OSYNC 0C44 - - - CLSRC<4:0> V FLTPOL FLTPOL FLTMOD<1:0> SWAP OSYNC 0C44 - - - ALTDT2 V FLTPOL FLTMOD<1:0> SWAP OSYNC 0C44 - - - ALTDT2 V FLTPOL <t< td=""></t<>

TABLE 4-12: PWM GENERATOR 2 REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-13: PWM GENERATOR 3 REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0C60	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
0C62	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLD	AT<1:0>	SWAP	OSYNC	0000
0C64	IFLTMOD		C	LSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	0000
0C66								PDC3<15:0>									0000
0C68							P	PHASE3<15:0	>								0000
0C6A	_	_															
0C6C	_																0000
0C6E								SDC3<15:0>									0000
0C70							SI	PHASE3<15:)>								0000
0C72							TI	RGCMP<15:0)>								0000
0C74		TRGDI	V<3:0>		_	—	—	_	_	_			TRO	GSTRT<5:()>		0000
0C78							PV	VMCAP3<15:	0>								0000
0C7A	PHR	PHF	PLR	PLF	PLF FLTLEBEN CLLEBEN — — — — BCH BCL BPHH BPHL BPLH BPLL 000									0000			
0C7C	_	—	—	—	- LEB<11:0> 00											0000	
0C7E	_	_	_	_		BLANK	SEL<3:0>		_	_		CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	0000
	0C60 0C62 0C64 0C66 0C68 0C6A 0C6C 0C6E 0C70 0C72 0C74 0C78 0C7A 0C7A	00C60 FLTSTAT 00C62 PENH 00C64 IFLTMOD 00C68	OC60 FLTSTAT CLSTAT OC62 PENH PENL OC64 IFLTMOD OC66	OC60 FLTSTAT CLSTAT TRGSTAT OC62 PENH PENL POLH OC64 IFLTMOD C OC66 C C OC670 C C OC70 C C OC72 C C OC74 TRGDIV<3:0> OC78 C C OC70 PHR PHF OC70 C C	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN OC62 PENH PENL POLH POLL OC64 IFLTMOD CLSRC<4:0	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN 0C62 PENH PENL POLH POLL PMOD 0C64 IFLTMOD CLSRC<4:0> CC66 0C68	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN 0C62 PENH PENL POLH POLL PMOD<1:0> 0C64 IFLTMOD CLSRC<4:0> CC66	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB 0C62 PENH PENL POLH POLL PMOD<1:0> OVRENH 0C64 IFLTMOD CLSRC<4:0> CLPOL CLPOL 0C66	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS OC62 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OC64 IFLTMOD CLSRC<4:0> CLPOL CLMOD OC66	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC OC62 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDA OC64 IFLTMOD CLSRC<4:0> CLPOL CLMOD OVRENL OVRDA OC66	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> OC62 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> OC64 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLT OC66	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP 0C62 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDA 0C64 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP — 0C62 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> 0C64 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> 0C66	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC — MTBS 00C60 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLD 00C64 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> CLD 00C66 CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> CLD 00C66 CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> CLD 00C66 CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> CLD 00C68 CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> CLD 00C60 CLSRC<4:0> SDC3<15:0> CLTSRC<4:0> SDC3<15:0> CL 00C60 CS SPHASE3<15:0> SPHASE3<15:0> CT TRG 00C70 TRGDIV<3:0> — — — — — TR 00C74 TRGDIV<3:0> —	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP — MTBS CAM 0C60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP — MTBS CAM 0C62 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> 0C64 IFLTMOD CLSRC<4:0> CLSRC<4:0> CLDAT FLTDAT FLTDAT	OC60 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP MTBS CAM XPRES 00662 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP 00664 IFLTMOD CLSRC<4:0> CLSRC<4:0> CLDAT<1:0> CLDAT<1:0> SWAP 00666	Image: Constraint of the straint of the str

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: PWM GENERATOR 4 REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
PWMCON4	0C80	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000	
IOCON4	0C82	PENH	PENL	POLH	POLL	PMOD)<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTD	AT<1:0>	CLDA	\T<1:0>	SWAP	OSYNC	0000	
FCLCON4	0C84	IFLTMOD		(CLSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:)>		FLTPOL	FLTMO	D<1:0>	0000	
PDC4	0C86		•					•	PDC4<15	:0>						•		0000	
PHASE4	0C88								PHASE4<1	5:0>								0000	
DTR4	0C8A	_	_		DTR4<13:0>														
ALTDTR4	0C8C	—	_		ALTDTR4<13:0>														
SDC4	0C8E								SDC4<15	:0>								0000	
SPHASE4	0C90							S	SPHASE4<	15:0>								0000	
TRIG4	0C92							-	TRGCMP<1	5:0>								0000	
TRGCON4	0C94		TRGD	IV<3:0>			—	_	—	—	—			TRO	STRT<5:0	>		0000	
PWMCAP4	0C98							P	WMCAP4<	15:0>								0000	
LEBCON4	0C9A	PHR	PHF	PLR	PLF	F FLTLEBEN CLLEBEN — — — — BCH BCL BPHH BPHL BPLH BPLL 0000.											0000		
LEBDLY4	0C9C	—	—	—	—						LEB<1	1:0>						0000	
AUXCON4	0C9E	—		—	—		BLANKS	EL<3:0>		—	—		CHOPS	SEL<3:0>		CHOPHEN	CHOPLEN	0000	

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-15: PWM GENERATOR 5 REGISTER MAP FOR dsPIC33EPXXXMU810/814 DEVICES ONLY

Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
0CA0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
0CA2	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDA	\T<1:0>	SWAP	OSYNC	0000
0CA4	IFLTMOD		C	LSRC<4:0	>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	0000
0CA6								PDC5<15:0>									0000
0CA8		PHASE5<15:0>															0000
0CAA	—															0000	
0CAC	_																0000
0CAE								SDC5<15:0>									0000
0CB0							S	PHASE5<15:	0>								0000
0CB2							Т	RGCMP<15:	0>								0000
0CB4		TRGDI	V<3:0>		_	—	—	—	—	—			TRO	STRT<5:0)>		0000
0CB8							PW	/M Capture<1	5:0>								0000
0CBA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	_	—	—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000
0CBC	_	_	-	—						LEB<11:0)>						0000
0CBE	_	_	_	_												0000	
	0CA0 0CA2 0CA4 0CA6 0CA8 0CAA 0CAC 0CAC 0CAE 0CB0 0CB2 0CB4 0CB4 0CBA 0CBC	0CA0 FLTSTAT 0CA2 PENH 0CA4 IFLTMOD 0CA6	OCA0 FLTSTAT CLSTAT 0CA2 PENH PENL 0CA4 IFLTMOD 0CA6	OCA0 FLTSTAT CLSTAT TRGSTAT 0CA2 PENH PENL POLH 0CA4 IFLTMOD ···· OC 0CA4 IFLTMOD ···· OC 0CA6 ···· ···· OC 0CA8 ···· ···· OC 0CA2 ···· ···· OC 0CA4 ···· ···· OC 0CA2 ···· ···· OC 0CA2 ···· ···· OC 0CA2 ···· ···· OC 0CA2 ···· ···· OC 0CB0 ····· ···· ···· 0CB2 ····· ···· ···· 0CB4 ···· ···· ···· 0CB4 PHR PHF PLR 0CB2 ···· ···· ····	OCA0 FLTSTAT CLSTAT TRGSTAT FLTIEN 0CA2 PENH PENL POLH POLL 0CA4 IFLTMOD CLSRC<4:0	OCA0 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN 0CA2 PENH PENL POLH POLL PMOD 0CA4 IFLTMOD CLSRC<4:0> OCA6 0CA6	OCA0 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN 0CA2 PENH PENL POLH POLL PMOD<1:0> 0CA4 IFLTMOD CLSRC<4:0> 0CA6	OCA0 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB 0CA2 PENH PENL POLH POLL PMOD<1:0> OVRENH 0CA4 IFLTMOD CLSRC<4:0> CLPOL 0CA6	OCA0 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS 0CA2 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL 0CA4 IFLTMOD CLSRC<4:0> CLPOL CLMOD 0CA6	OCAO FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC 0CA2 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDA 0CA4 IFLTMOD CLSRC<4:0> CLPOL CLMOD OVREAH OVRENL OVREAH 0CA6	OCAO FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> 0CA2 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> 0CA4 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLT 0CA6	OCAO FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP 0CA2 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDA 0CA4 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0	OCAO FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC — 0CA2 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> 0CA4 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> 0CA6	OCAO FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC — MTBS 0CA2 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDA 0CA4 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> CLDA 0CA6	OCAO FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC — MTBS CAM 0CA2 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> CLDAT CLDAT<	OCA0 FLTSTAT CLSTAT TRGSTAT FLTIEN CLIEN TRGIEN ITB MDCS DTC<1:0> DTCP — MTBS CAM XPRES 0CA2 PENH PENL POLH POLL PMOD<1:0> OVRENH OVRENL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP 0CA4 IFLTMOD CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTNO 0CA6 CLSRC<4:0> CLPOL CLMOD FLTSRC<4:0> FLTPOL FLTNO 0CA6 CLSRC<4:0> CLSRC<4:0> CLPOL CLMOD FLTSRC FLTPOL FLTNO 0CA6 C CLSRC<4:0> CLPOL CLMOD FLTSRC FLTPOL FLTNO 0CA6 C C CLSRC SPIASE5<15:0> DTR5<13:0> OCAE SPIASE5<15:0> SPIASE5<15:0>	Action Action<

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

DS70616C-page 68

TABLE 4-16: PWM GENERATOR 6 REGISTER MAP FOR dsPIC33EPXXXMU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets			
PWMCON6	0CC0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	<1:0>	DTCP	—	MTBS	CAM	XPRES	IUE	0000			
IOCON6	0CC2	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	.T<1:0>	FLTDA	\T<1:0>	CLD	AT<1:0>	AM XPRES IUE :0> SWAP OSYNC IPOL FLTMOD<1:0> RT<5:0>					
FCLCON6	0CC4	IFLTMOD		(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	Image: P MTBS CAM XPRES IUE () rDAT<1:0> CLDAT<1:0> SWAP OSYNC () 4:0> FLTPOL FLTMOD<1:0> ()								
PDC6	0CC6								PDC6<15:0	SS DTC<1:0> DTCP MTBS CAM XPRES IUE 0000 SNL OVRDAT<1:0> FLTDAT<1:0> CLDAT<1:0> SWAP OSYNC 0000 OD FLTSRC<4:0> FLTPOL FLTMOD<1:0> 0000 S15:0> 0000 DTR6<13:0> 0000 0000 ALTDTR6<13:0> 0000 0000 0000 0000 S6415:0> 0000 0000 0000 0000 ALTDTR6<13:0> 0000 0000 0000 0000 S6415:0> 0000 0000 0000 0000 P<15:0> 0000 0000 0000 0000 P<15:0> 0000 0000 0000 0000 0000											
PHASE6	0CC8								PHASE6<15	:0>								0000			
DTR6	0CCA	_	_							DTR6<13:0	>							0000			
ALTDTR6	00000	—	_						AL	_TDTR6<13	:0>							0000			
SDC6	0CCE								SDC6<15:0)>								0000			
SPHASE6	0CD0							ç	SPHASE6<1	5:0>								0000			
TRIG6	0CD2								TRGCMP<15	5:0>								0000			
TRGCON6	0CD4		TRGD)IV<3:0>		—	—	_	-	_	—			TR	GSTRT<5:)>		0000			
PWMCAP6	0CD8							F	WMCAP6<1	5:0>								0000			
LEBCON6	0CDA	PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	—	—		—	BCH	BCL	BPHH	BPHL	BPLH	BPLL	0000			
LEBDLY6	0CDC	_	_	_	_						LEB<11:	0>						0000			
AUXCON6	0CDE	_	_	_	_		BLANKS	EL<3:0>		_	—		CHOPS	MTBS CAM XPRES IUE 1:0> CLDAT<1:0> SWAP OSYNC FLTPOL FLTMOD<1:0> I TRGSTRT<5:0> I I BCL BPHH BPHL BPLH							

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: PWM GENERATOR 7 REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PWMCON7	0CE0	FLTSTAT	CLSTAT	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB	MDCS	DTC<	:1:0>	DTCP	_	MTBS	CAM	XPRES	IUE	0000
IOCON7	0CE2	PENH	PENL	POLH	POLL	PMOD	<1:0>	OVRENH	OVRENL	OVRDA	T<1:0>	FLTDA	\T<1:0>	CLDA	\T<1:0>	SWAP	OSYNC	0000
FCLCON7	0CE4	IFLTMOD		(CLSRC<4:0)>		CLPOL	CLMOD		FLT	SRC<4:0	>		FLTPOL	FLTMO	D<1:0>	0000
PDC7	0CE6								PDC7<15:0	>								0000
PHASE7	0CE8		PHASE7<15:0>															0000
DTR7	0CEA	_	_															
ALTDTR7	0CEC	_	ALTDTR7<13:0>															0000
SDC7	0CEE		SDC7<15:0>															0000
SPHASE7	0CF0							5	SPHASE7<15	5:0>								0000
TRIG7	0CF2							-	FRGCMP<15	:0>								0000
TRGCON7	0CF4		TRGD	01V<3:0>		_	_	—	_	_	_			TRO	GSTRT<5:	0>		0000
PWMCAP7	0CF8							P	WMCAP7<1	5:0>								0000
LEBCON7	0CFA	PHR	PHF	PLR	PLF	PLF FLTLEBEN CLLEBEN — — — — BCH BCL BPHH BPHL BPLH BPLL 000										0000		
LEBDLY7	0CFC	—	—	—	_	– LEB<11:0> 000											0000	
AUXCON7	0CFE	—	—	—	BLANKSEL<3:0> CHOPSEL<3:0> CHOPHEN CHOPLEN 00											0000		

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4	-18:	QEN	REGI	STER MA	P FUR C	SPIC33E		0806/810	J/814 DE							-		
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
QEI1CON	01C0	QEIEN	—	QEISIDL		PIMOD<2:0>	•	IMV	<1:0>	_		INTDIV<2:0)>	CNTPOL	GATEN	CCM	<1:0>	0000
QEI1IOC	01C2	QCAPEN	FLTREN		QFDIV<2:0>		OUTF	NC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI1STAT	01C4	_	—	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS1CNTL	01C6								POSCNT<15	:0>								0000
POS1CNTH	01C8							I	POSCNT<31	16>								0000
POS1HLD	01CA		POSHLD<15:0>														0000	
VEL1CNT	01CC		VELCNT<15:0>														0000	
INT1TMRL	01CE		INTTMR<15:0>														0000	
INT1TMRH	01D0		INTTMR<31:16>														0000	
INT1HLDL	01D2								INTHLD<15	0>								0000
INT1HLDH	01D4								INTHLD<31:	16>								0000
INDX1CNTL	01D6								INDXCNT<15	5:0>								0000
INDX1CNTH	01D8								NDXCNT<31	:16>								0000
INDX1HLD	01DA								INDXHLD<15	5:0>								0000
QEI1GECL	01DC								QEIGEC<15	:0>								0000
QEI1ICL	01DC								QEIIC<15:0	>								0000
QEI1GECH	01DE								QEIGEC<31:	16>								0000
QEI1ICH	01DE								QEIIC<31:1	6>								0000
QEI1LECL	01E0								QEILEC<15	0>								0000
QEI1LECH	01E2								QEILEC<31:	16>								0000

TABLE 4-18: QEI1 REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Reset
QEI2CON	05C0	QEIEN		QEISIDL		PIMOD<2:0>		IMV<	:1:0>	_		INTDIV<2:0	>	CNTPOL	GATEN	CCM	<1:0>	0000
QEI2IOC	05C2	QCAPEN	FLTREN	(QFDIV<2:0>		OUTFN	IC<1:0>	SWPAB	HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA	000x
QEI2STAT	05C4			PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN	PCIIRQ	PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	IDXIEN	0000
POS2CNTL	05C6								POSCNT<15	:0>								0000
POS2CNTH	05C8							F	POSCNT<31	:16>								0000
POS2HLD	05CA								POSHLD<15	:0>								0000
VEL2CNT	05CC								VELCNT<15	:0>								0000
NT2TMRL	05CE		INTTMR<15:0>															0000
NT2TMRH	05D0		INTTMR<31:16>														0000	
NT2HLDL	05D2															0000		
NT2HLDH	05D4								INTHLD<31:	16>								0000
NDX2CNTL	05D6								NDXCNT<18	5:0>								0000
INDX2CNTH	05D8							II	NDXCNT<31	:16>								0000
NDX2HLD	05DA								NDXHLD<18	5:0>								0000
QEI2GECL	05DC								QEIGEC<15	:0>								0000
QEI2ICL	05DC								QEIIC<15:0)>								0000
QEI2GECH	05DE							(QEIGEC<31:	16>								0000
QEI2ICH	05DE								QEIIC<31:1	6>								0000
QEI2LECL	05E0								QEILEC<15	:0>								0000
QEI2LECH	05E2								QEILEC<31:	16>								0000

TABLE 4-19: QEI2 REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: I2C1 and I2C2 REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
I2C1RCV	0200	_		_	_	_	_	_	_				Receive	Register				0000	
I2C1TRN	0202	—	—	—	_	—	_	—	_				Transmit	Register				OOFF	
I2C1BRG	0204	—	_	—	—	—	—	—				Bau	d Rate Gen	erator				0000	
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000	
I2C1STAT	0208	ACKSTAT	TRSTAT	_		_	BCL	GCSTAT	ADD10	IWCOL I2COV D_A P S R_W RBF TBF									
I2C1ADD	020A	—	_	_	_	—	_	Address Register 0											
I2C1MSK	020C			—	_	—	_					Addre	ss Mask					0000	
I2C2RCV	0210	_	_	_	_	_	_	_	—				Receive	Register				0000	
I2C2TRN	0212	—	—	—	_	—	—	—	—				Transmit	Register				00FF	
I2C2BRG	0214	—	_	—	_	—	_	—				Bau	d Rate Gen	erator				0000	
I2C2CON	0216	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	N GCEN STREN ACKDT ACKEN RCEN PEN RSEN SEN								1000	
I2C2STAT	0218	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	D IWCOL I2COV D_A P S R_W RBF TBF								0000	
I2C2ADD	021A	—	_	—	—	—	—	Address Register											
I2C2MSK	021C	—	—	—	_	—	_	Address Mask											

		•••••	., •	2, 07.11	•,••				-										
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
U1MODE	0220	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000	
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110	
U1TXREG	0224	_		_		—	_					Tra	ansmit Regi	ster				xxxx	
U1RXREG	0226			—		—	—					Re	ceive Regi	ster				0000	
U1BRG	0228							Baud	Rate Gen	erator Pres	scaler	-						0000	
U2MODE	0230	UARTEN	_	USIDL	IREN	RTSMD	—	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000	
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110	
U2TXREG	0234	_	_	—	—	—	—	Transmit Register x											
U2RXREG	0236	_	_	_	—	—	_	- Receive Register 0										0000	
U2BRG	0238							Baud	Rate Gen	erator Pres	scaler							0000	
U3MODE	0250	UARTEN	_	USIDL	IREN	RTSMD	—	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000	
U3STA	0252	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	SEL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110	
U3TXREG	0254	_	_	—	_	—	_	—				Tra	ansmit Regi	ster				xxxx	
U3RXREG	0256	_	_	—	_	—	_	_				Re	eceive Regis	ster				0000	
U3BRG	0258							Baud	Rate Gen	erator Pres	scaler							0000	
U4MODE	02B0	UARTEN	_	USIDL	IREN	RTSMD	_	UEN<	:1:0>	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000	
U4STA	02B2	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	BF TRMT URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA									0110	
U4TXREG	02B4	_	_	_	_	_	_	_	- Transmit Register										
U4RXREG	02B6	—	—	_	—	—	_	—	Receive Register										
U4BRG	02B8							Baud Rate Generator Prescaler											

TABLE 4-21: UART1, UART2, UART3, and UART4 REGISTER MAP

		,	,	,	r	r					r					1	-	T
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	_	—	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI1CON1	0242		—	_	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	—	—	_	—	—	—	—	FRMDLY	SPIBEN	0000
SPI1BUF	0248							SPIx Tra	nsmit and R	eceive Buf	fer Registe	r						0000
SPI2STAT	0260	SPIEN	—	SPISIDL	_	—	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI2CON1	0262		—	—	DISSCK												0000	
SPI2CON2	0264	FRMEN	SPIFSD	FRMPOL	—	—	—		—	—	—	—	—	—	—	FRMDLY	SPIBEN	0000
SPI2BUF	0268																	0000
SPI3STAT	02A0	SPIEN	—	SPISIDL	—	—	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI3CON1	02A2		—	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>	0000
SPI3CON2	02A4	FRMEN	SPIFSD	FRMPOL	—	—	—		—	—	—	—	—	—	—	FRMDLY	SPIBEN	0000
SPI3BUF	02A8							SPIx Tra	nsmit and R	eceive Buf	fer Registe	r						0000
SPI4STAT	02C0	SPIEN	—	SPISIDL	—	—	5	SPIBEC<2:0	>	SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF	0000
SPI4CON1	02C2	_	—	—	DISSCK												0000	
SPI4CON2	02C4	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	SPIBEN	0000
SPI4BUF	02C8							SPIx Tra	nsmit and R	eceive Buf	fer Registe	r						0000
SPI4BUF							<u> </u>				ter Registe	r						000

TABLE 4-23: ADC1 and ADC2 REGISTER MAP

	20.					· · / · ·												
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300			•					ADC Data B	uffer 0		•		•		•	•	xxxx
ADC1BUF1	0302								ADC Data B	uffer 1								xxxx
ADC1BUF2	0304								ADC Data B	uffer 2								xxxx
ADC1BUF3	0306								ADC Data B	uffer 3								xxxx
ADC1BUF4	0308								ADC Data B	uffer 4								xxxx
ADC1BUF5	030A								ADC Data B	uffer 5								xxxx
ADC1BUF6	030C								ADC Data B	uffer 6								xxxx
ADC1BUF7	030E								ADC Data B	uffer 7								xxxx
ADC1BUF8	0310								ADC Data B	uffer 8								xxxx
ADC1BUF9	0312								ADC Data B	uffer 9								xxxx
ADC1BUFA	0314								ADC Data Bu	uffer 10								xxxx
ADC1BUFB	0316								ADC Data Bu	uffer 11								xxxx
ADC1BUFC	0318		ADC Data Buffer 12 ADC Data Buffer 13															xxxx
ADC1BUFD	031A																	xxxx
ADC1BUFE	031C		ADC Data Buffer 14															xxxx
ADC1BUFF	031E																	xxxx
AD1CON1	0320	ADON		ADSIDL	ADDMABM	—	AD12B	FOR	M<1:0>	:	SSRC<2:0	>	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	١	VCFG<2:0	>	_	_	CSCNA	CHP	S<1:0>	BUFS			SMPI<4:02	>		BUFM	ALTS	0000
AD1CON3	0324	ADRC		—			SAMC<4:0	>					ADCS	6<7:0>		•		0000
AD1CHS123	0326	—	—	—	_	_	CH123N	VB<1:0>	CH123SB	—		—		—	CH123N	IA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	_			CH0SB<4:0	>		CH0NA	_	_		C	H0SA<4:0	>		0000
AD1CSSH	032E	CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24	CSS23 ⁽¹⁾	CSS22 ⁽¹⁾	CSS21 ⁽¹⁾	CSS20 ⁽¹⁾	CSS19 ⁽¹⁾	CSS18 ⁽¹⁾	CSS17 ⁽¹⁾	CSS16 ⁽¹⁾	0000
AD1CSSL	0330	CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000
AD1CON4	0332	—	_	—	_	_	_	_	ADDMAEN	_	—	—	_	_	D	MABL<2:0)>	0000
ADC2BUF0	0340			•			•		ADC Data B	uffer 0								xxxx
ADC2BUF1	0342								ADC Data B	uffer 1								xxxx
ADC2BUF2	0344								ADC Data B	uffer 2								xxxx
ADC2BUF3	0346								ADC Data B	uffer 3								xxxx
ADC2BUF4	0348								ADC Data B	uffer 4								xxxx
ADC2BUF5	034A								ADC Data B	uffer 5								xxxx
ADC2BUF6	034C								ADC Data B	uffer 6								xxxx
ADC2BUF7	034E								ADC Data B	uffer 7								xxxx
ADC2BUF8	0350								ADC Data B	uffer 8								xxxx
Legend:			o on Booo	+ <u> </u>	nlomontod r	ad as '0'	Poost value	oro obown	in hexadecim	al								

Legend:

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not available on dsPIC33EP256MU806 devices.

TABLE 4-23: ADC1 and ADC2 REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC2BUF9	0352			•					ADC Data Bu	uffer 9								xxxx
ADC2BUFA	0354								ADC Data Bu	ffer 10								xxxx
ADC2BUFB	0356								ADC Data Bu	ffer 11								xxxx
ADC2BUFC	0358								ADC Data Bu	ffer 12								xxxx
ADC2BUFD	035A								ADC Data Bu	ffer 13								xxxx
ADC2BUFE	035C																xxxx	
ADC2BUFF	035E		ADC Data Buffer 14 ADC Data Buffer 15															xxxx
AD2CON1	0360	ADON		ADSIDL	ADDMABM	—	—	FOR	M<1:0>	:	SSRC<2:0	>	SSRCG	SIMSAM	ASAM	SAMP	DONE	0000
AD2CON2	0362	١	VCFG<2:0	>	—	_	CSCNA	CHP	S<1:0>	BUFS			SMPI<4:0>	>		BUFM	ALTS	0000
AD2CON3	0364	ADRC		—			SAMC<4:0>	>					ADCS	6<7:0>				0000
AD2CHS123	0366	_	_	—			CH123N	VB<1:0>	CH123SB	—					CH123N	A<1:0>	CH123SA	0000
AD2CHS0	0368	CH0NB	_	_			CH0SB<4:0	>		CH0NA	_	_		С	H0SA<4:0	>		0000
AD2CSSL	0270	CSS15	CSS14	CSS13	CSS12 CSS11 CSS10 CSS9 CSS8 CSS7 CSS6 CSS5 CSS4 CSS3 CSS2 CSS1 CSS0 00												0000	
AD2CON4	0272		_															0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are not available on dsPIC33EP256MU806 devices.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DCICON1	0280	DCIEN	_	DCISIDL	_	DLOOP	CSCKD	CSCKE	COFSD	UNFM	CSDOM	DJST	—	—	_	COFS	M<1:0>	0000
DCICON2	0282	—	_		_	BLEN	<1:0>	_		COFS	G<3:0>		_		WS	<3:0>		0000
DCICON3	0284	—	—	_	_						BCG<1	1:0>		•				0000
DCISTAT	0286	—	_		_		SLOT	<3:0>		_	_	—	_	ROV	RFUL	TUNF	TMPTY	0000
TSCON	0288	TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8	TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0	0000
RSCON	028C	RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8	RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0	0000
RXBUF0	0290							F	Receive 0 Da	ata Register	r							uuuu
RXBUF1	0292							F	Receive 1 Da	ata Register	r							uuuu
RXBUF2	0294							F	Receive 2 Da	ata Register	r							uuuu
RXBUF3	0296							F	Receive 3 Da	ata Register	r							uuuu
TXBUF0	0298							Т	ransmit 0 D	ata Registe	r							0000
TXBUF1	029A							Т	ransmit 1 D	ata Registe	r							0000
TXBUF2	029C							Т	ransmit 2 D	ata Registe	r							0000
TXBUF3	029E							Т	ransmit 3 D	ata Registe	r							0000

TABLE 4-24: DCI REGISTER MAP FOR dsPIC33EPXXXMU806/810/814 DEVICES ONLY

Legend:

x = Unknown, u = unchanged. Shaded locations indicate reserved space in SFR map for future module expansion. Read reserved locations as '0's.

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U10TGIR	0488	-	—	—	_	_	—	—	—	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF	0000
U10TGIE	048A	_	_	_		_	_	_	—	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE	0000
U10TGSTAT	048C	—	_	_	-	_	_		—	ID	_	LSTATE	—	SESVD	SESEND	—	VBUSVD	0000
U10TGCON	048E	—	—	—	—		—	—	—	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS	0000
U1PWRC	0490	_	—	—	—	_	_	—	—	UACTPND ⁽⁴⁾	—	—	USLPGRD	—	—	USUSPND	USBPWR	0000
U1IR ⁽¹⁾	04C0	_	—	-	—	_	_	—	—	STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	0000
U1IR ⁽²⁾	04C0	_	_	_	I		_	_	_	STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF	0000
U1IE ⁽¹⁾	04C2	_	—	—	—	_	_	—	—	STALLIE	—	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE	0000
U1IE ⁽²⁾	04C2	_	—	-	—	_	_	—	—	STALLIE	ATTACHIE	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE	0000
U1EIR ⁽¹⁾	04C4	_	_	_	I		_	_	_	BTSEF	BUSACCEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	0000
U1EIR ⁽²⁾	04C4	—	-			-	_	-	—	BTSEF	BUSACCEF	DMAEF	BTOEF	DFN8EF	CRC16EF	EOFEF	PIDEF	0000
U1EIE ⁽¹⁾	04C6	_	_	_	I		_	_	_	BTSEE	BUSACCEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	0000
U1EIE ⁽²⁾	04C6	—		_			_		_	BTSEE	BUSACCEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE	PIDEE	0000
U1STAT	04C8	_		_	I		_		—		ENDP ⁻	T<3:0> (3)		DIR	PPBI	_		0000
U1CON ⁽¹⁾	04CA	—		_			_		_	—	SE0	PKTDIS	_	HOSTEN	RESUME	PPBRST	USBEN	0000
U1CON ⁽²⁾	04CA	—		_			_		—	JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN	0000
U1ADDR	04CC	_		_	I		_		—	LSPDEN ⁽¹⁾			USB Device A	ddress (DE	VADDR)			0000
U1BDTP1	04CE	—		_			_		_			BDT	PTRL<7:1>					0000
U1FRML	04D0	—		_			_		—				FRML<7:0	>				0000
U1FRMH	04D2	_	_	_	_	_	—	_	—	—	_	—	—	_		FRMH<2:0>		0000
U1TOK ⁽³⁾	04D4	—		_			_		_		PID	<3:0>			EP	<3:0>		0000
U1SOF ⁽³⁾	04D6	—		_			_		—				CNT<7:0>	>				0000
U1BDTP2	04D8	_		_	I		_		—				BDTPTRH<7	7:0>				0000
U1BDTP3	04DA	—		_			_		_				BDTPTRU<7	7:0>				0000
U1CNFG1	04DC	—		_			_		_	UTEYE	UOEMON	—	USBSIDL		_	_		0000
U1CNFG2	O4DE	—	-			-	_	-	—	—	—	UVCMPSEL	PUVBUS	EXTI2CEN	UVBUSDIS	UVCMPDIS	UTRDIS	0000
U1EP0	04E0	_	_	_	_		_	_	_	LSPD	RETRYDIS	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP1	04E2	_	_	_	_	—	—	_	_	_	-	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP2	04E4	_	_	_	_	_	_	_	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP3	04E6	_	_	_	_	—	—	—	_	—	-		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP4	04E8	_	—	—	_	—	_	_	—	—	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

TABLE 4-25: USB OTG REGISTER MAP

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is available when the module is operating in Device mode.

2: This bit is available when the module is operating in Host mode

3: Device mode only. These bits are always read as '0' in Host mode.

4: The reset value for this bit is undefined.

TABLE 4-25: USB OTG REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1EP5	04EA	_	-	-	-	-	—	_			—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP6	04EC	_	_	_	—	—	—	—	—	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP7	04EE	—	_		—	—	—	—	—	_	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP8	04F0	—	—	_	—	_	_	_	Ι	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP9	04F2	_	_	_	—	—	—	—	—	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP10	04F4	_	_	_	—	—	—	—	—	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP11	04F6	_	_	_	—	_	—	—	_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP12	04F8	_	_	_	—	—	—	—	—	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP13	04FA	_	_	_	—	—	—	—	—	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP14	04FC	_	_	_	—	—	_	_	_	_	—	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1EP15	04FE	_	_	_	—	—	—	—	_	-	—	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
U1PWMRRS	0580				DC	<7:0>	•						PER<7:0	>		•		0000
U1PWMCON	0582	PWMEN	_	_	—	—	—	PWMPOL	CNTEN	_							—	0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is available when the module is operating in Device mode.

2: This bit is available when the module is operating in Host mode

3: Device mode only. These bits are always read as '0' in Host mode.

4: The reset value for this bit is undefined.

TABLE 4-26: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0 OR 1

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1CTRL1	0400	_	_	CSIDL	ABAT	CANCKS	R	EQOP<2:0	>	OPN	10DE<2:0	>	_	CANCAP	_	_	WIN	0480
C1CTRL2	0402	—	_		_	—	—	_	_	—	_	—		D	NCNT<4:0	>		0000
C1VEC	0404	_	_	_		F	ILHIT<4:0>			_				ICODE<6:0	>			0040
C1FCTRL	0406	D	MABS<2:0	>	FSA<4:0>										0000			
C1FIFO	0408	—	_		FBP<5:0> — — FNRB<5:0>											0000		
C1INTF	040A	_	_	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF	0000
C1INTE	040C	_	_		_	_	_	_	_	IVRIE	WAKIE	ERRIE	_	FIFOIE	RBOVIE	RBIE	TBIE	0000
C1EC	040E	ľ			TERRCN	T<7:0>	l		I.		Į.	1	RERRCN	IT<7:0>				0000
C1CFG1	0410	_	_	_	_	_	_	_	_	SJW<1	:0>			BRP	<5:0>			0000
C1CFG2	0412	_	WAKFIL		_	_	SE	G2PH<2:0)>	SEG2PHTS	SAM	SI	EG1PH<2	:0>	P	RSEG<2:0)>	0000
C1FEN1	0414	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0	FFFF
C1FMSKSEL1	0418	F7MSH	<<1:0>	F6MSI	<<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK<	:1:0>	F2MSk	<1:0>	F1MSł	<<1:0>	F0MS	K<1:0>	0000
C1FMSKSEL2	041A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSł	< <1:0>	F8MSI	K<1:0>	0000

- = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

TABLE 4-27: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 0

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
—	0400- 041E								See Tab	le 4-26								—
C1RXFUL1	0420	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C1RXFUL2	0422	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C1RXOVF1	0428	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C1RXOVF2	042A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C1TR01CON	0430	TXEN1	TXABT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	21<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C1TR23CON	0432	TXEN3	TXABT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	21<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C1TR45CON	0434	TXEN5	TXABT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	21<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C1TR67CON	0436	TXEN7	TXABT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	21<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	RI<1:0>	xxxx
C1RXD	0440								Received [Data Word								xxxx
C1TXD	0442								Transmit D	ata Word								xxxx

TABLE 4-28: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All
		2				2	2			-	2	2		2		2	2	Resets
_	0400- 041E								See	Table 4-26								_
C1BUFPNT1	0420		F3BF	P<3:0>			F2B	><3:0>			F1BP	<3:0>			F0BP	<3:0>		0000
C1BUFPNT2	0422		F7BF	P<3:0>			F6BI	><3:0>			F5BP	<3:0>			F4BP	<3:0>		0000
C1BUFPNT3	0424		F11B	P<3:0>			F10B	P<3:0>			F9BP	<3:0>			F8BP	<3:0>		0000
C1BUFPNT4	0426		F15B	P<3:0>			F14B	P<3:0>			F13BF	^<3:0>			F12BF	?<3:0>		0000
C1RXM0SID	0430				SID<	:10:3>					SID<2:0>		_	MIDE	—	EID<	17:16>	xxxx
C1RXM0EID	0432				EID<	:15:8>							EID<	7:0>				xxxx
C1RXM1SID	0434				SID<	:10:3>					SID<2:0>		_	MIDE	—	EID<	17:16>	xxxx
C1RXM1EID	0436				EID<	:15:8>							EID<	7:0>		4		xxxx
C1RXM2SID	0438				SID<	:10:3>					SID<2:0>		—	MIDE	—	EID<	17:16>	xxxx
C1RXM2EID	043A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF0SID	0440				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF0EID	0442				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF1SID	0444				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF1EID	0446				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF2SID	0448				SID<	:10:3>					SID<2:0>		_	EXIDE	_	EID<	17:16>	xxxx
C1RXF2EID	044A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF3SID	044C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF3EID	044E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF4SID	0450				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF4EID	0452				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF5SID	0454				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF5EID	0456				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF6SID	0458				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF6EID	045A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF7SID	045C				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF7EID	045E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF8SID	0460				SID<	:10:3>					SID<2:0>		_	EXIDE	—	EID<	17:16>	xxxx
C1RXF8EID	0462				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF9SID	0464				SID<	:10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C1RXF9EID	0466				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF10SID	0468				SID<	:10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C1RXF10EID	046A				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF11SID	046C				SID<	:10:3>					SID<2:0>		—	EXIDE		EID<	17:16>	xxxx
C1RXF11EID	046E				EID<	:15:8>							EID<	7:0>				xxxx
C1RXF12SID	0470				SID<	:10:3>					SID<2:0>			EXIDE		EID<	17:16>	xxxx
C1RXF12EID	0472	1			EID<	:15:8>							EID<	7:0>		1		xxxx

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

TABLE 4-28: ECAN1 REGISTER MAP WHEN WIN (C1CTRL<0>) = 1 (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C1RXF13SID	0474				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF13EID	0476				EID<	15:8>							EID<	7:0>				xxxx
C1RXF14SID	0478				SID<	10:3>					SID<2:0>		_	EXIDE	—	EID<1	7:16>	xxxx
C1RXF14EID	047A				EID<	15:8>							EID<	7:0>				xxxx
C1RXF15SID	047C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<1	7:16>	xxxx
C1RXF15EID	047E				EID<	15:8>							EID<	7:0>				xxxx

		LOANZ																
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2CTRL1	0500	—	—	CSIDL	ABAT	CANCKS	R	EQOP<2:0	>	OPN	/ODE<2:0	>		CANCAP	—	—	WIN	0480
C2CTRL2	0502	—	—	—	—	—	—	—	—	—	—	—		D	NCNT<4:0	>		0000
C2VEC	0504	—	—	—		F	ILHIT<4:0>			—				ICODE<6:0	>			0040
C2FCTRL	0506	[OMABS<2:0	>	—	_	—	—	—	—	—	_	FSA<4:0> FNRB<5:0>					
C2FIFO	0508	—	—			FBP<	5:0>			—	—		FNRB<5:0>					0000
C2INTF	050A	—	—	TXBO	TXBP	RXBP	TXWAR	RXWAR	EWARN	IVRIF	WAKIF	ERRIF		FIFOIF	RBOVIF	RBIF	TBIF	0000
C2INTE	050C	—	—	—	—	—	—	—	—	IVRIE	WAKIE	ERRIE	—	FIFOIE	RBOVIE	RBIE	TBIE	0000
C2EC	050E				TERRCN	T<7:0>							RERRCN	IT<7:0>				0000
C2CFG1	0510	—	—	—	—	_	—	—	—	SJW<1	1:0>			BRP<	<5:0>			0000
C2CFG2	0512	—	WAKFIL	—	—	—	SE	G2PH<2:0)>	SEG2PHTS	SAM	S	EG1PH<2	:0>	P	RSEG<2:0	>	0000
C2FEN1	0514	FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8	FLTEN7	FLTEN6	FLTEN5	EN5 FLTEN4 FLTEN3 FLTEN2 FLTEN1 FLTEN0				FFFF	
C2FMSKSEL1	0518	F7MS	K<1:0>	F6MS	K<1:0>	F5MS	K<1:0>	F4MS	K<1:0>	F3MSK<	<1:0>	F2MS	<<1:0>	F1MS	PRSEG<2:0> TEN3 FLTEN2 FLTEN1 FLTEN0 F1MSK<1:0> F0MSK<1:0> F0MSK<1:0>			
C2FMSKSEL2	051A	F15MS	K<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	SK<1:0>	F11MSK	<1:0>	F10MS	K<1:0>	F9MSk	<1:0>	F8MSI	< <1:0>	0000

TABLE 4-29: ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 0 OR 1

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 0

			-	-		-			-	-	-	-		-	-		-	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
—	0500- 051E								See Tal	ble 4-29								—
C2RXFUL1	0520	RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8	RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0	0000
C2RXFUL2	0522	RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24	RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16	0000
C2RXOVF1	0528	RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF09	RXOVF08	RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0	0000
C2RXOVF2	052A	RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24	RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16	0000
C2TR01CON	0530	TXEN1	TXABAT1	TXLARB1	TXERR1	TXREQ1	RTREN1	TX1PF	RI<1:0>	TXEN0	TXABAT0	TXLARB0	TXERR0	TXREQ0	RTREN0	TX0PF	RI<1:0>	0000
C2TR23CON	0532	TXEN3	TXABAT3	TXLARB3	TXERR3	TXREQ3	RTREN3	TX3PF	RI<1:0>	TXEN2	TXABAT2	TXLARB2	TXERR2	TXREQ2	RTREN2	TX2PF	RI<1:0>	0000
C2TR45CON	0534	TXEN5	TXABAT5	TXLARB5	TXERR5	TXREQ5	RTREN5	TX5PF	RI<1:0>	TXEN4	TXABAT4	TXLARB4	TXERR4	TXREQ4	RTREN4	TX4PF	RI<1:0>	0000
C2TR67CON	0536	TXEN7	TXABAT7	TXLARB7	TXERR7	TXREQ7	RTREN7	TX7PF	RI<1:0>	TXEN6	TXABAT6	TXLARB6	TXERR6	TXREQ6	RTREN6	TX6PF	81<1:0>	xxxx
C2RXD	0540					Received Data Word xxx									xxxx			
C2TXD	0542		Transmit Data Word xx											xxxx				
																		-

TABLE 4-31:ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 1

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
_	0500- 051E								See Ta	ble 4-29								-
C2BUFPNT1	0520		F3BI	P<3:0>			F2BP	<3:0>			F1BF	> <3:0>			FOBF	><3:0>		0000
C2BUFPNT2	0522		F7BI	P<3:0>			F6BP	<3:0>			F5BF	> <3:0>			F4BF	><3:0>		0000
C2BUFPNT3	0524		F11B	P<3:0>			F10BF	P<3:0>			F9BF	^<3:0>			F8BF	D<3:0>		0000
C2BUFPNT4	0526		F15B	3P<3:0>			F14BF	P<3:0>			F13BI	P<3:0>			F12B	P<3:0>		0000
C2RXM0SID	0530				SID<	10:3>					SID<2:0>		—	MIDE	—	EID<'	17:16>	xxxx
C2RXM0EID	0532				EID<	15:8>							EID<	:7:0>				XXXX
C2RXM1SID	0534				SID<	10:3>					SID<2:0>		_	MIDE	-	EID<'	17:16>	XXXX
C2RXM1EID	0536				EID<	15:8>							EID<	:7:0>				xxxx
C2RXM2SID	0538				SID<	10:3>					SID<2:0>		—	MIDE	-	EID<	17:16>	XXXX
C2RXM2EID	053A				EID<	15:8>							EID<	:7:0>				xxxx
C2RXF0SID	0540				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF0EID	0542				EID<	15:8>							EID<	:7:0>				XXXX
C2RXF1SID	0544				SID<	10:3>					SID<2:0>		_	EXIDE	-	EID<'	17:16>	XXXX
C2RXF1EID	0546				EID<	15:8>							EID<	:7:0>				XXXX
C2RXF2SID	0548				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF2EID	054A				EID<	15:8>							EID<	:7:0>				xxxx
C2RXF3SID	054C				SID<	10:3>					SID<2:0>		—	EXIDE	_	EID<	17:16>	xxxx
C2RXF3EID	054E				EID<	15:8>							EID<	:7:0>				xxxx
C2RXF4SID	0550				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF4EID	0552				EID<	15:8>							EID<	:7:0>				xxxx
C2RXF5SID	0554				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF5EID	0556				EID<	15:8>							EID<	:7:0>				xxxx
C2RXF6SID	0558				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF6EID	055A				EID<	15:8>							EID<	:7:0>				xxxx
C2RXF7SID	055C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF7EID	055E				EID<	15:8>							EID<	:7:0>				xxxx
C2RXF8SID	0560				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF8EID	0562				EID<	15:8>							EID<	:7:0>				xxxx
C2RXF9SID	0564				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF9EID	0566				EID<	15:8>							EID<	:7:0>	I	1		xxxx
C2RXF10SID	0568				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF10EID					EID<								EID<	:7:0>				xxxx
C2RXF11SID	056C				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF11EID	056E				EID<	15:8>							EID<	:7:0>		T		xxxx
C2RXF12SID	0570				SID<	10:3>					SID<2:0>		—	EXIDE	—	EID<	17:16>	xxxx
C2RXF12EID	0572				EID<	15:8>							EID<	:7:0>				xxxx

TABLE 4-31: ECAN2 REGISTER MAP WHEN WIN (C2CTRL<0>) = 1 (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
C2RXF13SID	0574				SID<	10:3>					SID<2:0>			EXIDE	—	EID<1	17:16>	xxxx
C2RXF13EID	0576				EID<	15:8>							EID<	7:0>				xxxx
C2RXF14SID	0578				SID<	10:3>					SID<2:0>		_	EXIDE	_	EID<1	17:16>	xxxx
C2RXF14EID	057A				EID<	15:8>							EID<	7:0>				xxxx
C2RXF15SID	057C				SID<	10:3>					SID<2:0>			EXIDE		EID<1	17:16>	xxxx
C2RXF15EID	057E				EID<	15:8>							EID<	7:0>				xxxx

TABLE 4	-32:	PARA	LLEL N	IASTEF	R/SLAV	E POR	T REGIS	STER M/	ΑΡ⁽¹⁾								
Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
PMCON	0600	PMPEN	_	PSIDL	ADRMU	JX<1:0>	PTBEEN	PTWREN	PTRDEN	CSF	=<1:0>	ALP	CS2P	CS1P	BEP	WRSP	RDS
PMMODE	0602	BUSY	IRQM	1<1:0>	INCM	l<1:0>	MODE16	MODE	=<1:0>	WAIT	⁻ B<1:0>		WAIT	N<3:0>		WAITE	E<1:0>
PMADDR ⁽¹⁾	0604	CS2	CS1						Para	allel Port Ad	ddress (ADD	R<13:0>)					
PMDOUT1(1)	0604						F	Parallel Port	Data Out Re	egister 1 (B	uffers Level	0 and 1)					
PMDOUT2	0606						F	Parallel Port	Data Out Re	egister 2 (B	uffers Level	2 and 3)					
PMDIN1	0608							Parallel Port	t Data In Re	gister 1 (Bı	uffers Level () and 1)					
PMDIN2	060A							Parallel Port	t Data In Re	gister 2 (Bı	uffers Level 2	2 and 3)					
PMAEN	060C	PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8	PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN

IB1F

Legend: - = unimplemented, read as '0'. Shaded bits are not used in the operation of the PMP module.

PMADDR and PMDOUT1 are the same physical register, but are defined differently depending on the module's operating mode. Note 1:

IB2F

IB3F

TABLE 4-33: CRC REGISTER MAP

IBF

IBOV

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CRCCON1	0640	CRCEN	—	CSIDL		V	WORD<4:()>		CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN	-	—	—	0000
CRCCON2	0642	_														0000		
CRCXORL	0644															0000		
CRCXORH	0646								Х	<23:16>								0000
CRCDATL	0648								CRC Data	a Input Low \	Nord							0000
CRCDATH	064A								CRC Data	Input High	Word							0000
CRCWDATL	064C								CRC Re	esult Low Wo	ord							0000
CRCW- DATH	064E								CRC Re	esult High W	ord							0000

IB0F

OBE

OBUF

_

- = unimplemented, read as '0'. Shaded bits are not used in the operation of the programmable CRC module. Legend:

PMSTAT

060E

All

Resets

0000

0000

008F

Bit 0

RDSP

PTEN0

OB0E

OB3E

_

OB2E

OB1E

TABLE 4-34: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620						Alarm	Value Registe	er Window ba	sed on ALF	RMPTR<1:	0>						xxxx
ALCFGRPT	0622	ALRMEN	CHIME		AMASK	<3:0>		ALRMP	[R<1:0>				ARP	T<7:0>				0000
RTCVAL	0624						RTCC	Value Regis	ter Window b	ased on R1	CPTR<1:0)>						xxxx
RCFGCAL	0626	RTCEN	—	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	R<1:0>				CAL	_<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-35: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680	-	_			RP65F	<5:0>			_				RP64I	R<5:0>			0000
RPOR1	0682	_				RP67F	<5:0>			_				RP66	R<5:0>			0000
RPOR2	0684	_	_			RP69F	R<5:0>			_	_			RP68	R<5:0>			0000
RPOR3	0686	_	_			RP71F	R<5:0>			_				RP70	R<5:0>			0000
RPOR4	0688	_				RP80F	R<5:0>			_				RP79	R<5:0>			0000
RPOR5	068A	_				RP84F	<5:0>			_	_			RP82	R<5:0>			0000
RPOR6	068C	_	_			RP87F	<5:0>			—	_			RP85	R<5:0>			0000
RPOR7	068E	_	_			RP97F	R<5:0>			_				RP96	R<5:0>			0000
RPOR8	0690	-	_			RP99F	R<5:0>			—	—			RP98	R<5:0>			0000
RPOR9	0692	-	_			RP101	R<5:0>			—	—			RP100	R<5:0>			0000
RPOR11	0696		_			RP108	R<5:0>			_				RP104	R<5:0>			0000
RPOR12	0698		_			RP112	R<5:0>			_				RP109	R<5:0>			0000
RPOR13	069A		—			RP118	R<5:0>			—	—			RP113	R<5:0>			0000
RPOR14	069C	_	—			RP125	R<5:0>			—	_			RP120	R<5:0>			0000
RPOR15	069E	-	_			RP127	R<5:0>			_	_			RP126	R<5:0>			0000

TABLE 4-36: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	0680		—			RP65F	R<5:0>			_	—		•	RP64	R<5:0>			0000
RPOR1	0682	_	_			RP67F	R<5:0>			_	_			RP66	R<5:0>			0000
RPOR2	0684	_	_			RP69F	R<5:0>			_	_			RP68	R<5:0>			0000
RPOR3	0686	_	—			RP71F	۲<5:0>			—	_			RP70	R<5:0>			0000
RPOR4	0688	_	—			RP80F	۶<5:0>			—	—	_	—	—	—	_	—	0000
RPOR5	068A	_	_			RP84F	R<5:0>			_	_		•	RP82	R<5:0>	•	•	0000
RPOR6	068C	_	—			RP87F	۲<5:0>			—	_			RP85	R<5:0>			0000
RPOR7	068E	_	—			RP97F	۶<5:0>			—	—			RP96	R<5:0>			0000
RPOR8	0690	_	—			RP99F	۶<5:0>			—	—	—	—	—	—	_	—	0000
RPOR9	0692	_	—			RP101	R<5:0>			_	_			RP100	R<5:0>			0000
RPOR13	069A	_	—			RP118	R<5:0>			—	—	_	—	—	—	_	—	0000
RPOR14	069C		—	-	—	_	_			—	—			RP120	R<5:0>			0000

	. 4 07																	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>	>			_		_	_	_	_		_	0000
RPINR1	06A2	—				INT3R<6:0>	>			—				INT2R<6:0>				0000
RPINR2	06A4	—	—	—	—	—	—	—	—	—				INT4R<6:0>				0000
RPINR3	06A6	—				T3CKR<6:0	>			—			-	T2CKR<6:0>	>			0000
RPINR4	06A8	—				T5CKR<6:0	>			—				T4CKR<6:0>	>			0000
RPINR5	06AA	—				T7CKR<6:0	>			—				T6CKR<6:0>	•			0000
RPINR6	06AC	—				T9CKR<6:0	>			—				T8CKR<6:0>	>			0000
RPINR7	06AE	—				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	—				IC4R<6:0>				—				IC3R<6:0>				0000
RPINR9	06B2	—				IC6R<6:0>				—				IC5R<6:0>				0000
RPINR10	06B4	—				IC8R<6:0>				—				IC7R<6:0>				0000
RPINR11	06B6	—				OCFBR<6:0	>			—			(OCFAR<6:0	>			0000
RPINR12	06B8	—				FLT2R<6:0>	>			—				FLT1R<6:0>				0000
RPINR13	06BA	—				FLT4R<6:0>	>			—				FLT3R<6:0>				0000
RPINR14	06BC	—				QEB1R<6:0	>			—			(QEA1R<6:0	>			0000
RPINR15	06BE	—			ŀ	IOME1R<6:	0>			—				NDX1R<6:0	>			0000
RPINR16	06C0	—				QEB2R<6:0	>			—			(QEA2R<6:0	>			0000
RPINR17	06C2	—			ŀ	IOME2R<6:	0>			—				NDX2R<6:0	>			0000
RPINR18		—				J1CTSR<6:(—			I	J1RXR<6:0	>			0000
RPINR19		—			l	J2CTSR<6:()>			_			I	J2RXR<6:0	>			0000
RPINR20	06C8	—		-		SCK1R<6:0	>			—				SDI1R<6:0>				0000
RPINR21	06CA	—	—		—	—	—	_		_				SS1R<6:0>				0000
RPINR23		—	—	—	—	—	—	—	—	—				SS2R<6:0>				0000
RPINR24	06D0	—		-		CSCKR<6:0	>			—				CSDIR<6:0>				0000
RPINR25	06D2	—	—	_		—	_			_			(COFSR<6:0	>			0000
RPINR26		—				C2RXR<6:0				—				C1RXR<6:0				0000
RPINR27	06D6	—			l	J3CTSR<6:()>			—			I	J3RXR<6:0	>			0000
RPINR28		—				J4CTSR<6:(—				J4RXR<6:0				0000
RPINR29		—		-		SCK3R<6:0	>			—				SDI3R<6:0>				0000
RPINR30		—	—	—	—	—	—	—	—	—				SS3R<6:0>				0000
RPINR31	06DE	—				SCK4R<6:0	>			—				SDI4R<6:0>				0000
RPINR32	06E0	—	—	—	—	—	—		—	—				SS4R<6:0>				0000
RPINR33	06E2	—				IC10R<6:0>	>			—				IC9R<6:0>				0000
RPINR34	06E4	—				IC12R<6:0>				—				IC11R<6:0>				0000
RPINR35	06E6	—				IC14R<6:0>	>							IC13R<6:0>				0000
RPINR36	06E8	—				IC16R<6:0>	>							IC15R<6:0>				0000
RPINR37		_				SYNCI1R<6:				—			(DCFCR<6:0	>			0000
RPINR38	06EC	—			D	TCMP1R<6	:0>			—			S	YNCI2R<6:0)>			0000

TABLE 4-37: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

TABLE 4-37: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR39	06EE	—			D	FCMP3R<6:	0>			—			DT	CMP2R<6:	0>			0000
RPINR40	06F0	-			D	CMP5R<6:	0>			—			DT	CMP4R<6:	0>			0000
RPINR41	06F2	-			D	CMP7R<6:	0>			—			DT	CMP6R<6:	0>			0000
RPINR42	06F4	—				FLT6R<6:0>	•			_			F	LT5R<6:0>				0000
RPINR43	06F6	_			_	_	_	_		_			F	LT7R<6:0>				0000

IADLE	4-30.	FLN								3610331								т
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:03	>			—	—	—	—	—	—			0000
RPINR1	06A2	_				INT3R<6:03	>			_				INT2R<6:0>				0000
RPINR2	06A4	_	—	_	—	—	_	—	_	—				INT4R<6:0>				0000
RPINR3	06A6	_				T3CKR<6:0	>			_				T2CKR<6:0>	>			0000
RPINR4	06A8	_				T5CKR<6:0	>			—				T4CKR<6:0>	>			0000
RPINR5	06AA	—				T7CKR<6:0	>			—				T6CKR<6:0>	>			0000
RPINR6	06AC	—				T9CKR<6:0	>			—				T8CKR<6:0>	>			0000
RPINR7	06AE	—				IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0	—				IC4R<6:0>				—				IC3R<6:0>				0000
RPINR9	06B2	_				IC6R<6:0>				_				IC5R<6:0>				0000
RPINR10	06B4	_				IC8R<6:0>				—				IC7R<6:0>				0000
RPINR11	06B6	—				OCFBR<6:0	>			—				OCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:0	>			_				FLT1R<6:0>	•			0000
RPINR13	06BA	_				FLT4R<6:0	>			—				FLT3R<6:0>	•			0000
RPINR14	06BC	_				QEB1R<6:0	>			—				QEA1R<6:0	>			0000
RPINR15	06BE	—			F	IOME1R<6:	0>			_			I	NDX1R<6:0	>			0000
RPINR16	06C0	_				QEB2R<6:0	>			_				QEA2R<6:0	>			0000
RPINR17	06C2	—			F	IOME2R<6:	0>			—			I	NDX2R<6:0	>			0000
RPINR18	06C4	_			ι	J1CTSR<6:)>			_				J1RXR<6:0	>			0000
RPINR19	06C6	—			ι	J2CTSR<6:)>			—				J2RXR<6:0	>			0000
RPINR20	06C8	—				SCK1R<6:0	>		-	—				SDI1R<6:0>				0000
RPINR21	06CA	_	—	_	_	_	_	—	—	—				SS1R<6:0>				0000
RPINR23	06CE	—		—	—	—	—	—	—	—				SS2R<6:0>				0000
RPINR24	06D0	—				CSCKR<6:0	>		-	—				CSDIR<6:0>	•			0000
RPINR25	06D2	—		—	—	—	—	—	—	—			С	OFSINR<6:)>			0000
RPINR26	06D4	—				C2RXR<6:0	>			—				C1RXR<6:0	>			0000
RPINR27	06D6	—			ι	J3CTSR<6:()>			—				J3RXR<6:0	>			0000
RPINR28	06D8	—			ι	J4CTSR<6:()>			—				J4RXR<6:0	>			0000
RPINR29	06DA	—				SCK3R<6:0	>		-	—				SDI3R<6:0>				0000
RPINR30	06DC	—		—	—	—	—	—	—	—				SS3R<6:0>				0000
RPINR31	06DE	_				SCK4R<6:0	>			_				SDI4R<6:0>				0000
RPINR32	06E0	_	—	—	—	—	_	—	_	—				SS4R<6:0>				0000
RPINR33	06E2	—				IC10R<6:03	>			—				IC9R<6:0>				0000
RPINR34	06E4	_				IC12R<6:03	>			_				IC11R<6:0>				0000
RPINR35	06E6					IC14R<6:02	>			—				IC13R<6:0>				0000
RPINR36	06E8					IC16R<6:02	>							IC15R<6:0>				0000
RPINR37	06EA	—			S	YNCI1R<6:	0>			—			(OCFCR<6:0	>			0000
RPINR38	06EC				D	TCMP1R<6	:0>			—			S	YNCI2R<6:()>			0000

TABLE 4-38: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

TABLE 4-38: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR39	06EE	—	DTCMP3R<6:0> — DTCMP2R<6:0>												0000			
RPINR40	06F0	—	DTCMP5R<6:0> — DTCMP4R<6:0>														0000	
RPINR41	06F2	_	_	—	—	—	_	—	—	—			D	CMP6R<6:	0>			0000
RPINR42	06F4	—				FLT6R<6:0>	>			—				FLT5R<6:0>	•			0000
RPINR43	06F6	—	_	—	—	—	—	—	—	—				FLT7R<6:0>				0000

IADLE	+ 00.								TORT	31 10001						r	1	
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	—				INT1R<6:0	>			—	—	—	-	-	—	—	-	0000
RPINR1	06A2	—				INT3R<6:0	>			—				INT2R<6:0>				0000
RPINR2	06A4	_	_	_	_	-	_	—	_	_				INT4R<6:0>				0000
RPINR3	06A6	_				T3CKR<6:0	>			_				T2CKR<6:0	>			0000
RPINR4	06A8	_				T5CKR<6:0	>			_				T4CKR<6:0	>			0000
RPINR5	06AA	_				T7CKR<6:0	>			—				T6CKR<6:0	>			0000
RPINR6	06AC	—				T9CKR<6:0	>			_				T8CKR<6:0	>			0000
RPINR7	06AE	_				IC2R<6:0>				_				IC1R<6:0>				0000
RPINR8	06B0	_				IC4R<6:0>				_				IC3R<6:0>				0000
RPINR9	06B2	_				IC6R<6:0>				—				IC5R<6:0>				0000
RPINR10	06B4	—				IC8R<6:0>				—				IC7R<6:0>				0000
RPINR11	06B6	_			(DCFBR<6:0	>			—			(OCFAR<6:0	>			0000
RPINR12	06B8	_				FLT2R<6:0	>			—				FLT1R<6:0>				0000
RPINR13	06BA	_				FLT4R<6:0	>			—				FLT3R<6:0>				0000
RPINR14	06BC	_			(QEB1R<6:0	>			—			(QEA1R<6:0	>			0000
RPINR15	06BE	_			Н	OME1R<6:	0>			—			I	NDX1R<6:0	>			0000
RPINR16	06C0	_			(QEB2R<6:0	>			_			(QEA2R<6:0	>			0000
RPINR17	06C2				Н	OME2R<6:	0>			_			I	NDX2R<6:0	>			0000
RPINR18	06C4	_			ι	1CTSR<6:0)>			_			I	U1RXR<6:0	>			0000
RPINR19	06C6				ι	2CTSR<6:0)>			_			1	U2RXR<6:0	>			0000
RPINR20	06C8	_			:	SCK1R<6:0	>			—				SDI1R<6:0>				0000
RPINR21	06CA	_	_	_	_	_	_	_	_	—				SS1R<6:0>				0000
RPINR23	06CE	_	_	_	_	—	_	—	—	—				SS2R<6:0>				0000
RPINR24	06D0	_			(CSCKR<6:0	>			_				CSDIR<6:0>	•			0000
RPINR25	06D2	—	—	—	—		—	—	-	_			С	OFSINR<6:)>			0000
RPINR26	06D4	_			(C2RXR<6:0	>			—			(C1RXR<6:0	>			0000
RPINR27	06D6	_			L	3CTSR<6:0)>			_			I	U3RXR<6:0	>			0000
RPINR28	06D8	_			L	4CTSR<6:)>			—			I	U4RXR<6:0	>			0000
RPINR29	06DA	_			:	SCK3R<6:0	>			—				SDI3R<6:0>				0000
RPINR30	06DC	_	_	_	_	—	_	—	—	—				SS3R<6:0>				0000
RPINR31	06DE	_			:	SCK4R<6:0	>			—				SDI4R<6:0>				0000
RPINR32	06E0	_	—		_	—	_	—	—	—				SS4R<6:0>				0000
RPINR33	06E2	—				IC10R<6:0>	>							IC9R<6:0>				0000
RPINR34	06E4	_				IC12R<6:0>	>			—				IC11R<6:0>				0000
RPINR35	06E6	—				IC14R<6:0>	>			_				IC13R<6:0>				0000
RPINR36	06E8	—				IC16R<6:0>	>			_				IC15R<6:0>				0000
RPINR37	06EA				S	YNCI1R<6:	0>			_			(OCFCR<6:0	>			0000
RPINR38	06EC	—			D	FCMP1R<6	:0>			—			S	YNCI2R<6:()>			0000

TABLE 4-39: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

TABLE 4-39: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY (CONTINUED)

File Nam	e Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR39	06EE	_	DTCMP3R<6:0> — DTCMP2R<6:0>										0000					
RPINR40	06F0	—	—	—	—	—	—	—	—	—			D1	CMP4R<6:)>			0000
RPINR42	06F4	_				FLT6R<6:0>	>			—				FLT5R<6:0>				0000
RPINR43	06F6		_	_	_	_	_	_	_					FLT7R<6:0>				0000

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	06A0	_				INT1R<6:0>	>			—	—	—	_	—	_	-	—	0000
RPINR1	06A2	_				INT3R<6:0>	>			—				INT2R<6:0>				0000
RPINR2	06A4		—	—	—	—	—	—	—	—				INT4R<6:0>				0000
RPINR3	06A6	_				T3CKR<6:0	>			—				T2CKR<6:0	>			0000
RPINR4	06A8					T5CKR<6:0	>			—				T4CKR<6:0	>			0000
RPINR5	06AA	_				T7CKR<6:0	>			—				T6CKR<6:0	>			0000
RPINR6	06AC	_				T9CKR<6:0	>			—				T8CKR<6:0	>			0000
RPINR7	06AE					IC2R<6:0>				—				IC1R<6:0>				0000
RPINR8	06B0					IC4R<6:0>				—				IC3R<6:0>				0000
RPINR9	06B2	_				IC6R<6:0>				—				IC5R<6:0>				0000
RPINR10	06B4					IC8R<6:0>				—				IC7R<6:0>				0000
RPINR11	06B6				(OCFBR<6:0	>			—			(OCFAR<6:0	>			0000
RPINR18	06C4	_			ι	J1CTSR<6:0)>			—			I	U1RXR<6:0	>			0000
RPINR19	06C6				ι	J2CTSR<6:0)>			—			1	U2RXR<6:0	>			0000
RPINR20	06C8	_				SCK1R<6:0	>			—				SDI1R<6:0>	•			0000
RPINR21	06CA	_	_	_	—	_	_	_	—	—				SS1R<6:0>				0000
RPINR23	06CE		—	—	—	—	—	—	—	—				SS2R<6:0>				0000
RPINR26	06D4	_				C2RXR<6:0	>			—			(C1RXR<6:0	>			0000
RPINR27	06D6	—			ι	J3CTSR<6:0)>			—			I	U3RXR<6:0	>			0000
RPINR28	06D8	_			ι	J4CTSR<6:0)>			—			I	U4RXR<6:0	>			0000
RPINR29	06DA	—				SCK3R<6:0	>			_				SDI3R<6:0>	•			0000
RPINR30	06DC	—	_	_	_	_		_	_	_				SS3R<6:0>				0000
RPINR31	06DE	—				SCK4R<6:0	>			_				SDI4R<6:0>	•			0000
RPINR32	06E0	—	_	_	_	—		_	—	_				SS4R<6:0>				0000
RPINR33	06E2	—				IC10R<6:0>	>			_				IC9R<6:0>				0000
RPINR34	06E4	_				IC12R<6:0>	>			-				IC11R<6:0>				0000
RPINR35	06E6	_				IC14R<6:0>	>			-				IC13R<6:0>	,			0000
RPINR36	06E8	_				IC16R<6:0>	>			—				IC15R<6:0>				0000
RPINR37	06EA	_	_	_		_	—	_	—	_			(OCFCR<6:0	>			0000

TABLE 4-40: PERIPHERAL PIN SELECT INPUT REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY

TABLE 4-41: REFERENCE CLOCK REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
REFOCON	074E	ROON		ROSSLP	ROSEL		RODI	V<3:0>		_			_		_	_		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-42: NVM REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets		
NVMCON	0728	WR	WREN	WRERR	NVMSIDL	—	—	—	—	—	— — — NVMOP<3:0>									
NVMADR	072A							NVMADR<15:0>												
NVMADRU	072C	-	_	-	_	—	—	—	_				NVMAD	R<23:16>				0000		
NVMKEY	072E	_	_	—	_	_			_	- NVMKEY<7:0>										

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-43: SYSTEM CONTROL REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR	SBOREN	—	VREGSF	—	CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	Note 1
OSCCON	0742	-	(COSC<2:0>		—		NOSC<2:0>		CLKLOCK	IOLOCK	LOCK	_	CF		LPOSCEN	OSWEN	Note 2
CLKDIV	0744	ROI	[DOZE<2:0>		DOZEN	F	RCDIV<2:0	>	PLLPOS	T<1:0>	—		F	PLLPRE	<4:0>		0000
PLLFBD	0746	-	_	—	—	—	_	—				PLLDI	V<8:0>					0000
OSCTUN	0748	-	_	—	—	—	_	—	—	—	—			TUN	<5:0>			0000
ACLKCON3	0758	ENAPLL	APLLCK	SELACLK	AOSCN	1D<1:0>	ASRCSEL	FRCSEL	—	APL	LPOST2<2	:0>	—	_		APLLPRE<2	:0>	0000
ACLKDIV3	075A	—		_	_	_		—	—	—	_	— — — APLLDIV<2:0>					:0>	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register reset values dependent on type of reset.

2: OSCCON register reset values dependent on configuration fuses, and by type of reset.

DS70616C-page 96

TABLE 4-44 :	PMD REGISTER MAP FOR dsPIC33EPXXXMU814 DEVICES ONLY
---------------------	---

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	—	CMPMD	RTCCMD	PMPMD	CRCMD	—	QEI2MD	—	U3MD	—	I2C2MD	AD2MD	0000
PMD4	0766	_	—	_	—	—	_	—	_	_	—	U4MD	—	REFOMD	—	_	USB1MD	0000
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	0000
PMD6	076A	_	PWM7MD	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	—	—	—	—	—	—	SPI4MD	SPI3MD	0000
	076C	_	—	_	—	—	_	—	_	DMA12MD	DMA8MD	DMA4MD	DMA0MD	—	—	_	_	0000
PMD7		-	_	—	—	—	_	—	_	DMA13MD	DMA9MD	DMA5MD	DMA1MD	_	_	—	_	0000
		_	_	_	—	—	—	_	_	DMA14MD	DMA10MD	DMA6MD	DMA2MD	_	_	_	_	0000
		_	_		—	—	—	_	_		DMA11MD	DMA7MD	DMA3MD	_	_			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-45: PMD REGISTER MAP FOR dsPIC33EPXXXMU810 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	—	CMPMD	RTCCMD	PMPMD	CRCMD	—	QEI2MD	—	U3MD	_	I2C2MD	AD2MD	0000
PMD4	0766	_	—	_	—	—	_	—	_	—	—	U4MD	—	REFOMD	—	_	USB1MD	0000
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	0000
PMD6	076A	—	—	PWM6MD	PWM5MD	PWM4MD	PWM3MD	PWM2MD	PWM1MD	—	—	—	—	—	_	SPI4MD	SPI3MD	0000
	076C	—	—	-	—	—	_	—	_	DMA12MD	DMA8MD	DMA4MD	DMA0MD	—	_	_	_	0000
PMD7		-	-	—	-	—	_	—	_	DMA13MD	DMA9MD	DMA5MD	DMA1MD	_	_	_	—	0000
		_	_	_	_	—	_	_	_	DMA14MD	DMA10MD	DMA6MD	DMA2MD	_	_	_	_	0000
		_	—		_	—	_	_	_	_	DMA11MD	DMA7MD	DMA3MD	_	_	_		0000

File Name PMD1

TABLE 4-46: PMD REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWMMD	DCIMD	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	—	CMPMD	RTCCMD	PMPMD	CRCMD	-	QEI2MD	-	U3MD	-	I2C2MD	AD2MD	0000
PMD4	0766	-	_	_	—	—	—	—			_	U4MD		REFOMD			USB1MD	0000
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	0000
PMD6	076A	-			—	PWM4MD	PWM3MD	PWM2MD	PWM1MD	-		-	-	-	-	SPI4MD	SPI3MD	0000
	076C	-	_	_	—	—	—	—		DMA12MD	DMA8MD	DMA4MD	DMA0MD	-				0000
PMD7		_	_	_	—	—	—	—		DMA13MD	DMA9MD	DMA5MD	DMA1MD					0000
		_	—	—	—	—	—	—		DMA14MD	DMA10MD	DMA6MD	DMA2MD					0000
		—	—	—	_	—	—	—	_		DMA11MD	DMA7MD	DMA3MD	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-47: PMD REGISTER MAP FOR PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0760	T5MD	T4MD	T3MD	T2MD	T1MD	—	-	_	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD	0000
PMD2	0762	IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD	OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0764	T9MD	T8MD	T7MD	T6MD	—	CMPMD	RTCCMD	PMPMD	CRCMD	—	_		U3MD	-	I2C2MD	AD2MD	0000
PMD4	0766	_	—	—	_	—	—	—	—	—	—	U4MD		REFOMD	-	_	USB1MD	0000
PMD5	0768	IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD	OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD	0000
PMD6	076A	_	—	_	_	—	_	—	_	—	—	_		_	_	SPI4MD	SPI3MD	0000
	076C	_	—	—	_	—	—	—	—	DMA12MD	DMA8MD	DMA4MD	DMA0MD	—	-	_	_	0000
D14D7		_	_		_	—		—		DMA13MD	DMA9MD	DMA5MD	DMA1MD	—		_	_	0000
PMD7		_	—	—	_	—	—	—	—	DMA14MD	DMA10MD	DMA6MD	DMA2MD	—	-	_	—	0000
		_	_	_	_	_	_	_	_	—	DMA11MD	DMA7MD	DMA3MD	—	—	_	_	0000

TABLE 4-48: COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0A80	CMSIDL	_	_	_	_	C3EVT	C2EVT	C1EVT	—	—	—	—	—	C3OUT	C2OUT	C10UT	0000
CVRCON	0A82	_	_	_	_	_	VREFSEL	BGSE	L<1:0>	CVREN	CVROE	CVRR	CVRSS		CVR<	<3:0>		0000
CM1CON	0A84	CON	COE	CPOL	_	_	—	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM1MSKSRC	0A86	—	_	_	_		SELSRO	C<3:0>			SELSR	CB<3:0>			SELSRO	CA<3:0>		0000
CM1MSKCON	0A88	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	0A8A	—	_	_	_	_	—	_	—	_	(CFSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM2CON	0A8C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM2MSKSRC	0A8E	_	_	_	_		SELSRO	C<3:0>			SELSR	CB<3:0>			SELSRO	CA<3:0>		0000
CM2MSKCON	0A90	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0A92	_	_		_		_	_	_	_	(CFSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000
CM3CON	0A94	CON	COE	CPOL	-		_	CEVT	COUT	EVPO	L<1:0>	_	CREF	—	_	CCH	<1:0>	0000
CM3MSKSRC	0A96	_	_		-		SELSRO	C<3:0>	•		SELSRCB<3:0>				SELSRO	CA<3:0>		0000
CM3MSKCON	0A98	HLMS	-	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	0A9A					_	_		_		(CFSEL<2:0	>	CFLTREN	(CFDIV<2:0	>	0000

TABLE 4-49: DMAC REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0B00	CHEN	SIZE	DIR	HALF	NULLW	-	_	_	_	_	AMOD	E<1:0>	-	_	MODE	<1:0>	0000
DMA0REQ	0B02	FORCE	_	_	_	_	_	_	_				IRQSEL	<7:0>				00FF
DMA0STAL	0B04								STA<1	5:0>								0000
DMA0STAH	0B06	—	_			—	_	_					STA<2	3:16>				0000
DMA0STBL	0B08								STB<1	5:0>								0000
DMA0STBH	0B0A	_	_	_	_	_	_	—	—				STB<2	3:16>				0000
DMA0PAD	0B0C								PAD<1	5:0>								0000
DMA0CNT	0B0E	—	—							CNT<1	3:0>							0000
DMA1CON	0B10	CHEN	SIZE	DIR	HALF	NULLW	—	—	_	—		AMOD	E<1:0>	—		MODE	<1:0>	0000
DMA1REQ	0B12	FORCE	_	_	_	_	_	_	_				IRQSEL	<7:0>				00FF
DMA1STAL	0B14								STA<1	5:0>								0000
DMA1STAH	0B16	_	_			_	_	_	_				STA<2	3:16>				0000
DMA1STBL	0B18								STB<1	5:0>								0000
DMA1STBH	0B1A	_	_	_	_	_	_	—	—				STB<2	3:16>				0000
DMA1PAD	0B1C								PAD<1	5:0>								0000
DMA1CNT	0B1E	_	—							CNT<1	3:0>							0000
DMA2CON	0B20	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA2REQ	0B22	FORCE	_	_	_	_	_	_	_				IRQSEL	<7:0>				00FF
DMA2STAL	0B24								STA<1	5:0>								0000
DMA2STAH	0B26	_	_	_		_	_	—	_				STA<2	3:16>				0000
DMA2STBL	0B28								STB<1	5:0>								0000
DMA2STBH	0B2A	—	—	_	_	—	_	—	_				STB<2	3:16>				0000
DMA2PAD	0B2C								PAD<1	5:0>								0000
DMA2CNT	0B2E	—	—							CNT<1	3:0>							0000
DMA2CON	0B30	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	_	—	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA3REQ	0B32	FORCE	_	_	_	_	_	_	_				IRQSEL	<7:0>				00FF
DMA3STAL	0B34								STA<1	5:0>								0000
DMA3STAH	0B36	_	_	_	_	—	_	—	_				STA<2	3:16>				0000
DMA3STBL	0B38			•				•	STB<1	5:0>								0000
DMA3STBH	0B3A	_	—	_	_	—	—	—	—				STB<2	3:16>				0000
DMA3PAD	0B3C							•	PAD<1	5:0>								0000
DMA3CNT	0B3E	_	_							CNT<1	3:0>							0000
DMA4CON	0B40	CHEN	SIZE	DIR	HALF	NULLW	_	—	_	_		AMOD	E<1:0>	_		MODE	<1:0>	0000
DMA4REQ	0B42	FORCE	_	—		—	_	—	_				IRQSEL	<7:0>				00FF
DMA4STAL	0B44								STA<1	5:0>								0000
DMA4STAH	0B46					—		—					STA<2	3:16>				0000
DMA4STBL	0B48								STB<1	5:0>								0000

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

DS70616C-page 100

TABLE 4-49: DMAC REGISTER MAP (CONTINUED)

IADLL 4-					(00													
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA4STBH	0B4A	_	—	_	_	—	_	—	—				STB<2	23:16>				0000
DMA4PAD	0B4C								PAD<1	5:0>								0000
DMA4CNT	0B4E	_	_							CNT<1	13:0>							0000
DMA5CON	0B50	CHEN	SIZE	DIR	HALF	NULLW	_	_	—			AMOD	E<1:0>	—	—	MOD	E<1:0>	0000
DMA5REQ	0B52	FORCE	—	_	_	_	_	—	_				IRQSE	L<7:0>				00FF
DMA5STAL	0B54								STA<1	5:0>								0000
DMA5STAH	0B56	_	_		_		_	_	—				STA<2	23:16>				0000
DMA5STBL	0B58								STB<1	5:0>								0000
DMA5STBH	0B5A		_		_		_		_				STB<2	23:16>				0000
DMA5PAD	0B5C								PAD<1	5:0>								0000
DMA5CNT	0B5E	_	_							CNT<1	13:0>							0000
DMA6CON	0B60	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MOD	E<1:0>	0000
DMA6REQ	0B62	FORCE	_	_	_	_	_	_	_				IRQSE	L<7:0>				00FF
DMA6STAL	0B64					1			STA<1	5:0>								0000
DMA6STAH	0B66		_	_	_	_	_	_	_				STA<2	23:16>				0000
DMA6STBL	0B68					1			STB<1	5:0>								0000
DMA6STBH	0B6A	_	_	_	_	_	_	_	_				STB<2	23:16>				0000
DMA6PAD	0B6C								PAD<1	5:0>								0000
DMA6CNT	0B6E	_	_							CNT<1	13:0>							0000
DMA7CON	0B70	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MOD	E<1:0>	0000
DMA7REQ	0B72	FORCE	_	_	_	_	_	_	_				IRQSE	L<7:0>				00FF
DMA7STAL	0B74								STA<1	5:0>								0000
DMA7STAH	0B76	_	_	_	_	_	_	_	_				STA<2	23:16>				0000
DMA7STBL	0B78								STB<1	5:0>								0000
DMA7STBH	0B7A	_	_	_	_	_	_	_	_				STB<2	23:16>				0000
DMA7PAD	0B7C								PAD<1	5:0>								0000
DMA7CNT	0B7E		_							CNT<1	13:0>							0000
DMA8CON	0B80	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MOD	E<1:0>	0000
DMA8REQ	0B82	FORCE	_	_	_	_	_	_	_				IRQSE	L<7:0>				00FF
DMA8STAL	0B84								STA<1	5:0>								0000
DMA8STAH	0B86	_	_	_	_	_	_	_	_				STA<2	23:16>				0000
DMA8STBL	0B88								STB<1	5:0>								0000
DMA8STBH	0B8A	_	_	_	_	_	_	_	—				STB<2	23:16>				0000
DMA8PAD	0B8C								PAD<1	5:0>								0000
DMA8CNT	0B8E	_	_							CNT<1	13:0>							0000
DMA9CON	0B90	CHEN	SIZE	DIR	HALF	NULLW		_	_	_		AMOD	E<1:0>	_	_	MOD	E<1:0>	0000
DMA9REQ	0B92	FORCE	_	—	_	_	_	<u> </u>	_				IRQSE	L<7:0>		1		0055
DMA9STAL	0B94								STA<1	5:0>								0000
			on Reset	– = unimpler	nented rea	d as '0' Por	set values a	re shown in										

TABLE 4-49: DMAC REGISTER MAP (CONTINUED)

					(00011													
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA9STAH	0B96	-	—	_	_	_	_	_	_				STA<2	3:16>				0000
DMA9STBL	0B98								STB<1	5:0>								0000
DMA9STBH	0B9A	_	_	_	_	_	_	_	_				STB<2	3:16>				0000
DMA9PAD	0B9C					•			PAD<1	5:0>								0000
DMA9CNT	0B9E	_	_							CNT<1	3:0>							0000
DMA10CON	0BA0	CHEN	SIZE	DIR	HALF	NULLW	—	_	—	_	—	AMOD	E<1:0>	—	_	MOD	E<1:0>	0000
DMA10REQ	0BA2	FORCE	_	_	_	_	_	—	—				IRQSEI	<7:0>	•			00FF
DMA10STAL	0BA4								STA<1	5:0>								0000
DMA10STAH	0BA6	_	—	—	—	_	—	—	—				STA<2	3:16>				0000
DMA10STBL	0BA8								STB<1	5:0>								0000
DMA10STBH	0BAA	_	_		_	_	—						STB<2	3:16>				0000
DMA10PAD	0BAC								PAD<1	5:0>								0000
DMA10CNT	0BAE	_	_							CNT<1	3:0>							0000
DMA11CON	0BB0	CHEN	SIZE	DIR	HALF	NULLW	—	_	_	—	—	AMOD	E<1:0>	_	-	MOD	E<1:0>	0000
DM11AREQ	0BB2	FORCE	_	_	_	_	_	_	_				IRQSEI	_<7:0>				00FF
DMA11STAL	0BB4								STA<1	5:0>								0000
DMA11STAH	0BB6	_			_	_	_						STA<2	3:16>				0000
DMA11STBL	0BB8								STB<1	5:0>								0000
DMA11STBH	0BBA	_			_	_	_						STB<2	3:16>				0000
DMA11PAD	0BBC								PAD<1	5:0>								0000
DMA11CNT	0BBE	_								CNT<1	3:0>							0000
DMA12CON	0BC0	CHEN	SIZE	DIR	HALF	NULLW	_			_		AMOD	E<1:0>	_	_	MOD	E<1:0>	0000
DMA12REQ	0BC2	FORCE			_	_	_					1	IRQSEI	<7:0>				OOFF
DMA12STAL	0BC4								STA<1	5:0>								0000
DMA12STAH	0BC6	_	_	_	_	_	_	_					STA<2	3:16>				0000
DMA12STBL	0BC8								STB<1	5:0>								0000
DMA12STBH	0BCA				_	_	_						STB<2	3:16>				0000
DMA12PAD	0BCC								PAD<1	5:0>								0000
DMA12CNT	0BCE	_								CNT<1	3:0>							0000
DMA13CON	0BD0	CHEN	SIZE	DIR	HALF	NULLW	_			_	_	AMOD	E<1:0>		_	MOD	E<1:0>	0000
DMA13REQ	0BD2	FORCE	_		_	_	_	_	_				IRQSEI	<7:0>				00FF
DMA13STAL	0BD4								STA<1	5:0>								0000
DMA13STAH	0BD6					_							STA<2	3:16>				0000
DMA13STBL	0BD8								STB<1	5:0>								0000
DMA13STBH	0BDA	_	_	_	_	_	—		_				STB<2	3:16>				0000
DMA13PAD	0BDC								PAD<1	5:0>								0000
DMA13CNT	0BDE	_	—							CNT<1	3.0>							0000
DMA14CON	0BE0	CHEN	SIZE	DIR	HALF	NULLW				_		AMOD	E<1:0>		_	MODI	E<1:0>	0000
		nown value					sot values a	ro chown ir	hovadocir	nol								

TABLE 4-49: DMAC REGISTER MAP (CONTINUED)

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA14REQ	0BE2	FORCE		-	—	_	_	_	_				IRQSEL	<7:0>				OOFF
DMA14STAL	0BE4								STA<18	5:0>								0000
DMA14STAH	0BE6	_	_	—	—	—	—	_	—				STA<2	3:16>				0000
DMA14STBL	0BE8		STB<15:0>															0000
DMA14STBH	0BEA		STB<15:0>STB<23:16>															0000
DMA14PAD	0BEC								PAD<1	5:0>								0000
DMA14CNT	0BEE		—							CNT<1	3:0>							0000
DMAPWC	0BF0	_	PWCOL14	PWCOL13	PWCOL12	PWCOL11	PWCOL10	PWCOL9	PWCOL8	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	0000
DMARQC	0BF2	_	RQCOL14	RQCOL13	RQCOL12	RQCOL11	RQCOL10	RQCOL9	RQCOL8	RQCOL7	RQCOL6	RQCOL5	RQCOL4	RQCOL3	RQCOL2	RQCOL1	RQCOL0	0000
DMAPPS	0BF4	_	PPST14	PPST13	PPST12	PPST11	PPST10	PPST9	PPST8	PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DMALCA	0BF6	_	—	_	—	—	_	—	_	_	_	_	_		LSTCH	1<3:0>		000F
DSADRL	0BF8								DSADR<	15:0>		•		•				0000
DSADRH	0BFA		—	—	—		—		—				DSADR<	:23:16>				0000

TABLE 4-50: PORTA REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	0E00	TRISA15	TRISA14	_	_	_	TRISA10	TRISA9	_	TRISA7	TRISA6	TRISA5	TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	C6FF
PORTA	0E02	RA15	RA14	_	_	_	RA10	RA9	_	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	0E04	LATA15	LATA14	_	_	_	LATA10	LATA9	_	LATA7	LATA6	LATA5	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	0E06	ODCA15	ODCA14	_	_	_	_	_	_	_	_	ODCA5	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000
CNENA	0E08	CNIEA15	CNIEA14	_	_	_	CNIEA10	CNIEA9	_	CNIEA7	CNIEA6	CNIEA5	CNIEA4	CNIEA3	CNIEA2	CNIEA1	CNIEA0	0000
CNPUA	0E0A	CNPUA15	CNPUA14	_	_	_	CNPUA10	CNPUA9	_	CNPUA7	CNPUA6	CNPUA5	CNPUA4	CNPUA3	CNPUA2	CNPUA1	CNPUA0	0000
CNPDA	0E0C	CNPDA15	CNPDA14	_	_	_	CNPDA10	CNPDA9	_	CNPDA7	CNPDA6	CNPDA5	CNPDA4	CNPDA3	CNPDA2	CNPDA1	CNPDA0	0000
ANSELA	0E0E	_	_	_	_	—	ANSA10	ANSA9	_	ANSA7	ANSA6		_	_	_		—	06C0

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-51: PORTB REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	0E10	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	0E12	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	0E14	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	0E16	_	-	-	_	_	_	_	_	_	_	_	_	_	_	_	_	0000
CNENB	0E18	CNIEB15	CNIEB14	CNIEB13	CNIEB12	CNIEB11	CNIEB10	CNIEB9	CNIEB8	CNIEB7	CNIEB6	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
CNPUB	0E1A	CNPUB15	CNPUB14	CNPUB13	CNPUB12	CNPUB11	CNPUB10	CNPUB9	CNPUB8	CNPUB7	CNPUB6	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
CNPDB	0E1C	CNPDB15	CNPDB14	CNPDB13	CNPDB12	CNPDB11	CNPDB10	CNPDB9	CNPDB8	CNPDB7	CNPDB6	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
ANSELB	0E1E	ANSB15	ANSB14	ANSB13	ANSB12	ANSB11	ANSB10	ANSB9	ANSB8	ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0	FFFF

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-52: PORTC REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr,	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	TRISC14	TRISC13	TRISC12	_		—				_	TRISC4	TRISC3	TRISC2	TRISC1	_	F01E
PORTC	0E22	RC15	RC14	RC13	RC12	_	_	_	_	_	_	_	RC4	RC3	RC2	RC1	_	xxxx
LATC	0E24	LATC15	LATC14	LATC13	LATC12	_	_	_	_	_	_	_	LATC4	LATC3	LATC2	LATC1	_	xxxx
ODCC	0E26	-	_	_	_	_	_	_	_	_	_	_	_	_	_	-	_	0000
CNENC	0E28	CNIEC15	CNIEC14	CNIEC13	CNIEC12	_	_	_	—	—	—	_	CNIEC4	CNIEC3	CNIEC2	CNIEC1	_	0000
CNPUC	0E2A	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	_	_	—	—	—	_	CNPUC4	CNPUC3	CNPUC2	CNPUC1	_	0000
CNPDC	0E2C	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	_	_	_	_	_	_	CNPDC4	CNPDC3	CNPDC2	CNPDC1	_	0000
ANSELC	0E2E	_	ANSC14	ANSC13	_	_	_	—	_	_	_	_	ANSC4	ANSC3	ANSC2	ANSC1	_	601E

TABLE 4-53: PORTC REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr,	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISC	0E20	TRISC15	TRISC14	TRISC13	TRISC12	_	_	—	_	—	—	—	—	—	—	—	—	F000
PORTC	0E22	RC15	RC14	RC13	RC12	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
LATC	0E24	LATC15	LATC14	LATC13	LATC12	_	_	_	_	_	_	_	_	_	_	_	_	xxxx
ODCC	0E26	_	_	_	—	_	_	_	_	_	_	_	_	_	—	—	—	0000
CNENC	0E28	CNIEC15	CNIEC14	CNIEC13	CNIEC12	_	_	_	_	_	_	_	_	_	—	—	—	0000
CNPUC	0E2A	CNPUC15	CNPUC14	CNPUC13	CNPUC12	_	_	_	_	_	_	_	_	_	—	—	—	0000
CNPDC	0E2C	CNPDC15	CNPDC14	CNPDC13	CNPDC12	_	_	_	_	_	_	_	_	_	—	—	—	0000
ANSELC	0E2E	_	ANSC14	ANSC13			_	_	_	_	—	_	—	_	—	—	_	6000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-54: PORTD REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30	TRISD15	TRISD14	TRISD13	TRISD12	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	FFFF
PORTD	0E32	RD15	RD14	RD13	RD12	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	0E34	LATD15	LATD14	LATD13	LATD12	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	0E36	ODCD15	ODCD14	ODCD13	ODCD12	ODCD11	ODCD10	ODCD9	ODCD8	_	_	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
CNEND	0E38	CNIED15	CNIED14	CNIED13	CNIED12	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	0000
CNPUD	0E3A	CNPUD15	CNPUD14	CNPUD13	CNPUD12	CNPUD11	CNPUD10	CNPUD9	CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
CNPDD	0E3C	CNPDD15	CNPDD14	CNPDD13	CNPDD12	CNPDD11	CNPDD10	CNPDD9	CNPDD8	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
ANSELD	0E3E	—	_	_	_	_	—		_	ANSD7	ANSD6	_	_	_	_	_	—	00C0

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-55: PORTD REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISD	0E30	—	—	—	_	TRISD11	TRISD10	TRISD9	TRISD8	TRISD7	TRISD6	TRISD5	TRISD4	TRISD3	TRISD2	TRISD1	TRISD0	OFFF
PORTD	0E32		_	—	_	RD11	RD10	RD9	RD8	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx
LATD	0E34		_	—	_	LATD11	LATD10	LATD9	LATD8	LATD7	LATD6	LATD5	LATD4	LATD3	LATD2	LATD1	LATD0	xxxx
ODCD	0E36		_	—	—	ODCD11	ODCD10	ODCD9	ODCD8	—	—	ODCD5	ODCD4	ODCD3	ODCD2	ODCD1	ODCD0	0000
CNEND	0E38		_	—	_	CNIED11	CNIED10	CNIED9	CNIED8	CNIED7	CNIED6	CNIED5	CNIED4	CNIED3	CNIED2	CNIED1	CNIED0	0000
CNPUD	0E3A		_	—	_	CNPUD11	CNPUD10	CNPUD9	CNPUD8	CNPUD7	CNPUD6	CNPUD5	CNPUD4	CNPUD3	CNPUD2	CNPUD1	CNPUD0	0000
CNPDD	0E3C	_	_	—	_	CNPDD11	CNPDD10	CNPDD9	CNPDD8	CNPDD7	CNPDD6	CNPDD5	CNPDD4	CNPDD3	CNPDD2	CNPDD1	CNPDD0	0000
ANSELD	0E3E	_	_	_	_	—	—	_		ANSD7	ANSD6	_	_	_	—	—	—	00C0

TABLE 4-56: PORTE REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	_	—	_	—	—	—	TRISE9	TRISE8	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	03FF
PORTE	0E42	-	—	_	—	—	—	RE9	RE8	RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	0E44	-	—	_	—	—	—	LATE9	LATE8	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
ODCE	0E46	-	—	_	—	—	—	_	—	—	—	—	—	—	—	—	—	0000
CNENE	0E48	-	—	_	—	—	—	CNIEE9	CNIEE8	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
CNPUE	0E4A	-	—	_	—	—	—	CNPUE9	CNPUE8	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
CNPDE	0E4C	—	—	—	—		—	CNPDE9	CNPDE8	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
ANSELE	0E4E	_	—	—	—	_		ANSE9	ANSE8	ANSE7	ANSE6	ANSE5	ANSE4	ANSE3	ANSE2	ANSE1	ANSE0	03FF

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-57: PORTE REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISE	0E40	_	—	_	—	—	—	_	-	TRISE7	TRISE6	TRISE5	TRISE4	TRISE3	TRISE2	TRISE1	TRISE0	00FF
PORTE	0E42			-	-		_			RE7	RE6	RE5	RE4	RE3	RE2	RE1	RE0	xxxx
LATE	0E44	-	-	_	-	_	—	-	—	LATE7	LATE6	LATE5	LATE4	LATE3	LATE2	LATE1	LATE0	xxxx
ODCE	0E46			—	_	_	—		—	—	—	—	—	—	—	—	—	0000
CNENE	0E48			—	_	_	—		—	CNIEE7	CNIEE6	CNIEE5	CNIEE4	CNIEE3	CNIEE2	CNIEE1	CNIEE0	0000
CNPUE	0E4A			_	_	_	_		_	CNPUE7	CNPUE6	CNPUE5	CNPUE4	CNPUE3	CNPUE2	CNPUE1	CNPUE0	0000
CNPDE	0E4C	—	—	—	—	—	—	—	—	CNPDE7	CNPDE6	CNPDE5	CNPDE4	CNPDE3	CNPDE2	CNPDE1	CNPDE0	0000
ANSELE	0E4E	—	_	—	_		_		_	ANSE7	ANSE6	ANSE5	ANSE4	ANSE3	ANSE2	ANSE1	ANSE0	00FF

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-58: PORTF REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	—	—	TRISF13	TRISF12	-	—	—	TRISF8	_	—	TRISF5	TRISF4	TRISF3	TRISF2	TRISF1	TRISF0	313F
PORTF	0E52		—	RF13	RF12	-	-	—	RF8	_	—	RF5	RF4	RF3	RF2	RF1	RF0	xxxx
LATF	0E54	-	—	LATF13	LATF12	-	-	—	LATF8	_	—	LATF5	LATF4	LATF3	LATF2	LATF1	LATF0	xxxx
ODCF	0E56		—	ODCF13	ODCF12	-	-	—	ODCF8	_	—	ODCF5	ODCF4	ODCF3	ODCF2	ODCF1	ODCF0	0000
CNENF	0E58		—	CNIEF13	CNIEF12	-	-	—	CNIEF8	_	—	CNIEF5	CNIEF4	CNIEF3	CNIEF2	CNIEF1	CNIEF0	0000
CNPUF	0E5A	-	—	CNPUF13	CNPUF12	-	-	—	CNPUF8	_	—	CNPUF5	CNPUF4	CNPUF3	CNPUF2	CNPUF1	CNPUF0	0000
CNPDF	0E5C	—	—	CNPDF13	CNPDF12	—	—	—	CNPDF8	—	—	CNPDF5	CNPDF4	CNPDF3	CNPDF2	CNPDF1	CNPDF0	0000
ANSELF	0E5E		—	—	—	-	-	—	_	_	—	—	—	—	—	—	—	0000

TABLE 4-59: PORTF REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISF	0E50	_	_	—	—	—	—		-	_	-	TRISF5	TRISF4	TRISF3	_	TRISF1	TRISF0	003B
PORTF	0E52	—	—	_	_	_	—	—	—	_	—	RF5	RF4	RF3	—	RF1	RF0	xxxx
LATF	0E54	—	_	_	_	_	_	_	_	_	_	LATF5	LATF4	LATF3	_	LATF1	LATF0	xxxx
ODCF	0E56	—	—	_	_	—		—	_	—	—	ODCF5	ODCF4	ODCF3	—	ODCF1	ODCF0	0000
CNENF	0E58	—	—	_	_	—		—	_	—	—	CNIEF5	CNIEF4	CNIEF3	—	CNIEF1	CNIEF0	0000
CNPUF	0E5A	—	_	_	_	_	_	_	_	_	_	CNPUF5	CNPUF4	CNPUF3	_	CNPUF1	CNPUF0	0000
CNPDF	0E5C	—	—	_	_	—		—	_	—	—	CNPDF5	CNPDF4	CNPDF3	—	CNPDF1	CNPDF0	0000
ANSELF	0E5E	—	—	—	—	—		_	—	—	—	—	—	—	—	—	—	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-60: PORTG REGISTER MAP FOR dsPIC33EPXXXMU810/814 AND PIC24EPXXXGU810/814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	TRISG15	TRISG14	TRISG13	TRISG12	_	—	TRISG9	TRISG8	TRISG7	TRISG6	—	—	_	_	TRISG1	TRISG0	F3C3
PORTG	0E62	RG15	RG14	RG13	RG12		—	RG9	RG8	RG7	RG6		_	RG3 ⁽¹⁾	RG2 ⁽¹⁾	RG1	RG0	xxxx
LATG	0E64	LATG15	LATG14	LATG13	LATG12		_	LATG9	LATG8	LATG7	LATG6	-	_	_	_	LATG1	LATG0	xxxx
ODCG	0E66	ODCG15	ODCG14	ODCG13	ODCG12	_	_	—	_	_	_	—	—	_	_	ODCG1	ODCG0	0000
CNENG	0E68	CNIEG15	CNIEG14	CNIEG13	CNIEG12	—	—	CNIEG9	CNIEG8	CNIEG7	CNIEG6	—	—	CNIEG3 ⁽¹⁾	CNIEG2 ⁽¹⁾	CNIEG1	CNIEG0	0000
CNPUG	0E6A	CNPUG15	CNPUG14	CNPUG13	CNPUG12	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	—	_	_	_	CNPUG1	CNPUG0	0000
CNPDG	0E6C	CNPDG15	CNPDG14	CNPDG13	CNPDG12	—	—	CNPDG9	CNPDG8	CNPDG7	CNPDG6	—	—	—	—	CNPDG1	CNPDG0	0000
ANSELG	0E6E	_	_	_	_	_	_	ANSG9	ANSG8	ANSG7	ANSG6	—		_	_	_	_	03C0

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: If RG2 and RG3 are used as general purpose inputs, the VUSB pin must be connected to VDD.

TABLE 4-61: PORTG REGISTER MAP FOR dsPIC33EPXXXMU806 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISG	0E60	_	—	—	_	—	_	TRISG9	TRISG8	TRISG7	TRISG6	_	—	—	—	_	—	03C0
PORTG	0E62		—	_	—	-	—	RG9	RG8	RG7	RG6	—	—	RG3 ⁽¹⁾	RG2 ⁽¹⁾	-	—	xxxx
LATG	0E64	-	—	-	—	—	—	LATG9	LATG8	LATG7	LATG6	-	—	—	—	-	—	xxxx
ODCG	0E66		—	_	—	-	—	—	—	—	—	—	—	—	—	-	—	0000
CNENG	0E68		—	_	—	-	—	CNIEG9	CNIEG8	CNIEG7	CNIEG6	—	—	CNIEG3 ⁽¹⁾	CNIEG2 ⁽¹⁾	-	—	0000
CNPUG	0E6A	-	_	-	_	_	_	CNPUG9	CNPUG8	CNPUG7	CNPUG6	_	—	_	_		_	0000
CNPDG	0E6C	—	—	—	_	—	—	CNPDG9	CNPDG8	CNPDG7	CNPDG6	—	_	—	—	—	—	0000
ANSELG	0E6E	_	—	_	_	—	_	ANSG9	ANSG8	ANSG7	ANSG6	—	_	—	—	_	_	03C0

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: If RG2 and RG3 are used as general purpose inputs, the VUSB pin must be connected to VDD.

TABLE 4-62: PORTH REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISH	0E70	TRISH15	TRISH14	TRISH13	TRISH12	TRISH11	TRISH10	TRISH9	TRISH8	TRISH7	TRISH6	TRISH5	TRISH4	TRISH3	TRISH2	TRISH1	TRISH0	FFFF
PORTH	0E72	RH15	RH14	RH13	RH12	RH11	RH10	RH9	RH8	RH7	RH6	RH5	RH4	RH3	RH2	RH1	RH0	xxxx
LATH	0E74	LATH15	LATH14	LATH13	LATH12	LATH11	LATH10	LATH9	LATH8	LATH7	LATH6	LATH5	LATH4	LATH3	LATH2	LATH1	LATH0	xxxx
ODCH	0E76	ODCH15	ODCH14	ODCH13	ODCH12	ODCH11	ODCH10	ODCH9	ODCH8	ODCH7	ODCH6	ODCH5	ODCH4	ODCH3	ODCH2	ODCH1	ODCH0	0000
CNENH	0E78	CNIEH15	CNIEH14	CNIEH13	CNIEH12	CNIEH11	CNIEH10	CNIEH9	CNIEH8	CNIEH7	CNIEH6	CNIEH5	CNIEH4	CNIEH3	CNIEH2	CNIEH1	CNIEH0	0000
CNPUH	0E7A	CNPUH15	CNPUH14	CNPUH13	CNPUH12	CNPUH11	CNPUH10	CNPUH9	CNPUH8	CNPUH7	CNPUH6	CNPUH5	CNPUH4	CNPUH3	CNPUH2	CNPUH1	CNPUH0	0000
CNPDH	0E7C	CNPDH15	CNPDH14	CNPDH13	CNPDH12	CNPDH11	CNPDH10	CNPDH9	CNPDH8	CNPDH7	CNPDH6	CNPDH5	CNPDH4	CNPDH3	CNPDH2	CNPDH1	CNPDH0	0000
ANSELH	0E7E	—	_	—	_	—	_	—	_	—	—	—	—	—	—	_	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-63: PORTJ REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISJ	0E80	TRISJ15	TRISJ14	TRISJ13	TRISJ12	TRISJ11	TRISJ10	TRISJ9	TRISJ8	TRISJ7	TRISJ6	TRISJ5	TRISJ4	TRISJ3	TRISJ2	TRISJ1	TRISJ0	FFFF
PORTJ	0E82	RJ15	RJ14	RJ13	RJ12	RJ12	RJ10	RJ9	RJ8	RJ7	RJ6	RJ5	RJ4	RJ3	RJ2	RJ1	RJ0	xxxx
LATJ	0E84	LATJ15	LATJ14	LATJ13	LATJ12	LATJ11	LATJ10	LATJ9	LATJ8	LATJ7	LATJ6	LATJ5	LATJ4	LATJ3	LATJ2	LATJ1	LATJ0	xxxx
ODCJ	0E86	ODCJ15	ODCJ14	ODCJ13	ODCJ12	ODCJ11	ODCJ10	ODCJ9	ODCJ8	ODCJ7	ODCJ6	ODCJ5	ODCJ4	ODCJ3	ODCJ2	ODCJ1	ODCJ0	0000
CNENJ	0E88	CNIEJ15	CNIEJ14	CNIEJ13	CNIEJ12	CNIEJ11	CNIEJ10	CNIEJ9	CNIEJ8	CNIEJ7	CNIEJ6	CNIEJ5	CNIEJ4	CNIEJ3	CNIEJ2	CNIEJ1	CNIEJ0	0000
CNPUJ	0E8A	CNPUJ15	CNPUJ14	CNPUJ13	CNPUJ12	CNPUJ11	CNPUJ10	CNPUJ9	CNPUJ8	CNPUJ7	CNPUJ6	CNPUJ5	CNPUJ4	CNPUJ3	CNPUJ2	CNPUJ1	CNPUJ0	0000
CNPDJ	0E8C	CNPDJ15	CNPDJ14	CNPDJ13	CNPDJ12	CNPDJ11	CNPDJ10	CNPDJ9	CNPDJ8	CNPDJ7	CNPDJ6	CNPDJ5	CNPDJ4	CNPDJ3	CNPDJ2	CNPDJ1	CNPDJ0	0000
ANSELJ	0E8E	_	_	—	—		—	—	—	—	—	—	—	—	—	—	—	0000

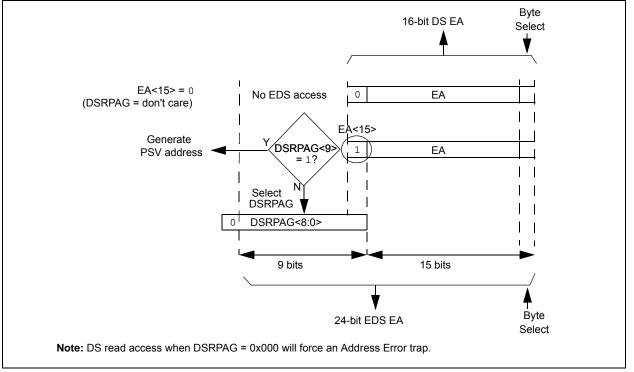
TABLE 4-64: PORTK REGISTER MAP FOR dsPIC33EPXXXMU814 AND PIC24EPXXXGU814 DEVICES ONLY

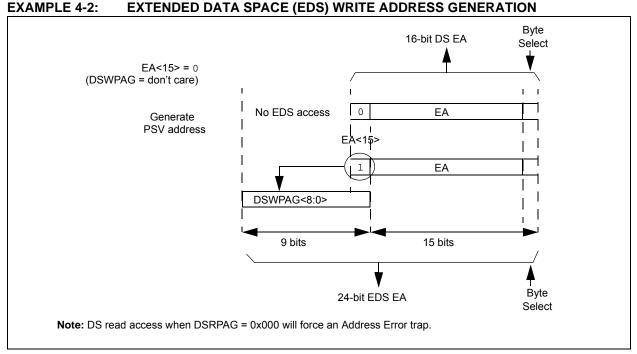
File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISK	0E90	TRISK15	TRISK14	TRISK13	TRISK12	TRISK11	_	_	—	_	_	—	—	_	_	TRISK1	TRISK0	F803
PORTK	0E92	RK15	RK14	RK13	RK12	RK11	_	_	_	-	_	_	_	_	_	RK1	RK0	xxxx
LATK	0E94	LATK15	LATK14	LATK13	LATK12	LATK11	_	_	_	-	_	_	_	_	_	LATK1	LATK0	xxxx
ODCK	0E96	ODCK15	ODCK14	ODCK13	ODCK12	ODCK11	_	_	_	-	_	_	_	_	_	ODCK1	ODCK0	0000
CNENK	0E98	CNIEK15	CNIEK14	CNIEK13	CNIEK12	CNIEK11	_	_	_	-	_	_	_	_	_	CNIEK1	CNIEK0	0000
CNPUK	0E9A	CNPUK15	CNPUK14	CNPUK13	CNPUK12	CNPUK11	_	_	_	-	_	_	_	_	_	CNPUK1	CNPUK0	0000
CNPDK	0E9C	CNPDK15	CNPDK14	CNPDK13	CNPDK12	CNPDK11	—	—	_	_	_	—	_	_	—	CNPDK1	CNPDK0	0000
ANSELK	0E9E	_	_	—	—	—	_	_	_	_	_	_	_	_	-	_	-	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-65: PAD CONFIGURATION REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	0EFE	—		_	—	_		—	—	—			_		—	RTSECSEL	PMPTTL	0000

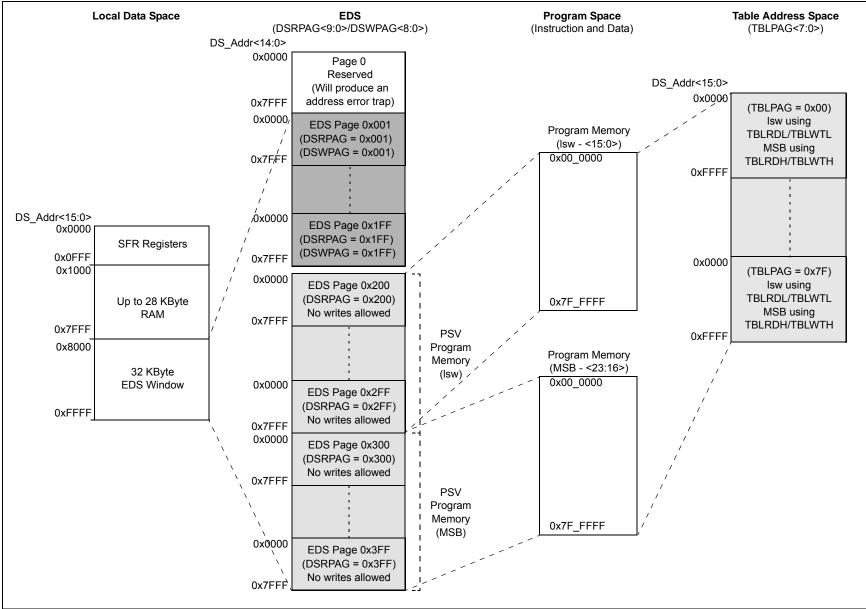

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.


4.2.7 PAGED MEMORY SCHEME

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 architecture extends the available data space through a paging scheme, which allows the available data space to be accessed using MOV instructions in a linear fashion for pre- and post-modified effective addresses (EA). The upper half of base data space page registers, the 10-bit read page register (DSRPAG) or the 9-bit write page register (DSWPAG), to form an extended data space (EDS) address or Program Space Visibility (PSV) address. The data space page registers are located in the SFR space.

Construction of the EDS address is shown in Figure 4-1. When DSRPAG<9> = 0 and base address bit EA<15> = 1, DSRPAG<8:0> is concatenated onto EA<14:0> to form the 24-bit EDS read address. Similarly when base address bit EA<15>=1, DSWPAG<8:0> is concatenated onto EA<14:0> to form the 24-bit EDS write address.

EXAMPLE 4-1: EXTENDED DATA SPACE (EDS) READ ADDRESS GENERATION



The paged memory scheme provides access to multiple 32-Kbyte windows in the EDS and PSV memory. The data space page registers DSxPAG, in combination with the upper half of data space address can provide up to 16 Mbytes of additional address space in the EDS and 12 Mbytes (DSRPAG only) of PSV address space. The paged data memory space is shown in Example 4-3.

The program space (PS) can be accessed with DSRPAG of 0x200 or greater. Only reads from PS are supported using the DSRPAG. Writes to PS are not supported, so DSWPAG is dedicated to DS, including EDS, only. The data space and EDS can be read from and written to using DSRPAG and DSWPAG, respectively.

© 2009-2011 Microchip Technology Inc.

EXAMPLE 4-3: PAGED DATA MEMORY SPACE

Allocating different page registers for read and write access allows the architecture to support data movement between different pages in data memory. This is accomplished by setting the DSRPAG register value to the page from which you want to read, and configuring the DSWPAG register to the page to which it needs to be written. Data can also be moved from different PSV to EDS pages, by configuring the DSRPAG and DSWPAG registers to address PSV and EDS space, respectively. The data can be moved between pages by a single instruction.

When an EDS or PSV page overflow or underflow occurs, EA<15> is cleared as a result of the register indirect EA calculation. An overflow or underflow of the EA in the EDS or PSV pages can occur at the page boundaries when:

- The initial address, prior to modification, addresses an EDS or PSV page.
- The EA calculation uses pre- or post-modified register indirect addressing. However, this does not include register offset addressing.

In general, when an overflow is detected, the DSxPAG register is incremented, and the EA<15> bit is set to keep the base address within the EDS or PSV window. When an underflow is detected, the DSxPAG register is decremented, and the EA<15> bit is set to keep the base address within the EDS or PSV window. This creates a linear EDS and PSV address space, but only when using Register Indirect Addressing modes.

Exceptions to the operation described above arise when entering and exiting the boundaries of page 0, EDS, and PSV spaces. Table 4-66 lists the effects of overflow and underflow scenarios at different boundaries.

In the following cases, when overflow or underflow occurs, the EA<15> bit is set and the DSxPAG is not modified; therefore, the EA will wrap to the beginning of the current page:

- · Register indirect with register offset addressing
- Modulo Addressing
- Bit-reversed addressing

TABLE 4-66: OVERFLOW AND UNDERFLOW SCENARIOS AT PAGE 0, EDS, and PSV SPACE BOUNDARIES

0/11			Before			After	
0/U, R/W	Operation	DSxPAG	DS EA<15>	Page Description	DSxPAG	DS EA<15>	Page Description
O, Read		DSRPAG = 0x1FF	1	EDS: Last page	DSRPAG = 0x1FF	0	See Note 1
O, Read	[++\Wn]	DSRPAG = 0x2FF	1	PSV: Last lsw page	DSRPAG = 0x300	1	PSV: First MSB page
O, Read	Or [Wn++]	DSRPAG = 0x3FF	1	PSV: Last MSB page	DSRPAG = 0x3FF	0	See Note 1
O, Write		DSWPAG = 0x1FF	1	EDS: Last page	DSWPAG = 0x1FF	0	See Note 1
U, Read		DSRPAG = 0x001	1	PSV page	DSRPAG = 0x001	0	See Note 1
U, Read	[Wn] Or [Wn]	DSRPAG = 0x200	1	PSV: First Isw page	DSRPAG = 0x200	0	See Note 1
U, Read	[111]	DSRPAG = 0x300	1	PSV: First MSB page	DSRPAG = 0x2FF	1	PSV: Last Isw page

Legend: O = Overflow, U = Underflow, R = Read, W = Write

Note 1: The register indirect address now addresses a location in the base data space (0x0000-0x8000).

2: An EDS access with DSxPAG = 0x000 will generate an address error trap.

3: Only reads from PS are supported using DSRPAG. An attempt to write to PS using DSWPAG will generate an address error trap.

4: Pseudo-linear addressing is not supported for large offsets.

^{© 2009-2011} Microchip Technology Inc.

4.2.8 EXTENDED X DATA SPACE

The lower half of the base address space range between 0x0000 and 0x7FFF is always accessible regardless of the contents of the data space page registers. It is indirectly addressable through the register indirect instructions. It can be regarded as being located in the default EDS page 0 (i.e., EDS address range of 0x000000 to 0x007FFF with the base address bit EA<15> = 0 for this address range). However, page 0 cannot be accessed through upper 32 Kbytes, 0x8000 to 0xFFFF, of base data space in combination with DSRPAG = 0x00 or DSWPAG = 0x00. Consequently, DSRPAG and DSWPAG are initialized to 0x001 at Reset.

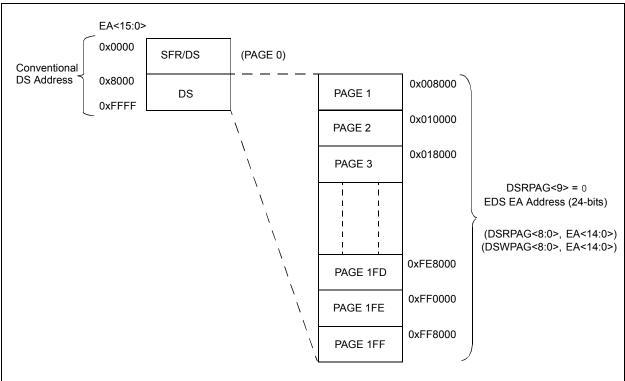

- Note 1: DSxPAG should not be used to access page 0. An EDS access with DSxPAG set to 0x000 will generate an Address Error trap.
 - 2: Clearing DSxPAG in software has no effect.

FIGURE 4-7: EDS MEMORY MAP

The remaining pages including both EDS and PSV pages are only accessible using the DSRPAG or DSWPAG registers in combination with the upper 32 Kbytes, 0x8000 to 0xFFFF, of the base address, where base address bit EA<15> = 1.

For example, when DSRPAG = 0x01 or DSWPAG = 0x01, accesses to the upper 32 Kbytes, 0x8000 to 0xFFFF, of the data space will map to the EDS address range of 0x008000 to 0x00FFFF. When DSRPAG = 0x02 or DSWPAG = 0x02, accesses to the upper 32 Kbytes of the data space will map to the EDS address range of 0x010000 to 0x017FFF and so on, as shown in the EDS memory map in Figure 4-7.

For more information of the PSV page access using data space page registers refer to **4.5** "**Program Space Visibility from Data Space**" in **Section 4.** "**Program Memory**" (DS70613) of the "*dsPlC33E/ PlC24E Family Reference Manual*".

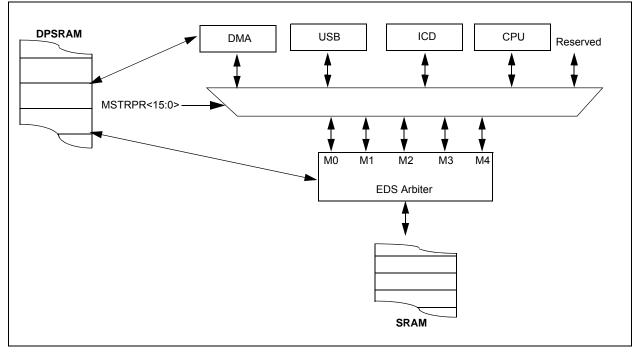
4.2.9 EDS ARBITRATION AND BUS MASTER PRIORITY

EDS accesses from bus masters in the system are arbitrated.

The arbiter for data memory (including EDS) arbitrates between the CPU, the DMA, the USB module, and the ICD module. In the event of coincidental access to a bus by the bus masters, the arbiter determines which bus master access has the highest priority. The other bus masters are suspended and processed after the access of the bus by the bus master with the highest priority.

By default, the CPU is bus master 0 (M0) with the highest priority, and the ICD is bus master 4 (M4) with the lowest priority. The remaining bus masters (USB and DMA Controllers) are allocated to M2 and M3,

respectively (M1 is reserved and cannot be used). The user application may raise or lower the priority of the masters to be above that of the CPU by setting the appropriate bits in the EDS Bus Master Priority Control (MSTRPR) register. All bus masters with raised priorities will maintain the same priority relationship relative to each other (i.e., M1 being highest and M3 being lowest with M2 in between). Also, all the bus masters with priorities below that of the CPU maintain the same priority relationship relative to each other. The priority schemes for bus masters with different MSTRPR values are tabulated in Table 4-67.


This bus master priority control allows the user application to manipulate the real-time response of the system, either statically during initialization, or dynamically in response to real-time events.

Priority	MSTRPR<15:0> Bit Setting ⁽¹⁾							
Fliolity	0x0000	0x0008	0x0020	0x0028				
M0 (highest)	CPU	USB	DMA	USB				
M1	Reserved	CPU	CPU	DMA				
M2	USB	Reserved	Reserved	CPU				
M3	DMA	DMA	USB	Reserved				
M4 (lowest)	ICD	ICD	ICD	ICD				

TABLE 4-67: EDS BUS ARBITER PRIORITY

Note 1: All other values of MSTRPR<15:0> are Reserved.

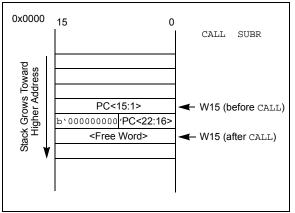
FIGURE 4-8: ARBITER ARCHITECTURE

4.2.10 SOFTWARE STACK

The W15 register serves as a dedicated software Stack Pointer (SP) and is automatically modified by exception processing, subroutine calls and returns; however, W15 can be referenced by any instruction in the same manner as all other W registers. This simplifies reading, writing and manipulating of the Stack Pointer (for example, creating stack frames).

Note:	To protect against misaligned stack
	accesses, W15<0> is fixed to '0' by the
	hardware.

W15 is initialized to 0x1000 during all Resets. This address ensures that the SP points to valid RAM in all dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices and permits stack availability for non-maskable trap exceptions. These can occur before the SP is initialized by the user software. You can reprogram the SP during initialization to any location within data space.


The Stack Pointer always points to the first available free word and fills the software stack working from lower toward higher addresses. Figure 4-9 illustrates how it pre-decrements for a stack pop (read) and post-increments for a stack push (writes).

When the PC is pushed onto the stack, PC<15:0> is pushed onto the first available stack word, then PC<22:16> is pushed into the second available stack location. For a PC push during any CALL instruction, the MSB of the PC is zero-extended before the push, as shown in Figure 4-9. During exception processing, the MSB of the PC is concatenated with the lower 8 bits of the CPU STATUS register, SR. This allows the contents of SRL to be preserved automatically during interrupt processing.

- Note 1: To main system Stack Pointer (W15) coherency, W15 is never subject to (EDS) paging, and is therefore restricted to the address range of 0x0000 to 0xFFFF. The same applies to W14 when used as a Stack Frame Pointer (SFA = 1).
 - 2: As the stack can be placed in and across X, Y, and DMA RAM spaces, care must be exercised regarding its use, particularly with regard to local automatic variables in a C development environment.

FIGURE 4-9:

CALL STACK FRAME

4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-68 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be Register Direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- · Register Indirect Post-Modified
- · Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description					
File Register Direct	The address of the file register is specified explicitly.					
Register Direct	The contents of a register are accessed directly.					
Register Indirect	The contents of Wn forms the Effective Address (EA).					
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.					
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.					
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.					
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.					

TABLE 4-68: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions (dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814) and the DSP accumulator class of instructions (dsPIC33EPXXXMU806/810/ 814 only) provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing							
	mode specified in the instruction can differ							
	for the source and destination EA.							
	However, the 4-bit Wb (Register Offset)							
	field is shared by both source and							
	destination (but typically only used by							
	one).							

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

Besides the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ULNK, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing (dsPIC33EPXXXMU806/810/814 Devices Only)

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

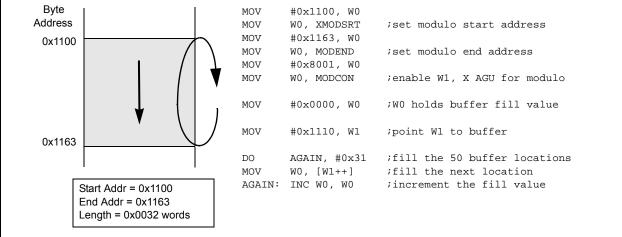
4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note:	Y space Modulo Addressing EA calcula-
	tions assume word-sized data (LSb of
	every EA is always clear).

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.4.2 W ADDRESS REGISTER SELECTION


The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-10: MODULO ADDRESSING OPERATION EXAMPLE

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing (dsPIC33EPXXXMU806/810/814 Devices Only)

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

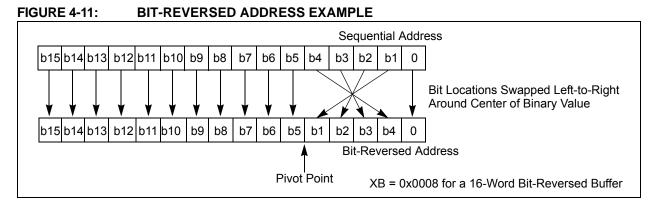
The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^N$ bytes, the last 'N' bits of the data buffer start address must be zeros.


XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.

Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing and word-sized data writes. It does not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note: Modulo Addressing and Bit-Reversed Addressing should not be enabled together. If an application attempts to do so, Bit-Reversed Addressing assumes priority when active for the X WAGU and X WAGU, Modulo Addressing is disabled. However, Modulo Addressing continues to function in the X RAGU.

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

TABLE 4-69: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

		Norma	al Addres	SS			Bit-Rev	ersed Ac	ldress
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 architecture uses a 24-bitwide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 architecture provides two methods by which program space can be accessed during operation:

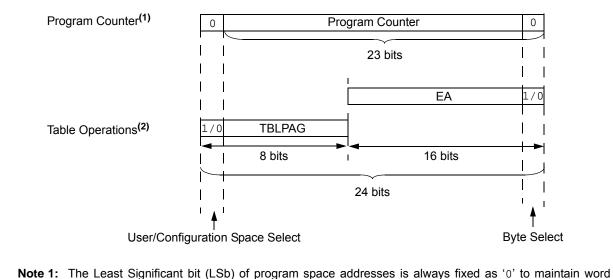

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

TABLE 4-70: PROGRAM SPACE ADDRESS CONSTRUCTION

	Access	Program Space Address							
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>			
Instruction Access	User	0		PC<22:1>					
(Code Execution)		0xx xxxx xxxx xxxx xxxx xxx0							
TBLRD/TBLWT	User	TB	LPAG<7:0>	Data EA<15:0>					
(Byte/Word Read/Write)		0	x xxxx xxxx						
	Configuration	TB	LPAG<7:0>						
		1	xxx xxxx	XXXX XX					

FIGURE 4-12: DATA ACCESS FROM PROGRAM SPACE ADDRESS GENERATION

alignment of data in the program and data spaces.

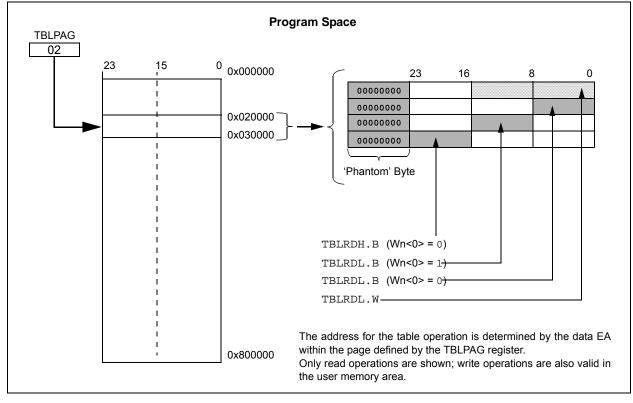
2: Table operations are not required to be word aligned. Table read operations are permitted in the configuration memory space.

4.6.1 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.

Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.


- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The 'phantom' byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-13: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70609) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

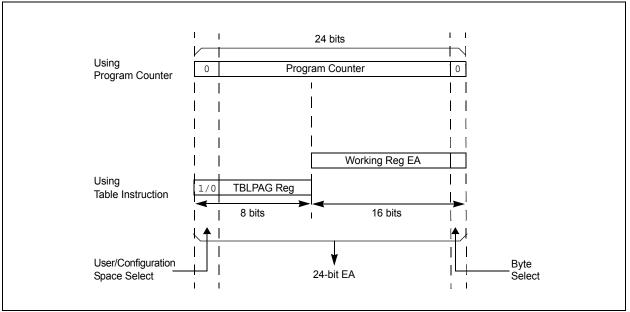
The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (Vss) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or 'rows' of 128 instructions (384 bytes) at a time or a single program memory word, and erase program memory in blocks or 'pages' of 1024 instructions (3072 bytes) at a time.


5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

5.2 **RTSP** Operation

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Flash program memory array is organized into rows of 128 instructions or 384 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (1024 instructions) at a time, and to program one row or one word at a time. Table 32-12 lists typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 3072 bytes and 384 bytes, respectively.

The program memory implements holding buffers, which are located in the write latch area, that can contain 128 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 128 TBLWTL and TBLWTH instructions are required to load the instructions.

All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row. For more information on erasing and programming Flash memory, refer to Section 5. "Flash Programming" (DS70609) in the "dsPIC33E/PIC24E Family Reference Manual".

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 32-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time and Word Write Cycle Time parameters (see Table 32-12).

EQUATION 5-1: PROGRAMMING TIME

Т $\overline{7.37 \ MHz \times (FRC \ Accuracy)\% \times (FRC \ Tuning)\%}$

For example, if the device is operating at +125°C, the FRC accuracy will be ±5%. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 ms$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 **Control Registers**

Four SFRs are used to read and write the program Flash memory: NVMCON, NVMKEY, NVMADRU, and NVMADR.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.

NVMKEY (Register 5-4) is a write-only register that is used for write protection. To start a programming or the user application must erase sequence. consecutively write 0x55 and 0xAA to the NVMKEY reaister.

There are two NVM address registers: NVMADRU and NVMADR. These two registers, when concatenated, form the 24-bit effective address (EA) of the selected row or word for programming operations, or the selected page for erase operations.

The NVMADRU register is used to hold the upper 8 bits of the EA, while the NVMADR register is used to hold the lower 16 bits of the EA.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

R/SO-0 ⁽ WR bit 15	1) R/W-0 ⁽¹⁾ WREN	R/W-0 ⁽¹⁾	R/W-0	U-0	U-0	U-0	U-0				
bit 15	WREN	WRFRR	(2)								
			NVMSIDL ⁽²⁾	—	_	_	—				
						- -	bit 8				
				R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾				
U-0	U-0	U-0	U-0	R/W-0		<3:0> ^(3,5)	R/W-0				
bit 7						.0.0	bit 0				
Legend:		SO = Setta	blo only bit								
R = Reada	ble hit	W = Writab	-	II = I Inimpler	nented bit, read	d as 'O'					
-n = Value		'1' = Bit is s		'0' = Bit is cle		x = Bit is unkr	nown				
ii valae				0 Dit io oio							
bit 15	WR: Write 0	Control bit									
	1 = Initiates	s a Flash memor	y program or e	erase operatio	on. The operati	on is self-timed	and the bit is				
		by hardware on									
	-	m or erase opera	ition is complet	e and inactive	9						
bit 14		te Enable bit	waaa anavatian	-							
		Flash program/e Flash program/er									
bit 13		rite Sequence E	-								
		roper program or	-	ce attempt or	termination ha	s occurred (bit i	s set				
	automa	itically on any se	t attempt of the	WR bit)		Υ.					
		ogram or erase o		leted normally	,						
bit 12		NVM Stop-in-Idle									
		tinue primary and a ue primary and a					le				
bit 11-4		ented: Read as '	-								
bit 3-0	-			3,5)							
		NVMOP<3:0>: NVM Operation Select bits ^(3,5) 1111 = Reserved									
	1110 = Res										
	1101 = Bull 1100 = Res	c erase primary p	orogram Flash	memory							
	1011 = Res										
		k erase auxiliary		memory							
		nory page erase									
		mory row prograr mory word progra									
		gram a single Co									
Note 1:	These bits can o	nlv be reset on P	OR								
2:	If this bit is set, u operational.	•		a delay (Tvreo	G) before Flash	memory becon	nes				
	All other combina	ations of NVMOF	><3:0> are unir	nplemented.							
	The entire segme			-							
	Execution of the				e NVM operati	ons are in progr	ess.				
5:											

REGISTER 5-1: NVMCON: NON-VOLATILE MEMORY (NVM) CONTROL REGISTER

-n = Value at POR '1' =		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7							bit (
			NVMA[DRU<7:0>				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
							Dit t	
bit 15							bit 8	
		_		_				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMADRU<7:0>:** Non-volatile Memory Upper Write Address bits Selects the upper 8 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-3: NVMADR: NON-VOLATILE MEMORY ADDRESS REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			NVMA	DR<15:8>				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			NVMA	.DR<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 NVMADR<15:0>: Non-volatile Memory Write Address bits

Selects the lower 16 bits of the location to program or erase in program Flash memory. This register may be read or written by the user application.

REGISTER 5-4: NVMKEY: NON-VOLATILE MEMORY KEY REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	_	—		—
bit 15					•		bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMKE	EY<7:0>			
bit 7							bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

6.0 RESETS

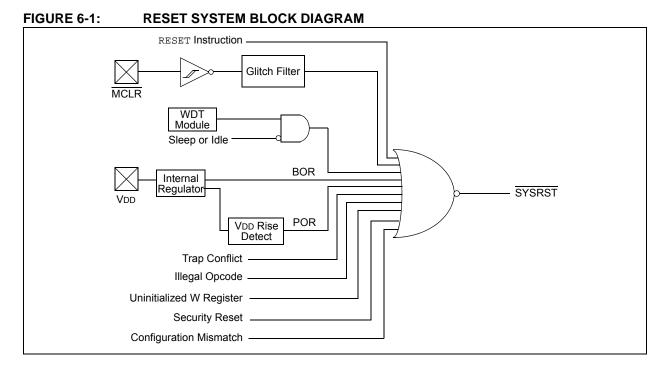
- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 8.** "**Reset**" (DS70602) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- · IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.


Note: Refer to the specific peripheral section or Section 4.0 "Memory Organization" of this manual for register Reset states.

All types of device Reset sets a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR and BOR bits (RCON<1:0>), that are set. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

© 2009-2011 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
TRAPR	IOPUWR	SBOREN ^(3,4)	_	VREGSF	_	CM	VREGS
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR
bit 7		ONDILIT		02221		Dorr	bit (
Legend:							
R = Reada	ble bit	W = Writable bi	t	U = Unimplen	nented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15	1 = A Trap C	p Reset Flag bit conflict Reset has					
bit 14	-	onflict Reset has egal Opcode or U			t Elog bit		
DIC 14	1 = An illega Address	al opcode detecti Pointer caused a lopcode or uninit	on, an ille Reset	gal address mo	de or uninitial	ized W registe	er used as a
bit 13		oftware BOR Ena					
		urned on in softwa urned off in softwa	-				
bit 12	Unimpleme	nted: Read as '0'					
bit 11	VREGSF: FI	ash Voltage Regu	lator Stand	by During Sleep	bit		
		oltage regulator is oltage regulator go			ng Sleep		
bit 10	Unimpleme	nted: Read as '0'					
bit 9	1 = A configu	ration Mismatch F uration mismatch I uration mismatch I	Reset has o				
bit 8	1 = Voltage	tage Regulator Sta regulator is active regulator goes int	during Sle	ep	ер		
bit 7	EXTR: Exter	nal Reset (MCLR) Pin bit				
		r Clear (pin) Rese r Clear (pin) Rese					
bit 6	SWR: Softwa	are Reset (Instruc	tion) Flag b	it			
		r instruction has be r instruction has ne					
bit 5	SWDTEN: S	oftware Enable/D	isable of W	DT bit ⁽²⁾			
	1 = WDT is e 0 = WDT is c						
	All of the Reset st cause a device Re		et or cleare	d in software. S	etting one of th	ese bits in soft	ware does not
	If the FWDTEN C SWDTEN bit setti	-	ʻ1' (unprog	rammed), the W	/DT is always e	enabled, regard	lless of the
3:	The SBOREN bit	is ignored if the B	OREN Con	figuration bit (F	POR<3>) = 0.		

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

4: When BOR is disabled, an external POR circuit should be used to ensure that the device remains in Reset until the minimum VDD is reached.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 4	WDTO: Watchdog Timer Time-out Flag bit 1 = WDT time-out has occurred 0 = WDT time-out has not occurred
bit 3	SLEEP: Wake-up from Sleep Flag bit 1 = Device has been in Sleep mode 0 = Device has not been in Sleep mode
bit 2	IDLE: Wake-up from Idle Flag bit 1 = Device was in Idle mode 0 = Device was not in Idle mode
bit 1	BOR: Brown-out Reset Flag bit 1 = A Brown-out Reset has occurred 0 = A Brown-out Reset has not occurred
bit 0	POR: Power-on Reset Flag bit 1 = A Power-on Reset has occurred 0 = A Power-on Reset has not occurred

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.
 - **3:** The SBOREN bit is ignored if the BOREN Configuration bit (FPOR<3>) = 0.
 - 4: When BOR is disabled, an external POR circuit should be used to ensure that the device remains in Reset until the minimum VDD is reached.

NOTES:

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 6.** "Interrupts" (DS70600) of the "*dsPIC33E/PIC24E Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

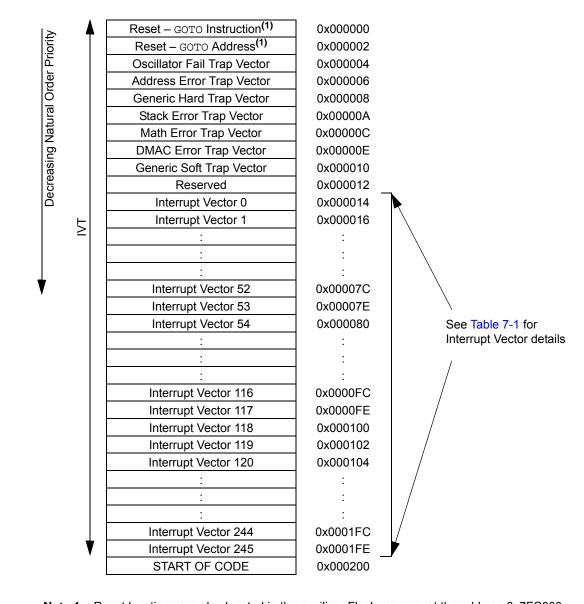
ThedsPIC33EPXXXMU806/810/814andPIC24EPXXXGU810/814interrupt controller reducesthe numerous peripheral interrupt request signals to asingleinterrupt request signaltodsPIC33EPXXXMU806/810/814andPIC24EPXXXGU810/814 CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with a unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Interrupt Vector Table (IVT), shown in Figure 7-1, resides in program memory, starting at location 000004h. The IVT contains seven non-maskable trap vectors and up to 114 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).


Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices clear their registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1: dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 INTERRUPT VECTOR TABLE

Note 1: Reset locations are also located in the auxiliary Flash memory at the address 0x7FC000 and 0x7FC002. Reset Target Vector Select bit (RSTPRI) controls whether primary or auxiliary Flash Reset location is used.

Interrupt Source	Vector IRQ IVT			Interrupt Bit Location			
interrupt Source	Number		Address	Flag	Enable	Priority	
	Highes	t Natural O	rder Priority				
INT0 – External Interrupt 0	8	0	0x000014	IFS0<0>	IEC0<0>	IPC0<2:0>	
IC1 – Input Capture 1	9	1	0x000016	IFS0<1>	IEC0<1>	IPC0<6:4>	
OC1 – Output Compare 1	10	2	0x000018	IFS0<2>	IEC0<2>	IPC0<10:8>	
T1 – Timer1	11	3	0x00001A	IFS0<3>	IEC0<3>	IPC0<14:12	
DMA0 – DMA Channel 0	12	4	0x00001C	IFS0<4>	IEC0<4>	IPC1<2:0>	
IC2 – Input Capture 2	13	5	0x00001E	IFS0<5>	IEC0<5>	IPC1<6:4>	
OC2 – Output Compare 2	14	6	0x000020	IFS0<6>	IEC0<6>	IPC1<10:8>	
T2 – Timer2	15	7	0x000022	IFS0<7>	IEC0<7>	IPC1<14:12	
T3 – Timer3	16	8	0x000024	IFS0<8>	IEC0<8>	IPC2<2:0>	
SPI1E – SPI1 Fault	17	9	0x000026	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 – SPI1 Transfer Done	18	10	0x000028	IFS0<10>	IEC0<10>	IPC2<10:8>	
U1RX – UART1 Receiver	19	11	0x00002A	IFS0<11>	IEC0<11>	IPC2<14:12	
U1TX – UART1 Transmitter	20	12	0x00002C	IFS0<12>	IEC0<12>	IPC3<2:0>	
AD1 – ADC1 Convert Done	21	13	0x00002E	IFS0<13>	IEC0<13>	IPC3<6:4>	
DMA1 – DMA Channel 1	22	14	0x000030	IFS0<14>	IEC0<14>	IPC3<10:8>	
NVM – NVM Write Complete	23	15	0x000032	IFS0<15>	IEC0<15>	IPC3<14:12	
SI2C1 – I2C1 Slave Event	24	16	0x000034	IFS1<0>	IEC1<0>	IPC4<2:0>	
MI2C1 – I2C1 Master Event	25	17	0x000036	IFS1<1>	IEC1<1>	IPC4<6:4>	
CM – Comparator Combined Event	26	18	0x000038	IFS1<2>	IEC1<2>	IPC4<10:8>	
CN – Input Change Interrupt	27	19	0x00003A	IFS1<3>	IEC1<3>	IPC4<14:12	
INT1 – External Interrupt 1	28	20	0x00003C	IFS1<4>	IEC1<4>	IPC5<2:0>	
AD2 – ADC2 Convert Done	29	21	0x00003E	IFS1<5>	IEC1<5>	IPC5<6:4>	
IC7 – Input Capture 7	30	22	0x000040	IFS1<6>	IEC1<6>	IPC5<10:8>	
IC8 – Input Capture 8	31	23	0x000042	IFS1<7>	IEC1<7>	IPC5<14:12	
DMA2 – DMA Channel 2	32	24	0x000044	IFS1<8>	IEC1<8>	IPC6<2:0>	
OC3 – Output Compare 3	33	25	0x000046	IFS1<9>	IEC1<9>	IPC6<6:4>	
OC4 – Output Compare 4	34	26	0x000048	IFS1<10>	IEC1<10>	IPC6<10:8>	
T4 – Timer4	35	27	0x00004A	IFS1<11>	IEC1<11>	IPC6<14:12	
T5 – Timer5	36	28	0x00004C	IFS1<12>	IEC1<12>	IPC7<2:0>	
INT2 – External Interrupt 2	37	29	0x00004E	IFS1<13>	IEC1<13>	IPC7<6:4>	
U2RX – UART2 Receiver	38	30	0x000050	IFS1<14>	IEC1<14>	IPC7<10:8>	
U2TX – UART2 Transmitter	39	31	0x000052	IFS1<15>	IEC1<15>	IPC7<14:12	
SPI2E – SPI2 Fault	40	32	0x000054	IFS2<0>	IEC2<0>	IPC8<2:0>	
SPI2 – SPI2 Transfer Done	41	33	0x000056	IFS2<1>	IEC2<1>	IPC8<6:4>	
C1RX – CAN1 RX Data Ready	42	34	0x000058	IFS2<2>	IEC2<2>	IPC8<10:8>	
C1 – CAN1 Event	43	35	0x00005A	IFS2<3>	IEC2<3>	IPC8<14:12	
DMA3 – DMA Channel 3	44	36	0x00005C	IFS2<4>	IEC2<4>	IPC9<2:0>	
IC3 – Input Capture 3	45	37	0x00005E	IFS2<5>	IEC2<5>	IPC9<6:4>	
IC4 – Input Capture 4	46	38	0x000060	IFS2<6>	IEC2<6>	IPC9<10:8>	
IC5 – Input Capture 5	47	39	0x000062	IFS2<7>	IEC2<7>	IPC9<14:12	
IC6 – Input Capture 6	48	40	0x000064	IFS2<8>	IEC2<8>	IPC10<2:0>	
OC5 – Output Compare 5	49	41	0x000066	IFS2<9>	IEC2<9>	IPC10<6:4>	
OC6 – Output Compare 6	50	42	0x000068	IFS2<10>	IEC2<10>	IPC10<10:8	

TABLE 7-1: INTERRUPT VECTOR DETAILS

Note 1: This interrupt source is available on dsPIC33EPXXXMU806/810/814 devices only.

TABLE 7-1:	INTERRUPT VECTOR DETAILS (CONTINUED)
------------	--------------------------------------

Interrupt Source	Vector	IRQ	IVT	Interrupt Bit Location			
interrupt Source	Number	IKQ	Address	Flag	Enable	Priority	
OC7 – Output Compare 7	51	43	0x00006A	IFS2<11>	IEC2<11>	IPC10<14:12>	
OC8 – Output Compare 8	52	44	0x00006C	IFS2<12>	IEC2<12>	IPC11<2:0>	
PMP – Parallel Master Port	53	45	0x00006E	IFS2<13>	IEC2<13>	IPC11<6:4>	
DMA4 – DMA Channel 4	54	46	0x000070	IFS2<14>	IEC2<14>	IPC11<10:8>	
T6 – Timer6	55	47	0x000072	IFS2<15>	IEC2<15>	IPC11<14:12>	
T7 – Timer7	56	48	0x000074	IFS3<0>	IEC3<0>	IPC12<2:0>	
SI2C2 – I2C2 Slave Event	57	49	0x000076	IFS3<1>	IEC3<1>	IPC12<6:4>	
MI2C2 – I2C2 Master Event	58	50	0x000078	IFS3<2>	IEC3<2>	IPC12<10:8>	
T8 – Timer8	59	51	0x00007A	IFS3<3>	IEC3<3>	IPC12<14:12>	
T9 – Timer9	60	52	0x00007C	IFS3<4>	IEC3<4>	IPC13<2:0>	
INT3 – External Interrupt 3	61	53	0x00007E	IFS3<5>	IEC3<5>	IPC13<6:4>	
INT4 – External Interrupt 4	62	54	0x000080	IFS3<6>	IEC3<6>	IPC13<10:8>	
C2RX – CAN2 RX Data Ready	63	55	0x000082	IFS3<7>	IEC3<7>	IPC13<14:12>	
C2 – CAN2 Event	64	56	0x000084	IFS3<8>	IEC3<8>	IPC14<2:0>	
PSEM – PWM Special Event Match ⁽¹⁾	65	57	0x000086	IFS3<9>	IEC3<9>	IPC14<6:4>	
QEI1 – QEI1 Position Counter Compare ⁽¹⁾	66	58	0x000088	IFS3<10>	IEC3<10>	IPC14<10:8>	
DCIE – DCI Fault Interrupt ⁽¹⁾	67	59	0x00008A	IFS3<11>	IEC3<11>	IPC14<14:12>	
DCI – DCI Transfer Done ⁽¹⁾	68	60	0x00008C	IFS3<12>	IEC3<12>	IPC15<2:0>	
DMA5 – DMA Channel 5	69	61	0x00008E	IFS3<13>	IEC3<13>	IPC15<6:4>	
RTC – Real-Time Clock and Calendar	70	62	0x000090	IFS3<14>	IEC3<14>	IPC15<10:8>	
Reserved	71-72	63-64	0x000092- 0x000094	_	_	-	
U1E – UART1 Error Interrupt	73	65	0x000096	IFS4<1>	IEC4<1>	IPC16<6:4>	
U2E – UART2 Error Interrupt	74	66	0x000098	IFS4<2>	IEC4<2>	IPC16<10:8>	
CRC – CRC Generator Interrupt	75	67	0x00009A	IFS4<3>	IEC4<3>	IPC16<14:12>	
DMA6 – DMA Channel 6	76	68	0x00009C	IFS4<4>	IEC4<4>	IPC17<2:0>	
DMA7 – DMA Channel 7	77	69	0x00009E	IFS4<5>	IEC4<5>	IPC17<6:4>	
C1TX – CAN1 TX Data Request	78	70	0x0000A0	IFS4<6>	IEC4<6>	IPC17<10:8>	
C2TX – CAN2 TX Data Request	79	71	0x0000A2	IFS4<7>	IEC4<7>	IPC17<14:12>	
Reserved	80	72	0x0000A4	_			
PSESM – PWM Secondary Special Event Match ⁽¹⁾	81	73	0x0000A6	IFS4<9>	IEC4<9>	IPC18<6:4>	
Reserved	82	74	0x0000A8	_			
QEI2 – QEI2 Position Counter Compare ⁽¹⁾	83	75	0x0000AA	IFS4<11>	IEC4<11>	IPC18<14:12>	
Reserved	84-88	76-80	0x0000AC- 0x0000B4	_	_	-	
U3E – UART3 Error Interrupt	89	81	0x0000B6	IFS5<1>	IEC5<1>	IPC20<6:4>	
U3RX – UART3 Receiver	90	82	0x0000B8	IFS5<2>	IEC5<2>	IPC20<10:8>	
U3TX – UART3 Transmitter	91	83	0x0000BA	IFS5<3>	IEC5<3>	IPC20<14:12>	
Reserved	92	84	0x0000BC	—	—	—	
Reserved	93	85	0x0000BE	_	—	_	
USB1 – USB OTG Interrupt	94	86	0x0000C0	IFS5<6>	IEC5<6>	IPC21<10:8>	
U4E – UART4 Error Interrupt	95	87	0x0000C2	IFS5<7>	IEC5<7>	IPC21<14:12>	

Note 1: This interrupt source is available on dsPIC33EPXXXMU806/810/814 devices only.

Interrupt Source	Vector	IRQ	IVT	Interrupt Bit Location		
interrupt Source	Number	IKQ	Address	Flag	Enable	Priority
U4RX – UART4 Receiver	96	88	0x0000C4	IFS5<8>	IEC5<8>	IPC22<2:0>
U4TX – UART4 Transmitter	97	89	0x0000C6	IFS5<9>	IEC5<9>	IPC22<6:4>
SPI3E – SPI3 Fault	98	90	0x0000C8	IFS5<10>	IEC5<10>	IPC22<10:8>
SPI3 – SPI3 Transfer Done	99	91	0x0000CA	IFS5<11>	IEC5<11>	IPC22<14:12
OC9 – Output Compare 9	100	92	0x0000CC	IFS5<12>	IEC5<12>	IPC23<2:0>
IC9 – Input Capture 9	101	93	0x0000CE	IFS5<13>	IEC5<13>	IPC23<6:4>
PWM1 – PWM Generator 1 ⁽¹⁾	102	94	0x0000D0	IFS5<14>	IEC5<14>	IPC23<10:8>
PWM2 – PWM Generator 2 ⁽¹⁾	103	95	0x0000D2	IFS5<15>	IEC5<15>	IPC23<14:12
PWM3 – PWM Generator 3 ⁽¹⁾	104	96	0x0000D4	IFS6<0>	IEC6<0>	IPC24<2:0>
PWM4 – PWM Generator 4 ⁽¹⁾	105	97	0x0000D6	IFS6<1>	IEC6<1>	IPC24<6:4>
PWM5 – PWM Generator 5 ⁽¹⁾	106	98	0x0000D8	IFS6<2>	IEC6<2>	IPC24<10:8>
PWM6 – PWM Generator 6 ⁽¹⁾	107	99	0x0000DA	IFS6<3>	IEC6<3>	IPC24<14:12
PWM7 – PWM Generator 7 ⁽¹⁾	108	100	0x0000DC	IFS6<4>	IEC6<4>	IPC25<2:0>
Reserved	109-125	101-117	0x0000DE- 0x0000FC	_	_	_
DMA8 – DMA Channel 8	126	118	0x000100	IFS7<6>	IEC7<6>	IPC29<10:8>
DMA9 – DMA Channel 9	127	119	0x000102	IFS7<7>	IEC7<7>	IPC29<14:12
DMA10 – DMA Channel 10	128	120	0x000104	IFS7<8>	IEC7<8>	IPC30<2:0>
DMA11 – DMA Channel 11	129	121	0x000106	IFS7<9>	IEC7<9>	IPC30<6:4>
SPI4E – SPI4 Fault	130	122	0x000108	IFS7<10>	IEC7<10>	IPC30<10:8>
SPI4 – SPI4 Transfer Done	131	123	0x00010A	IFS7<11>	IEC7<11>	IPC30<14:12
OC10 – Output Compare 10	132	124	0x00010C	IFS7<12>	IEC7<12>	IPC31<2:0>
IC10 – Input Capture 10	133	125	0x00010E	IFS7<13>	IEC7<13>	IPC31<6:4>
OC11 – Output Compare11	134	126	0x000110	IFS7<14>	IEC7<14>	IPC31<10:8>
IC11 – Input Capture 11	135	127	0x000112	IFS7<15>	IEC7<15>	IPC31<14:12
OC12 – Output Compare 12	136	128	0x000114	IFS8<0>	IEC8<0>	IPC32<2:0>
IC12 – Input Capture 12	137	129	0x000116	IFS8<1>	IEC8<1>	IPC32<6:4>
DMA12 – DMA Channel 12	138	130	0x000118	IFS8<2>	IEC8<2>	IPC32<10:8>
DMA13– DMA Channel 13	139	131	0x00011A	IFS8<3>	IEC8<3>	IPC32<14:12
DMA14 – DMA Channel 14	140	132	0x00011C	IFS8<4>	IEC8<4>	IPC33<2:0>
Reserved	141	133	0x00011E		_	
OC13 – Output Compare 13	142	134	0x000120	IFS8<6>	IEC8<6>	IPC33<10:8>
IC13 – Input Capture 13	143	135	0x000122	IFS8<7>	IEC8<7>	IPC33<14:12
OC14 – Output Compare14	144	136	0x000124	IFS8<8>	IEC8<8>	IPC34<2:0>
IC14 – Input Capture 14	145	137	0x000126	IFS8<9>	IEC8<9>	IPC34<6:4>
OC15 – Output Compare 15	146	138	0x000128	IFS8<10>	IEC8<10>	IPC34<10:8>
IC15 – Input Capture 15	147	139	0x00012A	IFS8<11>	IEC8<11>	IPC34<14:12
OC16 – Output Compare 16	148	140	0x00012C	IFS8<12>	IEC8<12>	IPC35<2:0>
IC16 – Input Capture 16	149	141	0x00012E	IFS8<13>	IEC8<13>	IPC35<6:4>
ICD – ICD Application	150	142	0x000130	IFS8<14>	IEC8<14>	IPC35<10:8>
Reserved	151-245	142-237	0x000130- 0x0001FE	—	_	_

TABLE 7-1: INTERRUPT VECTOR DETAILS (CONTINUED)

Note 1: This interrupt source is available on dsPIC33EPXXXMU806/810/814 devices only.

7.3 Interrupt Control and Status Registers

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices implement the following registers for the interrupt controller:

- INTCON1
- INTCON2
- INTCON3
- INTCON4
- INTTREG

7.3.1 INTCON1 THROUGH INTCON4

Global interrupt control functions are controlled from INTCON1, INTCON2, INTCON3 and INTCON4.

INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources.

The INTCON2 register controls external interrupt request signal behavior and the use of the alternate vector table. This register also contains the General Interrupt Enable bit (GIE).

INTCON3 contains the status flags for the USB, DMA, and DO stack overflow status trap sources.

The INTCON4 register contains the software generated hard trap status bit (SGHT).

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<7:0>) and Interrupt level bit (ILR<3:0>) fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence as they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0> and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although these registers are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality. For more information on these registers refer to **Section 2.** "CPU" (DS70359) in the "dsPIC33E/ PIC24E Family Reference Manual".

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-3 through Register 7-7 in the following pages.

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

R/W-0	R/W-0	R/W-0	R/W-0	R/C-0	R/C-0	R -0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С
bit 7							bit 0
Legend:	egend: U = Unimplemented bit, read as '0'						
R = Readable bit W = Writable bit			bit	C = Clearable bit			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3) 111 = CPU Interrupt Priority Level is 7 (15, user interrupts disabled) 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9)
	000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1: "SR: CPU Status Register".

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL, if IPL<3> = 1.
- 3: The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

U-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-0	
					100	IX O	
—	US<	1:0>	EDT		DL<2:0>		
			· · · · · ·			bit 8	
R/W-0	R/W-1	R/W-0	R/C-0	R-0	R/W-0	R/W-0	
SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	SFA	RND	IF	
	·					bit 0	
	W = Writable b	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
	-	SATB SATDW	SATB SATDW ACCSAT	SATB SATDW ACCSAT IPL3 ⁽²⁾ W = Writable bit U = Unimplen	SATB SATDW ACCSAT IPL3 ⁽²⁾ SFA W = Writable bit U = Unimplemented bit, read	SATB SATDW ACCSAT IPL3 ⁽²⁾ SFA RND W = Writable bit U = Unimplemented bit, read as '0'	

CORCON: CORE CONTROL REGISTER⁽¹⁾ REGISTER 7-2:

bit 15	 VAR: Variable Exception Processing Latency Control bit 1 = Variable exception processing enabled 0 = Fixed exception processing enabled
bit 3	IPL3: CPU Interrupt Priority Level Status bit 3 ⁽²⁾ 1 = CPU interrupt priority level is greater than 7

0 = CPU interrupt priority level is 7 or less

- Note 1: For complete register details, see Register 3-2: "CORCON: Core Control Register".
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7-3. INTCONT. INTERROFT CONTROL REGISTER T	REGISTER 7-3:	INTCON1: INTERRUPT CONTROL REGISTER 1
---	---------------	---------------------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR ⁽¹⁾	OVBERR ⁽¹⁾	COVAERR ⁽¹⁾	COVBERR ⁽¹⁾	OVATE ⁽¹⁾	OVBTE ⁽¹⁾	COVTE ⁽¹⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-U	0-0
SFTACERR ⁽¹⁾	DIV0ERR	DMACERR	MATHERR	ADDRERR	STKERR	OSCFAIL	_
bit 7							bit 0

Legend:				
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value	at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	1 = Inter	: Interrupt Nesting Disable bi rupt nesting is disabled rupt nesting is enabled	it	
bit 14	1 = Trap	R: Accumulator A Overflow T was caused by overflow of a was not caused by overflow	Accumulator A	
bit 13	1 = Trap	R: Accumulator B Overflow T was caused by overflow of was not caused by overflow	Accumulator B	
bit 12	COVAEI 1 = Trap	RR: Accumulator A Catastrophic was caused by catastrophic	phic Overflow Trap Flag bit ⁽¹⁾	
bit 11	1 = Trap	was caused by catastrophic	phic Overflow Trap Flag bit ⁽¹⁾ c overflow of Accumulator B phic overflow of Accumulator B	
bit 10	1 = Trap	Accumulator A Overflow Tra overflow of Accumulator A is disabled	ap Enable bit ⁽¹⁾	
bit 9	1 = Trap	Accumulator B Overflow Tra overflow of Accumulator B is disabled	ap Enable bit ⁽¹⁾	
bit 8	1 = Trap	Catastrophic Overflow Trap on catastrophic overflow of is disabled	Enable bit ⁽¹⁾ Accumulator A or B enabled	
bit 7	SFTACE 1 = Math	RR: Shift Accumulator Error		
bit 6	DIV0ER 1 = Math	R: Divide-by-zero Error Statu n error trap was caused by a n error trap was not caused b	us bit divide by zero	
bit 5	DMACE 1 = DMA	RR: DMAC Trap Flag bit AC trap has occurred AC trap has not occurred		
bit 4	1 = Math	RR: Math Error Status bit n error trap has occurred n error trap has not occurred		

Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit 1 = Address error trap has occurred 0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit 1 = Stack error trap has occurred 0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
GIE	DISI	SWTRAP	_	_	_		—				
bit 15							bit 8				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	—	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP				
bit 7							bit 0				
											
Legend:	- I- 14		L :4	II II.		(0)					
R = Readable		W = Writable		•	nented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	GIE: Global	Interrupt Enable	a hit								
bit 10		s and Associate		enabled							
		s are disabled, I									
bit 14	DISI: DISI	nstruction Statu	s bit								
	1 = DISI instruction is active 0 = DISI instruction is not active										
L:1 1 0											
bit 13		oftware Trap St trap is enabled									
		trap is disabled									
bit 12-5	Unimpleme	nted: Read as '	0'								
bit 4	INT4EP: External Interrupt 4 Edge Detect Polarity Select bit										
		on negative edg	0								
bit 3	-			Polarity Select	bit						
bit 5	INT3EP: External Interrupt 3 Edge Detect Polarity Select bit 1 = Interrupt on negative edge										
	0 = Interrupt on positive edge										
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit										
	1 = Interrupt on negative edge										
bit 1	 0 = Interrupt on positive edge INT1EP: External Interrupt 1 Edge Detect Polarity Select bit 										
		on negative ed		T blanty beleet	. Dit						
		on positive edg									
bit 0		ernal Interrupt (Polarity Select	bit						
		on negative edg									
	= 1 = 100 er(100)	THE DOSILVE POO									

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
	UAE	DAE	DOOVR	—		<u> </u>				
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						
bit 15-7	Unimplemen	ted: Read as	ʻ0 '							
bit 6		ddress Error S								
		ress error (soft ress error (soft								
bit 5		ddress Error S	, .							
DIU		lress error soft								
		Iress error soft								
bit 4		DOOVR: Do Stack Overflow Soft Trap Status bit								
		overflow soft t								
		overflow soft t	-	curred						
bit 3-0	Unimplemen	Unimplemented: Read as '0'								

REGISTER 7-5: INTCON3: INTERRUPT CONTROL REGISTER 3

REGISTER 7-6: INTCON4: INTERRUPT CONTROL REGISTER 4

-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x =		x = Bit is unk	= Bit is unknown	
R = Readable	bit	W = Writable bit			U = Unimplemented bit, read as '0'			
Legend:								
bit 7	•		•			÷	bit (
	_	—		—	—	—	SGHT	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
bit 15				<u> </u>			bit	
—	_	—		_	_	—	—	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	

bit 15-1 Unimplemented: Read as '0' bit 0 SGHT: Software Generated Hard

SGHT: Software Generated Hard Trap Status bit

1 = Software generated hard trap has occurred

0 = Software generated hard trap has not occurred

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0				
—	—	—	—	ILR<3:0>							
bit 15							bit 8				
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0				
			VECNU	JM<7:0>							
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, rea	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-12	Unimplemen	ted: Read as '0)'								
bit 11-8	ILR<3:0>: Ne	ew CPU Interrup	ot Priority Leve	el bits							
	1111 = CPU	Interrupt Priority	y Level is 15								
	•										
	•										
	0001 = CPU	Interrupt Priority	v Level is 1								
		Interrupt Priority									
bit 7-0	VECNUM<7:	0>: Vector Num	ber of Pendin	g Interrupt bits	6						
	11111111 =	11111111 = Interrupt vector pending is number 263									
	•										
	•										
	00000001 =	Interrupt vector	pendina is ni	umber 9							
		Interrupt vector	•								
		-									

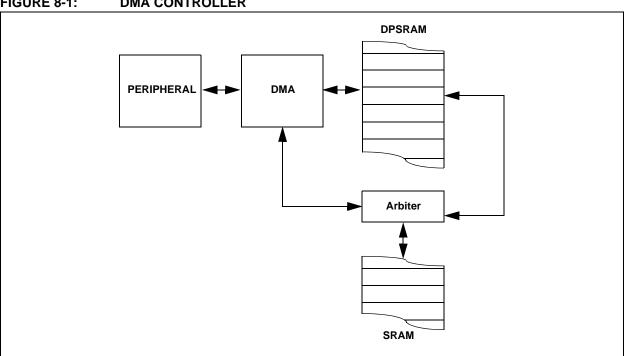
REGISTER 7-7: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

NOTES:

8.0 DIRECT MEMORY ACCESS (DMA)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 22. "Direct Memory Access (DMA)" (DS70348) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The DMA controller transfers data between peripheral data registers and data space SRAM. The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 DMA subsystem uses dualported SRAM memory (DPSRAM) and register structures that allow the DMA to operate across its own, independent address and data buses with no impact on CPU operation. This architecture eliminates the need for cycle stealing, which halts the CPU when a higher priority DMA transfer is requested. Both the CPU and DMA controller can write and read to/from


addresses within data space without interference, such as CPU stalls, resulting in maximized, real-time performance. Alternatively, DMA operation and data transfer to/from the memory and peripherals are not impacted by CPU processing. For example, when a Run-Time Self-Programming (RTSP) operation is performed, the CPU does not execute any instructions until RTSP is finished. This condition, however, does not impact data transfer to/from memory and the peripherals.

In addition, DMA can access entire data memory space (SRAM and DPSRAM). The Data Memory Bus Arbiter is utilized when either the CPU or DMA attempt to access non-dual-ported SRAM, resulting in potential DMA or CPU stalls.

The DMA controller supports up to 15 independent channels. Each channel can be configured for transfers to or from selected peripherals. Some of the peripherals supported by the DMA controller include:

- ECAN[™]
- Data Converter Interface (DCI)
- Analog-to-Digital Converter (ADC)
- Serial Peripheral Interface (SPI)
- UART
- Input Capture
- · Output Compare
- Parallel Master Port (PMP)

Refer to Table 8-1 for a complete list of supported peripherals.

FIGURE 8-1: DMA CONTROLLER

In addition, DMA transfers can be triggered by Timers as well as external interrupts. Each DMA channel is unidirectional. Two DMA channels must be allocated to read and write to a peripheral. If more than one channel receive a request to transfer data, a simple fixed priority scheme, based on channel number, dictates which channel completes the transfer and which channel, or channels, are left pending. Each DMA channel moves a block of data, after which it generates an interrupt to the CPU to indicate that the block is available for processing.

The DMA controller provides these functional capabilities:

- Up to 15 DMA channels
- Register Indirect With Post-increment Addressing mode
- Register Indirect Without Post-increment Addressing mode

- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full-block transfer complete
- · Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- · One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source

Debug support features

The peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)
INT0 – External Interrupt 0	00000000	_	_
IC1 – Input Capture 1	0000001	0x0144 (IC1BUF)	_
IC2 – Input Capture 2	00000101	0x014C (IC2BUF)	_
IC3 – Input Capture 3	00100101	0x0154 (IC3BUF)	—
IC4 – Input Capture 4	00100110	0x015C (IC4BUF)	_
OC1 – Output Compare 1	0000010	_	0x0906 (OC1R) 0x0904 (OC1RS)
OC2 – Output Compare 2	00000110	—	0x0910 (OC2R) 0x090E (OC2RS)
OC3 – Output Compare 3	00011001	_	0x091A (OC3R) 0x0918 (OC3RS)
OC4 – Output Compare 4	00011010	_	0x0924 (OC4R) 0x0922 (OC4RS)
TMR2 – Timer2	00000111	—	_
TMR3 – Timer3	00001000	—	_
TMR4 – Timer4	00011011	—	_
TMR5 – Timer5	00011100	_	_
SPI1 Transfer Done	00001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
SPI2 Transfer Done	00100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
SPI3 Transfer Done	01011011	0x02A8 (SPI3BUF)	0x02A8 (SPI3BUF)
SPI4 Transfer Done	01111011	0x02C8 (SPI4BUF)	0x02C8 (SPI4BUF)
UART1RX – UART1 Receiver	00001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	00001100	_	0x0224 (U1TXREG)
UART2RX – UART2 Receiver	00011110	0x0236 (U2RXREG)	
UART2TX – UART2 Transmitter	00011111	_	0x0234 (U2TXREG)
UART3RX – UART3 Receiver	01010010	0x0256 (U3RXREG)	
UART3TX – UART3 Transmitter	01010011	—	0x0254 (U3TXREG)
UART4RX – UART4 Receiver	01011000	0x02B6 (U4RXREG)	
UART4TX – UART4 Transmitter	01011001	_	0x02B4 (U4TXREG)

 TABLE 8-1:
 DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

Note 1: This peripheral is available on dsPIC33EPXXXMU806/810/814 devices only.

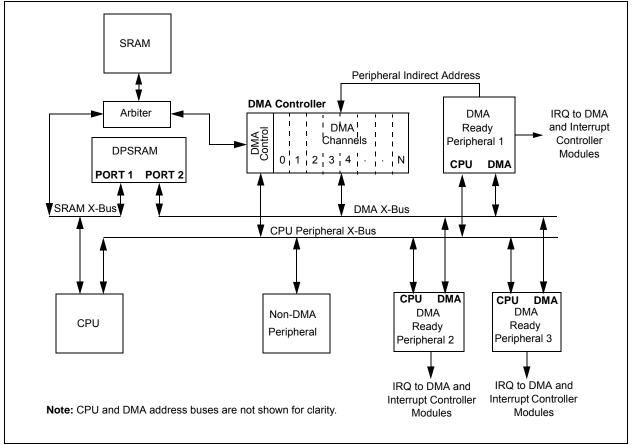

Peripheral to DMA Association	DMAxREQ Register IRQSEL<7:0> Bits	DMAxPAD Register (Values to Read from Peripheral)	DMAxPAD Register (Values to Write to Peripheral)	
ECAN1 – RX Data Ready	00100010	0x0440 (C1RXD)	—	
ECAN1 – TX Data Request	01000110	—	0x0442 (C1TXD)	
ECAN2 – RX Data Ready	00110111	0x0540 (C2RXD)	—	
ECAN2 – TX Data Request	01000111	—	0x0542 (C2TXD)	
DCI – DCI Transfer Done ⁽¹⁾	00111100	0x0290 (RXBUF0)	0x0298 (TXBUF0)	
ADC1 – ADC1 Convert Done	00001101	0x0300 (ADC1BUF0)	_	
ADC2 – ADC2 Convert Done	00010101	0x0340 (ADC2BUF0)	_	
PMP – PMP Data Move	00101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)	

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS (CONTINUED)

Note 1: This peripheral is available on dsPIC33EPXXXMU806/810/814 devices only.

FIGURE 8-2:

DMA CONTROLLER BLOCK DIAGRAM

8.1 DMAC Registers

Each DMAC Channel x (where x = 0 through 14) contains the following registers:

- 16-bit DMA Channel Control register (DMAxCON)
- 16-bit DMA Channel IRQ Select register (DMAxREQ)
- 32-bit DMA RAM Primary Start Address register (DMAxSTA)
- 32-bit DMA RAM Secondary Start Address register (DMAxSTB)
- 16-bit DMA Peripheral Address register (DMAxPAD)
- 14-bit DMA Transfer Count register (DMAxCNT)

Additional status registers (DMAPWC, DMARQC, DMAPPS, DMALCA, and DSADR) are common to all DMAC channels. These status registers provide information on write and request collisions, as well as on last address and channel access information.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

REGISTER 8-1: DMAXCON: DMA CHANNEL X CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
—	—	AMODE<1:0>			—	MODE<1:0>	
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 14 SIZE: Data Transfer Size bit 1 = Byte 0 = Word bit 13 DIR: Transfer Direction bit (source/destination bus select) 1 = Read from DPSRAM (or RAM) address, write to peripheral address 0 = Read from Peripheral address, write to DPSRAM (or RAM) address bit 12 HALF: Block Transfer Interrupt Select bit 1 = Initiate interrupt when half of the data has been moved 0 = Initiate interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DPSRAM (or RAM) write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE-1:0>: DMA Channel Addressing Mode Select bits 11 = Reserved 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect without Post-Increment mode 03 = 2 Unimplemented: Read as '0' bit 1-0 MODE-1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes enabled 11 = One-Shot, Ping-Pong modes disabled 01 = One-Shot, Ping-Pong modes disabled	bit 15	CHEN: Channel Enable bit 1 = Channel enabled 0 = Channel disabled
1 = Read from DPSRAM (or RAM) address, write to peripheral address 0 = Read from Peripheral address, write to DPSRAM (or RAM) address bit 12 HALF: Block Transfer Interrupt Select bit 1 = Initiate interrupt when half of the data has been moved 0 = Initiate interrupt when all of the data has been moved 0 = Initiate interrupt when all of the data has been moved 0 = Initiate interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DPSRAM (or RAM) write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE 1 = Reserved 10 = Peripheral Indirect Addressing Mode Select bits 11 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode 01 = Register Indirect with Post-Increment mode 02 = Register Indirect With Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE MODE Discont, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes enabled 01 = One	bit 14	1 = Byte
 1 = Initiate interrupt when half of the data has been moved 0 = Initiate interrupt when all of the data has been moved bit 11 NULLW: Null Data Peripheral Write Mode Select bit 1 = Null data write to peripheral in addition to DPSRAM (or RAM) write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Addressing Mode Select bits 11 = Reserved 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes disabled 	bit 13	1 = Read from DPSRAM (or RAM) address, write to peripheral address
 1 = Null data write to peripheral in addition to DPSRAM (or RAM) write (DIR bit must also be clear) 0 = Normal operation bit 10-6 Unimplemented: Read as '0' bit 5-4 AMODE<1:0>: DMA Channel Addressing Mode Select bits 11 = Reserved 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 	bit 12	1 = Initiate interrupt when half of the data has been moved
bit 5-4 AMODE<1:0>: DMA Channel Addressing Mode Select bits 11 = Reserved 10 = Peripheral Indirect Addressing mode 10 = Peripheral Indirect Addressing mode 11 = Register Indirect without Post-Increment mode 01 = Register Indirect with Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes disabled	bit 11	1 = Null data write to peripheral in addition to DPSRAM (or RAM) write (DIR bit must also be clear)
11 = Reserved 10 = Peripheral Indirect Addressing mode 01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled	bit 10-6	Unimplemented: Read as '0'
01 = Register Indirect without Post-Increment mode 00 = Register Indirect with Post-Increment mode bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled	bit 5-4	11 = Reserved
bit 3-2 Unimplemented: Read as '0' bit 1-0 MODE<1:0>: DMA Channel Operating Mode Select bits 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled		01 = Register Indirect without Post-Increment mode
 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled 	bit 3-2	Unimplemented: Read as '0'
	bit 1-0	 11 = One-Shot, Ping-Pong modes enabled (one block transfer from/to each DMA buffer) 10 = Continuous, Ping-Pong modes enabled 01 = One-Shot, Ping-Pong modes disabled

R/S-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
FORCE ⁽¹⁾	—	_	_	_	—	_	—			
pit 15							bit			
R/W-0		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
R/W-U	R/W-0	K/W-U		R/W-0 _<7:0> (2)	R/W-0	R/W-0	R/W-0			
bit 7			INQUE	L 17.07			bit			
Legend:	1.11		1.11			(0)				
R = Readable		W = Writable		•	nented bit, read					
-n = Value at F	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	iown			
bit 15	EOPCE: For	e DMA Transf	or hit(1)							
		single DMA tra		mode)						
		c DMA transfe								
bit 14-8		ted: Read as	-							
bit 7-0	-			ber Select bits						
	00000000 = INTO – External Interrupt 0 00000001 = IC1 – Input Capture 1									
	00000010 = OC1 – Output Compare 1									
	00000101 = IC2 – Input Capture 2									
	00000110 = OC2 - Output Compare 2									
	00000111 = TMR2 - Timer2									
	00001000 = TMR3 – Timer3 00001010 = SPI1 – Transfer Done									
	00001010 = SPI1 – Transfer Done 00001011 = UART1RX – UART1 Receiver									
	00001100 = UART1TX – UART1 Transmitter									
		ADC1 – ADC1								
	00010101 =	ADC2 – ADC2	2 Convert Don	e						
		OC3 – Output								
	00011010 = OC4 – Output Compare 4									
	00011011 = TMR4 – Timer4									
	00011100 = TMR5 – Timer5 00011110 = UART2RX – UART2 Receiver									
	00011111 = UART2TX – UART2 Transmitter									
	00100001 = SPI2 Transfer Done									
	00100010 = ECAN1 – RX Data Ready 00100101 = IC3 – Input Capture 3									
	00100101 = IC4 - Input Capture 3 $00100110 = IC4 - Input Capture 4$									
		PMP Data mo	•							
	00110111 = ECAN2 – RX Data Ready									
	00111100 = DCI – DCI Transfer Done ⁽²⁾									
		ECAN1 – TX [
		ECAN2 – TX [•							
		UART3RX – L								
		UART3TX – U								
		UART4RX – L UART4TX – U								
		SPI3 – Transfe								

REGISTER 8-2: DMAXREQ: DMA CHANNEL X IRQ SELECT REGISTER

- **Note 1:** The FORCE bit cannot be cleared by user software. The FORCE bit is cleared by hardware when the forced DMA transfer is complete or the channel is disabled (CHEN = 0).
 - 2: This selection is available in dsPIC33EPXXXMU806/810/814 devices only.

U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
_	—	—	—	_	_	_
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		STA<2	23:16>			
						bit (
-	_					

REGISTER 8-3: DMAXSTAH: DMA CHANNEL X START ADDRESS REGISTER A (HIGH)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STA<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-4: DMAXSTAL: DMA CHANNEL x START ADDRESS REGISTER A (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STA	\<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unki	nown	

bit 15-0 **STA<15:0>:** Primary Start Address bits (source or destination)

REGISTER 8-5:	DMAXSTBH: DMA CHANNEL X START ADDRESS REGISTER B (HIGH)
---------------	---

U-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0
	—	—	—	—		—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			STB<	23:16>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 STB<23:16>: Primary Start Address bits (source or destination)

REGISTER 8-6: DMAXSTBL: DMA CHANNEL X START ADDRESS REGISTER B (LOW)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STB	<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			STE	3<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown						

bit 15-0 STB<15:0>: Secondary Start Address Offset bits (source or destination)

© 2009-2011 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAE)<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	leared x = Bit is unknown		nown

REGISTER 8-7: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-8: DMAXCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	_		CNT<13:8> ⁽²⁾					
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			CNT	<7:0> ⁽²⁾				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'				
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown		nown		

bit 15-14 Unimplemented: Read as '0'

- bit 13-0 CNT<13:0>: DMA Transfer Count Register bits⁽²⁾
 - **Note 1:** If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: The number of DMA transfers = CNT<13:0> + 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	-	—
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSADR	<23:16>			
bit 7							bit 0

REGISTER 8-9: DSADRH: MOST RECENT DMA DPSRAM HIGH ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 DSADR<23:16>: Most Recent DMA Address Accessed by DMA bits

REGISTER 8-10: DSADRL: MOST RECENT DMA DPSRAM LOW ADDRESS REGISTER

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSAI	DR<15:8>			
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			DSA	DR<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable b	pit	U = Unimplemented bit, read as '0'			
-n = Value at PC	R	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unknown	

bit 15-0 DSADR<15:0>: Most Recent DMA Address Accessed by DMA bits

© 2009-2011 Microchip Technology Inc.

U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
—	PWCOL14	PWCOL13	PWCOL12	PWCOL11	PWCOL10	PWCOL9	PWCOL8	
bit 15							bit 8	
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	
bit 7							bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
			_					
bit 15	•	ted: Read as '			••			
bit 14	1 = Write col	Channel 14 Peri lision detected collision detect	-	Collision Flag b	ort			
bit 13	1 = Write col	Channel 13 Peri lision detected collision detect	-	Collision Flag b	it			
bit 12	PWCOL12: C 1 = Write col	 PWCOL12: Channel 12 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected 						
bit 11	1 = Write col	hannel 11 Peri lision detected collision detect		collision Flag b	it			
bit 10	1 = Write col	Channel 10 Peri lision detected collision detect	-	Collision Flag b	it			
bit 9	1 = Write col	annel 9 Periph lision detected collision detect		lision Flag bit				
bit 8	1 = Write col	annel 8 Periph lision detected collision detect		lision Flag bit				
bit 7	1 = Write col	nannel 7 Periph lision detected collision detect		lision Flag bit				
bit 6	1 = Write col	nannel 6 Periph lision detected collision detect		lision Flag bit				
bit 5	 PWCOL5: Channel 5 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected 							
bit 4	 PWCOL4: Channel 4 Peripheral Write Collision Flag bit 1 = Write collision detected 0 = No write collision detected 							
bit 3		nannel 3 Periph lision detected		lision Flag bit				

REGISTER 8-11: DMAPWC: DMA PERIPHERAL WRITE COLLISION STATUS REGISTER (CONTINUED)

- bit 2 PWCOL2: Channel 2 Peripheral Write Collision Flag bit
 - 1 = Write collision detected
 - 0 = No write collision detected
- bit 1 PWCOL1: Channel 1 Peripheral Write Collision Flag bit
 - 1 = Write collision detected
 - 0 = No write collision detected
- bit 0 PWCOL0: Channel 0 Peripheral Write Collision Flag bit
 - 1 = Write collision detected
 - 0 = No write collision detected

U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
_	RQCOL14	RQCOL13	RQCOL12	RQCOL11	RQCOL10	RQCOL9	RQCOL8		
oit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
RQCOL7	RQCOL6	RQCOL5	RQCOL4	RQCOL3	RQCOL2	RQCOL1	RQCOL0		
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	own		
							lowin		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14	RQCOL14: C	hannel 14 Trar	nsfer Request	Collision Flag	bit				
		RCE and Interrest collision det		uest collision	detected				
bit 13		hannel 13 Trar RCE and Interr							
		est collision det			uelecleu				
bit 12		hannel 12 Trar							
		RCE and Interr		uest collision	detected				
hit 11	-	 0 = No request collision detected RQCOL11: Channel 11 Transfer Request Collision Flag bit 							
bit 11	1 = User FO	RCE and Interrest collision det	upt-based req						
bit 10	-	hannel 10 Trar		Collision Flag	bit				
		RCE and Interrest collision det		uest collision	detected				
bit 9		annel 9 Transf							
		RCE and Interr		uest collision	detected				
hit 0	-	est collision det		ulicion Eloa bit					
bit 8		annel 8 Transf RCE and Interr							
		est collision det							
bit 7		annel 7 Transf							
		RCE and Interrest collision det	•	uest collision (detected				
bit 6		annel 6 Transf							
		RCE and Interrest collision det		uest collision	detected				
bit 5	•	annel 5 Transf		llision Flag bit	t				
	1 = User FO	RCE and Interr	upt-based req	•					
	-	est collision det		Illioion Elea bit					
bit 4	1 = User FO	annel 4 Transf RCE and Interr	upt-based req						
	•	est collision det							
bit 3	RQCOL3: Ch 1 = User FO	annel 3 Transf							

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER

REGISTER 8-12: DMARQC: DMA REQUEST COLLISION STATUS REGISTER (CONTINUED)

bit 2	RQCOL2: Channel 2 Transfer Request Collision Flag bit 1 = User FORCE and Interrupt-based request collision detected 0 = No request collision detected
bit 1	RQCOL1: Channel 1 Transfer Request Collision Flag bit 1 = User FORCE and Interrupt-based request collision detected 0 = No request collision detected
bit 0	RQCOL0: Channel 0 Transfer Request Collision Flag bit 1 = User FORCE and Interrupt-based request collision detected

0 = No request collision detected

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
—	—	—	_	—	—	—	_			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1			
	_	_			LSTC	H<3:0>				
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'						
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unknown				
bit 15-4	Unimplemen	ted: Read as 'o)'							
bit 3-0	LSTCH<3:0>	: Last DMAC C	hannel Active	e Status bits						
	1111 = No D	1111 = No DMA transfer has occurred since system Reset								
	1110 = Last c	lata transfer wa	as handled by	Channel 14						
	1101 = Last data transfer was handled by Channel 13									
	1100 = Last data transfer was handled by Channel 12									
	1011 = Last o	lata transfer wa	as handled by	Channel 11						
	1010 = Last o	lata transfer wa	as handled by	Channel 10						
	1001 = Last o	lata transfer wa	as handled by	Channel 9						
	1000 = Last c	lata transfer wa	as handled by	Channel 8						
	0111 = Last o	lata transfer wa	as handled by	Channel 7						
	0110 = Last o	0110 = Last data transfer was handled by Channel 6								
	0101 = Last data transfer was handled by Channel 5									
	0100 = Last c	lata transfer wa	as handled by	Channel 4						
	0011 = Last data transfer was handled by Channel 3									

0010 = Last data transfer was handled by Channel 2 0001 = Last data transfer was handled by Channel 1 0000 = Last data transfer was handled by Channel 0

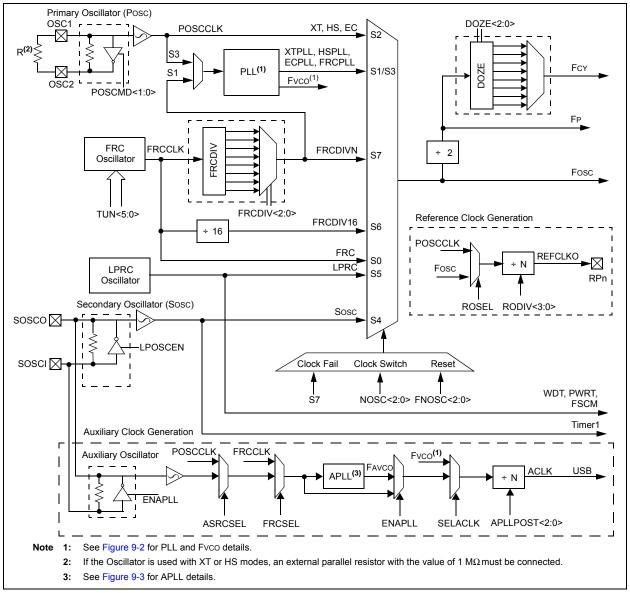
REGISTER 8-13: DMALCA: DMA LAST CHANNEL ACTIVE DMA STATUS REGISTER

U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
_	PPST14	PPST13	PPST12	PPST11	PPST10	PPST9	PPST8			
oit 15							bi			
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0			
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0			
oit 7	·	•	·				bi			
egend:										
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'				
n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
oit 15	Unimplemen	ted: Read as '	0'							
oit 14		nnel 14 Ping-F		atus Flag bit						
		314 register se								
oit 13		14 register sel Innel 13 Ping-F		atus Elaa hit						
JIL IS		313 register se		alus riay bil						
		13 register sel								
oit 12		T12: Channel 12 Ping-Pong Mode Status Flag bit								
	 1 = DMASTB12 register selected 0 = DMASTA12 register selected 									
oit 11		-		tuo Eloa hit						
		innel 11 Ping-F 311 register sel		itus Flag bit						
		11 register sel								
bit 10		nnel 10 Ping-F		atus Flag bit						
		310 register se								
bit 9		10 register sel		a Elag hit						
DIL 9		PPST9: Channel 9 Ping-Pong Mode Status Flag bit 1 = DMASTB9 register selected								
		9 register sele								
bit 8		nel 8 Ping-Por		s Flag bit						
		38 register sele								
hit 7		8 register sele		o Flog bit						
bit 7		nel 7 Ping-Por 37 register sele	•	IS Flag bit						
		7 register sele								
bit 6	PPST6: Chan	nel 6 Ping-Por	ng Mode Statu	s Flag bit						
		36 register sele								
L:4 F		6 register sele		o Elos hit						
bit 5		nel 5 Ping-Por 35 register sele	•	IS Flag bit						
		5 register sele								
bit 4		nel 4 Ping-Por		s Flag bit						
		34 register sele								
L:1 0		4 register sele		- Elen bit						
bit 3		nel 3 Ping-Por 33 register sele		is Flag bit						

..... ------

REGISTER 8-14: DMAPPS: DMA PING-PONG STATUS REGISTER (CONTINUED)

bit 2	PPST2: Channel 2 Ping-Pong Mode Status Flag bit 1 = DMASTB2 register selected 0 = DMASTA2 register selected
bit 1	<pre>PPST1: Channel 1 Ping-Pong Mode Status Flag bit 1 = DMASTB1 register selected 0 = DMASTA1 register selected</pre>
bit 0	PPST0: Channel 0 Ping-Pong Mode Status Flag bit 1 = DMASTB0 register selected 0 = DMASTA0 register selected


9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 7.** "Oscillator" (DS70580) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 oscillator system provides:

- · Four external and internal oscillator options
- Auxiliary oscillator that provides clock source to the USB module
- On-chip Phase-Locked Loop (PLL) to boost internal operating frequency on select internal and external oscillator sources
- On-the-fly clock switching between various clock sources
- · Doze mode for system power savings
- Fail-Safe Clock Monitor (FSCM) that detects clock failure and permits safe application recovery or shutdown
- Nonvolatile Configuration bits for clock source selection

A simplified diagram of the oscillator system is shown in Figure 9-1.

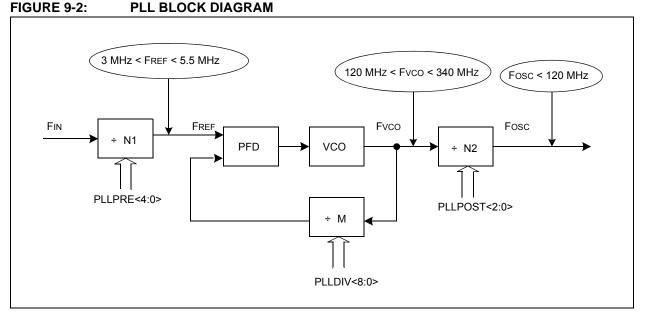
FIGURE 9-1: OSCILLATOR SYSTEM DIAGRAM

9.1 CPU Clocking System

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family of devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with Phase-Locked Loop (PLL)
- Primary (XT, HS or EC) Oscillator
- Primary Oscillator with PLL
- Secondary (LP) Oscillator
- · Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

Instruction execution speed or device operating frequency, FCY, is given by Equation 9-1.


EQUATION 9-1: DEVICE OPERATING FREQUENCY

FCY = Fosc/2

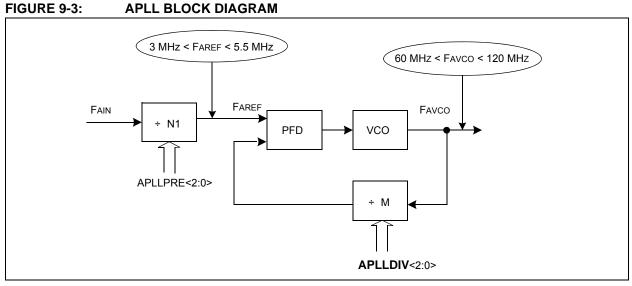
Figure 9-2 is a block diagram of the PLL module.

Equation 9-2 provides the relation between input frequency (FIN) and output frequency (FOSC).

Equation 9-3 provides the relation between input frequency (FIN) and VCO frequency (FVCO).

EQUATION 9-2: Fosc CALCULATION

$$Fosc = FIN \times \left(\frac{M}{N1 \times N2}\right) = FIN \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2) \times 2(PLLPOST + 1)}\right)$$


Where,

N1 = PLLPRE + 2 $N2 = 2 \times (PLLPOST + 1)$ M = PLLDIV + 2

EQUATION 9-3: Fvco CALCULATION

$$Fvco = Fin \times \left(\frac{M}{N1}\right) = Fin \times \left(\frac{(PLLDIV + 2)}{(PLLPRE + 2)}\right)$$

Figure 9-3 illustrates a block diagram of the Auxiliary PLL module.

Equation 9-4 shows the relationship between the Auxiliary PLL input clock frequency (FAIN) and the Avco frequency (FAVCO).

EQUATION 9-4: AFvco CALCULATION

$$FAVCO = FAIN \times \left(\frac{M}{N1}\right)$$

TABLE 9-1: CONFIGURATION BIT VALUES FOR CLOCK SELECTION

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-N (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (Sosc)	Secondary	xx	100	1
Primary Oscillator (HS) with PLL (HSPLL)	Primary	10	011	Ι
Primary Oscillator (XT) with PLL (XTPLL)	Primary	01	011	Ι
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	Ι
Primary Oscillator (XT)	Primary	01	010	Ι
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-N and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

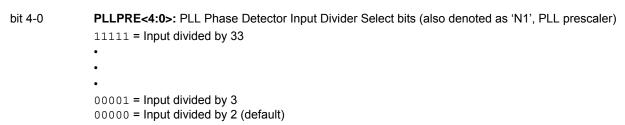
U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y				
		COSC<2:0>		_		NOSC<2:0>(2)					
bit 15							bit 8				
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0				
CLKLOCK		LOCK	_	CF	_	LPOSCEN	OSWEN				
bit 7				-			bit (
Legend:		y = Value set	from Configu	ration bits on P	OR						
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle		x = Bit is unkn	own				
bit 15	Unimplemen	nted: Read as '	0'								
bit 14-12	-			bits (read-only	a)						
JIL 14-12				i bits (read-only)						
		C Oscillator (F		de by Nend Di							
		ry Oscillator (X		de-by-N and PL	-L						
				th PLI							
		011 = Primary Oscillator (XT, HS, EC) with PLL 100 = Secondary Oscillator (Sosc)									
		101 = Low-Power RC Oscillator (LPRC)									
	110 = Fast R	C Oscillator (F	RC) with Divi	de-by-16							
	111 = Fast R	C Oscillator (F	RC) with Divi	de-by-N							
bit 11	Unimplemer	nted: Read as '	0'								
bit 10-8	NOSC<2:0>:	New Oscillato	r Selection bit	ts ⁽²⁾							
	000 = Fast R	C Oscillator (F	RC)								
		•	, ,	y-n with Divide-	by-N and PLL						
		y Oscillator (X									
		ry Oscillator (X		th PLL							
		dary Oscillator ower RC Oscill									
		C Oscillator (F		de-by-16							
		C Oscillator (F									
bit 7		Clock Lock Ena	,								
	1 = If (FCKS	M0 = 1), then o	clock and PLL	_ configurations	are locked						
	lf (FCKS	M0 = 0), then a	clock and PLL	configurations	may be modif	ied					
	0 = Clock an	nd PLL selection	ns are not loc	ked, configurat	ions may be m	odified					
bit 6	IOLOCK: I/O	Lock Enable b	bit								
	1 = I/O Lock										
	0 = I/O Lock	is not active									
bit 5		_ock Status bit									
				start-up timer is							
			-	t-up timer is in I	progress or PL	L is disabled					
bit 4	Unimplemer	nted: Read as '	0'								
	Vrites to this regis										
	dsPIC33E/PIC24	-		-	-	-					
)irect clock switch his applies to clo										
	node as a transiti					meation must swi					

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

3: This register resets only on a Power-on Reset (POR).

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

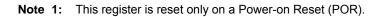
bit 3	CF: Clock Fail Detect bit (read/clear by application)
	1 = FSCM has detected clock failure
	0 = FSCM has not detected clock failure
bit 2	Unimplemented: Read as '0'
bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enable Secondary Oscillator
	0 - Dischla Casandam (Oscillator


- 0 = Disable Secondary Oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 7. "Oscillator"** (DS70580) in the *"dsPIC33E/PIC24E Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - **3:** This register resets only on a Power-on Reset (POR).

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1			
ROI		DOZE<2:0> ⁽³⁾		DOZEN ^(1,4)		FRCDIV<2:0>				
bit 15				· ·			bit			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
PLLPC	DST<1:0>	—			PLLPRE<4:0	>				
bit 7							bit			
Legend:		y = Value set f	rom Config	uration bits on PC	R					
R = Readable	e bit	W = Writable b	oit	U = Unimplem	ented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	iown			
bit 15	ROI: Recov	er on Interrupt bit								
	1 = Interrup	-	OZEN bit a	nd the processor EN bit	clock and peri	pheral clock rat	io is set to 1			
oit 14-12	•	Processor Cloc								
		livided by 128								
	110 = Fcy divided by 64									
	101 = Fcy divided by 32									
	100 = Fcy divided by 16 011 = Fcy divided by 8									
	011 = FCY divided by 8 010 = FCY divided by 4									
	010 = FCY divided by 4 001 = FCY divided by 2									
		livided by 1 (defa	ult)							
bit 11	DOZEN: Doze Mode Enable bit ^(1,4)									
	1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks									
	0 = Processor clock and peripheral clock ratio forced to 1:1									
bit 10-8	FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits									
	111 = FRC divided by 256									
	110 = FRC divided by 64									
	101 = FRC divided by 32									
	100 = FRC divided by 16									
	011 = FRC divided by 8									
	010 = FRC divided by 4 001 = FRC divided by 2 (default)									
	001 = FRC divided by 2 (default)000 = FRC divided by 1									
bit 7-6	PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)									
	11 = Output divided by 4									
	10 = Reserved (defaults to output divided by 2)									
		divided by 2	(a 14)							
L.H. F	-	divided by 1 (def	-							
bit 5	Unimpieme	ented: Read as '0								
Note 1: Th	nis bit is cleared	d when the ROI b	it is set and	l an interrupt occu	Irs.					
		ets only on a Pow								

REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾

- 2: This register resets only on a Power-on Reset (POR).
- **3:** DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
- 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.


REGISTER 9-2: CLKDIV: CLOCK DIVISOR REGISTER⁽²⁾ (CONTINUED)

- **Note 1:** This bit is cleared when the ROI bit is set and an interrupt occurs.
 - **2:** This register resets only on a Power-on Reset (POR).
 - **3:** DOZE<2:0> bits can only be written to when the DOZEN bit is clear. If DOZEN = 1, any writes to DOZE<2:0> are ignored.
 - 4: The DOZEN bit cannot be set if DOZE<2:0> = 000. If DOZE<2:0> = 000, any attempt by user software to set the DOZEN bit is ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0				
—	—	—	—	—	—	—	PLLDIV<8>				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			PLLD	IV<7:0>							
bit 7							bit C				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at POR '1' = Bit is se		'1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown				
bit 15-9	Unimpleme	nted: Read as '	0'								
bit 8-0	PLLDIV<8:0	PLLDIV<8:0>: PLL Feedback Divisor bits (also denoted as 'M', PLL multiplier)									
	111111111	111111111 = 513									
	•										
	•	•									
	•										
	000110000	= 50									
	•										
	•	•									
	•										
	000000010										
		= 3 = 2 (default)									
		(

REGISTER 9-3: PLLFBD: PLL FEEDBACK DIVISOR REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—		_		—	—	_		
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—				TUN	<5:0>			
bit 7							bit 0	
Legend:								
R = Readable b	pit	W = Writable I	bit	U = Unimplem	nented bit, read	l as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-6 bit 5-0	TUN<5:0>: FN 011111 = Ce 011110 = Ce • • • 0000001 = Ce 000000 = Ce 111111 = Ce • • • 100001 = Ce	ted: Read as 'C RC Oscillator T nter frequency nter frequency nter frequency nter frequency nter frequency	uning bits + 11.625% (8 + 11.25% (8.2 + 0.375% (7.4 (7.37 MHz nc -0.375% (7.3 -11.625% (6.4	20 MHz) 40 MHz) ominal) 45 MHz) 52 MHz)				

REGISTER 9-4: OSCTUN: FRC OSCILLATOR TUNING REGISTER⁽¹⁾

Note 1: This register resets only on a Power-on Reset (POR).

© 2009-2011 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
ENAPLL	APLLCK	SELACLK	AOSC	MD<1:0>	ASRCSEL	FRCSEL	
bit 15							bit
R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	APLLPOST<2:0)>	_	_	F F	APLLPRE<2:0>	L:+
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkn	own
bit 15	1 = APLL is e	enabled, the US	B clock sour	ce is the APLL			
bit 14		PLL Phase Lock n lock		•	clock to the APL	.L	
bit 13	SELACLK: S	Select Auxiliary	r provides th	e source clock	Clock Divider bit for auxiliary cloo clock divider	ck divider	
bit 12-11	11 = EC (Ext 10 = XT (Cry 01 = HS (Hig	:0>: Auxiliary O ernal Clock) mo stal) Oscillator h-Speed) Oscil y Oscillator Disa	ode select mode select ator mode se	elect			
bit 10	1 = Primary (Select Referenc Oscillator is the Oscillator is the	clock source	for APLL	t		
bit 9	FRCSEL: Se 1 = FRC is cl	elect FRC as Re lock source for	ference Cloc APLL	k Source for A	PLL bit ource for APLL (determined by A	ASRCSFL b
bit 8		nted: Read as '			•••••••••••		
bit 7-5	APLLPOST< 111 = Divide 110 = Divide 101 = Divide 100 = Divide 011 = Divide 010 = Divide 001 = Divide	2:0>: Select Pl d by 1 d by 2 d by 4 d by 8 d by 16 d by 32	LL VCO Outp	ut Divider bits			
bit 4-3		nted: Read as '	-				
bit 2-0	111 = Divide 110 = Divide 101 = Divide 100 = Divide 011 = Divide 010 = Divide 001 = Divide	d by 10 d by 6 d by 5 d by 4 d by 3	Detector Inp	out Divider bits			

REGISTER 9-5: ACLKCON3: AUXILIARY CLOCK CONTROL REGISTER 3⁽¹⁾

Note 1: This register resets only on a Power-on Reset (POR).

REGISTER 9-6: ACLKDIV3: AUXILIARY CLOCK DIVISOR REGISTER 3⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15					·		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	_	—		APLLDIV<2:0>	
bit 7					•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	s cleared x = Bit is unknown		

bit 15-3	Unimplemented: Read as '0'
----------	----------------------------

bit 2-0 APLLDIV<2:0>: PLL Feedback Divisor bits (PLL Multiplier Ratio)

Note 1: This register resets only on a Power-on Reset (POR).

© 2009-2011 Microchip Technology Inc.

REGISTER 9-	7: REFO	CON: REFER	ENCE OSC	ILLATOR CO	ONTROL REG	SISTER					
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ROON	_	ROSSLP	ROSEL								
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
—	—		—	—	—	_					
bit 7							bit 0				
Logondy											
Legend: R = Readable b	sit	W = Writable	hit	LI – Unimploy	monted hit read	4 00 (0)					
-n = Value at P		'1' = Bit is set		'0' = Bit is cle	mented bit, read	x = Bit is unkr					
	JR	I = DILIS SEL			areu		IOWI				
bit 15	ROON Refe	rence Oscillato	Output Enab	le hit							
bit 10					in						
	1 = Reference oscillator output enabled on REFCLK ⁽²⁾ pin 0 = Reference oscillator output disabled										
bit 14	Unimplemen	ted: Read as '	0'								
bit 13	ROSSLP: Reference Oscillator Run in Sleep bit										
	1 = Reference oscillator output continues to run in Sleep										
	0 = Reference	e oscillator outp	out is disabled	l in Sleep							
bit 12	ROSEL: Reference Oscillator Source Select bit										
	1 = Oscillator crystal used as the reference clock										
h # 44 0	0 = System clock used as the reference clock										
bit 11-8	RODIV<3:0>: Reference Oscillator Divider bits ⁽¹⁾										
	1111 = Reference clock divided by 32,768 1110 = Reference clock divided by 16,384										
	1101 = Reference clock divided by 8,192										
	1100 = Reference clock divided by 4,096										
	1011 = Reference clock divided by 2,048										
	1010 = Reference clock divided by 1,024 1001 = Reference clock divided by 512										
		ence clock divi	-								
	0111 = Reference clock divided by 128										
	0110 = Reference clock divided by 64										
	0101 = Reference clock divided by 32										
	0100 = Reference clock divided by 16										
	0011 = Reference clock divided by 8 0010 = Reference clock divided by 4										
		ence clock divi	-								
	0001 - Refer		ucu by Z								
bit 7-0		ited: Read as '	n'								
	Sumplemen	iteu. Neau as	0								

DECISTED A 7. REFOCAL REFERENCE OSCILLATOR CONTROL REGISTER

- **Note 1:** The reference oscillator output must be disabled (ROON = 0) before writing to these bits.
 - 2: This pin is remappable. See Section 11.4 "Peripheral Pin Select" for more information.

10.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70615) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices can manage power consumption in four ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- · Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

10.1 Clock Frequency and Clock Switching

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 9.0 "Oscillator Configuration".

10.2 Instruction-Based Power-Saving Modes

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 10-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake up.

10.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current.
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled.
- The LPRC clock continues to run in Sleep mode if the WDT is enabled.
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode.
- Some device features or peripherals can continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled.

The device wakes up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 10-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode PWRSAV #IDLE_MODE ; Put the device into IDLE mode

10.2.2 IDLE MODE

The following occur in Idle mode:

- · The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1										
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD ⁽¹⁾	PWMMD ⁽¹⁾	DCIMD			
bit 15	•			-		· · · · ·	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	C2MD	C1MD	AD1MD			
bit 7	022	0	0.12.1.2	0.1	022	02	bit 0			
Legend:										
R = Readable	bit	W = Writable	hit	II = Unimpler	mented bit, read	1 as '0'				
-n = Value at		'1' = Bit is set	bit	'0' = Bit is cle		x = Bit is unkno	าเพท			
					alcu		50011			
bit 15	1 = Timer5 m	5 Module Disat odule is disable odule is enable	ed							
bit 14	1 = Timer4 m	4 Module Disat odule is disable odule is enable	ed							
bit 13	1 = Timer3 m	3 Module Disat odule is disable odule is enable	ed							
bit 12	1 = Timer2 m	2 Module Disat odule is disable odule is enable	ed							
bit 11	T1MD: Timer1 Module Disable bit 1 = Timer1 module is disabled 0 = Timer1 module is enabled									
bit 10	1 = QEI1 mo	I1 Module Disa dule is disabled dule is enabled								
bit 9	 PWMMD: PWM Module Disable bit⁽¹⁾ 1 = PWM module is disabled 0 = PWM module is enabled 									
bit 8	DCIMD: DCI Module Disable bit 1 = DCI module is disabled 0 = DCI module is enabled									
bit 7	1 = I2C1 mod	1 Module Disat dule is disabled dule is enabled	ble bit							
bit 6	1 = UART2 m	Γ2 Module Disa nodule is disable nodule is enable	ed							
bit 5	1 = UART1 m	Γ1 Module Disa nodule is disable nodule is enable	ed							
bit 4	SPI2MD: SPI 1 = SPI2 mod	l2 Module Disal dule is disabled dule is enabled								

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1

Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

bit 3	SPI1MD: SPI1 Module Disable bit 1 = SPI1 module is disabled 0 = SPI1 module is enabled
bit 2	C2MD: ECAN2 Module Disable bit 1 = ECAN2 module is disabled 0 = ECAN2 module is enabled
bit 1	C1MD: ECAN1 Module Disable bit 1 = ECAN1 module is disabled 0 = ECAN1 module is enabled
bit 0	AD1MD: ADC1 Module Disable bit 1 = ADC1 module is disabled 0 = ADC1 module is enabled

Note 1: This bit is available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 1	0-2: PMD	2: PERIPHER	AL MODULE	E DISABLE C	ONTROL RE	GISTER 2			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
IC8MD	IC7MD	IC6MD	IC5MD	IC4MD	IC3MD	IC2MD	IC1MD		
bit 15					1		bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
OC8MD	OC7MD	OC6MD	OC5MD	OC4MD	OC3MD	OC2MD	OC1MD		
bit 7	OOTNID	COOMD	COOME	COHNE	COOND	COLIND	bit 0		
Legend:									
R = Readable	hit	W = Writable b	.;+	LI – Unimplor	nonted hit rea	d oo 'O'			
-n = Value at		'1' = Bit is set	л	'0' = Bit is cle	mented bit, read				
-n = value at	PUR	I = DILIS SEL			areu	x = Bit is unkr	IOWII		
bit 15	IC8MD: Input	t Capture 8 Mod	ule Disable bi	t					
	-	, pture 8 module is							
		pture 8 module is							
bit 14	IC7MD: Input	t Capture 2 Mod	ule Disable bi	t					
		pture 7 module is pture 7 module is							
bit 13	IC6MD: Input	t Capture 6 Mod	ule Disable bi	t					
		pture 6 module is pture 6 module is							
bit 12	IC5MD: Input Capture 5 Module Disable bit								
		pture 5 module is pture 5 module is							
bit 11	IC4MD: Input Capture 4 Module Disable bit								
		pture 4 module is pture 4 module is							
bit 10	IC3MD: Input Capture 3 Module Disable bit								
	1 = Input Capture 3 module is disabled								
	0 = Input Capture 3 module is enabled								
bit 9	IC2MD: Input Capture 2 Module Disable bit								
		pture 2 module is pture 2 module is							
bit 8	IC1MD: Input	t Capture 1 Mod	ule Disable bi	t					
		pture 1 module is pture 1 module is							
bit 7	OC8MD: Output Compare 8 Module Disable bit 1 = Output Compare 8 module is disabled								
	0 = Output Compare 8 module is enabled								
bit 6	OC7MD: Output Compare 7 Module Disable bit								
		ompare 7 modu ompare 7 modu							
bit 5	OC6MD: Output Compare 6 Module Disable bit								
		ompare 6 modu ompare 6 modu							
bit 4	OC5MD: Output Compare 5 Module Disable bit								
	1 = Output C	ompare 5 modul	e is disabled						

4.0 DEOLOT

REGISTER 10-2: PMD2: PERIPHERAL MODULE DISABLE CONTROL REGISTER 2 (CONTINUED)

bit 3	OC4MD: Output Compare 4 Module Disable bit
	1 = Output Compare 4 module is disabled0 = Output Compare 4 module is enabled
bit 2	OC3MD: Output Compare 3 Module Disable bit
	1 = Output Compare 3 module is disabled0 = Output Compare 3 module is enabled
bit 1	OC2MD: Output Compare 2 Module Disable bit
	1 = Output Compare 2 module is disabled0 = Output Compare 2 module is enabled
bit 0	OC1MD: Output Compare 1 Module Disable bit
	1 = Output Compare 1 module is disabled0 = Output Compare 1 module is enabled

	REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3									
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
T9MD	T8MD	T7MD	T6MD	—	CMPMD	RTCCMD	PMPMD			
bit 15							bit 8			
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0			
CRCMD	—	QEI2MD ⁽¹⁾		U3MD	—	I2C2MD	AD2MD			
bit 7							bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own			
bit 15	1 = Timer9 m	9 Module Disat odule is disable odule is enable	ed							
bit 14	1 = Timer8 m	8 Module Disat odule is disable odule is enable	ed							
bit 13	1 = Timer7 m	7 Module Disat nodule is disable nodule is enable	ed							
bit 12	1 = Timer6 m	6 Module Disat odule is disable odule is enable	ed							
bit 11	Unimplemer	ted: Read as '	כי							
bit 10	CMPMD: Comparator Module Disable bit 1 = Comparator module is disabled 0 = Comparator module is enabled									
bit 9	1 = RTCC m	TCC Module Dia odule is disable odule is enable	d							
bit 8	PMPMD: PMP Module Disable bit 1 = PMP module is disabled 0 = PMP module is enabled									
bit 7	CRCMD: CRC Module Disable bit 1 = CRC module is disabled 0 = CRC module is enabled									
bit 6		ted: Read as ')'							
bit 5	QEI2MD: QE 1 = QEI2 mo	I2 Module Disa dule is disabled dule is enabled	ble bit ⁽¹⁾							
bit 4	Unimplemer	nted: Read as '	כי							
bit 3	1 = UART3 n	T3 Module Disa nodule is disable nodule is enable	ed							
bit 2	Unimplemer	nted: Read as ')'							
bit 1	I2C2MD: I2C 1 = I2C2 mod	2 Module Disat dule is disabled dule is enabled								
bit 0	1 = ADC2 mo	C2 Module Disa odule is disable odule is enable	d							

REGISTER 10-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3

Note 1: This bit is available in dsPIC33EPXXXMU806/810/814 devices only.

REGISTER	X 10-4. FIVID 4					GIJIER 4			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—	_	—	_	—		
bit 15							bit 8		
U-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0		
	—	U4MD		REFOMD			USB1MD		
bit 7							bit 0		
Legend:									
R = Reada	ble bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-6	Unimplement	ted: Read as '	כ'						
bit 5	U4MD: UART	4 Module Disa	ble bit						
		odule is disabl							
	0 = UART4 m	odule is enable	ed						
bit 4	Unimplement	Unimplemented: Read as '0'							
bit 3	REFOMD: Reference Clock Module Disable bit								
		e Clock module e Clock module							
bit 2-1	Unimplement	ted: Read as '	כ'						
bit 0	USB1MD: US	B Module Disa	able bit						

REGISTER 10-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

1 = USB module is disabled

0 = USB module is enabled

REGISTER	10-5: PMD	5: PERIPHER	AL MODULE	E DISABLE C	ONTROL RE	GISTER 5	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC16MD	IC15MD	IC14MD	IC13MD	IC12MD	IC11MD	IC10MD	IC9MD
bit 15					•		bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OC16MD	OC15MD	OC14MD	OC13MD	OC12MD	OC11MD	OC10MD	OC9MD
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own
bit 15	IC16MD: IC1	6 Module Disat	ole bit				
		dule is disabled					
	0 = IC16 mod	dule is enabled					
bit 14	IC15MD: IC1	5 Module Disat	ole bit				
		dule is disabled dule is enabled					
bit 13	IC14MD: IC1	4 Module Disat	ole bit				
	1 = IC14 mod	dule is disabled					
	0 = IC14 mod	dule is enabled					
bit 12	IC13MD: IC1	3 Module Disat	ole bit				
		dule is disabled					
	0 = IC13 module is enabled						
bit 11	IC12MD: IC1	2 Module Disat	ole bit				
		dule is disabled dule is enabled					
bit 10	IC11MD: IC1	1 Module Disab	le bit				
		dule is disabled dule is enabled					
bit 9	IC10MD: IC1	0 Module Disat	ole bit				
	1 = IC10 module is disabled 0 = IC10 module is enabled						
bit 8	IC9MD: IC9 I	Module Disable	bit				
	1 = IC9 module is disabled 0 = IC9 module is enabled						
bit 7	OC16MD: OC16 Module Disable bit 1 = OC16 module is disabled 0 = OC16 module is enabled						
bit 6		C15 Module Dis					
		odule is enabled					
bit 5		C14 Module Dis					
		odule is disable					
		odule is enabled					
			able bit				
bit 4	OC13MD: 00	C13 Module Dis					
bit 4		odule is disable					

. .

© 2009-2011 Microchip Technology Inc.

REGISTER 10-5: PMD5: PERIPHERAL MODULE DISABLE CONTROL REGISTER 5 (CONTINUED)

bit 3	OC12MD: OC12 Module Disable bit
	1 = OC12 module is disabled
	0 = OC12 module is enabled
bit 2	OC11MD: OC11 Module Disable bit
	1 = OC11 module is disabled
	0 = OC11 module is enabled
bit 1	OC10MD: OC10 Module Disable bit
	1 = OC10 module is disabled
	0 = OC10 module is enabled
bit 0	OC9MD: OC9 Module Disable bit
	1 = OC9 module is disabled
	0 = OC9 module is enabled

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	PWM7MD ⁽¹⁾	PWM6MD ⁽¹⁾	PWM5MD ⁽¹⁾	PWM4MD ⁽¹⁾	PWM3MD ⁽¹⁾	PWM2MD ⁽¹⁾	PWM1MD ⁽¹
bit 15		•			•		bit
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
0-0	0-0	0-0	0-0	0-0	0-0	R/W-0 SPI4MD	SPI3MD
 bit 7	_		_			3F14IVID	bit
Legend:							
R = Readab	ole bit	W = Writable I	oit	U = Unimplem	nented bit, read	l as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15	Unimplement	ted: Read as 'd)'				
bit 14	-	NM7 Module D					
		odule is disable					
	0 = PWM7 mc	odule is enable	d				
bit 13	PWM6MD: PV	WM6 Module D	isable bit ⁽¹⁾				
		odule is disable					
bit 12	0 = PWM6 module is enabled PWM5MD: PWM5 Module Disable bit ⁽¹⁾						
	-	odule is disable					
		odule is enable					
bit 11	PWM4MD: PV	WM4 Module D	isable bit ⁽¹⁾				
		odule is disable					
		odule is enable	-				
bit 10		VM3 Module D odule is disable					
		odule is disable					
bit 9	PWM2MD: PV	WM2 Module D	isable bit ⁽¹⁾				
		odule is disable odule is enable	-				
bit 8	PWM1MD: PWM1 Module Disable bit ⁽¹⁾						
	1 = PWM1 module is disabled 0 = PWM1 module is enabled						
bit 7-2	Unimplement	ted: Read as 'o)'				
bit 1	SPI4MD: SPI4 Module Disable bit						
		ule is disabled ule is enabled					
bit 0	SPI3MD: SPI	3 Module Disab	ole bit				
	1 = SPI3 mod 0 = SPI3 mod	ule is disabled					

REGISTER 10-6: PMD6: PERIPHERAL MODULE DISABLE CONTROL REGISTER 6

Note 1: This bit is available in dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 10-7: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_		—	—			
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
DMA12MD	DMA8MD	DMA4MD	DMA0MD				00
DMA13MD	DMA9MD	DMA5MD	DMA1MD	-			
DMA14MD	DMA10MD	DMA6MD	DMA2MD		—	—	—
_	DMA11MD	DMA7MD	DMA3MD	-			
bit 7			-				bit
Legend:							
R = Readable		W = Writable		-	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-8	Unimplemen	ted: Read as ')'				
bit 7	-	MA12 Module					
	1 = DMA12 m	odule is disabl	ed				
	0 = DMA12 m	odule is enable	ed				
	DMA13MD: D	MA13 Module	Disable bit				
	-	nodule is disabl nodule is enable					
	DMA14MD: DMA14 Module Disable bit						
		nodule is disabl nodule is enable					
bit 6		MA3 Module Di					
	-	dule is disable					
		dule is enable					
	DMA9MD: DM	MA2 Module Di	sable bit				
		odule is disable odule is enable					
	DMA10MD: D	MA10 Module	Disable bit				
		nodule is disabl nodule is enable					
	DMA11MD: D	MA11 Module	Disable bit				
		odule is disabl					
bit 5		MA4 Module Di					
		dule is disable					
	0 = DMA4 mo	dule is enable	b				
	DMA5MD: DM	MA5 Module Di	sable bit				
		odule is disable odule is enable					
		MA6 Module Di					
	-	dule is disable					
		dule is enable					
	DMA7MD: DM	MA7 Module Di	sable bit				
		dule is disable					
	0 = DMA7 mo	dule is enable	d				

REGISTE	R 10-7: PMD7: PERIPHERAL MODULE DISABLE CONTROL REGISTER 7 (CONTINUED)
bit 4	DMA0MD: DMA0 Module Disable bit
	1 = DMA0 module is disabled 0 = DMA0 module is enabled
	DMA1MD: DMA1 Module Disable bit
	1 = DMA1 module is disabled0 = DMA1 module is enabled
	DMA2MD: DMA2 Module Disable bit
	1 = DMA2 module is disabled 0 = DMA2 module is enabled
	DMA3MD: DMA3 Module Disable bit
	1 = DMA3 module is disabled
	0 = DMA3 module is enabled
bit 3-0	Unimplemented: Read as '0'

NOTES:

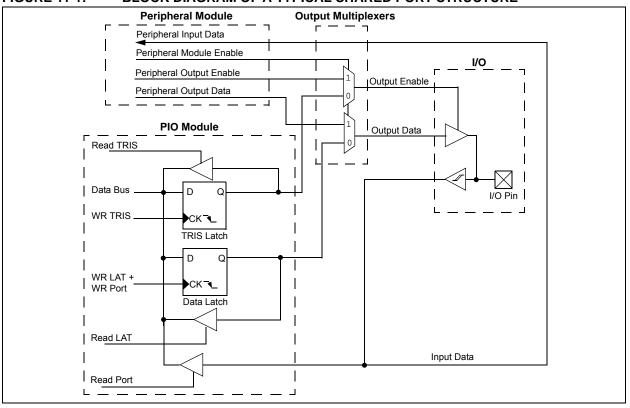
11.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 10.** "I/O Ports" (DS70598) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

11.1 Parallel I/O (PIO) Ports

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 illustrates how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have eight registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

© 2009-2011 Microchip Technology Inc.

11.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V on a 5V tolerant pin) by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification for that pin.

See the **"Pin Diagrams"** section for the available pins and their functionality.

11.2 Configuring Analog and Digital Port Pins

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP, as shown in Example 11-1.

11.3 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices to generate interrupt requests to the processor in response to a change-ofstate on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Three control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

Note:	Pull-ups and pull-downs on change notifi-				
	cation pins should always be disabled				
	when the port pin is configured as a digital				
	output.				

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, WO	; Configure PORTB<15:8>
		; as inputs
MOV	W0, TRISB	; and PORTB<7:0>
		; as outputs
NOP		; Delay 1 cycle
BTSS	PORTB, #13	; Next Instruction

11.4 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

Peripheral pin select configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

11.4.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" or "RPIn" in their full pin designation, where "RP" designates a remappable function for input or output and "RPI" designates a remappable functions for input only, and "n" is the remappable pin number.

11.4.2 AVAILABLE PERIPHERALS

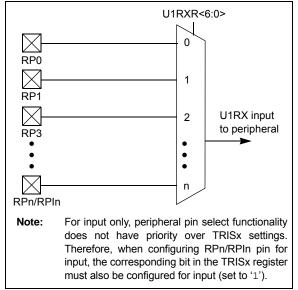
The peripherals managed by the peripheral pin select are all digital-only peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the peripheral pin select feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C and the PWM. A similar requirement excludes all modules with analog inputs, such as the A/D converter.

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral. When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin. Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

11.4.3 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.


The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

11.4.3.1 INPUT MAPPING

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-22). Each register contains sets of 7-bit fields, with each set associated with one of the remappable peripherals (see Table 11-1). Programming a given peripheral's bit field with an appropriate 7-bit value maps the RPn/RPIn pin with the corresponding value to that peripheral (see Table 11-2). For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

For example, Figure 11-2 illustrates remappable pin selection for the U1RX input.

FIGURE 11-2: U1RX REMAPPABLE INPUT

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<6:0>
External Interrupt 2	INT2	RPINR1	INT2R<6:0>
External Interrupt 3	INT3	RPINR1	INT3R<6:0>
External Interrupt 4	INT4	RPINR2	INT4R<6:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<6:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<6:0>
Timer4 External Clock	T4CK	RPINR4	T4CKR<6:0>
Timer5 External Clock	T5CK	RPINR4	T5CKR<6:0>
Timer6 External Clock	T6CK	RPINR5	T6CKR<6:0>
Timer7 External Clock	T7CK	RPINR5	T7CKR<6:0>
Timer8 External Clock	T8CK	RPINR6	T8CKR<6:0>
Timer9 External Clock	T9CK	RPINR6	T9CKR<6:0>
Input Capture 1	IC1	RPINR7	IC1R<6:0>
Input Capture 2	IC2	RPINR7	IC2R<6:0>
Input Capture 3	IC3	RPINR8	IC3R<6:0>
nput Capture 4	IC4	RPINR8	IC4R<6:0>
nput Capture 5	IC5	RPINR9	IC5R<6:0>
Input Capture 6	IC6	RPINR9	IC6R<6:0>
nput Capture 7	IC7	RPINR10	IC7R<6:0>
nput Capture 8	IC8	RPINR10	IC8R<6:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<6:0>
Output Compare Fault B	OCFB	RPINR11	OCFBR<6:0>
PMW Fault 1 ⁽²⁾	FLT1	RPINR12	FLT1R<6:0>
PMW Fault 2 ⁽²⁾	FLT2	RPINR12	FLT2R<6:0>
PMW Fault 3 ⁽²⁾	FLT3	RPINR13	FLT3R<6:0>
PMW Fault 4 ⁽²⁾	FLT4	RPINR13	FLT4R<6:0>
QEI1 Phase A ⁽²⁾	QEA1	RPINR14	QEA1R<6:0>
QEI1 Phase A ⁽²⁾	QEB1	RPINR14	QEB1R<6:0>
QEI1 Index ⁽²⁾	INDX1	RPINR15	INDX1R<6:0>
QEI1 Home ⁽²⁾	HOME1	RPINR15	HOM1R<6:0>
QEI2 Phase A ⁽²⁾	QEA2	RPINR16	QEA2R<6:0>
QEI2 Phase A ⁽²⁾	QEB2	RPINR16	QEB2R<6:0>
QEI2 Index ⁽²⁾	INDX2	RPINR17	INDX2R<6:0>
QEI2 Home ⁽²⁾	HOME2	RPINR17	HOM2R<6:0>
JART1 Receive	U1RX	RPINR18	U1RXR<6:0>
JART1 Clear To Send	U1CTS	RPINR18	U1CTSR<6:0>
JART2 Receive	U2RX	RPINR19	U2RXR<6:0>
JART2 Clear To Send	U2CTS	RPINR19	U2CTSR<6:0>
SPI1 Data Input	SDI1	RPINR20	SDI1R<6:0>
SPI1 Clock Input	SCK1	RPINR20	SCK1R<6:0>
SPI1 Slave Select	SS1	RPINR21	SS1R<6:0>
SPI2 Slave Select	SS2	RPINR23	SS2R<6:0>
DCI Data Input	CSDI	RPINR24	CSDIR<6:0>

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

2: This input source is available on dsPIC33EPXXXMU806/810/814 devices only.

Input Name ⁽¹⁾	Function Name	Register	Configuration Bits		
DCI Clock Input	CSCKIN	RPINR24	CSCKR<6:0>		
DCI FSYNC Input	COFSIN	RPINR25	COFSR<6:0>		
CAN1 Receive	C1RX	RPINR26	C1RXR<6:0>		
CAN2 Receive	C2RX	RPINR26	C2RXR<6:0>		
UART3 Receive	U3RX	RPINR27	U3RXR<6:0>		
UART3 Clear To Send	U3CTS	RPINR27	U3CTSR<6:0>		
JART4 Receive	U4RX	RPINR28	U4RXR<6:0>		
UART4 Clear To Send	U4CTS	RPINR28	U4CTSR<6:0>		
SPI3 Data Input	SDI3	RPINR29	SDI3R<6:0>		
SPI3 Clock Input	SCK3	RPINR29	SCK3R<6:0>		
SPI3 Slave Select	SS3	RPINR30	SS3R<6:0>		
SPI4 Data Input	SDI4	RPINR31	SDI4R<6:0>		
SPI4 Clock Input	SCK4	RPINR31	SCK4R<6:0>		
SPI4 Slave Select	SS4	RPINR32	SS4R<6:0>		
nput Capture 9	IC9	RPINR33	IC9R<6:0>		
nput Capture 10	IC10	RPINR33	IC10R<6:0>		
nput Capture 11	IC11	RPINR34	IC11R<6:0>		
nput Capture 12	IC12	RPINR34	IC12R<6:0>		
nput Capture 13	IC13	RPINR35	IC13R<6:0>		
nput Capture 14	IC14	IC14 RPINR35 IC14			
nput Capture 15	IC15	RPINR36	IC15R<6:0>		
Input Capture 16	IC16	RPINR36	IC16R<6:0>		
Output Compare Fault C	OCFC	RPINR37	OCFCR<6:0>		
PWM Fault 5 ⁽²⁾	FLT5	RPINR42	FLT5R<6:0>		
PWM Fault 6 ⁽²⁾	FLT6	RPINR42	FLT6R<6:0>		
PWM Fault 7 ⁽²⁾	FLT7	RPINR43	FLT7R<6:0>		
PWM Dead Time Compensation 1 ⁽²⁾	DTCMP1	RPINR38	DTCMP1R<6:0>		
PWM Dead Time Compensation 2 ⁽²⁾	DTCMP2	RPINR39	DTCMP2R<6:0>		
PWM Dead Time Compensation 3 ⁽²⁾	DTCMP3	RPINR39	DTCMP3R<6:0>		
PWM Dead Time Compensation 4 ⁽²⁾	DTCMP4	RPINR40	DTCMP4R<6:0>		
PWM Dead Time Compensation 5 ⁽²⁾	DTCMP5	RPINR40	DTCMP5R<6:0>		
PWM Dead Time Compensation 6 ⁽²⁾	DTCMP6	RPINR41	DTCMP6R<6:0>		
PWM Dead Time Compensation 7 ⁽²⁾	DTCMP7	RPINR41	DTCMP7R<6:0>		
PWM Synch Input 1 ⁽²⁾	SYNCI1	RPINR37	SYNCI1R<6:0>		
PWM Synch Input 2 ⁽²⁾	SYNCI2	RPINR38	SYNCI2R<6:0>		

TABLE 11-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION) (CONTINUED)

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.

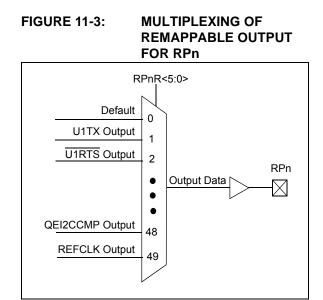
2: This input source is available on dsPIC33EPXXXMU806/810/814 devices only.

© 2009-2011 Microchip Technology Inc.

eripheral Pin Select	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignme
000 0000	I	Vss	010 1101	I	RPI45
000 0001	I	C1OUT ⁽¹⁾	010 1110	I	RPI46
000 0010	I	C2OUT ⁽¹⁾	010 1111	I	RPI47
000 0011	I	C3OUT ⁽¹⁾	011 0000		Reserved
000 0100		Reserved	011 0001	I	RPI49
000 0101		Reserved	011 0010	I	RPI50
000 0110	_	Reserved	011 0011	I	RPI51
000 0111		Reserved	011 0100	I	RPI52
000 1000	I	FINDX1 ⁽¹⁾	011 0101		Reserved
000 1001	I	FHOME1 ⁽¹⁾	011 0110		Reserved
000 1010	I	FINDX2 ⁽¹⁾	011 0111		Reserved
000 1011	I	FHOME2 ⁽¹⁾	011 1000		Reserved
000 1100	_	Reserved	011 1001		Reserved
000 1101	—	Reserved	011 1010	—	Reserved
000 1110	—	Reserved	011 1011	—	Reserved
000 1111	—	Reserved	011 1100	I	RPI60
001 0000	I	RPI16	011 1101	I	RPI61
001 0001	I	RPI17	011 1110	I	RPI62
001 0010	I	RPI18	011 1111		Reserved
001 0011	I	RPI19	100 0000	I/O	RP64
001 0100	I	RPI20	100 0001	I/O	RP65
001 0101	I	RPI21	100 0010	I/O	RP66
001 0110	I	RPI22	100 0011	I/O	RP67
001 0111	I	RPI23	100 0100	I/O	RP68
001 1000	_	Reserved	100 0101	I/O	RP69
001 1001	_	Reserved	100 0110	I/O	RP70
001 1010	_	Reserved	100 0111	I/O	RP71
001 1011	_	Reserved	100 1000	I	RPI72
001 1100	_	Reserved	100 1001	I	RPI73
001 1101	_	Reserved	100 1010	I	RPI74
001 1110	I	RPI30	100 1011	I	RPI75
001 1111	I	RPI31	100 1100	I	RPI76
010 0000	I	RPI32	100 1101	I	RPI77
010 0001	I	RPI33	100 1110	I	RPI78
010 0010	I	RPI34	100 1111	I/O	RP79
010 0011	I	RPI35	101 0000	I/O	RP80
010 0100	I	RPI36	101 0001	I	RPI81
010 0101		RPI37	101 0010	I/O	RP82
010 0110	I	RPI38	101 0011	I	RPI83
010 0111	I	RPI39	101 0100	I/O	RP84
010 1000	I	RPI40	101 0101	I/O	RP85
010 1001	1	RPI41	101 0110	I	RPI86
010 1010	1	RPI42	101 0111	I/O	RP87
010 1011	1	RPI43	101 1000	I	RPI88
010 1100		RPI44	101 1001	1	RPI89

TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES

Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment	Peripheral Pin Select Input Register Value	Input/ Output	Pin Assignment
101 1010		Reserved	110 1101	I/O	RP109
101 1011		Reserved	110 1110	_	Reserved
101 1100		Reserved	110 1111	—	Reserved
101 1101		Reserved	111 0000	I/O	RP112
101 1110		Reserved	111 0001	I/O	RP113
101 1111		Reserved	111 0010	—	Reserved
110 0000	I/O	RP96	111 0011	—	Reserved
110 0001	I/O	RP97	111 0100	—	Reserved
110 0010	I/O	RP98	111 0101	—	Reserved
110 0011	I/O	RP99	111 0110	I/O	RP118
110 0100	I/O	RP100	111 0111	I	RPI119
110 0101	I/O	RP101	111 1000	I/O	RP120
110 0110		Reserved	111 1001	I	RPI121
110 0111		Reserved	111 1010	—	Reserved
110 1000	I/O	RP104	111 1011	—	Reserved
110 1001		Reserved	111 1100	I	RPI124
110 1010		Reserved	111 1101	I/O	RP125
110 1011		Reserved	111 1110	I/O	RP126
110 1100	I/O	RP108	111 1111	I/O	RP127


TABLE 11-2: INPUT PIN SELECTION FOR SELECTABLE INPUT SOURCES (CONTINUED)

Note 1: See Section 11.4.3.3 "Virtual Connections" for more information on selecting this pin assignment.

11.4.3.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 6 bit fields, with each set associated with one RPn pin (see Register 11-44 through Register 11-51). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-3 and Figure 11-3).

A null output is associated with the output register reset value of '0'. This is done to ensure that remappable outputs remain disconnected from all output pins by default.

Function	RPnR<5:0>	Output Name
DEFAULT PORT	000000	RPn tied to default pin
U1TX	000001	RPn tied to UART1 transmit
U1RTS	000010	RPn tied to UART1 ready to send
U2TX	000011	RPn tied to UART2 transmit
U2RTS	000100	RPn tied to UART2 ready to send
SDO1	000101	RPn tied to SPI1 data output
SCK1	000110	RPn tied to SPI1 clock output
SS1	000111	RPn tied to SPI1 slave select
SS2	001010	RPn tied to SPI2 slave select
CSDO ⁽¹⁾	001011	RPn tied to DCI data output
CSCK ⁽¹⁾	001100	RPn tied to DCI clock output
COFS ⁽¹⁾	001101	RPn tied to DCI FSYNC output
C1TX	001110	RPn tied to CAN1 transmit
C2TX	001111	RPn tied to CAN2 transmit
OC1	010000	RPn tied to Output Compare 1 output
OC2	010001	RPn tied to Output Compare 2 output
OC3	010010	RPn tied to Output Compare 3 output
OC4	010011	RPn tied to Output Compare 4 output
OC5	010100	RPn tied to Output Compare 5 output
OC6	010101	RPn tied to Output Compare 6 output
OC7	010110	RPn tied to Output Compare 7 output
OC8	010111	RPn tied to Output Compare 8 output
C1OUT	011000	RPn tied to Comparator Output 1
C2OUT	011001	RPn tied to Comparator Output 2
C3OUT	011010	RPn tied to Comparator Output 3
U3TX	011011	RPn tied to UART3 transmit
U3RTS	011100	RPn tied to UART3 ready to send

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn)

Note 1: This function is available in dsPIC33EPXXXMU806/810/814 devices only.

Function	RPnR<5:0>	Output Name
U4TX	011101	RPn tied to UART4 transmit
U4RTS	011110	RPn tied to UART4 ready to send
SDO3	011111	RPn tied to SPI3 data output
SCK3	100000	RPn tied to SPI3 clock output
SS3	100001	RPn tied to SPI3 slave select
SDO4	100010	RPn tied to SPI4 data output
SCK4	100011	RPn tied to SPI4 clock output
SS4	100100	RPn tied to SPI4 slave select
OC9	100101	RPn tied to Output Compare 9 output
OC10	100110	RPn tied to Output Compare 10 output
OC11	100111	RPn tied to Output Compare 11 output
OC12	101000	RPn tied to Output Compare 12 output
OC13	101001	RPn tied to Output Compare 13 output
OC14	101010	RPn tied to Output Compare 14 output
OC15	101011	RPn tied to Output Compare 15 output
OC16	101100	RPn tied to Output Compare 16 output
SYNCO1 ⁽¹⁾	101101	RPn tied to PWM primary time base sync output
SYNCO2 ⁽¹⁾	101110	RPn tied to PWM secondary time base sync output
QEI1CCMP ⁽¹⁾	101111	RPn tied to QEI 1 counter comparator output
QEI2CCMP ⁽¹⁾	110000	RPn tied to QEI 2 counter comparator output
REFCLK	110001	RPn tied to Reference Clock output

TABLE 11-3: OUTPUT SELECTION FOR REMAPPABLE PINS (RPn) (CONTINUED)

Note 1: This function is available in dsPIC33EPXXXMU806/810/814 devices only.

11.4.3.3 Virtual Connections

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices support virtual (internal) connections to the output of the comparator modules CMP1OUT, CMP2OUT and CMP3OUT (see Figure 25-1 in Section 25.0 "Comparator Module"). In addition, dsPIC33EPXXXMU806/810/814 devices support virtual connections to the filtered QEI module inputs FINDX1, FHOME1, FINDX2 and FHOME2 (see Figure 17-1 in Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810/814 Devices Only)".

Virtual connections provide a simple way of interperipheral connection without utilizing a physical pin. For example, by setting the FLT1R<6:0> bits of the RPINR12 register to the value of `b0000001, the output of the Analog Comparator CMP10UT will be connected to the PWM Fault 1 input, which allows the Analog Comparator to trigger PWM faults without the use of an actual physical pin on the device. Virtual connection to the QEI module allows peripherals to be connected to the QEI digital filter input. To utilize this filter, the QEI module must be enabled, and its inputs must be connected to a physical RPn/RPIn pin. Example 11-1 illustrates how the input capture module can be connected to the QEI digital filter.

11.4.3.4 Mapping Limitations

The control schema of the peripheral select pins is not limited to a small range of fixed peripheral configurations. There are no mutual or hardwareenforced lockouts between any of the peripheral mapping SFRs. Literally any combination of peripheral mappings across any or all of the RPn/RPIn pins is possible. This includes both many-to-one and one-tomany mappings of peripheral inputs and outputs to pins. While such mappings may be technically possible from a configuration point of view, they may not be supportable from an electrical point of view.

EXAMPLE 11-1: CONNECTING IC1 TO THE HOME1 DIGITAL FILTER INPUT ON PIN 3 OF THE dsPIC33EP512MU810 DEVICE

RPINR15 = 0x5600; /* Connect the QEI1 HOME1 input to RP86 (pin 3) */
RPINR7 = 0x009; /* Connect the IC1 input to the digital filter on the FHOME1 input */
QEI1IOC = 0x4000; /* Enable the QEI digital filter */
QEI1CON = 0x8000; /* Enable the QEI module */

11.5 Peripheral Pin Select Registers

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT1R<6:0>			
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—		_	—
bit 7							bit 0
<u> </u>							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-8	INT1R<6:0>: Assign External Interrupt 1 (INT1) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers)
	1111111 = Input tied to RP127
	•
	0000001 = Input tied to CMP1 0000000 = Input tied to Vss
bit 7-0	Unimplemented: Read as '0'

© 2009-2011 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				INT3R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INT2R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		Input tied to RP	P1				
L : 1 - 7		Input tied to Vss					
bit 7 bit 6-0	INT2R<6:0>	nted: Read as ' Assign Externation Area for input pin	al Interrupt 2 (prresponding I	RPn/RPIn Pin bi	ts

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

REGISTER 11-3: RPINR2: PERIPHERAL PIN SELECT INPUT REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				INT4R<6:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as 'd)'				
bit 6-0		Assign Externa -2 for input pin			orresponding RI	Pn/RPIn Pin bit	ts

1111111 = Input tied to RP127

. 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

© 2009-2011 Microchip Technology Inc.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				T3CKR<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				T2CKR<6:0>			
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	T3CKR<6:0> (see Table 11	 ted: Read as ' Assign Timer for input pin nput tied to RP' 	3 External Clo selection num		ne Correspond	ding RPn/RPIn p	in bits
bit 15 bit 14-8	T3CKR<6:0> (see Table 11 1111111 = h	Assign Timer J-2 for input pin nput tied to RP	3 External Clc selection nun 127 P1		ne Correspond	ding RPn/RPIn p	in bits
bit 14-8	T3CKR<6:0> (see Table 11 1111111 = h 0000001 = h 0000000 = h	Assign Timer I-2 for input pin nput tied to RP nput tied to CM nput tied to Vss	3 External Clc selection num 127 P1		e Correspond	ding RPn/RPIn p	in bits
bit 14-8 bit 7	T3CKR<6:0> (see Table 11 1111111 = h	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as	3 External Clo selection num 127 P1 5 0'	nbers)			
bit 14-8	T3CKR<6:0> (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemer T2CKR<6:0>	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as	3 External Clo selection num 127 P1 3 0' 2 External Clo	nbers) ock (T2CK) to th		ding RPn/RPIn p ding RPn/RPIn p	
bit 14-8 bit 7	T3CKR<6:0> (see Table 11 111111 = h 0000001 = h 0000000 = h Unimplemen T2CKR<6:0> (see Table 11	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' -: Assign Timer	3 External Clo selection num 127 P1 3 0' 2 External Clo selection num	nbers) ock (T2CK) to th			
bit 14-8	T3CKR<6:0> (see Table 11 111111 = h 0000001 = h 0000000 = h Unimplemen T2CKR<6:0> (see Table 11	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' -: Assign Timer -2 for input pin	3 External Clo selection num 127 P1 3 0' 2 External Clo selection num	nbers) ock (T2CK) to th			
bit 14-8	T3CKR<6:0> (see Table 11 111111 = h 0000001 = h 0000000 = h Unimplemen T2CKR<6:0> (see Table 11	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' -: Assign Timer -2 for input pin	3 External Clo selection num 127 P1 3 0' 2 External Clo selection num	nbers) ock (T2CK) to th			
bit 14-8	T3CKR<6:0> (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemen T2CKR<6:0> (see Table 11 1111111 = h	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' -: Assign Timer -2 for input pin	3 External Clo selection num 127 P1 3 0' 2 External Clo selection num 127	nbers) ock (T2CK) to th			

REGISTER 11-4: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

	-		-				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				T5CKR<6:0>			
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				T4CKR<6:0>			
bit 7							bit
Legend:							
R = Readat		W = Writable		U = Unimplen			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	0000001 =	Input tied to RP ⁻ Input tied to CM Input tied to Vss	P1				
bit 7		nted: Read as '					
bit 6-0	T4CKR<6:0		4 External Clo		ne Correspon	ding RPn/RPIn p	in bits
	1111111 =	Input tied to RP	127				
	•						
	•						
		Input tied to CM Input tied to Vss					

REGISTER 11-5: RPINR4: PERIPHERAL PIN SELECT INPUT REGISTER 4

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				T7CKR<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				T6CKR<6:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	T7CKR<6:0> (see Table 11	 hted: Read as ' Assign Timer for input pin nput tied to RP 	7 External Clo selection num		ne Correspond	ding RPn/RPIn p	in bits
bit 15 bit 14-8	T7CKR<6:0> (see Table 11 1111111 = h	Assign Timer J-2 for input pin nput tied to RP	7 External Clo selection num 127 P1		ne Correspond	ding RPn/RPIn p	in bits
bit 14-8	T7CKR<6:0> (see Table 11 1111111 = h 0000001 = h 0000000 = h	Assign Timer I-2 for input pin nput tied to RP nput tied to CM nput tied to Vss	7 External Clo selection num 127 P1		ne Correspond	ding RPn/RPIn p	in bits
bit 14-8 bit 7	T7CKR<6:0> (see Table 11 1111111 = h	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as '	7 External Clo selection num 127 P1 S	ıbers)			
bit 14-8	T7CKR<6:0> (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemer T6CKR<6:0>	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as '	7 External Clo selection num 127 P1 5 0' 6 External Clo	nbers) hck (T6CK) to th		ding RPn/RPIn p ding RPn/RPIn p	
bit 14-8 bit 7	T7CKR<6:0> (see Table 11 111111 = h 0000001 = h 0000000 = h Unimplemen T6CKR<6:0> (see Table 11	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' -: Assign Timer	7 External Clo selection num 127 P1 3 0' 6 External Clo selection num	nbers) hck (T6CK) to th			
bit 14-8	T7CKR<6:0> (see Table 11 111111 = h 0000001 = h 0000000 = h Unimplemen T6CKR<6:0> (see Table 11	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' -: Assign Timer -2 for input pin	7 External Clo selection num 127 P1 3 0' 6 External Clo selection num	nbers) hck (T6CK) to th			
bit 14-8	T7CKR<6:0> (see Table 11 111111 = h 0000001 = h 0000000 = h Unimplemen T6CKR<6:0> (see Table 11	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' -: Assign Timer -2 for input pin	7 External Clo selection num 127 P1 3 0' 6 External Clo selection num	nbers) hck (T6CK) to th			
bit 14-8 bit 7	T7CKR<6:0> (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemen T6CKR<6:0> (see Table 11 1111111 = h	Assign Timer -2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' -: Assign Timer -2 for input pin	7 External Clo selection num 127 P1 3 0' 6 External Clo selection num 127	nbers) hck (T6CK) to th			

REGISTER 11-6: RPINR5: PERIPHERAL PIN SELECT INPUT REGISTER 5

		-	-			-			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_				T9CKR<6:0>					
bit 15							bit		
	D #44 0	D 444 0	D 444 0	D 444 0	D 444 A	D 444 A	D 444 A		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
				T8CKR<6:0>					
bit 7							bit		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown		
		nput tied to RP nput tied to CM nput tied to Vss	P1						
bit 7	Unimplemen	ted: Read as '	0'						
bit 6-0		T8CKR<6:0>: Assign Timer8 External Clock (T8CK) to the Corresponding RPn/RPIn pin bits (see Table 11-2 for input pin selection numbers)							
	1111111 = Input tied to RP127								
	•								
	0000001 = lr	nput tied to CM	P1						
	n = 0000000	nput tied to Vss	6						

REGISTER 11-7: RPINR6: PERIPHERAL PIN SELECT INPUT REGISTER 6

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				IC2R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC1R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		nput tied to RP' nput tied to CM nput tied to Vss	P1				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	•	Assign Input Ca					

REGISTER 11-8: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—				IC4R<6:0>						
oit 15	·						bit 8			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—				IC3R<6:0>						
bit 7							bit 0			
Legend:										
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	Unimpleme	nted: Read as '	0'							
bit 14-8		Assign Input Ca 1-2 for input pin			onding RPn/R	PIn Pin bits				
	1111111 = 	nput tied to RP	127							
	•									
	0000001 =	0000001 = Input tied to CMP1								
		nput tied to Vss								
bit 7	Unimpleme	nted: Read as '	0'							
bit 6-0		IC3R<6:0>: Assign Input Capture 3 (IC3) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers)								
		1111111 = Input tied to RP127								
	•									
	•									
	0000001 =	nput tied to CM	P1							
		nput tied to Vss								

REGISTER 11-9: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				IC6R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC5R<6:0>			
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	nd as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	•						
		nput tied to CM					
bit 7	0000000 = I	nput tied to CM nput tied to Vss nted: Read as 'i	i				

REGISTER 11-10: RPINR9: PERIPHERAL PIN SELECT INPUT REGISTER 9

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC8R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	1000-0	1000-0	10.00-0	IC7R<6:0>	10.00-0	1000-0	1000-0
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	1111111 = 	nput tied to RP1	27				
		nput tied to CMI					
bit 7	0000000 = I	nput tied to CMI nput tied to Vss nted: Read as 'o					

REGISTER 11-11: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

U-0	D//// 0				R/W-0		R/W-0
0-0	R/W-0	R/W-0	R/W-0	R/W-0		R/W-0	R/W-0
				OCFBR<6:0>	•		
bit 15							bit 8
	DAVA	DAMO	DAMA	DANIO	DAMA	DAMA	DAMA
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				OCFAR<6:0>	•		
bit 7							bit (
<u> </u>							
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	OCFBR<6:0 (see Table 1	nted: Read as ' >: Assign Outpu 1-2 for input pin Input tied to RP	ut Compare Fa		to the Corresp	onding RPn/RP	In Pin bits
bit 15 bit 14-8	OCFBR<6:0 (see Table 1 1111111 =	>: Assign Outpute 1-2 for input pin Input tied to RP Input tied to CM	ut Compare Fa selection nun 127 P1		to the Corresp	onding RPn/RP	In Pin bits
bit 14-8	OCFBR<6:0 (see Table 1 1111111 = 1	I>: Assign Output 1-2 for input pin Input tied to RP Input tied to CM Input tied to Vss	ut Compare Fa selection nun 127 P1		to the Corresp	onding RPn/RP	In Pin bits
bit 14-8 bit 7	OCFBR<6:0 (see Table 1 1111111 = 1	 Assign Output 1-2 for input pin Input tied to RP Input tied to CM Input tied to Vss Input tied to Vss Input Read as ' 	ut Compare Fa selection nun 127 P1 S	nbers)		Ţ	
bit 14-8	OCFBR<6:0 (see Table 1 1111111 = 1	 Assign Output 1-2 for input pin Input tied to RP Input tied to CM Input tied to Vss Input tied to Vss Input Read as ' 	ut Compare Fa selection nun 127 P1 5 0' ut Compare Fa	nbers)		onding RPn/RP	
bit 14-8 bit 7	OCFBR<6:0 (see Table 1 1111111 = 1 0000001 = 1 0000000 = 1 Unimpleme OCFAR<6:0 (see Table 1	 Assign Output for input pin Input tied to RP Input tied to CM Input tied to Vss nted: Read as ' Assign Output 	ut Compare Fa selection nun 127 P1 o' ut Compare Fa selection nun	nbers)		Ţ	
bit 14-8 bit 7	OCFBR<6:0 (see Table 1 1111111 = 1 0000001 = 1 0000000 = 1 Unimpleme OCFAR<6:0 (see Table 1	 Assign Output 1-2 for input pin Input tied to RP Input tied to CM Input tied to Vss Inted: Read as ' Assign Output 1-2 for input pin 	ut Compare Fa selection nun 127 P1 o' ut Compare Fa selection nun	nbers)		Ţ	
bit 14-8 bit 7	OCFBR<6:0 (see Table 1 1111111 = 1 0000001 = 1 0000000 = 1 Unimpleme OCFAR<6:0 (see Table 1	 Assign Output 1-2 for input pin Input tied to RP Input tied to CM Input tied to Vss Inted: Read as ' Assign Output 1-2 for input pin 	ut Compare Fa selection nun 127 P1 o' ut Compare Fa selection nun	nbers)		Ţ	

REGISTER 11-12: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

REGISTER 11-13: RPINR12: PERIPHERAL PIN SELECT INPUT REGISTER 12 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT2R<6:0>(1)		
bit 15							bit 8
	DAMO	DAMA	DAMO	D 444.0	D/// 0	DAMA	DAVO
U-0	R/W-0	R/W-0	R/W-0	R/W-0 FLT1R<6:0> ⁽¹	R/W-0	R/W-0	R/W-0
				FLITR<0:0>	1		hit 0
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		nput tied to RP ²					
		nput tied to Uss					
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	(see Table 1	: Assign PWM I I-2 for input pin nput tied to RP ²	selection nun		onding RPn/F	RPIn Pin bits ⁽¹⁾	
		nput tied to CM nput tied to Vss					

Note 1: These pins are available on dsPIC33EPXXXMU806/810/814 devices only.

© 2009-2011 Microchip Technology Inc.

REGISTER 11-14: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT4R<6:0>(1)		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				FLT3R<6:0>(1)		
bit 7							bit C
Legend:							
R = Readat	ole bit	W = Writable	bit	-	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
	:	Input tied to RP					
		Input tied to CM Input tied to Vss					
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0		 Assign PWM I 1-2 for input pin 			oonding RPn/F	RPIn Pin bits ⁽¹⁾	
	1111111 =	Input tied to RP	127				
	•						
	•						
		Input tied to CM Input tied to Vss					

Note 1: These pins are available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 11-15: RPINR14: PERIPHERAL PIN SELECT INPUT REGISTER 14 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				QEB1R<6:0>	•		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				QEA1R<6:0>	•		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
	11111111 =	1-2 for input pin Input tied to RP Input tied to CM Input tied to Vss	127 P1	nbers)			
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	(see Table 1 1111111 =	: Assign A (QE 1-2 for input pin Input tied to RP Input tied to CM Input tied to Vss	selection nun 127 P1		n/RPIn Pin bit	S	

REGISTER 11-16: RPINR15: PERIPHERAL PIN SELECT INPUT REGISTER 15 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				HOME1R<6:0>	.(1)		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				INDX1R<6:0>	.")		
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	:						
	-						
		nput tied to CM					
bit 7	0000000 = I	nput tied to Vss					
bit 7 bit 6-0	0000000 = Unimpleme IND1XR<6:0	nput tied to Vss nted: Read as ')' INDEX1 (IND		responding RI	Pn/RPIn Pin bits ⁽	(1)
	0000000 = I Unimplemen IND1XR<6:0 (see Table 1	nput tied to Vss nted: Read as ' >: Assign QEI1)' INDEX1 (IND selection num		responding RI	Pn/RPIn Pin bits ⁽	(1)
	0000000 = I Unimplemen IND1XR<6:0 (see Table 1	nput tied to Vss nted: Read as ' >: Assign QEI1 I-2 for input pin)' INDEX1 (IND selection num		responding RI	^{>} n/RPIn Pin bits ⁽	(1)
	0000000 = I Unimplemen IND1XR<6:0 (see Table 1	nput tied to Vss nted: Read as ' >: Assign QEI1 I-2 for input pin)' INDEX1 (IND selection num		responding RI	Pn/RPIn Pin bits ⁽	(1)

Note 1: These bits are available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 11-17: RPINR16: PERIPHERAL PIN SELECT INPUT REGISTER 16 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				QEB2R<6:0>(1)		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				QEA2R<6:0>(1)		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
	11111111 =	1-2 for input pin Input tied to RP ² Input tied to CM Input tied to Vss	127 P1	,			
bit 7		nted: Read as '					
bit 6-0		>: Assign A (QE 1-2 for input pin			n/RPIn Pin bi	ts ⁽¹⁾	
		Input tied to RP ²					
		Input tied to CM Input tied to Vss					

Note 1: These bits are available on dsPIC33EPXXXMU806/810/814 devices only.

REGISTER 11-18: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	10000	1000 0	-	HOME2R<6:0>		1000 0	10000
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				INDX2R<6:0>	(1)		
bit 7							bit C
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unki	nown
	1111111 =	Input tied to RP	127				
		11-2 for input pin				ı RPn/RPIn Pin b	
	•						
	0000001 =	Input tied to CM	P1				
		Input tied to Vss					
bit 7	Unimpleme	ented: Read as '	0'				
bit 6-0		0>: Assign QEI2 1-2 for input pin			esponding RP	n/RPIn Pin bits ⁽¹)
	1111111 =	Input tied to RP	127				
	0000001 =	Input tied to CM	P1				
	0000000 =	Input tied to Vss	6				

Note 1: These bits are available on dsPIC33EPXXXMU806/810/814 devices only.

	-	-	-			-	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U1CTSR<6:02	>		
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				U1RXR<6:0>	•		
bit 7							bit
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	0000001 =	Input tied to RP	P1				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0	(see Table 1	: Assign UART 1-2 for input pin Input tied to RP ⁻	selection nun		rresponding F	Pn/RPIn Pin bit	5
		Input tied to CM					

REGISTER 11-19: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				U2CTSR<6:0	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U2RXR<6:0>			
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	U2CTSR<6:0 (see Table 11	nted: Read as ' D>: Assign UAR I-2 for input pin nput tied to RP	RT2 Clear to S selection num		o the Corresp	onding RPn/RPI	n Pin bits
bit 15 bit 14-8	U2CTSR<6:0 (see Table 11 1111111 = h	D>: Assign UAR I-2 for input pin nput tied to RP ² nput tied to CM	RT2 Clear to S selection nun 127 P1		o the Corresp	onding RPn/RPI	n Pin bits
bit 14-8	U2CTSR<6:0 (see Table 11 1111111 = h	0>: Assign UAR I-2 for input pin nput tied to RP [·]	RT2 Clear to S selection nun 127 P1		o the Corresp	onding RPn/RPI	n Pin bits
	U2CTSR<6:0 (see Table 11 1111111 = h 0000001 = h 0000000 = h	D>: Assign UAR I-2 for input pin nput tied to RP ² nput tied to CM	RT2 Clear to S selection num 127 P1		o the Corresp	onding RPn/RPI	n Pin bits
bit 14-8	U2CTSR<6:0 (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemen U2RXR<6:05 (see Table 11	D>: Assign UAR I-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' >: Assign UART I-2 for input pin	P1 2 Receive (U: 3 Selection num 127 P1 3 0' 2 Receive (U: 3 Selection num	nbers) 2RX) to the Co		onding RPn/RPI RPn/RPIn Pin bite	
bit 14-8	U2CTSR<6:0 (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemen U2RXR<6:05 (see Table 11	D>: Assign UAR I-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' >: Assign UART	P1 2 Receive (U: 3 Selection num 127 P1 3 0' 2 Receive (U: 3 Selection num	nbers) 2RX) to the Co		-	
bit 14-8	U2CTSR<6:0 (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemen U2RXR<6:05 (see Table 11	D>: Assign UAR I-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' >: Assign UART I-2 for input pin	P1 2 Receive (U: 3 Selection num 127 P1 3 0' 2 Receive (U: 3 Selection num	nbers) 2RX) to the Co		-	
bit 14-8	U2CTSR<6:0 (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemen U2RXR<6:05 (see Table 11	D>: Assign UAR I-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' >: Assign UART I-2 for input pin	P1 2 Receive (U: 3 Selection num 127 P1 3 0' 2 Receive (U: 3 Selection num	nbers) 2RX) to the Co		-	
bit 14-8	U2CTSR<6:0 (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemen U2RXR<6:0> (see Table 11 1111111 = h	D>: Assign UAR I-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as ' >: Assign UART I-2 for input pin	RT2 Clear to S selection num 127 P1 0' 2 Receive (U: selection num 127 P1	nbers) 2RX) to the Co		-	

REGISTER 11-20: RPINR19: PERIPHERAL PIN SELECT INPUT REGISTER 19

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SCK1R<6:0>	•		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SDI1R<6:0>			
bit 7							bit (
Legend:							
R = Readal		W = Writable	bit	U = Unimplen		id as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		nput tied to RP nput tied to CM nput tied to Vss	P1				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-0		Assign SPI1 D			esponding RP	n/RPIn Pin bits	
	1111111 = I	nput tied to RP	127				
	•						
	0000001 = I	nput tied to CM	P1				
	0000000 = I	nput tied to Vss	;				

REGISTER 11-21: RPINR20: PERIPHERAL PIN SELECT INPUT REGISTER 20

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SS1R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '	o'				
bit 6-0		Assign SPI1 Sla -2 for input pin			e Corresponding	g RPn/RPIn Pir	n bits

REGISTER 11-22: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

1111111 = Input tied to RP127

0000001 = Input tied to CMP1 0000000 = Input tied to Vss

•

REGISTER 11-23: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—	_	_	—	_	—	
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				SS2R<6:0>				
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable b	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-7	Unimplemer	nted: Read as '0	,					
hit 6 0	663D ~6.0~.	Accian SDI2 Sia	wo Soloot Inr	$\frac{1}{(882)}$ to the	o Corrosponding		a hita	

bit 6-0 SS2R<6:0>: Assign SPI2 Slave Select Input (SS2) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127

> . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

REGISTER 11-24: RPINR24: PERIPHERAL PIN SELECT INPUT REGISTER 24 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				CSCKR<6:0>	•		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				CSDIR<6:0>			
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-8	(see Table 11	-2 for input pin	Clock Input (C selection nun		rresponding F	RPn/RPIn Pin bit	S
bit 14-8	(see Table 11 1111111 = Ir 0000001 = Ir	>: Assign DCI C -2 for input pin nput tied to RP1 nput tied to CMI	Clock Input (C selection nun 127 P1		rresponding F	RPn/RPIn Pin bit	S
bit 14-8	(see Table 11 1111111 = Ir	Assign DCI C -2 for input pin nput tied to RP1	Clock Input (C selection nun 127 P1		rresponding F	RPn/RPIn Pin bit	S

REGISTER 11-25: RPINR25: PERIPHERAL PIN SELECT INPUT REGISTER 25 (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

	D /// 0	DAMA	DAMA	DAMA		DAMA	
bit 15							bit 8
—	—		—				—
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				COFSR<6:0>	>		
bit 7							bit 0

Legend:

Logonan			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 Unimplemented: Read as '0'

0000000 = Input tied to Vss

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				C2RXR<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				C1RXR<6:0>			
bit 7	·						bit 0
Legend:							
R = Readat	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	0000001 =	Input tied to RP	P1				
bit 7		•					
	Unimpieme	nted: Read as '	0'				

REGISTER 11-26: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		10000	1000 0	U3CTSR<6:0	-	1010 0	1010 0
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	10000	10000	1000 0	U3RXR<6:0>		1000 0	1011 0
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	· · ·	nput tied to RP1	127				
		nput tied to CMI nput tied to Vss					
bit 7		nted: Read as '					
bit 6-0	U3RXR<6:0 (see Table 1		3 Receive (U selection nur	,	rresponding R	Pn/RPIn Pin bit	3
	:						
		nput tied to CMI nput tied to Vss					

REGISTER 11-27: RPINR27: PERIPHERAL PIN SELECT INPUT REGISTER 27

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				U4CTSR<6:0	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				U4RXR<6:0>	>		
bit 7							bit 0
Legend:	la hit		L :4		nonted bit no.	ad ac (0)	
R = Readab		W = Writable		•	nented bit, rea		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		nput tied to RP					
		nput tied to Vss					
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0		Sector Strategy Constraints and the sector secto			rresponding F	RPn/RPIn Pin bit	3
	1111111 = 	nput tied to RP	127				
	•						
	•						
		nput tied to CM nput tied to Vss					

REGISTER 11-28: RPINR28: PERIPHERAL PIN SELECT INPUT REGISTER 28

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SCK3R<6:0>			
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				SDI3R<6:0>			
bit 7							bit
Legend: R = Readable	a hit	W = Writable	hit	II = I Inimplen	nented bit, rea	d as 'N'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
					area		10111
bit 14-8	(see Table 11 1111111 = h 0000001 = h 0000000 = h	Assign SPI3 (-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as for the statement of the sta	selection num		prresponding F	RPn/RPIn Pin bil	IS
	-						
bit 6-0		Assign SPI3 D			esponding RPr	1/RPIn Pin bits	
	1111111 = I	nput tied to RP	127				
	•						
	0000001 = H	nput tied to CM	P1				
	0000000 = II	nput tied to Vss	;				

REGISTER 11-29: RPINR29: PERIPHERAL PIN SELECT INPUT REGISTER 29

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	_	—	—	—	_		—		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_				SS3R<6:0>					
bit 7							bit 0		
Legend:									
R = Readable b	bit	W = Writable I	oit	U = Unimpler	nented bit, read	as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown		
bit 15-7	Unimplemen	ted: Read as 'd)'						
bit 6-0	SS3R<6:0>: Assign SPI3 Slave Select Input ($\overline{SS3}$) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers)								

REGISTER 11-30: RPINR30: PERIPHERAL PIN SELECT INPUT REGISTER 30

. 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

.

11111111 = Input tied to RP127

U-0 R/W-0 R/W R/W-0 R/W-0 R/W R/W-0 R/W-0 R/W R/W R Author statestime R Edit 17.2 R R Edit 14-8 SCK4R SCK4R G:000001 = Input tied to RP127 .	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
U-0 R/W-0 R/	_				SCK4R<6:0>			
	bit 15							bit 8
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 SCK4R<6:0>: Assign SPI4 Clock Input (SCK4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 111111 = Input tied to RP127 . . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7 Unimplemented: Read as '0' bit 6-0 SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 111111 = Input tied to RP127 	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' on = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 SCK4R<6:0>: Assign SPI4 Clock Input (SCK4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 111111 = Input tied to RP127 . . . 0000001 = Input tied to CMP1 0000000 = Input tied to Vss bit 7 Unimplemented: Read as '0' bit 6-0 SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 111111 = Input tied to RP127 	—				SDI4R<6:0>			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 SCK4R<6:0>: Assign SPI4 Clock Input (SCK4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 111111 = Input tied to RP127 .	bit 7							bit C
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 Unimplemented: Read as '0' bit 14-8 SCK4R<6:0>: Assign SPI4 Clock Input (SCK4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 111111 = Input tied to RP127 .	l egend:							
bit 15 Unimplemented: Read as '0' bit 14-8 SCK4R<6:0>: Assign SPI4 Clock Input (SCK4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127	•	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
bit 14-8 SCK4R<6:0>: Assign SPI4 Clock Input (SCK4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127	-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 14-8 SCK4R<6:0>: Assign SPI4 Clock Input (SCK4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127								
<pre>(see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127</pre>	bit 15	Unimpleme	nted: Read as '	0'				
 iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	bit 14-8					orresponding l	RPn/RPIn Pin bit	S
0000000 = Input tied to Vss bit 7 Unimplemented: Read as '0' bit 6-0 SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127 .		1111111 =	Input tied to RP	127				
0000000 = Input tied to Vss bit 7 Unimplemented: Read as '0' bit 6-0 SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127 .		•						
0000000 = Input tied to Vss bit 7 Unimplemented: Read as '0' bit 6-0 SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127 .		•						
0000000 = Input tied to Vss bit 7 Unimplemented: Read as '0' bit 6-0 SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127 .		0000001 =	Input tied to CM	P1				
bit 6-0 SDI4R<6:0>: Assign SPI4 Data Input (SDI4) to the Corresponding RPn/RPIn Pin bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127		0000000 =	Input tied to Vss	;				
(see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127	bit 7	Unimpleme	nted: Read as '	0'				
1111111 = Input tied to RP127	bit 6-0					sponding RP	n/RPIn Pin bits	
0000001 = Input tied to CMP1					nbers)			
		1111111 =	Input tied to RP	127				
		•						
0000000 = Input tied to Vss								
		0000000 =	Input tied to Vss	;				

REGISTER 11-31: RPINR31: PERIPHERAL PIN SELECT INPUT REGISTER 31

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	_	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				SS4R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as '0)'				
bit 6-0		Assign SPI4 Sla -2 for input pin		· · ·	e Corresponding	g RPn/RPIn Pir	n bits
	1111111 = I r	put tied to RP1	27				

REGISTER 11-32: RPINR32: PERIPHERAL PIN SELECT INPUT REGISTER 32

. 0000001 = Input tied to CMP1 0000000 = Input tied to Vss

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC10R<6:0>			
bit 15							bit
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC9R<6:0>			
bit 7							bit (
Legend:							
R = Readal		W = Writable		U = Unimplem			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		Input tied to RP	127				
		Input tied to Use					
bit 7	0000000 =		6				
bit 7 bit 6-0	0000000 = Unimpleme IC9R<6:0>:	Input tied to Vss nted: Read as ' Assign Input Ca	° 0' ∎pture 9 (IC9) †		nding RPn/RI	PIn Pin bits	
	0000000 = Unimpleme IC9R<6:0>: (see Table 1	Input tied to Vss nted: Read as '	o' ipture 9 (IC9) selection num		nding RPn/RI	PIn Pin bits	
	0000000 = Unimpleme IC9R<6:0>: (see Table 1	Input tied to Vss nted: Read as ' Assign Input Ca 1-2 for input pin	o' ipture 9 (IC9) selection num		nding RPn/RI	PIn Pin bits	
	0000000 = Unimpleme IC9R<6:0>: (see Table 1	Input tied to Vss nted: Read as ' Assign Input Ca 1-2 for input pin	o' ipture 9 (IC9) selection num		nding RPn/RI	PIn Pin bits	
	0000000 = Unimpleme IC9R<6:0>: (see Table 1 1111111 =	Input tied to Vss nted: Read as ' Assign Input Ca 1-2 for input pin	o' npture 9 (IC9) selection num 127		nding RPn/RI	PIn Pin bits	

REGISTER 11-33: RPINR33: PERIPHERAL PIN SELECT INPUT REGISTER 33

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC12R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC11R<6:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
		Input tied to CM					
bit 7		nted: Read as '					
bit 6-0	IC11R<6:0> (see Table 1	: Assign Input C 1-2 for input pin Input tied to RP ²	apture 11 (IC selection nur		esponding RP	n/RPIn Pin bits	
		Input tied to CM Input tied to Vss					

REGISTER 11-34: RPINR34: PERIPHERAL PIN SELECT INPUT REGISTER 34

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				IC14R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IC13R<6:0>			
bit 7							bit (
Legend:	-1		L :4				
R = Readal		W = Writable		U = Unimplen			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	0000001 =	nput tied to RP nput tied to CM nput tied to Vss	P1				
bit 7	Unimplemer	nted: Read as '	0'				
bit 6-0	(see Table 11	I-2 for input pin	selection nur	13) to the Corrent nbers)	esponding RP	n/RPIn Pin bits	
	1111111 =	nput tied to RP	127				
		nput tied to CM					
	0000000 = 1	nput tied to Vss)				

REGISTER 11-35: RPINR35: PERIPHERAL PIN SELECT INPUT REGISTER 35

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC16R<6:0>			
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				IC15R<6:0>			
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplem	nented bit, rea	nd as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
		nput tied to CM	P1				
		nput tied to Vss					
bit 7		nput tied to Vss nted: Read as '	;				

REGISTER 11-36: RPINR36: PERIPHERAL PIN SELECT INPUT REGISTER 36

	5444.0	544/ 0	D # 4 / 0	D A A A	5444.0	5444.0	544/ 0
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				SYNCI1R<6:0	>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_			-	OCFCR<6:0>	>		
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	1111111 =	Input tied to RP	127				
	(see Table 1	1-2 for input pin	selection nun			nding RPn/RPIr	
	•						
		Input tied to CM					
	0000000 =	Input tied to Vss	5				
bit 7	Unimpleme	nted: Read as '	0'				
bit 6-0		 Assign Output 1-2 for input pin 			responding R	Pn/RPIn Pin bits	
	1111111 =	Input tied to RP	127				
	•						
		Input tied to CM					
	0000000 =	Input tied to Vss	5				

REGISTER 11-37: RPINR37: PERIPHERAL PIN SELECT INPUT REGISTER 37

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DTCMP1R<6:0)>		
						bit 8
R/W-0	R/W-0	R/W-0			R/W-0	R/W-0
			SYNCI2R<6:0	>		
_						bit 0
- 1-:4		L 14				
POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
	•					
Unimpleme	nted: Read as '	0'				
(see Table 1	1-2 for input pin	selection nur	•	the Correspo	nding RPn/RPIn	Pin bits
	DTCMP1R<6 bits (see Table 1 1111111 = I 0000001 = I 0000000 = I Unimplemen SYNCI2R<6 (see Table 1	e bit W = Writable POR '1' = Bit is set Unimplemented: Read as ' DTCMP1R<6:0>: Assign PV bits (see Table 11-2 for input pin 1111111 = Input tied to RP'	e bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' DTCMP1R<6:0>: Assign PWM Dead Time bits (see Table 11-2 for input pin selection nur 1111111 = Input tied to RP127	SYNCI2R<6:0	SYNCI2R<6:0> e bit W = Writable bit U = Unimplemented bit, real POR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' DTCMP1R<6:0>: Assign PWM Dead Time Compensation Input 1 to the bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127 . .	SYNCI2R<6:0> SYNCI2R<6:0> e bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' DTCMP1R<6:0>: Assign PWM Dead Time Compensation Input 1 to the Corresponding bits (see Table 11-2 for input pin selection numbers) 1111111 = Input tied to RP127 . 0000001 = Input tied to CMP1 0000001 = Input tied to Vss Unimplemented: Read as '0' SYNCI2R<6:0>: Assign PWM Synchronization Input 2 to the Corresponding RPn/RPIn (see Table 11-2 for input pin selection numbers)

REGISTER 11-38: RPINR38: PERIPHERAL PIN SELECT INPUT REGISTER 38

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP3R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP2R<6:0)>		
bit 7							bit
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
h:+ 4 E	l lucius a lours a u	stad. Daad as W	o'				
bit 15	Unimplemer	nted: Read as '0	0				
bit 14-8		3:0>: Assign PW	/M Dead Time	e Compensatior	n Input 3 to the	Corresponding	RPn/RPIn Pi
bit 14-8	bits	· ·			n Input 3 to the	e Corresponding	RPn/RPIn Pi
bit 14-8	bits (see Table 11	I-2 for input pin	selection nun		n Input 3 to the	e Corresponding	RPn/RPIn Pi
bit 14-8	bits (see Table 11	· ·	selection nun		n Input 3 to the	Corresponding	RPn/RPIn Pi
bit 14-8	bits (see Table 11	I-2 for input pin	selection nun		n Input 3 to the	Corresponding	RPn/RPIn Pi
bit 14-8	bits (see Table 11	I-2 for input pin	selection nun		ו Input 3 to the	Corresponding	RPn/RPIn Pi
bit 14-8	bits (see Table 11 1111111 = h	I-2 for input pin nput tied to RP1 nput tied to CMI	selection nun 127 P1		ו Input 3 to the	Corresponding	RPn/RPIn Pi
	bits (see Table 11 1111111 = h	I-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss	selection nun 127 P1		n Input 3 to the	Corresponding	RPn/RPIn Pi
bit 14-8 bit 7	bits (see Table 11 1111111 = h	I-2 for input pin nput tied to RP1 nput tied to CMI	selection nun 127 P1		ו Input 3 to the	Corresponding	RPn/RPIn Pi
	bits (see Table 11 1111111 = h	I-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '(selection nun 127 P1	nbers)		Corresponding	
bit 7	bits (see Table 11 1111111 = h	I-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '(5:0>: Assign PM	selection nun 127 P1 o' VM Dead Time	nbers) e Compensatior			
bit 7	bits (see Table 11 1111111 = h 00000001 = h 0000000 = h Unimplemen DTCMP2R<6 bits (see Table 11	I-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '0 5:0>: Assign PW	selection nun 127 P1 0' /M Dead Time selection nun	nbers) e Compensatior			
bit 7	bits (see Table 11 1111111 = h 00000001 = h 0000000 = h Unimplemen DTCMP2R<6 bits (see Table 11	I-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '(5:0>: Assign PM	selection nun 127 P1 0' /M Dead Time selection nun	nbers) e Compensatior			
bit 7	bits (see Table 11 1111111 = h 00000001 = h 0000000 = h Unimplemen DTCMP2R<6 bits (see Table 11	I-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '0 5:0>: Assign PW	selection nun 127 P1 0' /M Dead Time selection nun	nbers) e Compensatior			
bit 7	bits (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemen DTCMP2R<6 bits (see Table 11 111111 = h	I-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '0 5:0>: Assign PW I-2 for input pin nput tied to RP1	selection nun 127 P1 /M Dead Time selection nun 127	nbers) e Compensatior			
bit 7	bits (see Table 11 1111111 = h 0000001 = h 0000000 = h Unimplemen DTCMP2R<6 bits (see Table 11 1111111 = h 0000001 = h	I-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '0 5:0>: Assign PW	selection nun 127 P1 /M Dead Time selection nun 127 P1	nbers) e Compensatior			

REGISTER 11-39: RPINR39: PERIPHERAL PIN SELECT INPUT REGISTER 39

	D 444 0		D 44/ 0	D // / 0	D 444 0		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				DTCMP5R<6:0)>		
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				DTCMP4R<6:0)>		
bit 7							bit (
Legend:							
R = Readab	le hit	W = Writable	hit	U = Unimplen	nented hit rea	d as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	
	IL F OK				areu		IOWIT
bit 15	Unimplomo	nted: Read as '	o'				
bit 14-8	-			0		0	
	bits	6:0>: Assign PV				Conceptioning	
	bits (see Table 1	1-2 for input pin	selection num			Conceptioning	
	bits (see Table 1	C C	selection num			Concepting	NE 11/ NE 111 E 11
	bits (see Table 1	1-2 for input pin	selection num			Concepting	NE III NE III E II
	bits (see Table 1	1-2 for input pin	selection num			Conception	NEWNEHI EI
	bits (see Table 1 1111111 = I	1-2 for input pin	selection num 127 P1			Conception	NEWNE III EI
bit 7	bits (see Table 1 1111111 =	1-2 for input pin nput tied to RP ² nput tied to CM	selection num 127 P1			Conception	NEWNEHI EI
	bits (see Table 1 1111111 = I	1-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as 'n	selection num 127 P1 o'	nbers)		Corresponding	
bit 7	bits (see Table 1 1111111 = I	1-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as 'n	selection num 127 P1 o' VM Dead Time	obers)			
bit 7	bits (see Table 11 1111111 = I 00000001 = I 0000000 = I Unimplement DTCMP4R<0 bits (see Table 11	1-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as '6 6:0>: Assign PW	selection num 127 P1 0' VM Dead Time selection num	nbers)			
bit 7	bits (see Table 11 1111111 = I 00000001 = I 0000000 = I Unimplement DTCMP4R<0 bits (see Table 11	1-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as 'n 6:0>: Assign PW	selection num 127 P1 0' VM Dead Time selection num	nbers)			
bit 7	bits (see Table 11 1111111 = I 00000001 = I 0000000 = I Unimplement DTCMP4R<0 bits (see Table 11	1-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as 'n 6:0>: Assign PW	selection num 127 P1 0' VM Dead Time selection num	nbers)			
bit 7	bits (see Table 1' 1111111 = I	1-2 for input pin nput tied to RP nput tied to CM nput tied to Vss nted: Read as 'n 6:0>: Assign PW	selection num 127 P1 M Dead Time selection num 127	nbers)			

REGISTER 11-40: RPINR40: PERIPHERAL PIN SELECT INPUT REGISTER 40

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP7R<6:0)>		
oit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				DTCMP6R<6:0)>		
bit 7							bit (
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
	11	at a du Da a di a a fr	~ 7				
	-	nted: Read as '					
	DTCMP7R<			e Compensatior	n Input 7 to the	e Corresponding	RPn/RPIn Pi
bit 15 bit 14-8	DTCMP7R<	6: 0>: Assign PW	VM Dead Time		n Input 7 to the	e Corresponding	RPn/RPIn Pi
	DTCMP7R<6 bits (see Table 1	6:0>: Assign PW	VM Dead Time selection num		n Input 7 to the	e Corresponding	RPn/RPIn Pi
	DTCMP7R<6 bits (see Table 1	6: 0>: Assign PW	VM Dead Time selection num		n Input 7 to the	e Corresponding	RPn/RPIn Pi
	DTCMP7R<6 bits (see Table 1	6:0>: Assign PW	VM Dead Time selection num		n Input 7 to the	e Corresponding	RPn/RPIn Pi
	DTCMP7R<6 bits (see Table 1 ⁷ 1111111 = I	6:0>: Assign PW 1-2 for input pin nput tied to RP1	VM Dead Time selection nun 127		n Input 7 to the	e Corresponding	RPn/RPIn Piı
	DTCMP7R<6 bits (see Table 1 ⁷ 1111111 = I	6:0>: Assign PW 1-2 for input pin nput tied to RP1 nput tied to CMI	VM Dead Time selection num 127 P1		n Input 7 to the	e Corresponding	RPn/RPIn Piı
bit 14-8	DTCMP7R<6 bits (see Table 1' 1111111 = I 0000001 = I 0000000 = I	6:0>: Assign PW 1-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss	VM Dead Time selection num 127 P1		n Input 7 to the	e Corresponding	RPn/RPIn Pi
bit 14-8 bit 7	DTCMP7R<6 bits (see Table 1 1111111 = I	6:0>: Assign PW 1-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '(VM Dead Time selection num 127 P1 5 0'	nbers)			
bit 14-8	DTCMP7R<6 bits (see Table 1 1111111 = I	6:0>: Assign PW 1-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '(VM Dead Time selection num 127 P1 5 0'	nbers)		e Corresponding	
bit 14-8 bit 7	DTCMP7R<6 bits (see Table 1' 1111111 = I 0000001 = I 0000000 = I Unimplemen DTCMP6R<6 bits	6:0>: Assign PW 1-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '(VM Dead Time selection num 127 P1 o [,] VM Dead Time	nbers) e Compensatior			
bit 14-8 bit 7	DTCMP7R<6 bits (see Table 1' 1111111 = I 0000001 = I 0000000 = I Unimplemen DTCMP6R<6 bits (see Table 1'	6:0>: Assign PW 1-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '0 6:0>: Assign PW	VM Dead Time selection num 127 P1 5 0' VM Dead Time selection num	nbers) e Compensatior			
bit 14-8 bit 7	DTCMP7R<6 bits (see Table 1' 1111111 = I 0000001 = I 0000000 = I Unimplemen DTCMP6R<6 bits (see Table 1'	6:0>: Assign PW 1-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '(6:0>: Assign PW 1-2 for input pin	VM Dead Time selection num 127 P1 5 0' VM Dead Time selection num	nbers) e Compensatior			
bit 14-8 bit 7	DTCMP7R<6 bits (see Table 1' 1111111 = I 0000001 = I 0000000 = I Unimplemen DTCMP6R<6 bits (see Table 1'	6:0>: Assign PW 1-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '(6:0>: Assign PW 1-2 for input pin	VM Dead Time selection num 127 P1 5 0' VM Dead Time selection num	nbers) e Compensatior			
bit 14-8 bit 7	DTCMP7R<6 bits (see Table 1' 1111111 = I 00000001 = I 0000000 = I Unimplemen DTCMP6R<6 bits (see Table 1' 1111111 = I	6:0>: Assign PW 1-2 for input pin nput tied to RP1 nput tied to CMI nput tied to Vss nted: Read as '(6:0>: Assign PW 1-2 for input pin	VM Dead Time selection num 127 P1 o' VM Dead Time selection num 127	nbers) e Compensatior			

REGISTER 11-41: RPINR41: PERIPHERAL PIN SELECT INPUT REGISTER 41

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				FLT6R<6:0>			
bit 15							bit 8
	DAMA	DAMA	DAMA	DAMA	DANA	DAVO	DAMA
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
 bit 7				FLT5R<6:0>			bit C
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, rea	ıd as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-8	(see Table 11 1111111 = h 0000001 = h	: Assign PWM F I-2 for input pin nput tied to RP ² nput tied to CM nput tied to Vss	selection nur 127 P1		RPn/RPIn Pir	n bits	
bit 7 bit 6-0	FLT5R<6:0> (see Table 11 1111111 = k	nted: Read as 'i : Assign PWM F I-2 for input pin nput tied to RP' nput tied to CMI nput tied to Vss	Fault 5 to the selection nur 127 P1		RPn/RPIn Pir	n bits	

REGISTER 11-42: RPINR42: PERIPHERAL PIN SELECT INPUT REGISTER 42

REGISTER 11-43: RPINR43: PERIPHERAL PIN SELECT INPUT REGISTER 43

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	_	_	_	_	_	
bit 15						÷	bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				FLT7R<6:0>			
bit 7							bit 0
Legend:							
R = Readable I	oit	W = Writable b	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

0000000 = Input tied to Vss

REGISTER 11-44: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP65	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP64	R<5:0>		
bit 7		-					bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP65R<5:0>:** Peripheral Output Function is Assigned to RP65 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP64R<5:0>:** Peripheral Output Function is Assigned to RP64 Output Pin bits (see Table 11-3 for peripheral function numbers)

© 2009-2011 Microchip Technology Inc.

REGISTER 11-45: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP67	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP66	R<5:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown

- bit 13-8 **RP67R<5:0>:** Peripheral Output Function is Assigned to RP67 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP66R<5:0>:** Peripheral Output Function is Assigned to RP66 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-46: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP69	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP68	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP69R<5:0>:** Peripheral Output Function is Assigned to RP69 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP68R<5:0>:** Peripheral Output Function is Assigned to RP68 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-47: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP71	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP70	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8 **RP71R<5:0>:** Peripheral Output Function is Assigned to RP71 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP70R<5:0>:** Peripheral Output Function is Assigned to RP70 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-48: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP80	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP79	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP80R<5:0>:** Peripheral Output Function is Assigned to RP80 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP79R<5:0>:** Peripheral Output Function is Assigned to RP79 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-49: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	_		RP84R<5:0>					
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—			RP82R	<5:0>			
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable b	it	U = Unimplemented bit, read as '0'				
-n = Value at PO	R	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown	

bit 15-14	Unimplemented: Read as '0'
	•

- bit 13-8 **RP84R<5:0>:** Peripheral Output Function is Assigned to RP84 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP82R<5:0>:** Peripheral Output Function is Assigned to RP82 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-50: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP87	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP85	iR<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP87R<5:0>:** Peripheral Output Function is Assigned to RP87 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP85R<5:0>:** Peripheral Output Function is Assigned to RP85 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-51: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP97	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP96	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8 **RP97R<5:0>:** Peripheral Output Function is Assigned to RP97 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP96R<5:0>:** Peripheral Output Function is Assigned to RP96 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-52: RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP99	R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP98	R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP99R<5:0>:** Peripheral Output Function is Assigned to RP99 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP98R<5:0>:** Peripheral Output Function is Assigned to RP98 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-53: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_			RP101	R<5:0>		
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP100)R<5:0>		
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bit U = Unimplemented bit, read as '0'			d as '0'		
-n = Value at P	OR	'1' = Bit is set	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown				nown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP101R<5:0>:** Peripheral Output Function is Assigned to RP101Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP100R<5:0>:** Peripheral Output Function is Assigned to RP100 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-54: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP108	3R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP104	4R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP108R<5:0>:** Peripheral Output Function is Assigned to RP108 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP104R<5:0>:** Peripheral Output Function is Assigned to RP104 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-55: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				RP112	2R<5:0>		
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—			RP109	9R<5:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8 **RP112R<5:0>:** Peripheral Output Function is Assigned to RP112 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP109R<5:0>:** Peripheral Output Function is Assigned to RP109 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-56: RPOR13: PERIPHERAL PIN SELECT OUTPUT REGISTER 13

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP118R<5:0>							
bit 15							bit 8			

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP113R<5:0>							
bit 7							bit 0			

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP118R<5:0>:** Peripheral Output Function is Assigned to RP118 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP113R<5:0>:** Peripheral Output Function is Assigned to RP113 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-57: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_		RP125R<5:0>						
bit 15							bit 8		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_			RP120	R<5:0>				
bit 7							bit 0		
Legend:									
R = Readable b	oit	W = Writable I	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		

bit 15-14	Unimplemented: Read as '0'
-----------	----------------------------

- bit 13-8 **RP125R<5:0>:** Peripheral Output Function is Assigned to RP125 Output Pin bits (see Table 11-3 for peripheral function numbers)
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 **RP120R<5:0>:** Peripheral Output Function is Assigned to RP120 Output Pin bits (see Table 11-3 for peripheral function numbers)

REGISTER 11-58: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP127R<5:0>							
bit 15							bit 8			

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	—		RP126R<5:0>							
bit 7							bit 0			

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP127R<5:0>:** Peripheral Output Function is Assigned to RP127 Output Pin bits (see Table 11-3 for peripheral function numbers)

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP126R<5:0>:** Peripheral Output Function is Assigned to RP126 Output Pin bits (see Table 11-3 for peripheral function numbers)

12.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11. "Timers"** (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low-power 32 kHz crystal oscillator available on the device.
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

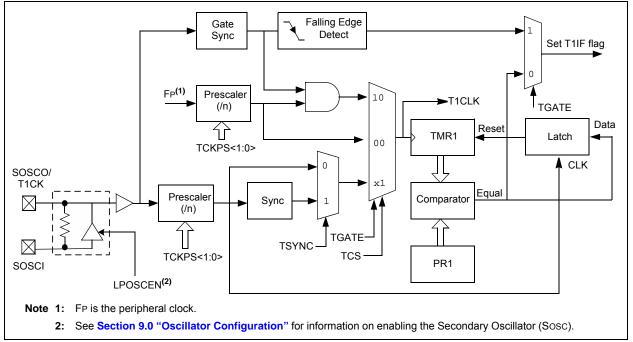
The unique features of Timer1 allow it to be used for Real Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- · Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	х
Gated timer	0	1	х
Synchronous counter	1	x	1
Asynchronous counter	1	x	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON ⁽¹⁾		TSIDL				_						
bit 15							bit					
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0					
—	TGATE	TCKP	S<1:0>	—	TSYNC ⁽¹⁾	TCS ⁽¹⁾	—					
bit 7							bit (
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'						
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unkno	own					
bit 15	TON: Timer1	On bit										
	1 = Starts 16-											
1.11.4.4	0 = Stops 16-		()									
bit 14												
bit 13	TSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode											
		 0 = Continue module operation in Idle mode 										
bit 12-7	Unimplemen	ted: Read as	ʻ0'									
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit											
	<u>When TCS = 1:</u> This bit is ignored.											
	When TCS = 1 = Gated tim 0 = Gated tim	e accumulatic										
bit 5-4	TCKPS<1:0> Timer1 Input Clock Prescale Select bits											
	11 = 1:256											
	10 = 1:64 01 = 1:8											
	01 = 1.8 00 = 1.1											
bit 3	Unimplemen	ted: Read as	'0'									
bit 2	TSYNC: Time	er1 External C	ock Input Syn	chronization S	elect bit							
	When TCS = 1 = Synchroni 0 = Do not sy	ize external cl	ock input ernal clock inp	ut								
	When TCS = This bit is igno											
bit 1	TCS: Timer1	Clock Source	Select bit									
	1 = External c 0 = Internal cl		T1CK (on the	rising edge)								
bit 0	Unimplemen	ted: Read as	'O'									

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

Note 1: When Timer1 is enabled in external synchronous counter mode (TCS = 1, TSYNC = 1, TON = 1), any attempts by user software to write to the TMR1 register is ignored.

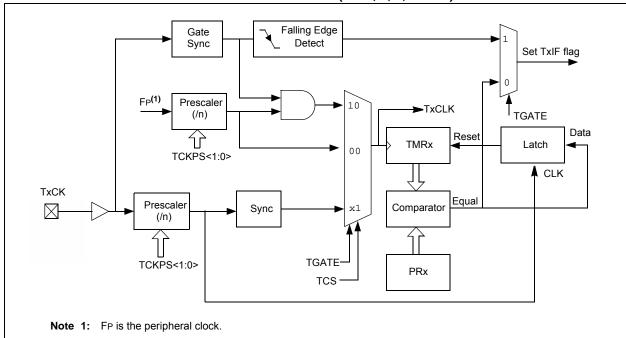
13.0 TIMER2/3, TIMER4/5, TIMER6/7 AND TIMER8/9

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11.** "Timers" (DS70362) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3, Timer4/5, Timer6/7 and Timer8/9 modules are 32-bit timers, which can also be configured as four independent 16-bit timers with selectable operating modes.

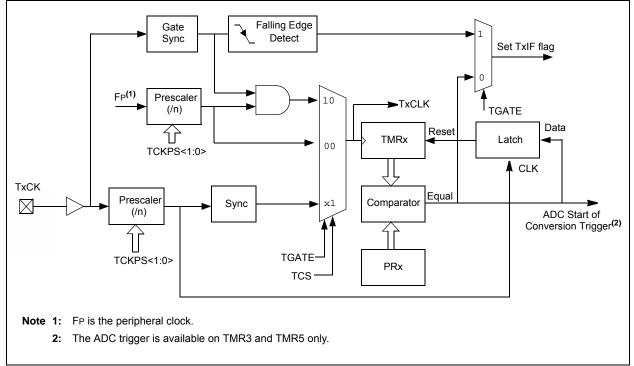
As a 32-bit timer, Timer2/3, Timer4/5, Timer6/7 and Timer8/9 operate in three modes:

- Two Independent 16-bit Timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit Timer
- Single 32-bit Synchronous Counter
- They also support these features:
- Timer Gate Operation
- Selectable Prescaler Settings
- Timer Operation during Idle and Sleep modes
- · Interrupt on a 32-bit Period Register Match
- Time Base for Input Capture and Output Compare Modules (Timer2 and Timer3 only)
- ADC1 Event Trigger (Timer2/3 only)
- ADC2 Event Trigger (Timer4/5 only)


Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger; this is implemented only with Timer2/3. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON, T4CON, T5CON, T6CON, T7CON, T8CON and T9CON registers. T2CON, T4CON, T6CON and T8CON are shown in generic form in Register 13-1. T3CON, T5CON, T7CON and T9CON are shown in Register 13-2.

For 32-bit timer/counter operation, Timer2, Timer4, Timer6 or Timer8 is the least significant word; Timer3, Timer5, Timer7 or Timer9 is the most significant word of the 32-bit timers.

Note: For 32-bit operation, T3CON, T5CON, T7CON and T9CON control bits are ignored. Only T2CON, T4CON, T6CON and T8CON control bits are used for setup and control. Timer2, Timer4, Timer6 and Timer8 clock and gate inputs are utilized for the 32-bit timer modules, but an interrupt is generated with the Timer3, Timer5, Ttimer7 and Timer9 interrupt flags.


A block diagram for a 32-bit timer pair (Timer4/5) example is shown in Figure 13-1 and a timer (Timer4) operating in 16-bit mode example is shown in Figure 13-2.

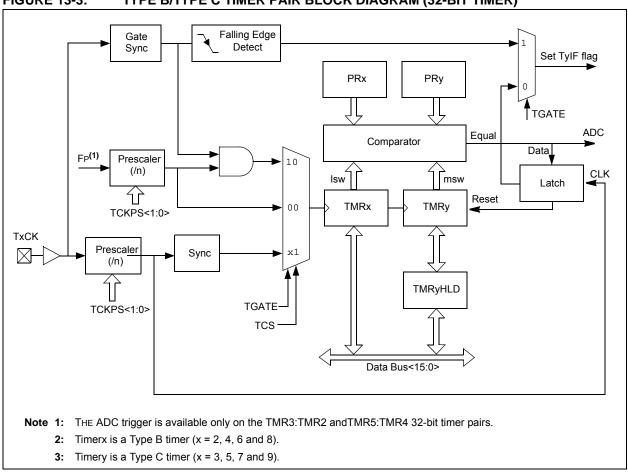

Note: Only Timer2, 3, 4 and 5 can trigger a DMA data transfer.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2, 4, 6, AND 8)

FIGURE 13-3: TYPE B/TYPE C TIMER PAIR BLOCK DIAGRAM (32-BIT TIMER)

REGISTER	13-1: TxCO	N (T2CON, T	4CON, T6C	ON OR T8CO	N) CONTRO	L REGISTER							
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0						
TON	—	TSIDL	—	—	—	—	—						
bit 15							bit						
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0						
—	TGATE	TCKP	S<1:0>	T32	_	TCS ⁽¹⁾	_						
bit 7							bit						
Legend:													
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'							
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	own						
bit 15	TON: Timerx	On bit											
	When T32 =												
	1 = Starts 32	-bit Timerx/y											
	0 = Stops 32-	-bit Timerx/y											
		$\frac{\text{When } \text{T32} = 0}{1000}$											
		1 = Starts 16-bit Timerx 0 = Stops 16-bit Timerx											
bit 14			∩'										
bit 13	Unimplemented: Read as '0' TSIDL: Stop in Idle Mode bit												
bit to	1 = Discontinue module operation when device enters Idle mode												
		module opera											
bit 12-7	Unimplemer	ted: Read as	0'										
bit 6	TGATE: Timerx Gated Time Accumulation Enable bit												
	When TCS = 1:												
	This bit is ignored.												
	When TCS = 0:												
	 1 = Gated time accumulation enabled 0 = Gated time accumulation disabled 												
bit 5-4				alo Soloot hito									
DIL 3-4	TCKPS<1:0>: Timerx Input Clock Prescale Select bits 11 = 1:256												
	11 = 1.256 10 = 1.64												
	01 = 1.8												
	00 = 1:1												
bit 3	T32: 32-bit Timer Mode Select bit												
		nd Timery form nd Timery act a											
bit 2	Unimplemer	nted: Read as	0'										
bit 1	TCS: Timerx	Clock Source	Select bit ⁽¹⁾										
	1 = External 0 = Internal c	clock from pin clock (FP)	TxCK (on the	rising edge)									

REGISTER 13-1: TxCON (T2CON, T4CON, T6CON OR T8CON) CONTROL REGISTER

Note 1: The TxCK pin is not available on all timers. Refer to the "Pin Diagrams" section for the available pins.

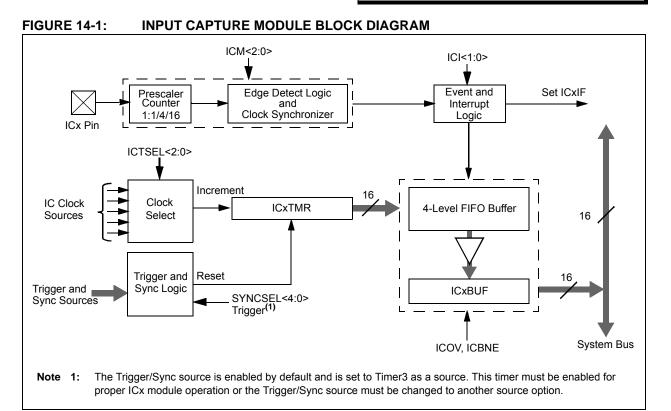
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽¹⁾	_	TSIDL ⁽²⁾		_	_	_	_			
oit 15	L					-	bit			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
—	TGATE ⁽¹⁾	TCKPS	<1:0> ⁽¹⁾	—	_	TCS ^(1,3)	_			
bit 7							bit			
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	ad as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkno	wn			
bit 15	TON: Timery	On bit ⁽¹⁾								
	1 = Starts 16	-bit Timery								
	0 = Stops 16-									
bit 14	-	nted: Read as '								
bit 13		in Idle Mode bit								
				device enters Id ode	lle mode					
bit 12-7		 0 = Continue module operation in Idle mode Unimplemented: Read as '0' 								
bit 6	TGATE: Time	ery Gated Time	Accumulatio	n Enable bit ⁽¹⁾						
	When TCS = This bit is ign									
	When TCS =	0:								
		ne accumulatior ne accumulatior								
bit 5-4	TCKPS<1:0>	: Timery Input	Clock Presca	ale Select bits ⁽¹⁾)					
	11 = 1:256									
	10 = 1:64									
	01 = 1:8 00 = 1:1									
bit 3-2		ted: Read as '	0'							
bit 1		Clock Source S								
		clock from pin 7		rising edge)						
bit 0		nted: Read as '	0'							
Note 1:	When 32-bit oper	ation is enabled	1 (T2CON<3>	> = 1), these bits	s have no effec	t on Timery opera	ition; all tim			
	functions are set		•	,,			- ,			
	When 32-bit time must be cleared t				r Control regis	ter (TxCON<3>), †	the TSIDL I			
	The TvCK pin is r	-			ms" section f	or the available ni	ne			

REGISTER 13-2: TyCON (T3CON, T5CON, T7CON OR T9CON) CONTROL REGISTER

3: The TyCK pin is not available on all timers. See "Pin Diagrams" section for the available pins.

NOTES:

14.0 INPUT CAPTURE


- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70352) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices support up to 16 input capture channels.

Key features of the Input Capture module include:

- Hardware-configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 30 user-selectable trigger/sync sources available
- A 4-level FIFO buffer for capturing and holding timer values for several events
- · Configurable interrupt generation
- Up to six clock sources available for each module, driving a separate internal 16-bit counter

Note: Only IC1, IC2, IC3 and IC4 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00)

14.1 Input Capture Registers

REGISTER 14-1: ICxCON1: INPUT CAPTURE x CONTROL REGISTER 1

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
_	—	ICSIDL		ICTSEL<2:0>		—	_				
bit 15							bit 8				
U-0	R/W-0	R/W-0	R/HC/HS-0	R/HC/HS-0	R/W-0	R/W-0	R/W-0				
	IC	<1:0>	ICOV	ICBNE		ICM<2:0>					
bit 7							bit 0				
Legend:											
R = Readabl	le bit	HC = Cleared	by Hardware	HS = Set by ⊦	lardware	'0' = Bit i	s cleared				
-n = Value at	t POR	W = Writable b	bit	U = Unimplen	nented bit, re	ad as '0'					
			. 1								
bit 15-14	-	nted: Read as '0									
bit 13	•	• •	in Idle Control bi CPU Idle mode	L							
			ue to operate in (CPU Idle mode							
bit 12-10	-		ure Timer Select								
			s the clock source								
	110 = Reser										
	101 = Reser		1 is the clock sou	irco of the ICy (o	nly the synch	ronous clock i	e cupportod				
		100 = Clock source of Timer1 is the clock source of the ICx (only the synchronous clock is supported 011 = Clock source of Timer5 is the clock source of the ICx									
	010 = Clock source of Timer4 is the clock source of the ICx 001 = Clock source of Timer2 is the clock source of the ICx										
bit 9-7		nted: Read as '	3 is the clock so								
bit 6-5	-		, es per Interrupt ६	Soloct hits							
DIL 0-5	(this field is r	ot used if ICM<	2:0> = 001 or 11								
		ot on every fourt									
	10 = Interrupt on every third capture event 01 = Interrupt on every second capture event										
	00 = Interrup	ot on every captu	ure event								
bit 4	ICOV: Input (Capture Overflo	w Status Flag bit	(read-only)							
		pture buffer ove capture buffer o	rflow occurred overflow occurre	d							
bit 3			Not Empty State)						
	1 = Input ca	-	ot empty, at leas			be read					
bit 2-0											
	111 = Input	ICM<2:0>: Input Capture Mode Select bits 111 = Input capture functions as interrupt pin only in CPU Sleep and Idle mode (rising edge detect only, all other control bits are not applicable)									
		ed (module disa									
	101 = Captu	ire mode, every	16th rising edge								
			4th rising edge (rising edge (Sim								
		010 = Capture mode, every falling edge (Simple Capture mode)001 = Capture mode, every edge, rising and falling (Edge Detect mode (ICI<1:0>) is not used in this									
	mode		in turns of off								
	000 = Input	Capture module	e is turned off								

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2	REGISTER 14-2:
--	----------------

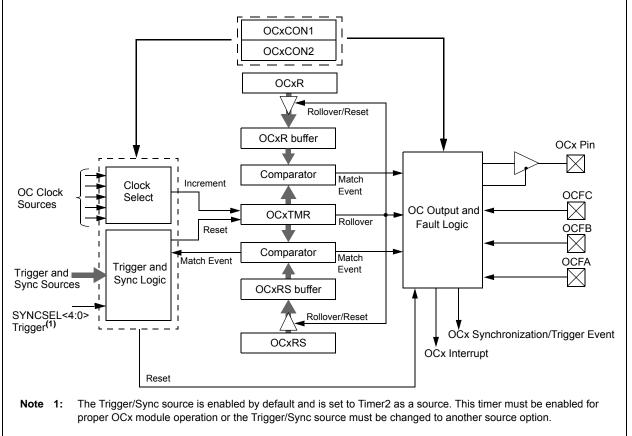
U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0		
—	—	—	—	—	—	—	IC32		
bit 15							bit 8		
R/W-0	R/W/HS-0	U-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-1		
ICTRIG ⁽²⁾	TRIGSTAT ⁽³⁾	STAT ⁽³⁾ — SYNCSEL<4:0>							
bit 7	ł						bit 0		
Legend:									
R = Readable	e bit	HS = Set by H	Hardware	'0' = Bit is cle	ared				
-n = Value at POR W = Writable bit			bit	U = Unimplemented bit, read as '0'					
bit 15-9	Unimplement	ed: Read as 'o	0'						
bit 15-9 bit 8	Unimplement IC32: 32-bit Ti			de mode)					
	IC32: 32-bit Ti 1 = ODD IC a	mer Mode Sel	ect bit (Casca orm a single 32	de mode) 2-bit Input Captu	ire module ⁽¹⁾				
	IC32: 32-bit Ti 1 = ODD IC a 0 = Cascade	mer Mode Sel nd EVEN IC fo module operat	ect bit (Casca orm a single 32 tion disabled	,	ıre module ⁽¹⁾				
	IC32: 32-bit Ti 1 = ODD IC a	mer Mode Sel nd EVEN IC fo module operat	ect bit (Casca orm a single 32 tion disabled	,	ire module ⁽¹⁾				
bit 8	IC32: 32-bit Ti 1 = ODD IC a 0 = Cascade ICTRIG: Trigg 1 = Input sour	mer Mode Sel nd EVEN IC fo module operat er Operation S rce used to trig	ect bit (Casca orm a single 32 tion disabled Select bit ⁽²⁾ Iger the input o	2-bit Input Captu capture timer (Tr	igger mode)				
bit 8	IC32: 32-bit Ti 1 = ODD IC a 0 = Cascade ICTRIG: Trigg 1 = Input sour 0 = Input sour	mer Mode Sel nd EVEN IC fo module operat er Operation S rce used to trig	ect bit (Casca orm a single 32 tion disabled Select bit ⁽²⁾ Iger the input o nchronize the i	2-bit Input Captu	igger mode)	f another modu	le		
bit 8	IC32: 32-bit Ti 1 = ODD IC a 0 = Cascade ICTRIG: Trigg 1 = Input sour 0 = Input sour	mer Mode Sel and EVEN IC for module operat er Operation S rce used to trig rce used to syr nization mode)	ect bit (Cascad orm a single 32 cion disabled Select bit ⁽²⁾ Iger the input o nchronize the i	2-bit Input Captu capture timer (Tr	igger mode)	f another modu	ıle		
bit 8	IC32: 32-bit Ti 1 = ODD IC a 0 = Cascade ICTRIG: Trigg 1 = Input sour (Synchror TRIGSTAT: Ti	mer Mode Sel and EVEN IC for module operat er Operation S rce used to trig rce used to syr nization mode)	ect bit (Cascad orm a single 32 tion disabled Select bit ⁽²⁾ Iger the input o Inchronize the i atus bit ⁽³⁾	2-bit Input Captu capture timer (Tr nput capture tim	igger mode)	f another modu	ıle		
bit 8	IC32: 32-bit Ti 1 = ODD IC a 0 = Cascade ICTRIG: Trigg 1 = Input sour (Synchror TRIGSTAT: Ti 1 = ICxTMR b	mer Mode Sel nd EVEN IC for module operation S rec used to trig rec used to syn nization mode) mer Trigger Sta nas been trigger	ect bit (Cascadorm a single 32 tion disabled Select bit ⁽²⁾ tiger the input of the inchronize the i atus bit ⁽³⁾ ered and is run	2-bit Input Captu capture timer (Tr nput capture tim	igger mode) er to a timer of	f another modu	ıle		

- 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
- **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set, and cleared in software.
- 4: Do not use the ICx module as its own sync or trigger source.
- 5: This option should only be selected as trigger source and not as a synchronization source.

REGISTER 14-2: ICxCON2: INPUT CAPTURE x CONTROL REGISTER 2 (CONTINUED)

bit 4-0	SYNCSEL<4:0>: Input Source Select for Synchronization and Trigger Operation bits ⁽⁴⁾
	11111 = No sync or trigger source for ICx
	11110 = No sync or trigger source for ICx
	11101 = No sync or trigger source for ICx
	11100 = Reserved
	11011 = ADC1 module synchronizes or triggers ICx ⁽⁵⁾
	11010 = CMP3 module synchronizes or triggers $ICx^{(5)}$
	11001 = CMP2 module synchronizes or triggers ICx ⁽⁵⁾
	11000 = CMP1 module synchronizes or triggers ICx ⁽⁵⁾
	10111 = IC8 module synchronizes or triggers ICx
	10110 = IC7 module synchronizes or triggers ICx
	10101 = IC6 module synchronizes or triggers ICx
	10100 = IC5 module synchronizes or triggers ICx
	10011 = IC4 module synchronizes or triggers ICx
	10010 = IC3 module synchronizes or triggers ICx
	10001 = IC2 module synchronizes or triggers ICx
	10000 = IC1 module synchronizes or triggers ICx
	01111 = Timer5 synchronizes or triggers ICx
	01110 = Timer4 synchronizes or triggers ICx
	01101 = Timer3 synchronizes or triggers ICx (default)
	01100 = Timer2 synchronizes or triggers ICx
	01011 = Timer1 synchronizes or triggers ICx
	01010 = No sync or trigger source for ICx
	01001 = OC9 module synchronizes or triggers ICx
	01000 = OC8 module synchronizes or triggers ICx
	00111 = OC7 module synchronizes or triggers ICx
	00110 = OC6 module synchronizes or triggers ICx
	00101 = OC5 module synchronizes or triggers ICx
	00100 = OC4 module synchronizes or triggers ICx
	00011 = OC3 module synchronizes or triggers ICx
	00010 = OC2 module synchronizes or triggers ICx
	00001 = OC1 module synchronizes or triggers ICx
	00000 = No sync or trigger source for ICx

- Note 1: The IC32 bit in both the ODD and EVEN IC must be set to enable Cascade mode.
 - 2: The input source is selected by the SYNCSEL<4:0> bits of the ICxCON2 register.
 - **3:** This bit is set by the selected input source (selected by SYNCSEL<4:0> bits). It can be read, set, and cleared in software.
 - 4: Do not use the ICx module as its own sync or trigger source.
 - 5: This option should only be selected as trigger source and not as a synchronization source.


15.0 OUTPUT COMPARE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70358) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select one of eight available clock sources for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The output compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The output compare module can also generate interrupts on compare match events.

- **Note 1:** Only OC1, OC2, OC3 and OC4 can trigger a DMA data transfer.
 - 2: See Section 13. "Output Compare" (DS70358) in the "dsPIC33E/PIC24E Family Reference Manual" for OCxR and OCxRS register restrictions.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_		OCSIDL		OCTSEL<2:0>		ENFLTC	ENFLTB				
it 15							bit 8				
R/W-0	R/W-0 HCS	R/W-0 HCS	R/W-0 HCS	R/W-0	R/W-0	R/W-0	R/W-0				
ENFLTA	OCFLTC	OCFLTB	OCFLTA	TRIGMODE		OCM<2:0>					
pit 7				1			bit (
egend:		HCS = Hardw	are Clearable/	Settable bit							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit. rea	ad as '0'					
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	own				
oit 15-14		ted: Read as '									
oit 13				ode Control bit							
		compare x halts			odo						
it 12-10		ompare x conti		e in CPU Idle m Select bits	oue						
	111 = Peripheral clock (FP) 110 = Reserved										
	101 = Reserv	ved									
	100 = Timer1 clock (only the synchronous clock is supported)										
	011 = Timer5 clock 010 = Timer4 clock										
	010 = Timer4 clock 001 = Timer3 clock										
	000 = Timer2										
oit 9	ENFLTC: Fau	ult C Input Enat	ole bit								
	1 = Output C	ompare Fault C	c input (OCFC)) is enabled							
	0 = Output C	ompare Fault C	C input (OCFC)) is disabled							
oit 8	ENFLTB: Fau	ult B Input Enat	ole bit								
	1 = Output Compare Fault B input (OCFB) is enabled										
	0 = Output Compare Fault B input (OCFB) is disabled										
oit 7		It A Input Enab									
	 1 = Output Compare Fault A input (OCFA) is enabled 0 = Output Compare Fault A input (OCFA) is disabled 										
oit 6		/M Fault C Con									
nt U		ult C condition									
			•	oin has occurred							
oit 5		/M Fault B Con	-								
	1 = PWM Fa	ult B condition	on OCFB pin h	as occurred							
				in has occurred							
oit 4	OCFLTA: PW	/M Fault A Con	dition Status bi	it							
		ult A condition									
			-	in has occurred							
oit 3	TRIGMODE:	Trigger Status	Mode Select b	it							
<i>i</i> 10				when OCxRS =							

REGISTER 15-1: OCxCON1: OUTPUT COMPAREX CONTROL REGISTER 1

Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

REGISTER 15-1: OCxCON1: OUTPUT COMPAREX CONTROL REGISTER 1 (CONTINUED)

- bit 2-0 OCM<2:0>: Output Compare Mode Select bits
 - 111 = Center-Aligned PWM mode: Output set high when OCxTMR = OCxR and set low when OCxTMR = OCxRS⁽¹⁾
 - 110 = Edge-Aligned PWM mode: Output set high when OCxTMR = 0 and set low when OCxTMR = OCxR⁽¹⁾
 - 101 = Double Compare Continuous Pulse mode: Initialize OCx pin low, toggle OCx state continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize OCx pin low, toggle OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare mode: Compare events with OCxR, continuously toggle OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high, compare event with OCxR, forces OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event with OCxR, forces OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: OCxR and OCxRS are double-buffered in PWM mode only.

FLTMD bit 15 R/W-0 OCTRIG bit 7	FLTOUT	FLTTRIEN	OCINV				0.000			
R/W-0 OCTRIG				_	DCB	<1:0>	OC32			
OCTRIG							bit 8			
OCTRIG	R/W-0 HS	R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0			
	TRIGSTAT	OCTRIS	-		SYNCSEL<4:0		_			
510 7							bit (
Legend:		HS = Hardwar	e Settable bit							
R = Readabl	le bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15	FLTMD: Fault	t Mode Select b	it							
		de is maintaine			removed; the o	corresponding	OCFLTx bit is			
		n software and a					-1			
-:- 4 4		de is maintained	until the Fau	lit source is rem	noved and a ne	w PVVIVI period	starts			
bit 14	FLTOUT: Fau		h an a Fault							
		tput is driven hig tput is driven lov								
bit 13		ault Output Stat								
		is tri-stated on F		1						
		I/O state defined			ndition					
bit 12	OCINV: OCMP Invert bit									
	1 = OCx outp 0 = OCx outp	out is inverted out is not inverte	d							
bit 11	•	ted: Read as '0								
bit 10-9	-	WM Duty Cycle		cant bits						
		n be considere	-		ts of the duty o	ycle in the Pul	se Generatior			
		are also used to conversion is ac				all other mode	es; rising edge			
	11 = OCx output falling edge transitions on rising edge of system clock plus 3/4 Tcy									
	10 = OCx output falling edge transitions on rising edge of system clock plus $1/2$ Tcy									
	 01 = OCx output falling edge transitions on rising edge of system clock plus 1/4 Tcy 00 = OCx output falling edge transitions on rising edge of system clock 									
bit 8		de Two OCx M			•					
		module operati		, i	,					
	0 = Cascade	module operati	on disabled							
bit 7	OCTRIG: OC	x Trigger/Sync	Select bit							
		OCx from source nize OCx with so								
bit 6	-	imer Trigger Sta	-							
		urce has been t		is running						
		urce has not be		•	d clear					
bit 5	OCTRIS: OC	x Output Pin Dir	ection Select	bit						
	1 = OCx is tri									
	0 = Output co	ompare module	drives the OC	Cx pin						
Note 1: D	o not use the O	Cx module as it	s own svnchro	onization or trig	der source					

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2

2: When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module use the OCy module as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

REGISTER 15-2: OCxCON2: OUTPUT COMPARE x CONTROL REGISTER 2 (CONTINUED)

- bit 4-0 SYNCSEL<4:0>: Trigger/Synchronization Source Selection bits 11111 = No sync or trigger source for OCx 11110 = INT2 pin synchronizes or triggers OCx 11101 = INT1 pin synchronizes or triggers OCx 11100 = Reserved 11011 = ADC1 module synchronizes or triggers OCx 11010 = CMP3 module synchronizes or triggers OCx 11001 = CMP2 module synchronizes or triggers OCx 11000 = CMP1 module synchronizes or triggers OCx 10111 = IC8 module synchronizes or triggers OCx 10110 = IC7 module synchronizes or triggers OCx 10101 = IC6 module synchronizes or triggers OCx 10100 = IC5 module synchronizes or triggers OCx 10011 = IC4 module synchronizes or triggers OCx 10010 = IC3 module synchronizes or triggers OCx 10001 = IC2 module synchronizes or triggers OCx 10000 = IC1 module synchronizes or triggers OCx01111 = Timer5 synchronizes or triggers OCx 01110 = Timer4 synchronizes or triggers OCx 01101 = Timer3 synchronizes or triggers OCx 01100 = Timer2 synchronizes or triggers OCx (default) 01011 = Timer1 synchronizes or triggers OCx 01010 = No sync or trigger source for OCx 01001 = OC9 module synchronizes or triggers $OCx^{(1,2)}$ 01000 = OC8 module synchronizes or triggers $OCx^{(1,2)}$ 00111 = OC7 module synchronizes or triggers $OCx^{(1,2)}$ 00110 = OC6 module synchronizes or triggers $OCx^{(1,2)}$ 00101 = OC5 module synchronizes or triggers $OCx^{(1,2)}$ 00100 = OC4 module synchronizes or triggers $OCx^{(1,2)}$ 00011 = OC3 module synchronizes or triggers $OCx^{(1,2)}$ 00010 = OC2 module synchronizes or triggers $OCx^{(1,2)}$ 00001 = OC1 module synchronizes or triggers $OCx^{(1,2)}$ 00000 = No sync or trigger source for OCx
- **Note 1:** Do not use the OCx module as its own synchronization or trigger source.
 - When the OCy module is turned OFF, it sends a trigger out signal. If the OCx module use the OCy module 2: as a trigger source, the OCy module must be unselected as a trigger source prior to disabling it.

© 2009-2011 Microchip Technology Inc.

NOTES:

16.0 HIGH-SPEED PWM MODULE (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "High-Speed PWM" (DS70645) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

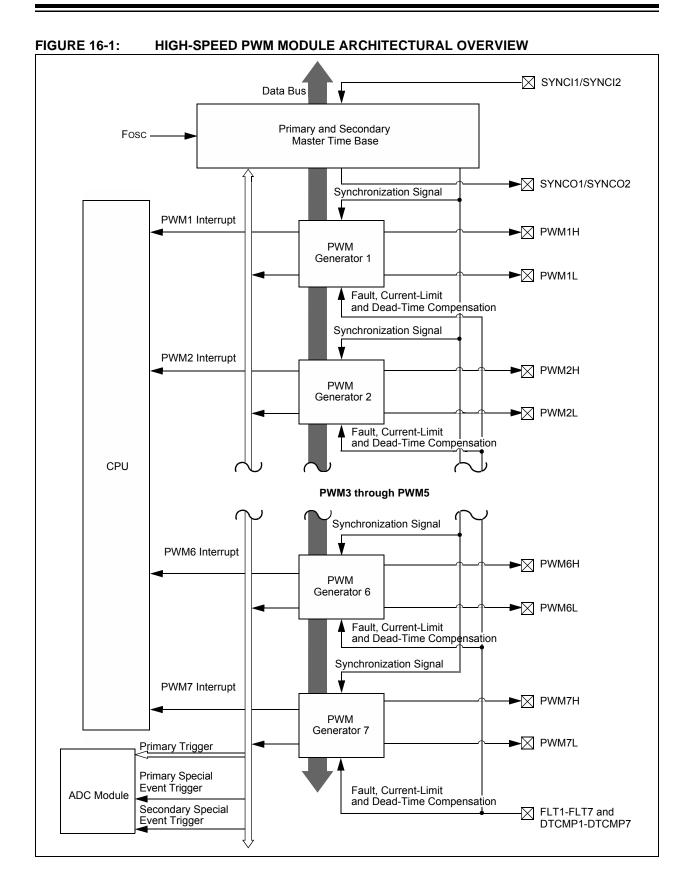
The dsPIC33EPXXXMU806/810/814 devices support a dedicated Pulse-Width Modulation (PWM) module with up to 14 outputs.

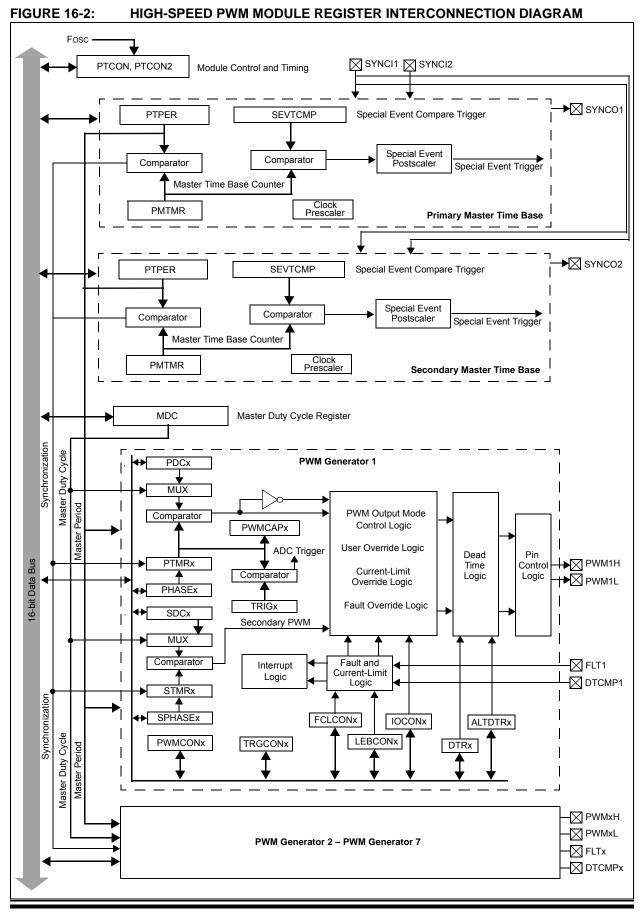
The High-Speed PWM module consists of the following major features:

- Two master time base modules with special event triggers
- PWM module input clock prescaler
- Two synchronization inputs
- Two synchronization outputs
- · Up to seven PWM generators
- Two PWM outputs per generator (PWMxH and PWMxL)
- Individual period, duty cycle and phase shift for each PWM output
- Period, duty cycle, phase shift and dead-time resolution of 8.32 ns
- Immediate update mode for PWM period, duty cycle and phase shift
- Independent fault and current-limit inputs for each
 PWM
- Cycle by cycle and latched fault modes
- · PWM time-base capture upon current limit
- Seven fault inputs and three comparator outputs available for faults and current-limits
- Programmable A/D trigger with interrupt for each PWM pair
- Complementary PWM outputs
- Push-Pull PWM outputs
- · Redundant PWM outputs
- Edge-Aligned PWM mode
- Center-Aligned PWM mode
- Variable Phase PWM mode

- Multi-Phase PWM mode
- Fixed-Off Time PWM mode
- Current Limit PWM mode
- Current Reset PWM mode
- PWMxH and PWMxL output override control
- PWMxH and PWMxL output pin swapping
- Chopping mode (also known as Gated mode)
- Dead-time insertion
- Dead-time compensation
- Enhanced Leading-Edge Blanking (LEB)
- 8 mA PWM pin output drive

Note: Duty cycle, dead-time, phase shift and frequency resolution is 16.64 ns in Center-Aligned PWM mode.


The High-Speed PWM module contains up to seven PWM generators. Each PWM generator provides two PWM outputs: PWMxH and PWMxL. Two master time base generators provide a synchronous signal as a common time base to synchronize the various PWM outputs. Each generator can operate independently or in synchronization with either of the two master time bases. The individual PWM outputs are available on the output pins of the device. The input Fault signals and current-limit signals, when enabled, can monitor and protect the system by placing the PWM outputs into a known "safe" state.


Each PWM can generate a trigger to the ADC module to sample the analog signal at a specific instance during the PWM period. In addition, the High-Speed PWM module also generates two Special Event Triggers to the ADC module based on the two master time bases.

The High-Speed PWM module can synchronize itself with an external signal or can act as a synchronizing source to any external device. The SYNCI1 and SYNCI2 pins are the input pins, which can synchronize the High-Speed PWM module with an external signal. The SYNCO1 and SYNCO2 pins are output pins that provides a synchronous signal to an external device.

Figure 16-1 illustrates an architectural overview of the High-Speed PWM module and its interconnection with the CPU and other peripherals.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

 $\ensuremath{\textcircled{}^{\odot}}$ 2009-2011 Microchip Technology Inc.

R/W-0	U-0	R/W-0	HSC-0	R/W-0	R/W-0	R/W-0	R/W-0			
PTEN	—	PTSIDL	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL ⁽¹⁾	SYNCOEN ⁽¹			
bit 15			·			·	bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SYNCEN ⁽¹⁾		YNCSRC<2:0>		R/W-U		PS<3:0> ⁽¹⁾	R/W-U			
bit 7	5				3EVII	-3-3.02	bit (
Legend:		HSC = Set or	Cleared in Ha	ardware						
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, re	ad as '0'				
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unkr	nown			
bit 15		l Module Enabl	o hit							
		dule is enable								
		odule is disable								
bit 14	Unimplemer	nted: Read as	ʻ0'							
bit 13	PTSIDL: PW	/M Time Base \$	Stop in Idle Mo	ode bit						
		ne base halts in								
		e base runs in		-						
bit 12	SESTAT: Special Event Interrupt Status bit 1 = Special Event Interrupt is pending									
		Event Interrupt								
bit 11	SEIEN: Special Event Interrupt Enable bit									
	•	Event Interrupt Event Interrupt								
bit 10	EIPU: Enable	e Immediate Pe	eriod Updates	bit ⁽¹⁾						
		eriod register is eriod register u			boundaries					
bit 9	SYNCPOL: S	 a Active Period register updates occur on PWM cycle boundaries SYNCPOL: Synchronize Input and Output Polarity bit⁽¹⁾ 								
		SYNCO polarit SYNCO is activ		active-low)						
bit 8	SYNCOEN:	Primary Time E	Base Sync Ena	able bit ⁽¹⁾						
		output is enabl output is disabl								
bit 7	SYNCEN: EX	xternal Time Ba	ase Synchroniz	zation Enable	bit ⁽¹⁾					
		synchronizatio synchronizatio								
bit 6-4	SYNCSRC<	2:0>: Synchror	ious Source S	election bits ⁽¹⁾						
	111 = Reser	ved								
	•									
	•									
	•									
	010 = Reser 001 = SYNC									

REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

REGISTER 16-1: PTCON: PWM TIME BASE CONTROL REGISTER (CONTINUED)

```
    bit 3-0 SEVTPS<3:0>: PWM Special Event Trigger Output Postscaler Select bits<sup>(1)</sup>
    1111 = 1:16 Postscaler generates Special Event Trigger on every sixteenth compare match event
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
    .
```

Note 1: These bits should be changed only when PTEN = 0. In addition, when using the SYNCIx feature, the user application must program the period register with a value that is slightly larger than the expected period of the external synchronization input signal.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	_	—	—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—	—	—	_	—	PCLKDIV<2:0> ⁽¹⁾				
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-3	Unimplemen	ted: Read as ')'						
bit 2-0 PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits ⁽¹⁾									

REGISTER 16-2: PTCON2: PWM PRIMARY MASTER CLOCK DIVIDER SELECT REGISTER

- 111 = Reserved
- 110 = Divide by 64, maximum PWM timing resolution
- 101 = Divide by 32, maximum PWM timing resolution
- 100 = Divide by 16, maximum PWM timing resolution
- 011 = Divide by 8, maximum PWM timing resolution
- 010 = Divide by 4, maximum PWM timing resolution
- 001 = Divide by 2, maximum PWM timing resolution
- 000 = Divide by 1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-3: PTPER: PRIMARY MASTER TIME BASE PERIOD REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
			PTPE	R<15:8>				
bit 15							bit 8	
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	
			PTPE	R<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-0 **PTPER<15:0>:** Primary Master Time Base (PMTMR) Period Value bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SEVTC	MP<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			SEVT	CMP<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

REGISTER 16-4: SEVTCMP: PWM PRIMARY SPECIAL EVENT COMPARE REGISTER

bit 15-0 SEVTCMP<15:0>: Special Event Compare Count Value bits

U-0	U-0	U-0	HSC-0	R/W-0	R/W-0	R/W-0	R/W-0				
	_	_	SESTAT	SEIEN	EIPU ⁽¹⁾	SYNCPOL	SYNCOEN				
bit 15							bit 8				
				DAMO	DAMO	D/M/ 0					
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
SYNCEN		SYNCSRC<2:	/>		SEVIE	PS<3:0>	bit (
bit 7							bit (
Legend:		HSC = Set or	Cleared in Ha	rdware							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle		x = Bit is unk	nown				
bit 15-13	Unimpleme	nted: Read as	'0'								
bit 12	SESTAT: Sp	ecial Event Inte	errupt Status bi	t							
		• •	nt interrupt is p nt interrupt is n	•							
bit 11	SEIEN: Spec	cial Event Inter	rupt Enable bit								
			nt interrupt is e nt interrupt is d								
bit 10		• •	eriod Updates								
bit 10	1 = Active Se	econdary Peric	d register is up	odated immedi		Inderice					
bit 9	 a Active Secondary Period register updates occur on PWM cycle boundaries SYNCPOL: Synchronize Input and Output Polarity bit 										
bit 5	1 = The fallir	 1 = The falling edge of SYNCIN resets the SMTMR; SYNCO2 output is active-low 0 = The rising edge of SYNCIN resets the SMTMR; SYNCO2 output is active-high 									
		• •				active-high					
bit 8		SYNCOEN: Secondary Master Time Base Sync Enable bit									
		2 output is ena 2 output is disa									
bit 7	SYNCEN: External Secondary Master Time Base Synchronization Enable bit										
			n of secondary n of secondary								
bit 6-4	SYNCSRC<	2:0>: Seconda	ry Time Base S	Sync Source S	election bits						
	111 = Rese r	ved									
	•										
	•										
	•	d									
	010 = Reser 001 = SYNC 000 = SYNC	212									
bit 3-0			ndary Special	Event Trigger	Output Postsca	ler Select bits					
	1111 = 1:16										
	•										
	•										
	•										
	0001 = 1:2 F										
	0000 = 1:1 F	ostscale									

REGISTER 16-5: STCON: PWM SECONDARY MASTER TIME BASE CONTROL REGISTER

Note 1: This bit only applies to the secondary master time base period.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

REGISTER 16-6:	STCON2: PWM SECONDARY CLOCK DIVIDER SELECT REGISTER
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		_	—	_	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	—	_	—	PCLKDIV<2:0> ⁽¹⁾		
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-3		ted: Read as '				x – Dil IS ULIKI	IUWII
01115-3	Unimplemen	iteo: Read as 1)				

bit 15-3 Unimplemented: Read as '0'

bit 2-0

- PCLKDIV<2:0>: PWM Input Clock Prescaler (Divider) Select bits⁽¹⁾
 - 111 = Reserved
 - 110 = Divide by 64, maximum PWM timing resolution
 - 101 = Divide by 32, maximum PWM timing resolution
 - 100 = Divide by 16, maximum PWM timing resolution
 - 011 = Divide by 8, maximum PWM timing resolution
 - 010 = Divide by 4, maximum PWM timing resolution
 - 001 = Divide by 2, maximum PWM timing resolution
 - 000 = Divide by 1, maximum PWM timing resolution (power-on default)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.

REGISTER 16-7: STPER: SECONDARY MASTER TIME BASE PERIOD REGISTER⁽¹⁾

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			STPE	R<15:8>			
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0
			STPE	R<7:0>			
bit 7							bit 0
Lonondi							
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			ared	x = Bit is unkr	nown		

bit 15-0 STPER<15:0>: Secondary Master Time Base (PMTMR) Period Value bits

^{© 2009-2011} Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVTO	CMP<15:8>			
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SSEVT	CMP<7:0>			
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 15-0	SSEVTCMP	<15:0>: Special	I Event Comp	are Count Valu	e bits		
REGISTER	16-9: CHOF	P: PWM CHOP	P CLOCK G	ENERATOR	REGISTER		
		U-0	U-0	U-0	U-0	R/W-0	R/W-0
R/W-0	U-0	0-0	0-0	00	•••		
R/W-0 CHPCLKEN		<u> </u>	<u> </u>		_	-	P<9:8>
-		<u> </u>	_		_	-	
CHPCLKEN		<u> </u>	_		_	-	
CHPCLKEN		R/W-0	R/W-0	R/W-0	R/W-0	-	
CHPCLKEN bit 15	_	_		_		CHOF	bit
CHPCLKEN bit 15	_	_		R/W-0		CHOF	bit R/W-0
CHPCLKEN bit 15 R/W-0 bit 7	_	_		R/W-0		CHOF	bit R/W-0
CHPCLKEN bit 15 R/W-0	R/W-0	R/W-0	R/W-0 CHO	R/W-0 P<7:0>	R/W-0	R/W-0	bit R/W-0
CHPCLKEN bit 15 R/W-0 bit 7 Legend:	R/W-0	_	R/W-0 CHO	R/W-0 P<7:0>	R/W-0	R/W-0	Bit R/W-0 bit
CHPCLKEN bit 15 R/W-0 bit 7 Legend: R = Readable	R/W-0	R/W-0 W = Writable	R/W-0 CHO	R/W-0 P<7:0> U = Unimple	R/W-0	R/W-0	R/W-0 bit
CHPCLKEN bit 15 R/W-0 bit 7 Legend: R = Readable	R/W-0	R/W-0 W = Writable	R/W-0 CHO	R/W-0 P<7:0> U = Unimplet '0' = Bit is cle	R/W-0	R/W-0	R/W-0 bit
CHPCLKEN bit 15 R/W-0 bit 7 Legend: R = Readable -n = Value at	R/W-0 R/W-0 e bit POR CHPCLKEN	R/W-0 W = Writable '1' = Bit is set	R/W-0 CHO bit	R/W-0 P<7:0> U = Unimplet '0' = Bit is cle	R/W-0	R/W-0	R/W-0 bit
CHPCLKEN bit 15 R/W-0 bit 7 Legend: R = Readable -n = Value at	R/W-0 R/W-0 e bit POR CHPCLKEN 1 = Chop clc	R/W-0 W = Writable '1' = Bit is set	R/W-0 CHO bit Clock Genera enabled	R/W-0 P<7:0> U = Unimplet '0' = Bit is cle	R/W-0	R/W-0	R/W-0 bit
CHPCLKEN bit 15 R/W-0 bit 7 Legend: R = Readable -n = Value at	R/W-0 e bit POR CHPCLKEN 1 = Chop clc 0 = Chop clc	R/W-0 W = Writable '1' = Bit is set : Enable Chop	R/W-0 CHO bit Clock Genera enabled disabled	R/W-0 P<7:0> U = Unimplet '0' = Bit is cle	R/W-0	R/W-0	R/W-0 bit
CHPCLKEN bit 15 R/W-0 bit 7 Legend: R = Readable -n = Value at bit 15	R/W-0 R/W-0 e bit POR CHPCLKEN 1 = Chop clc 0 = Chop clc Unimpleme	R/W-0 W = Writable '1' = Bit is set : Enable Chop of the generator is pock generator is	R/W-0 CHO bit Clock Genera enabled disabled 0'	R/W-0 P<7:0> U = Unimplet '0' = Bit is cle	R/W-0	R/W-0	R/W-0 bit
CHPCLKEN bit 15 R/W-0 bit 7 Legend: R = Readable -n = Value at bit 15 bit 15	R/W-0 R/W-0 E bit POR CHPCLKEN 1 = Chop clc 0 = Chop clc Unimplement CHOP<9:0>	R/W-0 W = Writable '1' = Bit is set : Enable Chop (ock generator is ock generator is nted: Read as '	R/W-0 CHO bit Clock Genera enabled disabled 0' ivider bits	R/W-0 P<7:0> U = Unimple '0' = Bit is cle	R/W-0	R/W-0 ad as '0' x = Bit is unki	R/W-0 bit

REGISTER 16-8: SSEVTCMP: PWM SECONDARY SPECIAL EVENT COMPARE REGISTER

REGISTER 16-10: MDC: PWM MASTER DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			MDC	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
1000-0	10,00-0	10.00-0		C<7:0>	1000-0	10.00-0	10.00-0
bit 7							bit 0
Legend:							
R = Readable	R = Readable bit W = Writable bit		bit	U = Unimplemented bit		ad as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown

bit 15-0 MDC<15:0>: Master PWM Duty Cycle Value bits

HSC-0) HSC-0	HSC-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
FLTSTAT	CLSTAT ⁽¹⁾	TRGSTAT	FLTIEN	CLIEN	TRGIEN	ITB ⁽²⁾	MDCS ⁽²⁾			
bit 15							bit			
R/W-0		R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
E	DTC<1:0>	DTCP ⁽³⁾	—	MTBS	CAM ^(2,4)	XPRES ⁽⁵⁾	IUE ⁽²⁾			
bit 7							bit			
Legend:		HSC = Set or	Cleared in Ha	ardware						
R = Reada	able bit	W = Writable			mented bit, read	l as '0'				
-n = Value		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	iown			
bit 15	FLTSTAT: Fai	ult Interrupt Sta	atus bit ⁽¹⁾							
		rrupt is pending								
		nterrupt is pen								
bit 14		ared by setting rent-Limit Inter		(1)						
DIC 14		mit interrupt is	•	(-)						
		it-limit interrupt								
		ared by setting								
bit 13	TRGSTAT: Tr	TRGSTAT: Trigger Interrupt Status bit								
		 Trigger interrupt is pending No trigger interrupt is pending 								
		interrupt is peared by setting								
bit 12		t Interrupt Ena								
		rupt is enable								
		rrupt is disable		T bit is cleared	b					
bit 11	CLIEN: Curre	CLIEN: Current-Limit Interrupt Enable bit								
	1 = Current-li	mit interrupt er	abled							
		mit interrupt die		STAT bit is cle	ared					
bit 10		ger Interrupt E								
		event generate			hit is cleared					
hit 0				IIU IRGSIAI	bit is cleared					
bit 9		ITB: Independent Time Base Mode bit ⁽²⁾ 1 = PHASEx/SPHASEx registers provide time base period for this PWM generator								
		egister provide				generator				
bit 8	MDCS: Maste	er Duty Cycle F	Register Selec	t bit ⁽²⁾						
					PWM generato	or				
	0 = PDCx and	d SDCx registe	rs provide dut	y cycle informa	ation for this PW	/M generator				
Note 1:	Software must clea	ar the interrupt	status here ar	nd in the corre	sponding IFS bi	t in the interrup	t controller			
2:	These bits should	-								
3:	DTC<1:0> = 11 for	-								
4:	The Independent T CAM bit is ignored	īme Base (ITB			-	Aligned mode.	lf ITB = 0, th			
		•								

REGISTER 16-11: PWMCONx: PWM CONTROL REGISTER

5: To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

REGISTER 16-11: PWMCONX: PWM CONTROL REGISTER (CONTINUED)

bit 7-	6	DTC<1:0>: Dead-Time Control bits
	•	11 = Dead-Time Compensation mode
		10 = Dead-time function is disabled
		01 = Negative dead time actively applied for Complementary Output mode
		00 = Positive dead time actively applied for all output modes
bit 5		DTCP: Dead-Time Compensation Polarity bit ⁽³⁾
		When set to '1':
		If DTCMPx = 0, PWMLx is shortened and PWMHx is lengthened.
		If DTCMPx = 1, PWMHx is shortened and PWMLx is lengthened.
		When set to '0':
		If DTCMPx = 0, PWMHx is shortened and PWMLx is lengthened.
		If DTCMPx = 1, PWMLx is shortened and PWMHx is lengthened.
bit 4		Unimplemented: Read as '0'
bit 3		MTBS: Master Time Base Select bit
		1 = PWM generator uses the secondary master time base for synchronization and as the clock source
		for the PWM generation logic (if secondary time base is available)
		0 = PWM generator uses the primary master time base for synchronization and as the clock source for the PWM generation logic
bit 2		CAM: Center-Aligned Mode Enable bit ^(2,4)
		1 = Center-Aligned mode is enabled
		0 = Edge-Aligned mode is enabled
bit 1		XPRES: External PWM Reset Control bit ⁽⁵⁾
		1 = Current-limit source resets the time base for this PWM generator if it is in Independent Time Base
		mode
		0 = External pins do not affect PWM time base
bit 0		IUE: Immediate Update Enable bit
		1 = Updates to the active MDC/PDCx/SDCx registers are immediate
		0 = Updates to the active PDCx registers are synchronized to the PWM time base
Note	1:	Software must clear the interrupt status here and in the corresponding IFS bit in the interrupt controller.
	2:	These bits should not be changed after the PWM is enabled (PTEN = 1).
	3:	DTC<1:0> = 11 for DTCP to be effective; otherwise, DTCP is ignored.
	-	

- 4: The Independent Time Base (ITB = 1) mode must be enabled to use Center-Aligned mode. If ITB = 0, the CAM bit is ignored.
- **5:** To operate in External Period Reset mode, the ITB bit must be '1' and the CLMOD bit in the FCLCONx register must be '0'.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	Cx<7:0>			
bit 7							bit 0
المعتمينان							
Legend:	R = Readable bit W = Writable bit					-l (O)	
-	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0	

Note:	In Independent PWM mode, the PDCx register controls the PWMxH duty cycle only. In the Complementary,
	Redundant and Push-Pull PWM modes, the PDCx register controls the duty cycle of both the PWMxH and
	PWMxL.

REGISTER 16-13: SDCx: PWM SECONDARY DUTY CYCLE REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SDC	x<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 SDCx<15:0>: Secondary Duty Cycle bits for PWMxL Output Pin

Note: The SDCx register is used in Independent PWM mode only. When used in Independent PWM mode, the SDCx register controls the PWMxL duty cycle.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

REGISTER 16-14: PHASEX: PWM PRIMARY PHASE SHIFT REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHASE	x<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PHAS	Ex<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set	'0' = Bit is cleared		ared	x = Bit is unknown	
bit 15-0 Note 1: If		:0>: PWM Phase					WM Generato
	or 10), PHASE	ry, Redundant an Ex<15:0> = Phas	e shift value	for PWMxH ar	nd PWMxL out	outs	
•	True Independ shift value for	lent Output mode PWMxH only	e (PMOD<1:	0> (IOCONx<1	1:10>) = 11), F	PHASEx<15:0>	= Phase
2: If	ITB (PWMCON	lx<9>) = 1, the fo	llowing appl	ies based on th	ne mode of ope	eration:	
•		ry, Redundant an Ex<15:0> = Indep					>) = 00, 01
•	True Independ	lent Output mode	e (PMOD<1:	0> (IOCONx<1	1:10>) = 11),		

PHASEx<15:0> = Independent time base period value for PWMxH only

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHAS	Ex<15:8>			
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SPHAS	SEx<7:0>			
bit 7							bit
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplemented bit, rea		ad as '0'	
n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
Note 1. If I	(used in Ind	15:0>: Secondar ependent PWM r Nx<9>) = 0, the f	node only)				
•	Complementa	ary, Redundant a SEx<15:0> = No	nd Push-Pull		•) = 00, 01
	•	dent Output mod PWMxL only	le (PMOD<1:	0> (IOCON<11	:10>) = 11), SF	PHASEx<15:0>	= Phase
2: If I	TB (PWMCO	Nx<9>) = 1, the f	ollowing appl	lies based on th	ne mode of ope	eration:	
	•	ary, Redundant a Ex<15:0> = Not u		Output mode (PMOD<1:0> (I	OCON<11:10>)	00, 01 or
•	True Indepen	dent Output mode	e (PMOD<1.0)> (IOCON<11	10>) = 11) SPF	ASEx<15.0> =	Indepen-

REGISTER 16-15: SPHASEx: PWM SECONDARY PHASE SHIFT REGISTER

True Independent Output mode (PMOD<1:0> (IOCON<11:10>) = 11), SPHASEx<15:0> = Independent time base period value for PWMxL only

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

REGISTER 16-16: DTRx: PWM DEAD-TIME REGISTER

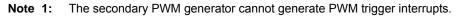
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	_		DTRx<13:8>								
bit 15	·						bit 8				
R/W-0			R/W-0		R/W-0	D/M/ 0	D/M/ 0				
R/VV-U	R/W-0	R/W-0		R/W-0	R/W-0	R/W-0	R/W-0				
			DTR	x<7:0>							
bit 7							bit 0				
Legend:											
R = Readable bit W = Writable bit			it	U = Unimplem	nented bit, rea	nd as '0'					
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown					

bit 15-14 Unimplemented: Read as '0'

bit 13-0 DTRx<13:0>: Unsigned 14-bit Dead-Time Value bits for PWMx Dead-Time Unit

REGISTER 16-17: ALTDTRx: PWM ALTERNATE DEAD-TIME REGISTER

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	_		ALTDTRx<13:8>								
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			ALTD	「Rx<7:0>							
bit 7							bit 0				
Legend:											
R = Readable	R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknow			nown					


bit 15-14 Unimplemented: Read as '0'

bit 13-0 ALTDTRx<13:0>: Unsigned 14-bit Dead-Time Value bits for PWMx Dead-Time Unit

© 2009-2011 Microchip Technology Inc.

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
TRGDIV<3:0>				—	—		_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				TRGST	RT<5:0>		
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	-	x = Bit is unkn	iown
bit 11-6	1101 = Trigg 1100 = Trigg 1011 = Trigg 1010 = Trigg 1000 = Trigg 0111 = Trigg 0110 = Trigg 0101 = Trigg 0101 = Trigg 0100 = Trigg 0011 = Trigg 0010 = Trigg 0010 = Trigg 0001 = Trigg 0000 = Trigg 0000 = Trigg	ger output for ev ger output for ev	ery 14th trigge ery 13th trigge ery 12th trigge ery 12th trigge ery 10th trigge ery 9th trigge ery 8th trigge ery 7th trigge ery 6th trigge ery 5th trigge ery 3rd trigge ery 2nd trigge ery trigger eve	er event er event er event er event r event			
bit 5-0	111111 = W • • 000010 = W 000001 = W	5:0>: Trigger Po /ait 63 PWM cyc /ait 2 PWM cycle /ait 1 PWM cycle /ait 0 PWM cycle /ait 0 PWM cycle	les before gen es before gen es before gen	nerating the firs erating the first erating the first	t trigger event a trigger event af trigger event af	ter the module ter the module	is enabled is enabled

REGISTER 16-18: TRGCONX: PWM TRIGGER CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PENH	PENL	POLH	POLL	PMOD	<1:0> ⁽¹⁾	OVRENH	OVRENL
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
OVRD	AT<1:0>	FLTDA	T<1:0>	CLDA	T<1:0>	SWAP	OSYNC
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is clea	ared	x = Bit is unkn	iown
bit 15	1 = PWM mod	kH Output Pin dule controls P dule controls F	WMxH pin				
bit 14	1 = PWM mod	L Output Pin dule controls P dule controls F	WMxL pin				
bit 13	1 = PWMxH p	kH Output Pin bin is active-low bin is active-hig	N				
bit 12	1 = PWMxL p	L Output Pin F in is active-low in is active-hig	V				
bit 11-10	11 = PWM I/C 10 = PWM I/C 01 = PWM I/C) pin pair is in) pin pair is in	the True Inder the Push-Pull the Redundan	pendent Output			
bit 9	1 = OVRDAT	verride Enable <1> controls or lerator controls	utput on PWM				
bit 8	1 = OVRDAT	erride Enable <0> controls of erator controls	utput on PWM				
bit 7-6	OVRDAT<1:0	 ⇒: Data for PV = 1, PWMxH i 	VMxH, PWMx s driven to the	L Pins if Overrid state specified state specified	by OVRDAT<	:1>.	
bit 5-4	IFLTMOD (FC If Fault is activ If Fault is activ	CLCONx<15>) ve, PWMxH is ve, PWMxL is CLCONx<15>)	= 0: Normal F driven to the s driven to the s = 1: Independ	state specified t state specified b lent Fault mode	by FLTDAT<1> by FLTDAT<0> <u>::</u>	>. ·.	

REGISTER 16-19: IOCONX: PWM I/O CONTROL REGISTER

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

REGISTER 16-19: IOCONx: PWM I/O CONTROL REGISTER (CONTINUED)

bit 3-2	CLDAT<1:0>: Data for PWMxH and PWMxL Pins if CLMOD is Enabled bits
	IFLTMOD (FCLCONx<15>) = 0: Normal Fault mode:
	If current-limit is active, PWMxH is driven to the state specified by CLDAT<1>.
	If current-limit is active, PWMxL is driven to the state specified by CLDAT<0>.
	IFLTMOD (FCLCONx<15>) = 1: Independent Fault mode: The CLDAT<1:0> bits are ignored.
bit 1	SWAP: SWAP PWMxH and PWMxL Pins bit
	1 = PWMxH output signal is connected to PWMxL pins; PWMxL output signal is connected to PWMxH pins
	0 = PWMxH and PWMxL pins are mapped to their respective pins
bit 0	OSYNC: Output Override Synchronization bit
	 1 = Output overrides via the OVRDAT<1:0> bits are synchronized to the PWM time base 0 = Output overrides via the OVDDAT<1:0> bits occur on the next CPU clock boundary

Note 1: These bits should not be changed after the PWM module is enabled (PTEN = 1).

REGISTER 16-20:	TRIGX: PWM PRIMARY TRIGGER COMPARE VALUE REGISTER
-----------------	---

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			TRGC	MP<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is				'0' = Bit is clea	ired	x = Bit is unkr	nown

bit 15-0 TRGCMP<15:0>: Trigger Control Value bits

When the primary PWM functions in local time base, this register contains the compare values that can trigger the ADC module.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IFLTMO	D	CI	LSRC<4:0>(2,3)		CLPOL ⁽¹⁾	CLMOD
bit 15						·	bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		LTSRC<4:0>(2,3)			FLTPOL ⁽¹⁾	FLTMO	
bit 7							bit
Legend:							
R = Reada	ble bit	W = Writable b	oit	U = Unimple	mented bit, read	l as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown
bit 15	1 = Indeper maps F 0 = Normal	ndependent Fault ndent Fault mode LTDAT<0> to PW Fault mode: Cu . The PWM Fault	: Current-lim /MxL output. rrent-Limit n	it input maps F The CLDAT<′ node maps CL	1:0> bits are not .DAT<1:0> bits	used for overrie to the PWMxH	de functions and PWM
bit 14-10	These bits a 11111 = Re 01001 = Re 01010 = Co 01001 = Co 01000 = Co 01000 = Co 00111 = Re 00100 = Fa 00101 = Fa 00010 = Fa 00001 = Fa 00001 = Fa	eserved omparator 3 omparator 2 omparator 1 eserved ult 7 ult 6 ult 5 ult 4 ult 3 ult 2 ult 1	ource for the	dead-time con	npensation inpu		
bit 9	1 = The sele	rrent-Limit Polarit ected current-limit ected current-limit	source is a	ctive-low	(1)		
bit 8	1 = Current-	urrent-Limit Mode Limit mode is ena Limit mode is dis	abled	or PWM Gener	ator #		
	These bits should yield unpredictab	d be changed only le results.	y when PTE	N = 0. Changir	ng the clock sele	ection during op	eration will
2:	When Independe (FLTSRC<4:0> =	ent Fault mode is 01000), the Curr mit source to prev	rent-Limit Co	ontrol Source S	elect bits (CLSF	RC<4:0>) should	d be set to a

REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER

3: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

REGISTER 16-21: FCLCONx: PWM FAULT CURRENT-LIMIT CONTROL REGISTER (CONTINUED)

- FLTSRC<4:0>: Fault Control Signal Source Select bits for PWM Generator #(2,3) bit 7-3 11111 = Reserved 01011 = Reserved 01010 = Comparator 3 01001 = Comparator 2 01000 = Comparator 1 00111 = Reserved 00110 = Fault 7 00101 = Fault 6 00100 = Fault 5 00011 = Fault 4 00010 = Fault 3 00001 = Fault 2 00000 = Fault 1 FLTPOL: Fault Polarity bit for PWM Generator #(1) bit 2 1 = The selected Fault source is active-low 0 = The selected Fault source is active-high bit 1-0 FLTMOD<1:0>: Fault Mode bits for PWM Generator # 11 = Fault input is disabled 10 = Reserved 01 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (cycle) 00 = The selected Fault source forces PWMxH, PWMxL pins to FLTDAT values (latched condition)
- **Note 1:** These bits should be changed only when PTEN = 0. Changing the clock selection during operation will yield unpredictable results.
 - 2: When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Fault mode (FLTSRC<4:0> = 01000), the Current-Limit Control Source Select bits (CLSRC<4:0>) should be set to an unused current-limit source to prevent the current-limit source from disabling both the PWMxH and PWMxL outputs.
 - **3:** When Independent Fault mode is enabled (IFLTMOD = 1), and Fault 1 is used for Current-Limit mode (CLSRC<4:0> = 01000), the Fault Control Source Select bits (FLTSRC<4:0>) should be set to an unused Fault source to prevent Fault 1 from disabling both the PWMxL and PWMxH outputs.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0				
PHR	PHF	PLR	PLF	FLTLEBEN	CLLEBEN	_	—				
bit 15							bit				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	BCH	BCL	BPHH	BPHL	BPLH	BPLL				
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	PHR: PWMxH	H Rising Edge	Trigger Enabl	e bit							
				ading-Edge Bla							
	•	•	•	edge of PWM	κH						
bit 14		I Falling Edge									
	0	0	00	eading-Edge Bla g edge of PWM	0						
bit 13	-	_ Rising Edge ⁻									
		•••		ading-Edge Bla	nking counter						
				edge of PWM>							
bit 12	PLF: PWMxL Falling Edge Trigger Enable bit										
	•	1 = Falling edge of PWMxL will trigger Leading-Edge Blanking counter									
	-			g edge of PWM							
bit 11	FLTLEBEN: Fault Input Leading-Edge Blanking Enable bit 1 = Leading-Edge Blanking is applied to selected Fault input										
bit 10	-	 0 = Leading-Edge Blanking is not applied to selected Fault input CLLEBEN: Current-Limit Leading-Edge Blanking Enable bit 									
			• •	selected current							
	0 = Leading-E	Edge Blanking	is not applied	to selected cur	rent-limit input						
bit 9-6	-	ted: Read as '									
bit 5	BCH: Blanking in Selected Blanking Signal High Enable bit ⁽¹⁾										
	 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is high 0 = No blanking when selected blanking signal is high 										
hit 1		•	•	• •	_{5;+} (1)						
bit 4	BCL: Blanking in Selected Blanking Signal Low Enable bit ⁽¹⁾ 1 = State blanking (of current-limit and/or Fault input signals) when selected blanking signal is low										
	0 = No blanking when selected blanking signal is low										
bit 3	BPHH: Blanking in PWMxH High Enable bit										
	1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is high										
	0 = No blanking when PWMxH output is high										
bit 2	BPHL: Blanking in PWMxH Low Enable bit 1 = State blanking (of current-limit and/or Fault input signals) when PWMxH output is low										
		ng when PWM			iais) when PVVV						
bit 1		ing in PWMxL	-								
-	1 = State blar	nking (of currer	nt-limit and/or	Fault input sigr	als) when PWM	IxL output is hi	gh				
hit 0		ng when PWM	•	•							
bit 0		ng in PWMxL	Low Enable b	IL							
	1 - Stata blar	king (of ourse	t limit and/or	Equilt input aires	als) when PWM	lyl output in In	\A/				

REGISTER 16-22: LEBCONX: LEADING-EDGE BLANKING CONTROL REGISTER

Note 1: The blanking signal is selected via the BLANKSEL bits in the AUXCONx register.

REGISTER 16-23: LEBDLYx: LEADING-EDGE BLANKING DELAY REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	—		LEB	<11:8>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			LEB	<7:0>			
bit 7	bit 7				bit 0		
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplen	nented bit, rea	ıd as '0'		
n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-12 Unimplemented: Read as '0'

bit 11-0 LEB<11:0>: Leading-Edge Blanking Delay bits for Current-Limit and Fault Inputs

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	_			BLANK	SEL<3:0>	
bit 15							bit
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_		CHOP	SEL<3:0>		CHOPHEN	CHOPLEN
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimplemen	ted: Read as '	0'				
bit 11-8	BLANKSEL<	:3:0>: PWM St	ate Blank Sou	urce Select bits			
	0110 = PWM 0101 = PWM 0100 = PWM 0011 = PWM 0010 = PWM 0001 = PWM 0000 = No st	rved I7H selected as I6H selected as I5H selected as I4H selected as I3H selected as I2H selected as I1H selected as ate blanking	s state blank s s state blank s	source source source source source			
bit 7-6 bit 5-2	-	ted: Read as '					
	The selected 1001 = Rese 0111 = PWM 0110 = PWM 0101 = PWM 0100 = PWM 0011 = PWM 0010 = PWM	rved rved I7H selected as I6H selected as I5H selected as I4H selected as I3H selected as I2H selected as I1H selected as	ble and disab CHOP clock CHOP clock CHOP clock CHOP clock CHOP clock CHOP clock CHOP clock	le (CHOP) the s source source source source source source source source		outputs.	
bit 1	CHOPHEN: F	PWMxH Output chopping functi chopping functi	t Chopping Ei on is enabled	nable bit I			
bit 0	CHOPLEN: F 1 = PWMxL c	PWMxL Output chopping function chopping function	Chopping En on is enabled	able bit			

REGISTER 16-24: AUXCONx: PWM AUXILIARY CONTROL REGISTER

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			PWMCA	P<15:8> ^(1,2)					
bit 15							bit 8		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
			PWMCA	\P<7:0> ^(1,2)					
bit 7							bit C		
Legend:									
R = Readab	ole bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value a	n = Value at POR '1' = Bit is set		t	'0' = Bit is cleared x = Bit is unknown					
bit 15-0	PWMCAP			Base Value bits ⁽¹	,2)				
511 15-0		-				value when a lo	adina adaa ia		
		n the current-limit	•	e captured PWM	ume base v	alue when a le	ading edge is		
			i input.						
Note 1:	The canture fe	ature is only avail	lable on prim	ary output (PWM)	vH)				
HOLE I.	The capture lea	atore is only avail			<u></u>				

REGISTER 16-25: PWMCAPx: PRIMARY PWM TIME BASE CAPTURE REGISTER

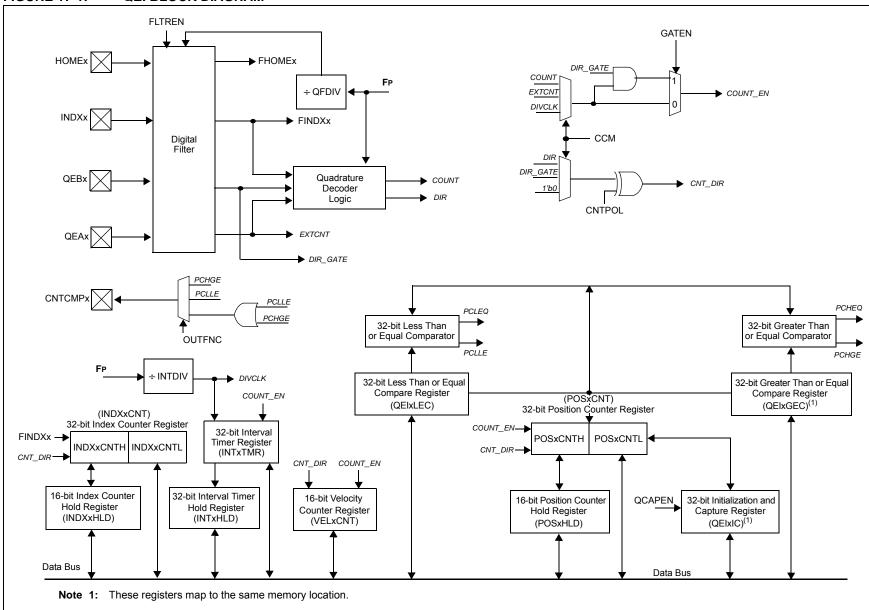
2: This feature is active only after LEB processing on the current-limit input signal is complete.

NOTES:

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

- **Note 1:** This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) of "dsPIC33E/PIC24E the Family Reference Manual', which is available site from the Microchip web (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.


The operational features of the QEI module include:

- 32-bit position counter
- 32-bit Index pulse counter
- 32-bit Interval timer
- · 16-bit velocity counter
- 32-bit Position Initialization/Capture/Compare High register
- 32-bit Position Compare Low register
- 4X Quadrature Count mode
- External Up/Down Count mode
- External Gated Count mode
- · External Gated Timer mode
- Internal Timer mode

Figure 17-1 illustrates the QEI block diagram.

Note: An 'x' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number (x = 1 or 2).

FIGURE 17-1: QEI BLOCK DIAGRAM

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

bit 15 U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 — INTDIV<2:0>(3) CNTPOL GATEN CCM< bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' '0'	bit R/W-0 1:0> bit	CCM<1:0	R/W-0	R/W-0	R/W-0	R/W-0		QEIEN bit 15
U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 - INTDIV<2:0>(3) CNTPOL GATEN CCM bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled x = Bit is unknown bit 14 Unimplemented: Read as '0' Discontinue module operation when device enters ldle mode x = Discontinue module operation in ldle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo count mode for position counter 101 = Resets the position counter 101 = Resets the position counter when the position counter with contents of QEIxGEC register 101 = Second index event after home event initializes position counter with contents of QEIxIC register 011 = First index event after home event initializes position counter with contents of QEIxIC register 011 = Every Index input event resets the position counter 011 = Every Index input event resets the position counter 011 = Every Index input event does not affect position counter	R/W-0 1:0> bit	CCM<1:0	-	1	R/W-0		R/W-0	bit 15
INTDIV<2:0> ⁽³⁾ CNTPOL GATEN CCM<	1:0> bit	CCM<1:0	-	1	R/W-0		R/W-0	
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' •n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown as the second of the second	bit		GATEN	CNTPOL		INTDIV<2:0>(3)		U-0
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' •n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown as the second of the second	bit							_
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' 0 Encontinue module operation when device enters Idle mode 0 0 = Continue module operation in Idle mode 0 = Continue module operation counter 101 = Reserved 110 = Modulo count mode for position counter 101 = Reserved 110 = Modulo count mode for position counter 101 = Reserved 110 = Modulo count mode for position counter 100 = Second index event after home event initializes position counter with contents of QEI 011 = First index event after home event initializes position counter with contents of QEI/IC register 011 = First index input event resets the position counter 011 = Every Index input event resets the position counter 011 = Every Index input event goes not affect position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter)wn							bit 7
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' 0' bit 13 QEISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of Q register 011 = First index event after home event initializes position counter with contents of QEI 011 = First index input event resets the position counter 011 = Every Index input event resets the position counter 011 = Every Index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter	wn	(0)						Legend:
bit 15 QEIEN: Quadrature Encoder Interface Module Counter Enable bit 1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' Determine Module Counters are disabled, but SFRs can be read or written to Determine Module Counters are disabled, but SFRs can be read or written to Determine Module Counters are disabled, but SFRs can be read or written to Determine Module Counters are disabled, but SFRs can be read or written to Determine Module Counters are disabled, but SFRs can be read or written to Determine Module Counters are disabled, but SFRs can be read or written to Determine Module Counter Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode Determine Module Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of QEI 011 = First index event after home event initializes position counter with contents of QEI 011 = First index input event resets the position counter with contents of QEIxIC register 001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter 100 = Index input event does not affect position counter 100 = Index input event does not affect position counter 100 = Index Match Value bits ⁽²⁾	wn	as '0'	mented bit, read a	U = Unimplem	it	W = Writable b	e bit	R = Readab
1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of QEI 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEI×IC register 010 = Next index input event resets the position counter 011 = Every Index input event resets the position counter 010 = Index input event does not affect position counter 010 = Index input event does not affect position counter 010 = Index input event does not affect position counter 010 = Index input event does not affect position counter 011 = Second index event does not affect position counter 011 = Every Index input event does n		x = Bit is unknowr	eared >	'0' = Bit is clea		'1' = Bit is set	POR	-n = Value a
1 = Module counters are enabled 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 0 = Continue module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of QEI 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEI×IC register 010 = Next index input event resets the position counter 011 = Every Index input event resets the position counter 010 = Index input event does not affect position counter 010 = Index input event does not affect position counter 010 = Index input event does not affect position counter 010 = Index input event does not affect position counter 011 = Second index event does not affect position counter 011 = Every Index input event does n								
 0 = Module counters are disabled, but SFRs can be read or written to bit 14 Unimplemented: Read as '0' QEISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 100 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of QEI 011 = First index event after home event initializes position counter with contents of QEI 011 = Every Index input event resets the position counter 001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter 100 = Index Match Value bits⁽²⁾ 			Enable bit	odule Counter E	Interface Mo	drature Encoder	QEIEN: Qu	bit 15
bit 14 Unimplemented: Read as '0' bit 13 QEISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 100 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of QEI 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEI 011 = Every Index input event resets the position counter 011 = Every Index input event resets the position counter 011 = Every Index input event resets the position counter 011 = Every Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event Value bits ⁽²⁾					bled	counters are enal	1 = Module	
bit 13 QEISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits ⁽¹⁾ 111 = Reserved 110 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of QEI 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event resets the position counter 011 = Every Index input event resets the position counter 010 = Index input event does not affect position counter 000 = Index input event does not affect position counter 000 = Index input event does not affect position counter bit 9-8 IMV<1:0>: Index Match Value bits ⁽²⁾			d or written to	Rs can be read	bled, but SF	counters are disa	0 = Module	
 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 10 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of Q register 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEIxIC register 001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter IMV<1:0>: Index Match Value bits⁽²⁾ 						nted: Read as '0	Unimpleme	bit 14
 0 = Continue module operation in Idle mode bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 100 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of Q register 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEIxIC register 001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter IMV<1:0>: Index Match Value bits⁽²⁾ 					it	op in Idle Mode b	QEISIDL: S	bit 13
 bit 12-10 PIMOD<2:0>: Position Counter Initialization Mode Select bits⁽¹⁾ 111 = Reserved 110 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of Q register 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEIxIC register 011 = Every Index input event resets the position counter 000 = Index input event does not affect position counter 000 = Index Match Value bits⁽²⁾ 			dle mode					
 111 = Reserved 110 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of Q register 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEIxIC register 001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter IMV<1:0>: Index Match Value bits⁽²⁾ 			(4)			•		
 110 = Modulo count mode for position counter 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of QEI 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEIxIC register 001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter IMV<1:0>: Index Match Value bits⁽²⁾ 			ct bits ⁽¹⁾	on Mode Select	er Initializati			bit 12-10
 101 = Resets the position counter when the position counter equals QEIxGEC register 100 = Second index event after home event initializes position counter with contents of C register 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEIxIC register 011 = Every Index input event resets the position counter 000 = Index input event does not affect position counter IMV<1:0>: Index Match Value bits⁽²⁾ 								
 100 = Second index event after home event initializes position counter with contents of 0 register 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEIxIC register 001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter IMV<1:0>: Index Match Value bits⁽²⁾ 		NOTO register	unter equale OF by					
register 011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEIxIC regis 001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter IMV<1:0>: Index Match Value bits ⁽²⁾								
011 = First index event after home event initializes position counter with contents of QEI 010 = Next index input event initializes the position counter with contents of QEIxIC regis 001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter IMV<1:0>: Index Match Value bits ⁽²⁾	a Linito							
001 = Every Index input event resets the position counter 000 = Index input event does not affect position counter bit 9-8 IMV<1:0>: Index Match Value bits ⁽²⁾	xIC registe	contents of QEIxIC	tion counter with c	initializes positio	nome event			
000 = Index input event does not affect position counterbit 9-8IMV<1:0>: Index Match Value bits ⁽²⁾	ster	s of QEIxIC registe						
bit 9-8 IMV<1:0>: Index Match Value bits ⁽²⁾								
			1	Usition counter				L:1 0 0
11 = 10000 match occurs when $OER = 1$ and $OEA = 1$								dit 9-8
11 = Index match occurs when QEB = 1 and QEA = 1 10 = Index match occurs when QEB = 1 and QEA = 0								
10 = Index match occurs when QEB = 1 and QEA = 0 01 = Index match occurs when QEB = 0 and QEA = 1								
00 = Index input event does not affect position counter				· · · ·				
					-	-		bit 7
bit 6-4 INTDIV<2:0>: Timer Input Clock Prescale Select bits (interval timer, main timer (positi velocity counter and index counter internal clock divider select) ⁽³⁾		ain timer (position						bit 6-4
	ion counter		select)					
111 = 1:256 prescale value 110 = 1:64 prescale value	ion counter							
101 = 1:32 prescale value	ion counte							
100 = 1:16 prescale value	ion counter							
011 = 1:8 prescale value	ion countei							
010 = 1:4 prescale value	ion counter					escale value		
001 = 1:2 prescale value 000 = 1:1 prescale value	ion counter					escale value escale value	010 = 1:4 p	
$000 - 1.1 \mu$ covale value	ion countei					escale value escale value escale value	010 = 1:4 p 001 = 1:2 p	
	ion counter					escale value escale value escale value	010 = 1:4 p 001 = 1:2 p	
		the PIMOD<2:0> I	ite as timers and th	counters operate	of the QEI of	escale value escale value escale value escale value	010 = 1:4 p 001 = 1:2 p 000 = 1:1 p hen CCM = 10	
 Note 1: When CCM = 10 or CCM = 11, all of the QEI counters operate as timers and the PIMOD<2:0 ignored. 2: When CCM = 00 and QEA and QEB values match Index Match Value (IMV), the POSCNTH and CAMPACTURE AND COMPACTURE AND COMPACT)> bits are			-		escale value escale value escale value escale value or CCM = 11, all	010 = 1:4 p 001 = 1:2 p 000 = 1:1 p hen CCM = 10 nored.	iç

REGISTER 17-1: QEIXCON: QEI CONTROL REGISTER

3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

REGISTER 17-1: QEIXCON: QEI CONTROL REGISTER (CONTINUED)

bit 3	CNTPOL: Position and Index Counter/Timer Direction Select bit
	1 = Counter direction is negative unless modified by external Up/Down signal0 = Counter direction is positive unless modified by external Up/Down signal
bit 2	GATEN: External Count Gate Enable bit
	 1 = External gate signal controls position counter operation 0 = External gate signal does not affect position counter/timer operation
bit 1-0	CCM<1:0>: Counter Control Mode Selection bits
	11 = Internal timer mode with optional external count is selected

- 10 = External clock count with optional external count is selected
- 01 = External clock count with external up/down direction is selected
- 00 = Quadrature Encoder Interface (x4 mode) count mode is selected
- **Note 1:** When CCM = 10 or CCM = 11, all of the QEI counters operate as timers and the PIMOD<2:0> bits are ignored.
 - 2: When CCM = 00 and QEA and QEB values match Index Match Value (IMV), the POSCNTH and POSCNTL registers are reset.
 - 3: The selected clock rate should be at least twice the expected maximum quadrature count rate.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
QCAPEN	FLTREN		QFDIV<2:0>		OUTFN	C<1:0>	SWPAB
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R-x	R-x	R-x	R-x
HOMPOL	IDXPOL	QEBPOL	QEAPOL	HOME	INDEX	QEB	QEA
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable	e bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15	QCAPEN: P	osition Counte	r Input Capture	e Enable bit			
		•			capture functior		
					a capture event		
bit 14		EAx/QEBx/IND	-	gital Filter Enab	le bit		
		n Digital filter is n Digital filter is		assed)			
bit 13-11	-	-		-	Filter Clock Divid	le Select hits	
bit 10-11		clock divide		C Digital Input I			
	110 = 1:64 c						
	101 = 1:32 c						
	100 = 1:16 c						
	011 = 1:8 clo 010 = 1:4 clo						
	001 = 1:2 cl						
	000 = 1:1 clo	ock divide					
bit 10-9	OUTFNC<1:	:0>: QEI Modu	le Output Func	tion Mode Sele	ect bits		
					$SxCNT \ge QEIx$	GEC	
		INCMPx pin go					
	01 = THe CT 00 = Output	INCMPx pin go	bes night when i		EIXGEC		
bit 8	-	vap QEA and C)FB Inputs bit				
		nd QEBx are sv	-	o quadrature de	coder logic		
		nd QEBx are no			0		
bit 7	HOMPOL: ⊦	HOMEx Input P	olarity Select b	it			
	1 = Input is i						
	0 = Input is r						
bit 6		DMEx Input Po	larity Select bit				
	1 = Input is i						
bit E	0 = Input is r		arity Calaat bit				
bit 5	1 = Input is	EBx Input Pola	anty Select bit				
	0 = Input is						
bit 4	•	EAx Input Pola	aritv Select bit				
	1 = Input is	-	,				
	0 = Input is						
bit 3	HOME: State	us of HOMEx I	nput Pin After F	Polarity Control			
	1 - Din is st	1.1.1.1.1.4.1					
	1 = Pin is at 0 = Pin is at						

REGISTER 17-2: QEIXIOC: QEI I/O CONTROL REGISTER

REGISTER 17-2: QEIXIOC: QEI I/O CONTROL REGISTER (CONTINUED)

 bit 2
 INDEX: Status of INDXx Input Pin After Polarity Control

 1 = Pin is at logic '1'
 0 = Pin is at logic '0'

 bit 1
 QEB: Status of QEBx Input Pin After Polarity Control And SWPAB Pin Swapping

 1 = Pin is at logic '1'
 0 = Pin is at logic '1'

 0 = Pin is at logic '1'
 0 = Pin is at logic '1'

 0 = Pin is at logic '0'
 0 = Pin is at logic '0'

 bit 0
 QEA: Status of QEAx Input Pin After Polarity Control And SWPAB Pin Swapping

 1 = Pin is at logic '1'
 0 = Pin is at logic '1'

 0 = Pin is at logic '1'
 0 = Pin is at logic '0'

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

- PCHEQIRQ PCHEQIRQ PCLEQIRQ PCLEQIRQ POSOVIRQ POSOVIRO bit 15 bit 8 bit 8 bit 8 bit 8 HS, RC-0 R/W-0 HS, RC-0 R/W-0 HS, RC-0 R/W-0 HS, RC-0 R/W-0 PCIIRQ ⁽¹⁾ PCIEN VELOVIRQ VELOVIEN HOMIRQ HOMIRN IDXIRQ IDXIRQ bit 7 bit 0 PCIIRQ ⁽¹⁾ PCIEN VELOVIRQ VELOVIEN HOMIRQ HOMIRN IDXIRQ IDXIRQ IDXIRQ bit 7 bit 0 PCIIRQ ⁽¹⁾ PCIEQIRQ POSID VELOVIRQ VELOVIEN HOMIRQ HOMIRN IDXIRQ IDX	REGISTER 1		TAT: QEI STA					
bit 15 bit 8 HS, RC-0 RW-0 HS, RC-0 RW-0 HS, RC-0 RW-0 PCIIRQ ⁽¹⁾ PCIIEN VELOVIRQ VELOVIEN HOMIRQ HOMIEN IDXIRQ IDXIRQ bit 7 Detector VELOVIRQ VELOVIEN HOMIRQ HOMIEN IDXIRQ IDXIRQ IDXIRQ bit 7 Detector VELOVIRQ VELOVIEN HOMIRQ HOMIEN IDXIRQ IDXIRQ bit 7 Detector VELOVIRQ VELOVIEN HOMIRQ HOMIRN IDXIRQ IDXIRQ bit 7 Detector VELOVIRQ VELOVIEN HOMIRQ HOMIRN IDXIRQ IDXIRQ it 7 POIEQR: Poistion Counter Greater Than or Equal Compare Status bit 1 POSCOVIT 2 OELXCEC bit 10 PCLEQRC: Position Counter Less Than or Equal Compare Interrupt Enable bit 1 Interrupt is disabled bit 8 POSOVIR 2 OEXCHEC 0 POSOVIR 2 OEXCHEC 0 POSOVIR 2 OEXCHEC bit 9 POSOVIR 2 Position Counter Less Than or Equal Compare Interrupt Enable bit 1 Interrupt is disabled bit 8 <t< td=""><td>U-0</td><td>U-0</td><td>HS, RC-0</td><td>-</td><td></td><td>R/W-0</td><td>· ·</td><td>R/W-0</td></t<>	U-0	U-0	HS, RC-0	-		R/W-0	· ·	R/W-0
HS, RC-0 R/W-0 HS, RC-0 R/W-0 HS, RC-0 R/W-0 HS, RC-0 R/W-0 PCIIRQ ⁽¹⁾ PCIIEN VELOVIRQ VELOVIEN HOMIRQ HOMIRQ IDXIRQ IDXIRQ bit 7 bit 0 Legend: HS = Set by Hardware C = Cleared by Software R Radable bit W = Writable bit U = Unimplemented bit, read as '0' n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' PCHEQIRQ: Position Counter Greater Than or Equal Compare Status bit 1 = POSXCNT a CELXCEC bit 12 PCHEQIRQ: Position Counter Greater Than or Equal Compare Interrupt Enable bit 1 = Interrupt is disabled bit 11 PCLEQIRQ: Position Counter Less Than or Equal Compare Interrupt Enable bit 1 = POSXCNT a CELXLEC bit 10 PCLEQIRQ: Position Counter Less Than or Equal Compare Interrupt Enable bit 1 = Interrupt is disabled bit 8 POSOVIRQ: Position Counter Overflow Status bit 1 = Overflow has occurred 0 = No verflow has occurred 0 = No verflow has occurred 0 = POSXCNT was not reinitialized 0 = Interrupt is disabled bit 6 PCIERQ: Position Counter (Homing) Initialization Process		_	PCHEQIRQ	PCHEQIEN	PCLEQIRQ	PCLEQIEN	POSOVIRQ	POSOVIEN
PCIIRQ ⁽¹⁾ PCIIRN VELOVIRQ VELOVIRQ HOMIRQ HOMIRQ HOMIRN IDXIRQ IDXIRQ IDXIRQ bit 7 bit 0 Legend: HS = Set by Hardware C = Cleared by Software R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' U = Unimplemented bit, read as '0' = POSXCNT > QEIXEC 0 = POSXCNT > QEIXEC 0 = POSXCNT > QEIXEC 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is consoled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is disabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = No overflow has occurred 0 = No overflow has occurred 0 = No overflow has occurred 0 = No overflow has occurred 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is disabled 0 = Interrupt is disabled 0 = Interrupt is disabled 0 = I	bit 15							bit 8
PCIIRQ ⁽¹⁾ PCIIRN VELOVIRQ VELOVIRQ HOMIRQ HOMIRQ HOMIRN IDXIRQ IDXIRQ IDXIRQ bit 7 bit 0 Legend: HS = Set by Hardware C = Cleared by Software R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' U = Unimplemented bit, read as '0' = POSXCNT > QEIXEC 0 = POSXCNT > QEIXEC 0 = POSXCNT > QEIXEC 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is consoled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is disabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = No overflow has occurred 0 = No overflow has occurred 0 = No overflow has occurred 0 = No overflow has occurred 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is disabled 0 = Interrupt is disabled 0 = Interrupt is disabled 0 = I								
bit 7 bit 0 Legend: HS = Set by Hardware C = Cleared by Software R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 PCHEQIRQ: Position Counter Greater Than or Equal Compare Status bit 1 = POSxCNT ≥ QENGEC 0 = POSXCNT ≥ QENGEC bit 11 PCHEQIRQ: Position Counter Greater Than or Equal Compare Interrupt Enable bit 1 = Interrupt is disabled bit 11 PCLEQIRQ: Position Counter Greater Than or Equal Compare Interrupt Enable bit 1 = Interrupt is disabled bit 11 PCLEQIRQ: Position Counter Less Than or Equal Compare Interrupt Enable bit 1 = POSXCNT ≥ QENLEC bit 10 PCLEQIEN: Position Counter Cverflow Status bit 1 = Overflow has occurred bit 3 POSOVIRQ: Position Counter Overflow Interrupt Enable bit 1 = Interrupt is disabled bit 4 POSICON: Position Counter (Homing) Initialization Process Complete Interrupt Enable bit 1 = Interrupt is disabled bit 4 POSICON: Vasiti Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has occurred bit 5 VELOVIRO: Velocit		1	1	1		1	1	T
Legend: HS = Set by Hardware C = Cleared by Software R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' '' bit 13 PCHEOIRQ: Position Counter Greater Than or Equal Compare Status bit 1 = POSXCNT > QELKGEC 0 = POSXCNT < QELKGEC		PCIIEN	VELOVIRQ	VELOVIEN	HOMIRQ	HOMIEN	IDXIRQ	
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 PCHEQIR: Position Counter Greater Than or Equal Compare Status bit 1 = POSxCNT < QEIxGEC	bit 7							bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 PCHEQIR: Position Counter Greater Than or Equal Compare Status bit 1 = POSxCNT < QEIxGEC					<u> </u>			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-14 Unimplemented: Read as '0' bit 13 PCHEQIRQ: Position Counter Greater Than or Equal Compare Status bit 1 = POSxCNT < QEIXGEC	-		-			-		
bit 15-14 Unimplemented: Read as '0' bit 13 PCHEQIRQ: Position Counter Greater Than or Equal Compare Status bit 1 = POSxCNT < QEIxGEC					•			
bit 13 PCHEQIRQ: Position Counter Greater Than or Equal Compare Status bit 1 = POSXCNT < QEIXGEC	-n = Value at F	POR	'1' = Bit is set		0' = Bit is cle	eared	x = Bit is unkr	nown
bit 13 PCHEQIRQ: Position Counter Greater Than or Equal Compare Status bit 1 = POSXCNT < QEIXGEC	bit 15 11	Unimplomen		o'				
1 = POSxCNT > QELXGEC 0 = POSxCNT < QELXGEC		-				ana ana Chatura k	.:4	
1 = Interrupt is enabled 0 = Interrupt is disabled bit 11 PCLEQIRQ: Position Counter Less Than or Equal Compare Status bit 1 = POSxCNT > QEIxLEC 0 = POSxCNT > QEIxLEC bit 10 PCLEQIEN: Position Counter Less Than or Equal Compare Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 9 POSOVIRQ: Position Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has occurred 0 = Interrupt is disabled bit 8 POSOVIRQ: Position Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 7 PCIIRQ: Position Counter Overflow Interrupt Enable bit 1 = Interrupt is disabled 0 = POSxCNT was reinitialized bit 6 PCIIEN: Position Counter (Homing) Initialization Process Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = POSxCNT was reinitialized bit 5 VELOVIRQ: Velocity Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has occurred 0 = No overflow has not occurred 0 = No overflow has not occurred bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabl	DIT 13	1 = POSxCN	T ≥ QEIxGEC	er Greater Tha	an or Equal Co	ompare Status r	DIT	
bit 11 PCLEQIRQ: Position Counter Less Than or Equal Compare Status bit 1 = POSXCNT ≤ QEIxLEC bit 10 PCLEQIEN: Position Counter Less Than or Equal Compare Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 9 POSOVIRQ: Position Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has occurred bit 8 POSOVIEN: Position Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is enabled 0 = No overflow has occurred 0 = Interrupt is disabled bit 7 PCIIRQ: Position Counter (Homing) Initialization Process Complete Status bit ⁽¹⁾ 1 = POSXCNT was not reinitialized 0 = POSXCNT was not reinitialized bit 6 PCIEN: Position Counter (Homing) Initialization Process Complete Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 5 VELOVIR: Velocity Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has not occurred bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is disabled 0 = Interrupt is	bit 12	1 = Interrupt i	PCHEQIEN: Position Counter Greater Than or Equal Compare Interrupt Enable bit 1 = Interrupt is enabled					
1 = Interrupt is enabled 0 = Interrupt is disabled bit 9 POSOVIRQ: Position Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has occurred bit 8 POSOVIEN: Position Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 7 PCIIRQ: Position Counter (Homing) Initialization Process Complete Status bit ⁽¹⁾ 1 = POSXCNT was not reinitialized 0 = POSXCNT was not reinitialized bit 6 PCIIEN: Position Counter (Homing) Initialization Process Complete interrupt Enable bit 1 = Interrupt is enabled 0 = POSXCNT was not reinitialized bit 6 PCIIEN: Position Counter (Homing) Initialization Process Complete interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 5 VELOVIR : Velocity Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has not occurred bit 4 VELOVIR : Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 3 HOMIRQ: Status Flag for Home Event Status bit 1 = Home event has occurred 0 = No Home event has occurred 0 = No Home event has occurred 0 = No Home even	bit 11	PCLEQIRQ: Position Counter Less Than or Equal Compare Status bit 1 = POSxCNT ≤ QEIxLEC						
1 = Overflow has occurred 0 = No overflow has occurred bit 8 POSOVIEN: Position Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 7 PCIIRQ: Position Counter (Homing) Initialization Process Complete Status bit ⁽¹⁾ 1 = POSxCNT was reinitialized 0 = POSxCNT was not reinitialized bit 6 PCIIEN: Position Counter (Homing) Initialization Process Complete interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is disabled bit 5 VELOVIRQ: Velocity Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has not occurred bit 4 VELOVIRQ: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is enabled 0 = No overflow has not occurred 0 = No overflow has not occurred bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is enabled 0 = No overflow has not occurred 0 = No overflow has occurred bit 3 HOMIRQ: Status Flag for Home Event Status bit 1 = Home event has occurred 0 = No Home event has occurred 0 = No H	bit 10	PCLEQIEN: Position Counter Less Than or Equal Compare Interrupt Enable bit 1 = Interrupt is enabled						
1 = Interrupt is enabled 0 = Interrupt is disabled bit 7 PCIIRQ: Position Counter (Homing) Initialization Process Complete Status bit ⁽¹⁾ 1 = POSxCNT was reinitialized 0 = POSxCNT was not reinitialized bit 6 PCIIEN: Position Counter (Homing) Initialization Process Complete interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is enabled 0 = Interrupt is disabled 0 = Interrupt is disabled bit 5 VELOVIRQ: Velocity Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has not occurred bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 3 HOMIRQ: Status Flag for Home Event Status bit 1 = Home event has occurred 0 = No Home event has occurred 0 = No Home event has occurred 0 = No Home event has occurred bit 2 HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 1 = Interrupt is enabled	bit 9	1 = Overflow	has occurred		atus bit			
1 = POSxCNT was reinitialized 0 = POSxCNT was not reinitialized bit 6 PCIIEN: Position Counter (Homing) Initialization Process Complete interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 5 VELOVIRQ: Velocity Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has not occurred bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 3 HOMIRQ: Status Flag for Home Event Status bit 1 = Home event has occurred 0 = No Home event has occurred 0 = No Home event has occurred 0 = No Home event has occurred 0 = No Home event has occurred 1 = Interrupt is enabled bit 2 HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 1 = Interrupt is enabled	bit 8	POSOVIEN: Position Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled						
1 = Interrupt is enabled 0 = Interrupt is disabled bit 5 VELOVIRQ: Velocity Counter Overflow Status bit 1 = Overflow has occurred 0 = No overflow has not occurred bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 3 HOMIRQ: Status Flag for Home Event Status bit 1 = Home event has occurred 0 = No Home event has occurred bit 2 HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled	bit 7	1 = POSxCN	T was reinitializ	ed	ization Proces	ss Complete Sta	atus bit ⁽¹⁾	
1 = Overflow has occurred 0 = No overflow has not occurred bit 4 VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled bit 3 HOMIRQ: Status Flag for Home Event Status bit 1 = Home event has occurred 0 = No Home event has occurred bit 2 HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled 1 = Interrupt is enabled	bit 6	1 = Interrupt i	is enabled	loming) Initial	ization Proces	s Complete inte	errupt Enable b	it
1 = Interrupt is enabled 0 = Interrupt is disabled bit 3 HOMIRQ: Status Flag for Home Event Status bit 1 = Home event has occurred 0 = No Home event has occurred bit 2 HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled	bit 5	VELOVIRQ: Velocity Counter Overflow Status bit 1 = Overflow has occurred						
1 = Home event has occurred 0 = No Home event has occurred bit 2 HOMIEN: Home Input Event Interrupt Enable bit 1 = Interrupt is enabled	bit 4	VELOVIEN: Velocity Counter Overflow Interrupt Enable bit 1 = Interrupt is enabled						
1 = Interrupt is enabled	bit 3	1 = Home eve	ent has occurre	ed	tus bit			
	bit 2	1 = Interrupt i	is enabled	nt Interrupt En	able bit			

REGISTER 17-3: QEIXSTAT: QEI STATUS REGISTER

Note 1: This status bit is only applicable to PIMOD<2:0> modes '011' and '100'.

REGISTER 17-3: QEIXSTAT: QEI STATUS REGISTER (CONTINUED)

bit 1	IDXIRQ: Status Flag for Index Event Status bit 1 = Index event has occurred 0 = No Index event has occurred
bit 0	IDXIEN: Index Input Event Interrupt Enable bit 1 = Interrupt is enabled 0 = Interrupt is disabled

Note 1: This status bit is only applicable to PIMOD<2:0> modes '011' and '100'.

REGISTER 17-4: POSxCNTH: POSITION COUNTER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<23:16>			
bit 7							bit 0
Legend:							
-	hit	M = Mritable k	. ;+	II – Unimplor	monted hit rea	d aa '0'	
R = Readable	DIL	W = Writable t	אנ	•	mented bit, rea		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-0 **POSCNT<31:16>:** High word used to form 32-bit Position Counter Register (POSxCNT) bits

REGISTER 17-5: POSxCNTL: POSITION COUNTER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		pit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 15-0 **Position Counter<15:0>:** Low word used to form 32-bit Position Counter Register (POSxCNT) bits

REGISTER 17-6: POSxHLD: POSITION COUNTER HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			POSH	ILD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is		x = Bit is unkr	nown				

bit 15-0 **POSHLD<15:0>:** Hold register bits for reading and writing POSxCNTH

REGISTER 17-7:	VELxCNT: VELOCITY COUNTER REGISTER
----------------	------------------------------------

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			VELC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 VELCNT<15:0>: Velocity Counter bits

REGISTER 17-8: INDXxCNTH: INDEX COUNTER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<23:16>			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable bi	it	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 INDXCNT<31:16>: High word used to form 32-bit Index Counter Register (INDXxCNT) bits

REGISTER 17-9: INDXxCNTL: INDEX COUNTER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXC	NT<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 INDXCNT<15:0>: Low word used to form 32-bit Index Counter Register (INDXxCNT) bits

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

REGISTER 17-10: INDXxHLD: INDEX COUNTER HOLD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXH	LD<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INDXI	HLD<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-0 INDXHLD<15:0>: Hold register for reading and writing INDXxCNTH bits

REGISTER 17-11: QEIXICH: INITIALIZATION/CAPTURE HIGH WORD REGISTER

-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
R = Readable	bit	W = Writable t	oit	U = Unimplen	nented bit, rea	d as '0'	
Legend:							
bit 7							bit 0
			QEIIC	<23:16>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
			QEIIC	<31:24>			
R/W-0	R/W-0	R/W-0			R/W-0	R/W-0	R/W-0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	F

bit 15-0 **QEIIC<31:16>:** High word used to form 32-bit Initialization/Capture Register (QEIxIC) bits

REGISTER 17-12: QEIxICL: INITIALIZATION/CAPTURE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEII	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEI	C<7:0>			
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-0 **QEIIC<15:0>:** Low word used to form 32-bit Initialization/Capture Register (QEIxIC) bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unk				x = Bit is unkr	nown		

REGISTER 17-13: QEIxLECH: LESS THAN OR EQUAL COMPARE HIGH WORD REGISTER

bit 15-0 **QEILEC<31:16>:** High word used to form 32-bit Less Than or Equal Compare Register (QEIxLEC) bits

REGISTER 17-14: QEIxLECL: LESS THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEILE	C<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 **QEILEC<15:0>:** Low word used to form 32-bit Less Than or Equal Compare Register (QEIxLEC) bits

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplem	ented bit, rea	ad as '0'	
-n = Value at l		'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unkr	nown

REGISTER 17-15: QEIXGECH: GREATER THAN OR EQUAL COMPARE HIGH WORD REGISTER

REGISTER 17-16: QEIXGECL: GREATER THAN OR EQUAL COMPARE LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIGE	C<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			QEIG	EC<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						nown	

bit 15-0 **QEIGEC<15:0>:** Low word used to form 32-bit Greater Than or Equal Compare Register (QEIxGEC) bits

REGISTER 17-17: INTxTMRH: INTERVAL TIMER HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	R<23:16>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-0 INTTMR<31:16>: High word used to form 32-bit Interval Timer Register (INTxTMR) bits

REGISTER 17-18: INTxTMRL: INTERVAL TIMER LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTM	IR<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTTN	/IR<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	it	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-0 INTTMR<15:0>: Low word used to form 32-bit Interval Timer Register (INTxTMR) bits

REGISTER 17-19: INTxHLDH: INTERVAL TIMER HOLD HIGH WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTHL	D<31:24>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		INTHL	D<23:16>			
						bit 0
it	W = Writable b	bit U = Unimplemented bit, read as '0'				
DR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		nown	
	R/W-0	R/W-0 R/W-0 it W = Writable t	INTHL R/W-0 R/W-0 R/W-0 INTHL it W = Writable bit	INTHLD<31:24> R/W-0 R/W-0 R/W-0 INTHLD<23:16> it W = Writable bit U = Unimplen	INTHLD<31:24> R/W-0 R/W-0 R/W-0 INTHLD<23:16> INTHLD<23:16>	INTHLD<31:24> R/W-0 R/W-0 R/W-0 R/W-0 INTHLD<23:16> it W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 INTHLD<31:16>: Hold register for reading and writing INTxTMRH bits

REGISTER 17-20: INTxHLDL: INTERVAL TIMER HOLD LOW WORD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	_D<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INTH	LD<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	R '1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-0 **INTHLD<15:0>:** Hold register for reading and writing INTxTMRL bits

18.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70569) "dsPIC33E/PIC24È the of Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The SPI module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, A/D converters, etc. The SPI module is compatible with Motorola's SPI and SIOP interfaces. The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 device family offers four SPI modules on a single device. These modules, which are designated as SPI1, SPI2, SPI3 and SPI4, are functionally identical. Each SPI module includes an eight-word FIFO buffer and allows DMA bus connections. When using the SPI module with DMA, FIFO operation can be disabled.

Note: In this section, the SPI modules are referred to together as SPIx, or separately as SPI1, SPI2, SPI3 and SPI4. Special Function Registers follow a similar notation. For example, SPIxCON refers to the control register for the SPI1, SPI2, SPI3 or SPI4 module.

The SPIx serial interface consists of four pins, as follows:

- · SDIx: Serial Data Input
- SDOx: Serial Data Output
- SCKx: Shift Clock Input or Output
- SSx/FSYNCx: Active-Low Slave Select or Frame Synchronization I/O Pulse

The SPIx module can be configured to operate with two, three or four pins. In 3-pin mode, SSx is not used. In 2-pin mode, neither SDOx nor SSx is used.

Figure 18-1 illustrates the block diagram of the SPI module in Standard and Enhanced modes.

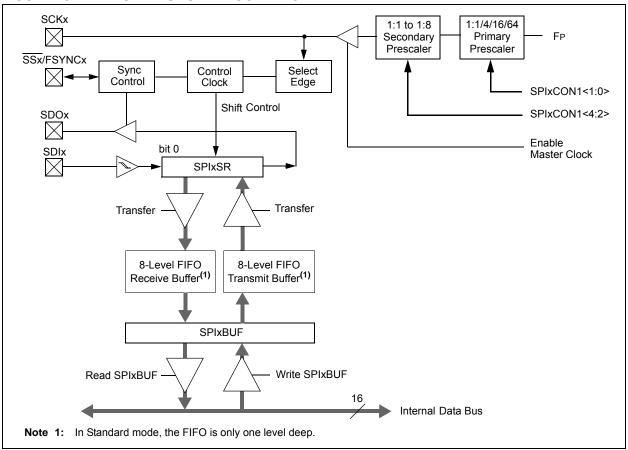


FIGURE 18-1: SPIX MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
SPIEN		SPISIDL	—	_		SPIBEC<2:0	>
bit 15				•			bit 8
R/W-0	R/C-0, HS	R/W-0	R/W-0	R/W-0	R/W-0	R-0, HS, HC	R-0, HS, HC
SRMPT	SPIROV	SRXMPT		SISEL<2:0>		SPITBF	SPIRBF
bit 7							bit (
Legend:		C = Clearable	bit				
R = Readable	bit	W = Writable b	pit	U = Unimple	mented bit, r	ead as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
HS = Set in H	ardware bit	HC = Cleared	in Hardware bi	t U = Unimplei	mented bit, r	ead as '0'	
bit 15	SPIEN: SPIX						
			configures SC	Kx, SDOx, SDI	x and SSx as	s serial port pin	S
L:1 4 4	0 = Disables 1		.,				
bit 14	-	ted: Read as '0					
bit 13		p in Idle Mode I			امام سمم مام		
				n device enters mode	lale mode		
bit 12-11	 0 = Continue the module operation in Idle mode Unimplemented: Read as '0' 						
bit 10-8	SPIBEC<2:0>: SPIx Buffer Element Count bits (valid in Enhanced Buffer mode)						
	Master mode:						
	Number of SF	Plx transfers are	e pending.				
	Slave mode:						
		Plx transfers are					
bit 7				(valid in Enhan		iode)	
		t register is emp		o send or recei	ve the data		
bit 6		cive Overflow F					
				nd discarded. Tl	ne user applic	cation has not re	ad the previou
		SPIxBUF regist	er				
		w has occurred					
bit 5			oty bit (valid in	Enhanced Buff	er mode)		
	1 = RX FIFO 0 = RX FIFO						
bit 4-2			errupt Mode bi	ts (valid in Enha	anced Buffer	mode)	
	111 = Interru	pt when the SP	lx transmit buf	fer is full (SPIxT	BF bit is set)	
				SPIxSR, and as			
				out of SPIxSR, a o the SPIxSR, a			
		y location					
	011 = Interru	pt when the SP		er is full (SPIxR			
				er is 3/4 or more		:1)	
		pt when data is pt when the last		e receive buffer			
				Celve nimerie r		χημη τρα οι παγι	s emntv

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

REGISTER 18-1: SPIx STAT: SPIx STATUS AND CONTROL REGISTER (CONTINUED)

bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Standard Buffer Mode: Automatically set in hardware when core writes to the SPIxBUF location, loading SPIxTXB. Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR. Enhanced Buffer Mode: Automatically set in hardware when CPU writes to the SPIxBUF location, loading the last available buffer location. Automatically cleared in hardware when a buffer location is available for a CPU write operation. bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive complete, SPIxRXB is full 0 = Receive is incomplete, SPIxRXB is empty Standard Buffer Mode: Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB. Automatically cleared in hardware when core reads the SPIxBUF location, reading SPIxRXB.

Enhanced Buffer Mode:

Automatically set in hardware when SPIx transfers data from SPIxSR to the buffer, filling the last unread buffer location. Automatically cleared in hardware when a buffer location is available for a transfer from SPIxSR.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SSEN ⁽²⁾	CKP	MSTEN		SPRE<2:0>		PPRE	<1:0>			
bit 7							bit			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-13	Unimplemen	ted: Read as	0'							
bit 12	DISSCK: Disa	able SCKx Pin	bit (SPI Maste	er modes only)						
		PI clock is disa	•	tions as I/O						
		PI clock is ena								
bit 11		able SDOx Pir								
		i is not used by i is controlled b		oin functions as	s I/O					
bit 10		ord/Byte Comn		ect bit						
		ication is word								
		ication is byte-								
bit 9	SMP: SPIx D	ata Input Sam	ole Phase bit							
	Master mode: 1 = Input data is sampled at end of data output time									
		a is sampled at a is sampled at								
	Slave mode:	a is sampled a		a output time						
		cleared when	SPIx is used i	n Slave mode.						
bit 8	CKE: SPIx C	lock Edge Sele	ect bit ⁽¹⁾							
					clock state to idl					
					ock state to activ	e clock state (i	refer to bit 6)			
bit 7		Select Enable	-	de) ⁽²⁾						
		s used for Slav		controlled by p	ort function					
bit 6	-	-								
		CKP: Clock Polarity Select bit 1 = Idle state for clock is a high level; active state is a low level								
			•	e state is a higi						
bit 5	MSTEN: Mas	ter Mode Enat	ole bit							
	1 = Master m	1 = Master mode								
	0 = Slave mo									
bit 4-2		Secondary Pre	escale bits (Ma	ister mode)						
	111 = Reserv		0.1							
		dary prescale 2	2.1							
	-									
	•									
	•									

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1

- Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - **2:** This bit must be cleared when FRMEN = 1.

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

bit 1-0 **PPRE<1:0>:** Primary Prescale bits (Master mode)

- 11 = Reserved
- 10 = Primary prescale 4:1
- 01 = Primary prescale 16:1
- 00 = Primary prescale 64:1
- Note 1: The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
FRMEN	SPIFSD	FRMPOL										
bit 15							bit 8					
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0					
—	_	_	—	_	—	FRMDLY	SPIBEN					
bit 7							bit C					
Legend:												
R = Readabl	e bit	W = Writable b	it	U = Unimplem	nented bit, rea	ad as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	= Bit is unknown					
bit 15		med SPIx Suppo		_								
		SPIx support is e SPIx support is d		x pin used as fra	me sync puls	e input/output)						
bit 14	SPIFSD: Fra	me Sync Pulse [Direction Co	ntrol bit								
	,	nc pulse input (s nc pulse output	,									
bit 13	FRMPOL: Fr	ame Sync Pulse	Polarity bit									
		nc pulse is activ										
	0 = Frame sy	nc pulse is activ	e-low									
bit 12-2	Unimplemen	ted: Read as '0	,									
bit 1	FRMDLY: Fra	ame Sync Pulse	Edge Selec	t bit								
	1 = Frame sync pulse coincides with first bit clock											
		nc pulse preced		lock								
bit 0				SPIBEN: Enhanced Buffer Enable bit								
1 = Enhanced Buffer is enabled												
		d Buffer is enable d Buffer is disabl										

REGISTER 18-3: SPIXCON2: SPIX CONTROL REGISTER 2

19.0 INTER-INTEGRATED CIRCUIT™ (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit (I²CTM)" (DS70330) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

ThedsPIC33EPXXXMU806/810/814andPIC24EPXXXGU810/814 family of devices contain twoInter-Integrated Circuit (I²C) modules: I2C1 and I2C2.

The I^2C module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock.
- · The SDAx pin is data.

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7 and 10-bit address.
- I²C Master mode supports 7 and 10-bit address.
- I²C port allows bidirectional transfers between master and slaves.
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control).
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly.
- IPMI support
- SMBus support

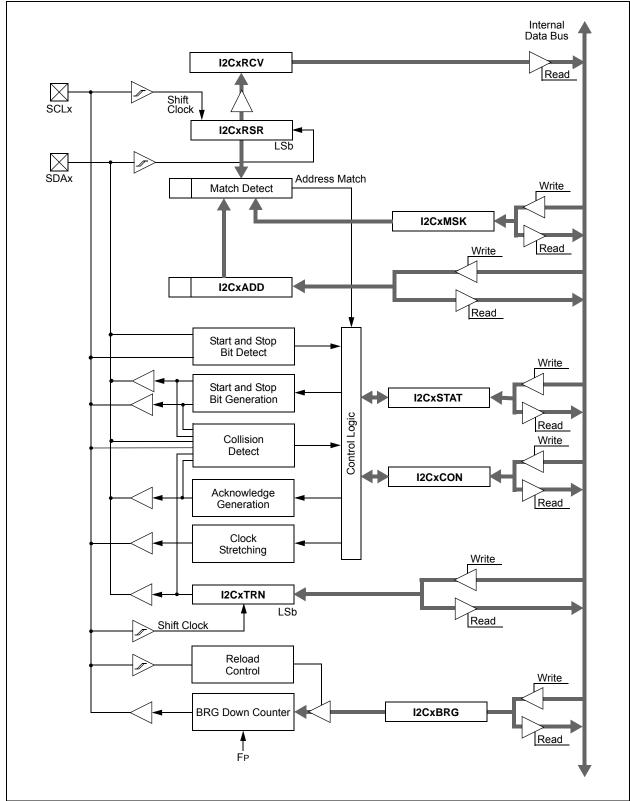


FIGURE 19-1: $I^2 C^{TM}$ BLOCK DIAGRAM (x = 1 OR 2)

DAALO		D111	DAAABA	D // / 0	D44 0	D 44/ 0	DAMA				
R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN	—	I2CSIDL	SCLREL	IPMIEN ⁽¹⁾	A10M	DISSLW	SMEN				
bit 15							bit 8				
R/W-0	DAMO			R/W-0 HC							
	R/W-0	R/W-0	R/W-0 HC		R/W-0 HC	R/W-0 HC	R/W-0 HC				
GCEN bit 7	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN bit 0				
							bit 0				
Legend:		II = I Inimplei	nented bit, rea	d as 'N'							
R = Readab	le bit	W = Writable		HS = Set in h	ardware	HC = Cleared	in hardware				
-n = Value a		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkn					
							lowin				
bit 15	12CEN: 12Cx	Enable bit									
	1 = Enables t	he I2Cx modu	le and configur	es the SDAx a	and SCLx pins a	as serial port pir	าร				
					ed by port funct						
bit 14	Unimplemen	ted: Read as	0'								
bit 13	I2CSIDL: Sto	p in Idle Mode	bit								
			eration when de		n Idle mode						
bit 12			ontrol bit (wher		I ² C slave)						
	1 = Release S			operating as							
		x clock low (cl	ock stretch)								
		If STREN = 1: Bit is R/W (i.e., software can write '0' to initiate stretch and write '1' to release clock). Hardware clear									
	•					,					
			t end of every		ware clear at en e reception.	d of every slave	e address byte				
	If STREN = 0				• • • • • • • • • • • • • • • • • • •						
		-	only write '1' to	release clock). Hardware cle	ar at beginning	of every slave				
				•	lave address b						
bit 11					MI) Enable bit ⁽	1)					
			all addresses A	cknowledged							
bit 10	0 = IPMI mod	Slave Address	, hit								
DIL TU		is a 10-bit sla									
	-	is a 7-bit slave									
bit 9	DISSLW: Disable Slew Rate Control bit										
	1 = Slew rate	control disable	ed								
	0 = Slew rate	control enable	ed								
bit 8	SMEN: SMBI	us Input Levels	s bit								
			ls compliant wi	ith the SMBus	specification						
bit 7		MBus input th	e bit (when ope	rating as $l^{2}C$ of							
				-	ived in the I2Cx	RSR					
		s enabled for r									
		all address dis									

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

Note 1: When performing Master operations, ensure that the IPMIEN bit is '0'.

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 6	STREN: SCLx Clock Stretch Enable bit (when operating as I ² C slave) Used in conjunction with SCLREL bit. 1 = Enable software or receive clock stretching 0 = Disable software or receive clock stretching
bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence.
	1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit.
	 Hardware clear at end of master Acknowledge sequence. 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master) 1 = Enables Receive mode for I^2C . Hardware clear at end of eighth bit of master receive data byte.
	0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence.0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence.
	0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master)
	 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence. 0 = Start condition not in progress

Note 1: When performing Master operations, ensure that the IPMIEN bit is '0'.

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC	
ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10	
bit 15	-				•		bit 8	
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC	
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	
bit 7							bit 0	
Legend:		•	nented bit, rea					
R = Readable		W = Writable		HS = Set in h			are set/cleared	
-n = Value at I	POR	'1' = Bit is se	1	'0' = Bit is cle	ared	x = Bit is unkr	IOWN	
bit 15	(when operati 1 = NACK rec 0 = ACK rece	cknowledge St ing as I ² C™ m ceived from sla ived from slav or clear at end	aster, applical ive e		ransmit operatio	on)		
bit 14	1 = Master tra 0 = Master tra	ansmit is in pro ansmit is not in	gress (8 bits - progress	+ ACK)	ister, applicable Iware clear at e			
bit 13-11	Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. Unimplemented: Read as '0'							
bit 10	BCL: Master	BCL: Master Bus Collision Detect bit						
bit 9	0 = No collisio Hardware set GCSTAT: Ger 1 = General c	at detection on neral Call Statu all address wa	f bus collision us bit as received		peration			
		all address wa when address			ess. Hardware c	lear at Stop det	ection.	
bit 8	ADD10: 10-bi	it Address Stat	us bit					
	0 = 10-bit add	Iress was mate Iress was not i at match of 2r	matched	ched 10-bit ad	dress. Hardwar	re clear at Stop	detection.	
bit 7	1 = An attemp 0 = No collisio	on	2CxTRN regis		ause the I ² C mo ousy (cleared by			
bit 6	 Hardware set at occurrence of write to I2CxTRN while busy (cleared by software). I2COV: Receive Overflow Flag bit 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflow Hardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). 							
bit 5	D_A: Data/Ac 1 = Indicates 0 = Indicates	dress bit (whe that the last by that the last by	en operating a /te received w /te received w	s I ² C slave) as data as device add	, ,			
bit 4	P: Stop bit 1 = Indicates 0 = Stop bit w	that a Stop bit vas not detecte or clear when	has been dete d last	ected last				

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit complete, I2CxTRN is empty
	Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	—	—	—	AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7	•		•				bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address bit x Select bit

For 10-bit Address:

1 = Enable masking for bit Ax of incoming message address; bit match is not required in this position

0 = Disable masking for bit Ax; bit match is required in this position

For 7-bit Address (I2CxMSK<6:0> only):

1 = Enable masking for bit Ax + 1 of incoming message address; bit match is not required in this position

0 = Disable masking for bit Ax + 1; bit match is required in this position

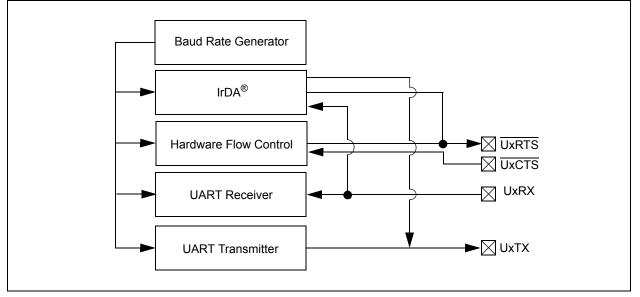
NOTES:

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 17. "UART"** (DS70582) of the "*dsPIC33E/PIC24E Family Reference Manual*", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family of devices contain four UART modules.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity Options (for 8-bit data)
- · One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 3.75 Mbps to 57 bps at 16x mode at 60 MIPS
- Baud rates ranging from 15 Mbps to 228 bps at 4x mode at 60 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- · Support for Sync and Break characters
- Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- · 16x baud clock output for IrDA support

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM

© 2009-2011 Microchip Technology Inc.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0		
UARTEN ⁽¹⁾		USIDL	IREN ⁽²⁾	RTSMD	_	UEN	<1:0>		
bit 15							bit		
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
WAKE	LPBACK	ABAUD	URXINV	BRGH		EL<1:0>	STSEL		
bit 7		, 10, 100	UT UT UT	Bitton	1 000	1.0	bit		
Legend:		HC = Hardwa	re cleared						
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'			
-n = Value at POR				'0' = Bit is cleared		x = Bit is unknown			
bit 15	UARTEN: UA	ARTx Enable bi	t						
						ined by UEN<1 ; UARTx power			
bit 14	Unimplemented: Read as '0'								
bit 13	USIDL: Stop in Idle Mode bit								
		nue module ope e module opera			dle mode				
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾								
	1 = IrDA encoder and decoder enabled								
	0 = IrDA encoder and decoder disabled								
bit 11	RTSMD: Mode Selection for UxRTS Pin bit 1 = $\overline{\text{UxRTS}}$ pin in Simplex mode								
	0 = UxRTS p	oin in Flow Con	trol mode						
bit 10	Unimplemented: Read as '0'								
bit 9-8	UEN<1:0>: UARTx Pin Enable bits 11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by PORT latches								
	10 = UxTX, U 01 = UxTX, U	JxRX, UxC <u>TS</u> a JxRX and UxR1 nd UxRX pins a	nd UxRTS pir	ns are enabled abled and use	l an <u>d used</u> ed; UxCTS pin e	ontrolled by POF controlled by PC BCLK pins cont	ORT latches		
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit								
	in hardwa	are on following		X pin; interrupt	generated on	falling edge; bit	cleared		
bit 6	 0 = No wake-up enabled LPBACK: UARTx Loopback Mode Select bit 								
	1 = Enable Loopback mode								
	0 = Loopback mode is disabled								
bit 5	ABAUD: Auto-Baud Enable bit								
	 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55 before other data; cleared in hardware upon completion 								
	0 = Baud rat	e measuremen	t disabled or c	completed					
		I7. "UART" (Date of the UAR abling the UAR				Reference Man	ual" for		

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 20-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit 1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	 BRGH: High Baud Rate Enable bit 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	<pre>PDSEL<1:0>: Parity and Data Selection bits 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity</pre>
bit 0	STSEL: Stop Bit Selection bit 1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART"** (DS70582) in the *"dsPIC33E/PIC24E Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1			
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT			
bit 15	•						bit			
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0			
	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA			
bit 7							bit			
Legend:		HC = Hardwar	e cleared							
R = Readable bit		W = Writable bit U = Unimplemented bit, read as '0'								
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15,13	11 = Reserve 10 = Interrup transmit 01 = Interrup operatio 00 = Interrup	D>: Transmissio ed; do not use t when a charac buffer becomes t when the last o ons are complete t when a charac one character o	ter is transfe s empty character is s ed ter is transfe	rred to the Trar shifted out of the rred to the Trar	nsmit Shift Regi e Transmit Shift	Register; all tra	ansmit			
bit 14	If IREN = 0: 1 = UXTX Idl 0 = UXTX Idl If IREN = 1: 1 = IrDA enc		state is '1'							
bit 12	Unimplemented: Read as '0'									
bit 11	UTXBRK: Transmit Break bit									
	 1 = Send Sync Break on next transmission – Start bit, followed by twelve '0' bits, followed by Stop bic cleared by hardware upon completion 0 = Sync Break transmission disabled or completed 									
bit 10	 UTXEN: Transmit Enable bit⁽¹⁾ 1 = Transmit enabled, UxTX pin controlled by UARTx 0 = Transmit disabled, any pending transmission is aborted and buffer is reset. UxTX pin controlled by port. 									
bit 9	UTXBF: Transmit Buffer Full Status bit (read-only) 1 = Transmit buffer is full 0 = Transmit buffer is not full, at least one more character can be written									
bit 8	 TRMT: Transmit Shift Register Empty bit (read-only) 1 = Transmit Shift Register is empty and transmit buffer is empty (the last transmission has comple 0 = Transmit Shift Register is not empty, a transmission is in progress or queued 									
bit 7-6	URXISEL<1:0>: Receive Interrupt Mode Selection bits									
~ ~ ~	 11 = Interrupt is set on UxRSR transfer making the receive buffer full (i.e., has 4 data characters 10 = Interrupt is set on UxRSR transfer making the receive buffer 3/4 full (i.e., has 3 data characters 0x = Interrupt is set when any character is received and transferred from the UxRSR to the receive buffer. Receive buffer has one or more characters. 									

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to **Section 17. "UART"** (DS70582) in the *"dsPIC33E/PIC24E Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect. 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	1 = Parity error has been detected for the current character (character at the top of the receive FIFO)0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 →0 transition) resets the receiver buffer and the UxRSR to the empty state.
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

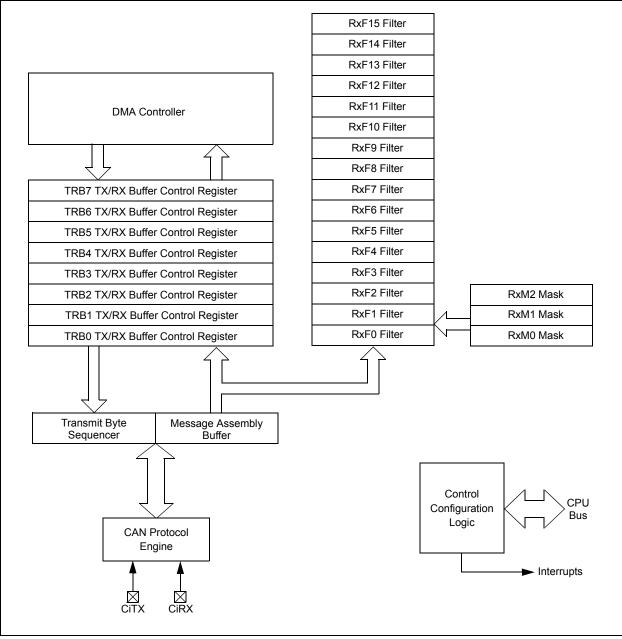
Note 1: Refer to **Section 17. "UART"** (DS70582) in the *"dsPIC33E/PIC24E Family Reference Manual"* for information on enabling the UART module for transmit operation.

NOTES:

21.0 ENHANCED CAN (ECAN™) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70353) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview


The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices contain two ECAN modules.

The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details. The ECAN module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to Input Capture module (IC2 for the ECAN1 and ECAN2 modules) for timestamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

FIGURE 21-1: ECAN[™] MODULE BLOCK DIAGRAM

21.2 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- · Initialization mode
- · Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

Refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70353) of the "*dsPIC33E/ PIC24E Family Reference Manual*" for more details on ECAN.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-0				
_		CSIDL	ABAT	CANCKS		REQOP<2:0>					
bit 15							bit 8				
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
	OPMODE<2:0		_	CANCAP	_		WIN				
bit 7							bit				
Legend:		C – Writabla	hit but only 'O	' oon ho writton	to clear the hi	t r = Bit is Rese	nucd				
R = Readabl	le hit	W = Writable	-		nented bit, rea		liveu				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr					
	IFUR				areu	X – DILISUIKI	IOWII				
bit 15-14	Unimpleme	ented: Read as '	0'								
bit 13	-	o in Idle Mode b									
	•	nue module ope		levice enters Id	le mode						
		e module operat									
bit 12	ABAT: Abor	t All Pending Tra	ansmissions b	bit							
	0	III transmit buffer									
		will clear this bit									
bit 11		ECAN Module C	. ,	Source Select b	it						
		s equal to twice	-P								
0 = FCAN is equal to FP bit 10-8 REQOP<2:0>: Request Operation Mode bits											
DIL IU-O		REQOP<2:0>: Request Operation Mode bits 000 = Set Normal Operation mode									
	000 = Set Normal Operation mode 001 = Set Disable mode										
	010 = Set Loopback mode										
	011 = Set Listen Only Mode										
	100 = Set Configuration mode										
	101 = Reserved 110 = Reserved										
		isten All Messag	ies mode								
bit 7-5		2:0>: Operation									
		ile is in Normal (de							
		le is in Disable									
		Ile is in Loopbac									
		le is in Listen O									
	100 = Modu 101 = Rese	ile is in Configur	ation mode								
	101 = Reserved										
	111 = Modu	ule is in Listen A	l Messages n	node							
bit 4	Unimpleme	ented: Read as '	0'								
bit 3	CANCAP: (CAN Message R	eceive Timer	Capture Event	Enable bit						
		input capture ba CAN capture	sed on CAN r	nessage receiv	е						
bit 2-1		ented: Read as '	0'								
bit 0	WIN: SFR Map Window Select bit										
	1 = Use filte	-									
	0 = Use buf	fer window									

REGISTER 21-1: CiCTRL1: ECAN™ CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—		—	—		_		
bit 15							bit 8		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
	—	– DNCNT<4:0>							
bit 7							bit 0		
_									
Legend:		C = Writable b	oit, but only '0'	can be writter	n to clear the bit				
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-5 bit 4-0	-	ted: Read as '(: DeviceNet™		ber bits					
	10010-11111 = Invalid selection 10001 = Compare up to data byte 3, bit 6 with EID<17>								
	•								
	•								
	•								

REGISTER 21-2: CiCTRL2: ECAN™ CONTROL REGISTER 2

00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0			
_	_				FILHIT<4:0>					
it 15					-		bit			
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0			
				ICODE<6:0>						
it 7							bit			
egend:		C = Writable	oit, but only '0	' can be written	to clear the bi	İ				
a = Readabl	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'				
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown			
it 15-13	Unimplement	ed: Read as '	0'							
it 12-8	FILHIT<4:0>:	Filter Hit Num	ber bits							
	10000-11111									
	01111 = Filter	15								
	•									
	•									
	•									
	00001 = Filter									
	00000 = Filter		0'							
it 7 it 6-0										
11 0-0	ICODE<6:0>: Interrupt Flag Code bits 1000101-1111111 = Reserved									
	1000101 = FIFO almost full interrupt									
	1000011 = Receiver overflow interrupt									
	1000010 = Wake-up interrupt									
	1000001 = Error interrupt									
	1000000 = N o	Dinterrupt								
	•									
	•									
	•									
	0010000-0111111 = Reserved 0001111 = RB15 buffer Interrupt									
	•									
	•									
	•									
	0001001 = RB9 buffer interrupt									
	0001000 = RB8 buffer interrupt									
	0000111 = TRB7 buffer interrupt									
	0000110 = TF 0000101 = TF									
	0000101 = TF									
	0000011 = TF									
	0000010 = TF	RB2 buffer inte	errupt							
	0000001 = TF									
	000000 = TF	RB0 Buffer inte	errupt							

REGISTER 21-3: CiVEC: ECAN™ INTERRUPT CODE REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	DMABS<2:0>		—	—		—	—			
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
—	_	_			FSA<4:0>					
bit 7							bit 0			
Legend:		C = Writable b	pit, but only '0'	can be writter	to clear the bi	t				
R = Readable	e bit	W = Writable			nented bit, rea					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
	-						ш			
bit 15-13	DMABS<2:0>: DMA Buffer Size bits									
	111 = Reserved									
	110 = 32 buffers in DMA RAM									
	101 = 24 buffers in DMA RAM									
	100 = 16 buffers in DMA RAM									
		ers in DMA RA								
		rs in DMA RAM rs in DMA RAM								
		rs in DMA RAM	-							
bit 12-5		ted: Read as '								
bit 4-0	-	FO Area Starts		its						
	11111 = Rea									
	11111 – Read buller RB31 11110 = Read buffer RB30									
	•									
	•									
	•									

REGISTER 21-4: CIFCTRL: ECAN™ FIFO CONTROL REGISTER

00001 = TX/RX buffer TRB1 00000 = TX/RX buffer TRB0

REGISTER	21-5: CIFIF	O: ECAN™ FI	FO STATU	S REGISTER							
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
	—			FBP	<5:0>						
bit 15							bit 8				
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
_	—			FNRI	3<5:0>						
bit 7							bit (
		0 10/-:		2 ¹	4 4	L :4					
Legend:	1- 1-14)' can be written							
R = Readab		W = Writable		U = Unimplen							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15-14	-	nted: Read as '									
bit 13-8	FBP<5:0>:	FBP<5:0>: FIFO Buffer Pointer bits									
	011111 = R										
	011110 = R	B30 buffer									
	•										
	•										
	•										
	000001 = T										
	000000 = T										
bit 7-6		nted: Read as '									
bit 5-0	FNRB<5:0>: FIFO Next Read Buffer Pointer bits										
	011111 = R										
	011110 = R	B30 buffer									
	•										
	•										
	•										
	000001 = T										
	000000 = T	RB0 buffer									

REGISTER 21-5: CiFIFO: ECAN™ FIFO STATUS REGISTER

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
_	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15			1		1		bit
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit
Legend:		C = Writable	oit, but only 'C	' can be writte	n to clear the bi	t	
R = Readab	le bit	W = Writable			mented bit, read		
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	-	mitter in Error		bit			
		er is in Bus Off					
	0 = Transmitt	er is not in Bus	Off state				
bit 12	TXBP: Trans	mitter in Error S	State Bus Pas	sive bit			
		er is in Bus Pa					
		er is not in Bus		-			
bit 11		iver in Error Sta		ve bit			
		is in Bus Passi is not in Bus P					
bit 10		nsmitter in Erro		na hit			
		er is in Error W		ing bit			
		er is not in Erro		ate			
bit 9	9 RXWAR: Receiver in Error State Warning bit						
		is in Error War					
		is not in Error	-				
bit 8		nsmitter or Rec					
		er or Receiver		•			
hit 7		er or Receiver		State warning	y state		
bit 7		d Message Inte Request has o					
		Request has no					
bit 6	-	Wake-up Activi		ag bit			
		Request has o	•	-9			
	0 = Interrupt	Request has no	ot occurred				
bit 5	ERRIF: Error	Interrupt Flag	bit (multiple s	ources in CiIN	TF<13:8> regist	er)	
	•	Request has or					
	-	Request has no					
bit 4	•	ted: Read as '					
bit 3		Almost Full In		it			
		Request has or					
hit 0		Request has no		a hit			
bit 2		Buffer Overflov Request has or		ag bit			
		Request has no					
bit 1		ffer Interrupt FI					
		Request has o	•				
	0 = Interrupt	Request has no	ot occurred				
bit 0		fer Interrupt Fla					
		Request has o					
	0 = Interrupt	Request has no	ot occurred				

REGISTER 21-6: CIINTF: ECAN™ INTERRUPT FLAG REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—	—	—	—	—					
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0				
IVRIE	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE	TBIE				
bit 7							bit				
Legend:		C = Writable b	it. but only '0	' can be written	to clear the bit						
R = Readab	le bit	W = Writable b	•		nented bit, read						
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown				
bit 15-8	Unimplemen	ted: Read as '0	,								
bit 7 IVRIE: Invalid Message Interrupt Enable bit											
		1 = Interrupt Request Enabled									
	0 = Interrupt I	Request not ena	abled								
bit 6	WAKIE: Bus	Wake-up Activit	ctivity Interrupt Flag bit								
	1 = Interrupt Request Enabled										
	0 = Interrupt I	Request not ena	abled								
bit 5	ERRIE: Error	Interrupt Enable	e bit								
	1 = Interrupt Request Enabled										
	0 = Interrupt I	Request not ena	abled								
bit 4	Unimplemen	ted: Read as '0	3								
bit 3	FIFOIE: FIFC	Almost Full Int	errupt Enable	e bit							
		1 = Interrupt Request Enabled									
	0 = Interrupt Request not enabled										
bit 2	RBOVIE: RX Buffer Overflow Interrupt Enable bit										
		Request Enable									
	0 = Interrupt Request not enabled										
bit 1	RBIE: RX Buffer Interrupt Enable bit										
	1 = Interrupt Request Enabled										
		Request not ena									
bit 0		fer Interrupt Ena									
	1 = Interrupt Request Enabled 0 = Interrupt Request not enabled										
		Desiverent	ما ما م								

REGISTER 21-7: CIINTE: ECAN™ INTERRUPT ENABLE REGISTER

REGISTER	21-8: CiEC	: ECAN™ TRA	NSMIT/RE	CEIVE ERRO	R COUNT RE	GISTER		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
			TERRC	NT<7:0>				
bit 15							bit	
	D 0			D 0		D 0		
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
bit 7			RERRU	NT<7:0>			bit	
							DIL	
Legend:		C = Writable b	oit, but only '0	' can be writter	to clear the bit			
R = Readab	ole bit	W = Writable I	-		mented bit, read			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	Iown	
bit 15-8 bit 7-0 REGISTER	RERRCNT<	7:0>: Transmit E 7:0>: Receive E G1: ECAN™ B	rror Count bit	ts	ATION REGIS	STER 1		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_		-	_	_	_	_	_	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
SJ	W<1:0>			BRF	P<5:0>			
bit 7							bit	
Legend:			- :4		mented bit was			
R = Readab -n = Value a		W = Writable I '1' = Bit is set	DIL	U = Unimplemented bit, read as '0' '0' = Bit is cleared $x = Bit is u$		x = Bit is unkr		
					alcu			
bit 15-8	Unimpleme	nted: Read as 'd)'					
bit 7-6	SJW<1:0>:	Synchronization	Jump Width	bits				
	11 = Length	is 4 x Tq						
	10 = Length							
	01 = Length							
	00 = Length							
bit 5-0		Baud Rate Preso						
	11 1111 =	TQ = 2 x 64 x 1/F	CAN					
	•							
	•							
	•							
		Tq = 2 x 3 x 1/Fc						
		$T_Q = 2 \times 2 \times 1/F_Q$						
	00 0000 =	$TQ = 2 \times 1 \times 1/FC$	CAN					

REGISTER 21-8: CIEC: ECAN™ TRANSMIT/RECEIVE ERROR COUNT REGISTER

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x				
—	WAKFIL	—	—	—		SEG2PH<2:0>					
bit 15							bit				
DAA	DAA	DAA	DAA	DAA	D (4)		DAA				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
SEG2PHTS	SAM		SEG1PH<2:0	>		PRSEG<2:0>	L :4				
bit 7							bit				
Legend:											
R = Readable	bit	W = Writable	e bit	U = Unimplei	mented bit, re	ad as '0'					
-n = Value at F	POR	'1' = Bit is se	et	'0' = Bit is cle	ared	x = Bit is unkno	wn				
bit 15	Unimplemen	ted: Read as	ʻ∩'								
bit 14	-	Unimplemented: Read as '0' WAKFIL: Select CAN bus Line Filter for Wake-up bit									
		l bus line filter									
			ot used for wak	e-up							
bit 13-11	Unimplemer	ted: Read as	'0'								
bit 10-8 SEG2PH<2:0>: Phase Segment 2 bits											
	111 = Length	n is 8 x Tq	-								
	•										
	•										
	•										
	000 = Lengt h	n is 1 x Tq									
bit 7	SEG2PHTS: Phase Segment 2 Time Select bit										
	1 = Freely programmable										
	0 = Maximum of SEG1PH bits or Information Processing Time (IPT), whichever is greater										
bit 6	SAM: Sample	e of the CAN I	ous Line bit								
	1 = Bus line is sampled three times at the sample point										
		-	ce at the samp	le point							
bit 5-3		D>: Phase Seg	gment 1 bits								
	111 = Length	n is 8 x TQ									
	•										
	•										
	•										
	000 = Length										
bit 2-0	PRSEG<2:0>: Propagation Time Segment bits										
	111 = Length	n is 8 x TQ									
	•										
	•										
	•										
	000 = Length										

REGISTER 21-10: CiCFG2: ECAN™ BAUD RATE CONFIGURATION REGISTER 2

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN7	FLTEN6	FLTEN5	FLTEN4	FLTEN3	FLTEN2	FLTEN1	FLTEN0
bit 7							bit 0

REGISTER 21-11: CIFEN1: ECAN™ ACCEPTANCE FILTER ENABLE REGISTER

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 21-12: CiBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F3BP<	<3:0>			F2BP	2<3:0>	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F1BP<	<3:0>		F0BP<3:0>			
bit 7				•			bit 0
Legend:		C = Writable I	bit, but only '0	' can be writter	to clear the bit	1	
R = Readable bit		W = Writable	hit	II = I Inimpler	nented hit read	1 26 '0'	

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12	F3BP<3:0>: RX Buffer mask for Filter 3 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	•
	•
	•
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F2BP<3:0>: RX Buffer mask for Filter 2 bits (same values as bit 15-12)
bit 7-4	F1BP<3:0>: RX Buffer mask for Filter 1 bits (same values as bit 15-12)
bit 3-0	F0BP<3:0>: RX Buffer mask for Filter 0 bits (same values as bit 15-12)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F7BP<3:0>				F6B	P<3:0>		
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F5BP<3:0>				F4BP<3:0>				
bit 7							bit 0	
Legend:		C = Writable	bit, but only '()' can be writter	to clear the b	it		
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at POR (1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown		
<u>-n = Value at</u> bit 15-12	F7BP<3:0>	'1' = Bit is set RX Buffer mas er hits received in	k for Filter 7 t	pits	ared	x = Bit is unki	nown	
		er hits received in						

REGISTER 21-13: CIBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

	•
	0001 = Filter hits received in RX Buffer 1 0000 = Filter hits received in RX Buffer 0
bit 11-8	F6BP<3:0>: RX Buffer mask for Filter 6 bits (same values as bit 15-12)
bit 7-4	F5BP<3:0>: RX Buffer mask for Filter 5 bits (same values as bit 15-12)
bit 3-0	F4BP<3:0>: RX Buffer mask for Filter 4 bits (same values as bit 15-12)

REGISTER 21-14: CiBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

		R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	2<3:0>	F10BF		F11BP<3:0>				
bit 8							bit 15	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	<3:0>	F8BP		F9BP<3:0>				
bit 0							bit 7	
-			R/W-0	R/W-0				

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-12	F11BP<3:0>: RX Buffer mask for Filter 11 bits 1111 = Filter hits received in RX FIFO buffer 1110 = Filter hits received in RX Buffer 14
	•
	•
	•
	0001 = Filter hits received in RX Buffer 1
	0000 = Filter hits received in RX Buffer 0
bit 11-8	F10BP<3:0>: RX Buffer mask for Filter 10 bits (same values as bit 15-12)
bit 7-4	F9BP<3:0>: RX Buffer mask for Filter 9 bits (same values as bit 15-12)
bit 3-0	F8BP<3:0>: RX Buffer mask for Filter 8 bits (same values as bit 15-12)

•

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F15BP<3:0>					F14B	P<3:0>	
bit 15				•			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	F13BF	°<3:0>			F12B	P<3:0>	
bit 7							bit 0
Legend:		C = Writable	bit, but only '()' can be writter	to clear the b	it	
R = Readable bit $W = Writable bit$					mented bit, rea		
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
			-				
bit 15-12	F15BP<3:0>	: RX Buffer ma	sk for Filter 1	5 bits			
	1111 = Filter	hits received in	n RX FIFO bu	Iffer			
	1110 = Filter	hits received in	n RX Buffer 1	4			
	•						
	•						
	•						
		hits received in					
		hits received in					
bit 11-8	F14BP<3:0>	: RX Buffer ma	sk for Filter 1	4 bits (same va	lues as bit 15-	12)	
bit 7-4	F13BP<3:0>	: RX Buffer ma	sk for Filter 1	3 bits (same va	lues as bit 15-	12)	
bit 3-0	F12BP<3:0>	: RX Buffer ma	sk for Filter 1	2 bits (same va	lues as bit 15-	12)	

REGISTER 21-15: CiBUFPNT4: ECAN™ FILTER 12-15 BUFFER POINTER REGISTER

	n (n =	0-15)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3
bit 15							bit 8
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x
SID2	SID1	SID0		EXIDE		EID17	EID16
bit 7	0.2 .	0.20		_,			bit 0
		A A A A A A A A A A					
Legend:			-		n to clear the bit		
R = Readable	e bit	W = Writable bit		U = Unimplemented bit, read		as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-5	SID<10:0>: S	tandard Identif	er bits				
	1 = Message	address bit SIE	Dx must be '1	' to match filter			
	0 = Message	address bit SIE	Ox must be '0	' to match filter			
bit 4	Unimplemen	ted: Read as ')'				
bit 3	EXIDE: Extended Identifier Enable bit						
	If MIDE = 1:						
		y messages wi	th extended i	dentifier addre	2222		
		y messages wi					
	If MIDE = 0:						
	Ignore EXIDE	bit.					
bit 2	Unimplemen	ted: Read as ')'				

REGISTER 21-16: CIRXFnSID: ECAN™ ACCEPTANCE FILTER STANDARD IDENTIFIER REGISTER n (n = 0-15)

bit 1-0 **EID<17:16>:** Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 21-17: CIRXFnEID: ECAN™ ACCEPTANCE FILTER EXTENDED IDENTIFIER REGISTER n (n = 0-15)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID14	EID13	EID12	EID11	EID10	EID9	EID8
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID6	EID5	EID4	EID3	EID2	EID1	EID0
		•			•	bit 0
	EID14 R/W-x	EID14 EID13 R/W-x R/W-x	EID14 EID13 EID12 R/W-x R/W-x R/W-x	EID14 EID13 EID12 EID11 R/W-x R/W-x R/W-x R/W-x	EID14 EID13 EID12 EID11 EID10 R/W-x R/W-x R/W-x R/W-x R/W-x	EID14 EID13 EID12 EID11 EID10 EID9 R/W-x R/W-x R/W-x R/W-x R/W-x

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Message address bit EIDx must be '1' to match filter

0 = Message address bit EIDx must be '0' to match filter

REGISTER 21-18: CiFMSKSEL1: ECAN™ FILTER 7-0 MASK SELECTION REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F7MS	F7MSK<1:0> F6MSK<1:0> F5MSK<1:0> F4MS				F4MSł	<<1:0>	
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
F3MS	K<1:0>	F2MSł	<1:0>	F1MS	K<1:0>	F0MS	<<1:0>
bit 7							bit
Legend:		C = Writable I	nit but only '0'	' can be written	to clear the bit		
R = Readable	bit	W = Writable			nented bit, read		
-n = Value at F		'1' = Bit is set		0° = Bit is cleared x = Bit is unknown			
bit 15-14	11 = Reserve	ance Mask 2 reg	gisters contain	mask			
	00 = Accepta	ance Mask 1 reg	•				
bit 13-12	•		gisters contain	mask	as bit 15-14)		
bit 13-12 bit 11-10	F6MSK<1:0>	ance Mask 0 reo	gisters contain for Filter 6 bit	i mask : (same values ;	-		
	F6MSK<1:0> F5MSK<1:0>	ance Mask 0 rec >: Mask Source	gisters contain for Filter 6 bit for Filter 5 bit	i mask (same values a (same values a	as bit 15-14)		
bit 11-10	F6MSK<1:0> F5MSK<1:0> F4MSK<1:0>	ance Mask 0 reg >: Mask Source >: Mask Source	gisters contain for Filter 6 bit for Filter 5 bit for Filter 4 bit	i mask (same values a (same values a (same values a	as bit 15-14) as bit 15-14)		
bit 11-10 bit 9-8	F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0>	ance Mask 0 reg >: Mask Source >: Mask Source >: Mask Source	for Filter 6 bit for Filter 6 bit for Filter 5 bit for Filter 4 bit for Filter 3 bit	i mask ; (same values ; ; (same values ; ; (same values ; ; (same values ;	as bit 15-14) as bit 15-14) as bit 15-14)		
bit 11-10 bit 9-8 bit 7-6	F6MSK<1:0> F5MSK<1:0> F4MSK<1:0> F3MSK<1:0> F3MSK<1:0>	ance Mask 0 reg -: Mask Source -: Mask Source -: Mask Source -: Mask Source	jisters contain for Filter 6 bit for Filter 5 bit for Filter 4 bit for Filter 3 bit for Filter 2 bit	i mask (same values a (same values a (same values a (same values a (same values a	as bit 15-14) as bit 15-14) as bit 15-14) as bit 15-14)		

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F15M8	F15MSK<1:0>		F14MSK<1:0>		F13MSK<1:0>		F12MSK<1:0>	
bit 15							bit	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
F11MS	SK<1:0>	F10MS	K<1:0>	F9MS	K<1:0>	F8MS	K<1:0>	
bit 7							bit	
Legend:		C = Writable	hit but only '()' can be written	to clear the h	.it		
R = Readable	bit	W = Writable	-					
-n = Value at		'1' = Bit is set		U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknow		nown		
bit 15-14 F15MSK<1:0>: Mask Source for Filte 11 = Reserved 10 = Acceptance Mask 2 registers co 01 = Acceptance Mask 1 registers co			gisters contai	n mask				

REGISTER 21-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

00 = Acceptance Mask 0 registers contain mask

F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bit 15-14)

F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bit 15-14)

F12MSK<1:0>: Mask Source for Filter 12 bit (same values as bit 15-14)

F11MSK<1:0>: Mask Source for Filter 11 bit (same values as bit 15-14)

F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)

F9MSK<1:0>: Mask Source for Filter 9 bit (same values as bit 15-14)

F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

© 2009-2011 Microchip	Technology Inc.
-----------------------	-----------------

bit 13-12

bit 11-10

bit 9-8

bit 7-6

bit 5-4

bit 3-2

bit 1-0

REGISTER 21-20: CIRXMnSID: ECAN[™] ACCEPTANCE FILTER MASK STANDARD IDENTIFIER REGISTER n (n = 0-2)

	KLOIC		-2)					
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	—	MIDE	—	EID17	EID16	
bit 7							bit 0	
Legend:		C = Writable I	oit, but only '0	' can be writter	n to clear the bit			
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
			• • • •					
bit 15-5		Standard Identif						
		it SIDx in filter	•					
		s don't care in	•	son				
bit 4	Unimplemen	ted: Read as '	0'					
bit 3	MIDE: Identif	ier Receive Mo	de bit					
	0 = Match eit	her standard or	extended ad	dress message	ldress) that corr e if filters match EID) = (Message	•	DE bit in filter	
bit 2	Unimplemen	ted: Read as '	0'					
bit 1-0	FID<17:16>:	FID<17:16>: Extended Identifier bits						

- bit 1-0 **EID<17:16>:** Extended Identifier bits
 - 1 = Include bit EIDx in filter comparison
 - 0 = Bit EIDx is don't care in filter comparison

REGISTER 21-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

		•	•				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:	C = Writable bit, but o	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0

REGISTER 21-22: CIRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set '0' = Bit is cleared x = Bit is unknown					

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

REGISTER 21-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL31	RXFUL30	RXFUL29	RXFUL28	RXFUL27	RXFUL26	RXFUL25	RXFUL24
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL23	RXFUL22	RXFUL21	RXFUL20	RXFUL19	RXFUL18	RXFUL17	RXFUL16
bit 7							bit 0

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0

RXFUL<31:16>: Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty (cleared by user software)

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF15	RXOVF14	RXOVF13	RXOVF12	RXOVF11	RXOVF10	RXOVF9	RXOVF8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF7	RXOVF6	RXOVF5	RXOVF4	RXOVF3	RXOVF2	RXOVF1	RXOVF0
bit 7							bit 0

REGISTER 21-24: CiRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

Legend:	C = Writable bit, but only '0' can be written to clear the bit					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-0 RXOVF<15:0>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

REGISTER 21-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF31	RXOVF30	RXOVF29	RXOVF28	RXOVF27	RXOVF26	RXOVF25	RXOVF24
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXOVF23	RXOVF22	RXOVF21	RXOVF20	RXOVF19	RXOVF18	RXOVF17	RXOVF16
bit 7							bit 0

Legend:	C = Writable bit, but only '0' can be written to clear the bit						
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition (cleared by user software)

R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXENn	TXABTn	TXLARBn	TXERRn	TXREQn	RTRENn	TXnPF	RI<1:0>			
bit 15							bit			
R/W-0	R-0	R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
TXENm	TXABTm ⁽¹⁾	TXLARBm ⁽¹⁾	TXERRm ⁽¹⁾	TXREQm	RTRENm	TXmPF				
bit 7							bit			
Legend:		C = Writable I	pit. but only '0'	can be written	to clear the bit					
R = Readable	e bit	W = Writable			nented bit, read	as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown			
bit 15-8	See definition	for bits 7-0, co	ontrols Buffer r	ı						
bit 7		RX Buffer Sele								
	1 = Buffer TR	Bn is a transm	it buffer							
		Bn is a receive								
bit 6	TXABTm: Me	essage Aborteo	l bit ⁽¹⁾							
	1 = Message			<i>c</i>						
	•	completed tran								
bit 5		Aessage Lost A								
		lost arbitration did not lose ar								
bit 4	•			•						
	TXERRm: Error Detected During Transmission bit ⁽¹⁾ 1 = A bus error occurred while the message was being sent									
	 a A bus error did not occur while the message was being sent a A bus error did not occur while the message was being sent 									
bit 3		essage Send R		-	-					
	1 = Requests sent	that a messag	e be sent. The	e bit automatica	ally clears when	the message i	s successful			
	0 = Clearing f	he bit to '0' wh	ile set request	s a message a	bort					
	RTRENm: Au	uto-Remote Tra	nsmit Enable	bit						
bit 2	 1 = When a remote transmit is received, TXREQ will be set 0 = When a remote transmit is received, TXREQ will be unaffected 									
bit 2			is received, T	XREQ will be ι	inallected					
	0 = When a r		,		Inallected					
bit 2 bit 1-0	0 = When a r TXmPRI<1:0 11 = Highest	emote transmit >: Message Tra message priori	ansmission Pr ty		inaliected					
	0 = When a r TXmPRI<1:0 11 = Highest 10 = High inte	emote transmit >: Message Tra	ansmission Pr ty sage priority		manected					

Note: The buffers, SID, EID, DLC, Data Field and Receive Status registers are located in DMA RAM.

© 2009-2011 Microchip Technology Inc.

21.3 ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM Memory. They are not ECAN Special Function Registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

I. LOAN	MILOOAOL					
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_	SID10	SID9	SID8	SID7	SID6
						bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SID4	SID3	SID2	SID1	SID0	SRR	IDE
						bit 0
bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
Unimplemen	ted: Read as '	0'				
SID<10:0>: S	tandard Identif	ier bits				
SRR: Substitu	ute Remote Re	quest bit				
When TXIDE	= 0:					
1 = Message	will request rer	note transmis	sion			
0 = Normal m	essage					
When TXIDE	= 1:					
The SRR bit r	nust be set to '	1'				
IDE: Extende	d Identifier bit					
1 = Message	will transmit ex	tended identi	fier			
0 = Message	will transmit sta	andard identif	ier			
	U-0 R/W-x SID4 bit POR Unimplement SID<10:0>: S SRR: Substitut When TXIDE 1 = Message 0 = Normal m When TXIDE The SRR bit r IDE: Extended 1 = Message 1 = Message	U-0 U-0 — — R/W-x R/W-x SID4 SID3 bit W = Writable POR '1' = Bit is set Unimplemented: Read as '0 SID<10:0>: Standard Identifi SRR: Substitute Remote Re When TXIDE = 0: 1 = Message will request rer 0 = Normal message When TXIDE = 1: The SRR bit must be set to '1 IDE: Extended Identifier bit 1 = Message will transmit ext	U-0 U-0 R/W-x Image: Image	U-0 U-0 R/W-x R/W-x - - SID10 SID9 R/W-x R/W-x R/W-x R/W-x SID4 SID3 SID2 SID1 bit W = Writable bit U = Unimpler OR '1' = Bit is set '0' = Bit is cle Unimplemented: Read as '0' SID SID SID<10:0>: Standard Identifier bits SRR: Substitute Remote Request bit When TXIDE = 0: 1 = Message will request remote transmission 0 = Normal message When TXIDE = 1: The SRR bit must be set to '1' 1'	U-0 U-0 R/W-x R/W-x R/W-x - - SID10 SID9 SID8 R/W-x R/W-x R/W-x R/W-x R/W-x SID4 SID3 SID2 SID1 SID0 bit W = Writable bit U = Unimplemented bit, read OR '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' SID SID SID SID SID SID SID Unimplemented: Read as '0' SID SID '0' = Bit is cleared Unimplemented: Read as '0' SID SID '0' = Bit is cleared Unimplemented: Read as '0' SID SID SID SID '0' = Bit is cleared Unimplemented: Read as '0' SID SID SID SID '1' = Bit is set '0' = Bit is cleared Unimplemented: Read as '0' SID SID '1' ID Men TXIDE = 0: 1 Normal message When TXIDE = 1: The SRR bit must be set to '1' IDE: Extended Id	U-0 U-0 R/W-x R/W-x R/W-x R/W-x - - SID10 SID9 SID8 SID7 R/W-x R/W-x R/W-x R/W-x R/W-x R/W-x SID4 SID3 SID2 SID1 SID0 SR bit W = Writable bit U = Unimplemented bit, read as '0' POR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr Unimplemented: Read as '0' SID SID SID SID SID<10.0>: Standard Identifier bits SRR: Substitute Remote Request bit When TXIDE = 0: 1 = Message will request remote transmission 0 = Normal message When TXIDE = 1: The SRR bit must be set to '1' IDE: Extended Identifier bit 1 = Message will transmit extended identifier

BUFFER 21-2: ECAN[™] MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	
—	_	—	_	EID17	EID16	EID15	EID14	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID13	EID12	EID11	EID10	EID9	EID8	EID7	EID6	
bit 7							bit C	
Legend:								
R = Readable	bit	W = Writable I	oit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at POR '1		'1' = Bit is set	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

BUFFER 21-3	D: ECAN	WESSAGE	DUFFER V	VORD Z			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1
bit 15							bit 8
U-x	U-x	U-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—			RB0	DLC3	DLC2	DLC1	DLC0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared				ared	x = Bit is unkr	nown	
bit 15-10	EID<5:0>: E>	tended Identifi	er bits				
bit 9	RTR: Remote	e Transmission	Request bit				
	When TXIDE	= 1:					
	•	will request re	mote transmis	sion			
	0 = Normal m	nessage					
	When TXIDE						
	The RTR bit i	s ignored.					
bit 8	RB1: Reserve	ed Bit 1					
	User must se	t this bit to '0' p	er CAN proto	col.			
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4	RB0: Reserve	ed Bit 0					
	User must se	t this bit to '0' p	er CAN proto	col.			

BUFFER 21-3: ECAN™ MESSAGE BUFFER WORD 2

bit 3-0 **DLC<3:0>:** Data Length Code bits

BUFFER 21-4: ECAN™ MESSAGE BUFFER WORD 3

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 0			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unkr		nown	

bit 15-8 Byte 1<15:8>: ECAN™ Message byte 0

bit 7-0 Byte 0<7:0>: ECAN Message byte 1

© 2009-2011 Microchip Technology Inc.

BUFFER 21-5: ECAN™ MESSAGE BUFFER WORD 4

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 3			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 2			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable b	bit U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	Bit is cleared x = Bit is unknown		

bit 15-8 Byte 3<15:8>: ECAN™ Message byte 3

bit 7-0 Byte 2<7:0>: ECAN Message byte 2

BUFFER 21-6: ECAN[™] MESSAGE BUFFER WORD 5

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 5			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	te 4			
bit 7							bit 0
Legend:							
R = Readable I	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set	= Bit is set '0' = Bit is cleared x = Bit is unknown				nown

bit 15-8 Byte 5<15:8>: ECAN™ Message byte 5

bit 7-0 Byte 4<7:0>: ECAN Message byte 4

BUFFER 21-7: ECAN[™] MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			B	/te 7				
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
			B	/te 6				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is s		'1' = Bit is set		'0' = Bit is cleared x = Bit is unkno			nown	

bit 15-8 Byte 7<15:8>: ECAN™ Message byte 7

bit 7-0 Byte 6<7:0>: ECAN Message byte 6

BUFFER 21-8: ECAN[™] MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_				FILHIT<4:0> ⁽¹⁾	1	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unk			nown	
bit 15-13	Unimplement	ted: Read as 'd	כ'				

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

NOTES:

22.0 USB ON-THE-GO (OTG) MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 25. "USB On-The-Go (OTG))" (DS70571) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

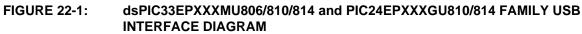
22.1 Overview

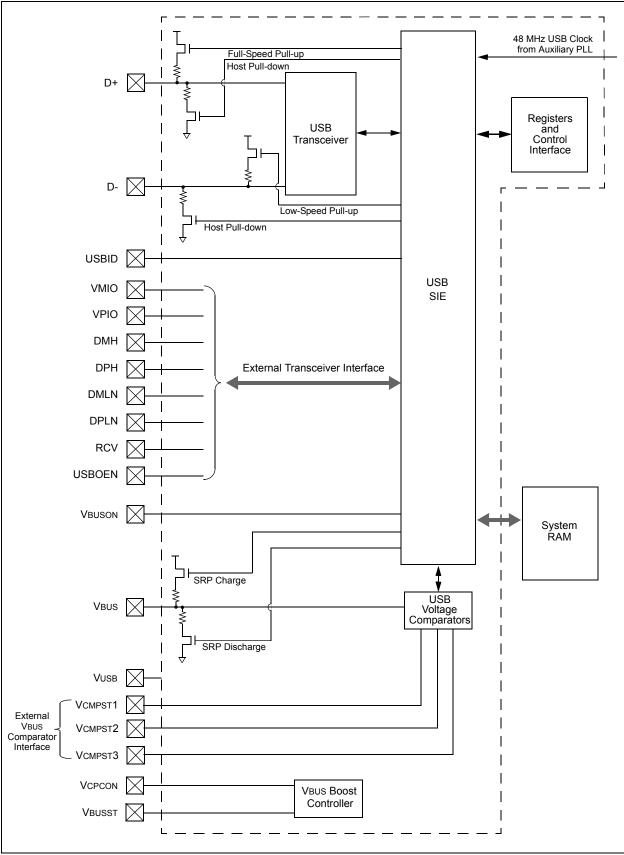
The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Universal Serial Bus (USB) On-The-Go (OTG) module includes the following features:

- USB full-speed support for host and device
- Low-speed host support
- USB On-The-Go support
- Integrated signaling resistors
- Integrated analog comparators for VBUS monitoring
- Integrated USB transceiver
- Hardware performs transaction handshaking
- Endpoint buffering anywhere in system RAM
- Integrated DMA controller to access system RAM
- Support for all four transfer types:
 - Control
 - Interrupt
 - Bulk data
 - Isochronous
- Queueing of up to four endpoint transfers without servicing
- USB 5V charge pump controller

The USB module contains the analog and digital components to provide a USB 2.0 full-speed and low-speed embedded host, full-speed device, or OTG implementation with a minimum of external components.

The USB module consists of the clock generator, the USB voltage comparators, the transceiver, the Serial Interface Engine (SIE), pull-up and pull-down resistors, and the register interface. Figure 22-1 illustrates the block diagram of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Output Compare module.


The device auxiliary clock generator provides the 48 MHz clock required for USB communication. The voltage comparators monitor the voltage on the VBUS pin to determine the state of the bus. The transceiver provides the analog translation between the USB bus and the digital logic. The SIE is a state machine that transfers data to and from the endpoint buffers and generates the protocol for data transfers. The integrated pull-up and pull-down resistors eliminate the need for external signaling components. The register interface allows the CPU to configure and communicate with the module.


Note: The implementation and use of the USB specifications and other third party specifications or technology may require a license from various entities, including, but not limited to USB Implementers Forum, Inc. (also referred to as USB-IF). It is your responsibility to obtain more information regarding any applicable licensing obligations.

22.1.1 Clearing USB OTG Interrupts

Unlike device level interrupts, the USB OTG interrupt status flags are not freely writable in software. All USB OTG flag bits are implemented as hardware set-only bits. Additionally, these bits can only be cleared in software by writing a '1' to their locations (i.e., performing a BSET instruction). Writing a '0' to a flag bit (i.e., a BCLR instruction) has no effect.

Note: Throughout this section, a bit that can only be cleared by writing a '1' to its location is referred to as "Write '1' to clear bit". In register descriptions, this function is indicated by the descriptor, "K".

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	_	_	_	_	_	_			
bit 15	-						bit 8			
R-0, HSC	U-0	R-0, HSC	U-0	R-0, HSC	R-0, HSC	U-0	R-0, HSC			
ID	<u> </u>	LSTATE	—	SESVD	SESEND	_	VBUSVD			
bit 7							bit 0			
Legend:	U = Unimplemented bit, read as '0'									
R = Readable	R = Readable bit W = Writable bit HSC = Hardware Settable/Clearable bit									
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown			
bit 15-8 bit 7 bit 6 bit 5	ID: ID Pin Sta 1 = No cable 0 = A type A p Unimplemen LSTATE: Line 1 = The USB	blug has been p ted: Read as '(State Stable I line state (as d	a type B plug h blugged into th o' ndicator bit efined by SE0	as been plugge e USB recepta and JSTATE) h le for the previo	cle nas been stable	·	us 1 ms			
bit 4	Unimplemen	ted: Read as '	י)							
bit 3	1 = The Vbus device	-	ve Va_sess_vl	ld (as defined in d on the A or B		Specification) on the A or B			
bit 2	SESEND: B-S	Session End Ir	ndicator bit							
		•		d (as defined in nd on the B dev		Specification)	on the B device			
bit 1	Unimplemen	ted: Read as 'd)'							
bit 0	VBUSVD: A-V	Vbus Valid Ind	icator bit							
	1 - The \//									

REGISTER 22-1: UXOTGSTAT: USB OTG STATUS REGISTER

- 1 = The Vbus voltage is above Va_vbus_vld (as defined in the USB OTG Specification) on the A device
 - 0 = The Vbus voltage is below Va_vbus_vld on the A device

© 2009-2011 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	_		_	_	—	—	_			
bit 15		·					bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
DPPULUP	DMPULUP	DPPULDWN ⁽¹⁾	DMPULDWN ⁽¹⁾	VBUSON ⁽¹⁾	OTGEN ⁽¹⁾	VBUSCHG ⁽¹⁾	VBUSDIS ⁽¹⁾			
bit 7							bit C			
Legend:										
R = Readal	blo bit	W = Writable bi	+	U = Unimplem	ponted hit rea	d ac '0'				
-n = Value a		'1' = Bit is set	ı	$0^{\circ} = \text{Bit is clear}$		x = Bit is unkn	0.110			
	al POR	i = bit is set			areu	X - DILIS UNKN	OWIT			
bit 15-8	Unimpleme	nted: Read as '0	,							
bit 7	-	D+ Pull-Up Enab								
	1 = D+ data	line pull-up resis	stor enabled							
	0 = D+ data	line pull-up resis	stor disabled							
bit 6	DMPULUP: D- Pull-Up Enable bit									
	1 = D- data line pull-up resistor enabled									
		line pull-up resis								
bit 5		: D+ Pull-Down								
		line pull-down re line pull-down re								
bit 4		•								
	DMPULDWN: D- Pull-Down Enable bit ⁽¹⁾ 1 = D- data line pull-down resistor enabled									
	0 = D- data line pull-down resistor disabled									
bit 3	VBUSON: V	BUS Power-on bi	t(1)							
	1 = VBUS line powered									
	0 = VBUS line not powered									
bit 2	OTGEN: OTG Features Enable bit ⁽¹⁾									
	0 = USB OT	G disabled; D+/I	+/D- pull-ups and D- pull-ups and pi its (UxCON<3,0>	ull-downs are o			settings of the			
bit 1	VBUSCHG:	VBUS Charge Se	election bit ⁽¹⁾							
		e set to charge t								
		e set to charge t								
bit 0		/BUS Discharge E								
	1 = VBUS lin 0 = VBUS lin	e discharged thr	ough a resistor							

REGISTER 22-2: UxOTGCON: USB ON-THE-GO CONTROL REGISTER

	REGISTER 22-3:	UxPWRC: USB POWER CONTROL REGISTER
--	----------------	------------------------------------

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

HS, HC	U-0	U-0	R/W	U-0	U-0	R/W-0, HC	R/W-0
UACTPND		—	USLPGRD	—	—	USUSPND	USBPWR ⁽¹⁾
bit 7							bit 0

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 15-8Unimplemented: Read as '0'bit 7UACTPND: USB Activity Pending bit

- 1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set)
- 0 = Module may be suspended or powered down

bit 6-5 Unimplemented: Read as '0'

bit 4

- **USLPGRD:** Sleep Guard bit 1 = Indicate to the USB module that it is about to be suspended or powered down
 - 0 = No suspend
- bit 3-2 Unimplemented: Read as '0'
- bit 1 USUSPND: USB Suspend Mode Enable bit
 - 1 = USB OTG module is in Suspend mode
 - 0 = Normal USB OTG operation
- bit 0 USBPWR: USB Operation Enable bit⁽¹⁾
 - 1 = USB OTG module is enabled
 - 0 = USB OTG module is disabled
- **Note 1:** Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (UxCON<3,0> and UxOTGCON<2>) are also cleared.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_		—	—	—	—	—	—
bit 15	·						bit 8
R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	U-0	U-0
	ENDPT	<3:0> ⁽²⁾		DIR	PPBI ⁽¹⁾	—	_
bit 7							bit 0
Legend:		U = Unimplem	nented bit, read	1 as '0'			
R = Readab	ole bit	W = Writable I	bit	HSC = Hardw	are Settable/C	learable bit	
-n = Value a	nt POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-8 bit 7-4	ENDPT<3:0>		e last endpoint	activity (repres	ents the numb	er of the endpo	int BDT
	ENDPT<3:0> updated by th 1111 = Endpo 1110 = Endpo • • • 0001 = Endpo	: Number of the e last USB tran bint 15 bint 14 bint 1	e last endpoint	activity (repres	ents the numb	er of the endpo	int BDT
bit 7-4	ENDPT<3:0> updated by th 1111 = Endpo 1110 = Endpo 0001 = Endpo 0000 = Endpo	: Number of the e last USB tran bint 15 bint 14 bint 1 bint 1	e last endpoint Isfer) ⁽²⁾		ents the numb	er of the endpo	int BDT
	ENDPT<3:0> updated by th 1111 = Endpo 1110 = Endpo • • • • 0001 = Endpo 0000 = Endpo DIR: Last Buff 1 = The last t	: Number of the e last USB tran bint 15 bint 14 bint 1	e last endpoint Isfer) ⁽²⁾ Direction Indica	tor bit nsfer (TX)	ents the numb	er of the endpo	int BDT
bit 7-4	ENDPT<3:0> updated by th 1111 = Endpo 1110 = Endpo • • • 0001 = Endpo 0000 = Endpo DIR: Last Buf 1 = The last t 0 = The last t	: Number of the e last USB tran bint 15 bint 14 bint 1 fer Descriptor E ransaction was	e last endpoint Isfer) ⁽²⁾ Direction Indica a transmit trans a receive transmit trans	tor bit nsfer (TX) isfer (RX)	ents the numb	er of the endpo	int BDT
bit 7-4 bit 3	ENDPT<3:0> updated by th 1111 = Endpo 1110 = Endpo • • • • • • • • • • • • • • • • • • •	: Number of the e last USB tran bint 15 bint 14 bint 0 fer Descriptor D ransaction was ransaction was ransaction was ransaction was	e last endpoint Isfer) ⁽²⁾ Direction Indica a transmit trans a receive transcriptor Pointer to the ODD b	tor bit nsfer (TX) isfer (RX)	bank	er of the endpo	int BDT

REGISTER 22-4: UxSTAT: USB STATUS REGISTER

- Note 1: This bit is only valid for endpoints with available EVEN and ODD buffer descriptor registers.
 - 2: In Host mode, all transactions are processed through Endpoint 0 and the Endpoint 0 BDTs. Therefore, ENDPT<3:0> will always read as '0000'.

	0. 0/.00						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8

REGISTER 22-5: UxCON: USB CONTROL REGISTER (DEVICE MODE)

U-0	R-x, HSC	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
—	SE0	PKTDIS	—	HOSTEN ⁽¹⁾	RESUME	PPBRST	USBEN
bit 7							bit 0

Legend:	U = Unimplemented bit, read as '0'					
R = Readable bit	W = Writable bit	HSC = Hardware Settable/Clearable bit				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-7	Unimplemented: Read as '0'
bit 6	SE0: Live Single-Ended Zero Flag bit
	 1 = Single-ended zero active on the USB bus 0 = No single-ended zero detected
bit 5	PKTDIS: Packet Transfer Disable bit
	 1 = SIE token and packet processing disabled; automatically set when a SETUP token is received 0 = SIE token and packet processing enabled
bit 4	Unimplemented: Read as '0'
bit 3	HOSTEN: Host Mode Enable bit ⁽¹⁾
	 1 = USB host capability enabled; pull-downs on D+ and D- are activated in hardware 0 = USB host capability disabled
bit 2	RESUME: Resume Signaling Enable bit
	1 = Resume signaling activated
	0 = Resume signaling disabled
bit 1	PPBRST: Ping-Pong Buffers Reset bit
	 1 = Reset all Ping-Pong Buffer Pointers to the EVEN buffer descriptor banks 0 = Ping-Pong Buffer Pointers not reset
bit 0	USBEN: USB Module Enable bit
	 1 = USB module and supporting circuitry enabled (device attached); D+ pull-up is activated in hardware 0 = USB module and supporting circuitry disabled (device detached)

Note 1: This bit should be '0' in Device mode.

© 2009-2011 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—		—	—	—	_			
bit 15							bit 8			
R-x, HSC	R-x, HSC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
JSTATE	SE0	TOKBUSY	USBRST	HOSTEN	RESUME	PPBRST	SOFEN			
bit 7							bit 0			
Logondy			optod bit roo	d oo 'O'						
Legend: R = Readabl	e hit	U = Unimplem W = Writable I			/are Settable/C	learable bit				
-n = Value at		'1' = Bit is set	JIL	'0' = Bit is clea		x = Bit is unkn	own			
					uicu		own			
bit 15-8	Unimplemen	ted: Read as '0)'							
bit 7	JSTATE: Live	e Differential Re	ceiver J State	Flag bit						
		ifferential '0' in I	ow-speed, diff	erential '1' in fu	ull-speed) deteo	cted on the USE	3			
	0 = No J state									
bit 6	SE0: Live Single-Ended Zero Flag bit									
	 Single-ended zero active on the USB bus No single-ended zero detected 									
bit 5	•	TOKBUSY: Token Busy Status bit								
		ing executed by		lule in On-The-	Go state					
	0 = No token	being executed								
bit 4		USBRST: Module Reset bit								
	1 = USB Reset has been generated; for Software Reset, application must set this bit for 50 ms, and									
	then clear it 0 = USB Reset terminated									
bit 3	HOSTEN: Host Mode Enable bit									
	1 = USB host capability enabled; pull-downs on D+ and D- are activated in hardware									
	0 = USB host capability disabled									
bit 2	RESUME: Resume Signaling Enable bit									
	1 = Resume signaling activated; software must set bit for 10 ms, and then clear to enable remote wake-up									
	0 = Resume signaling disabled									
bit 1	PPBRST: Pin	g-Pong Buffers	Reset bit							
		Il Ping-Pong Bu		the EVEN buf	fer descriptor b	anks				
1.1.0	•	ng Buffer Pointe								
bit 0		t of Frame Enal								
		Frame token ser		IIIS						

REGISTER 22-6: UxCON: USB CONTROL REGISTER (HOST MODE)

	2-7. UXAI						
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	-	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
LSPDEN ⁽¹⁾				DEVADDR<6:0	>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimplem	nented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-8	Unimpleme	nted: Read as '0'					
bit 7	LSPDEN: Lo	w-Speed Enable	Indicator bit	(1)			

REGISTER 22-7: UxADDR: USB ADDRESS REGISTER

1 = USB module operates at low-speed

0 = USB module operates at full-speed

bit 6-0 DEVADDR<6:0>: USB Device Address bits

Note 1: Host mode only. In Device mode, this bit is unimplemented.

REGISTER 22-8: UxTOK: USB TOKEN REGISTER (HOST MODE ONLY)

-							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—		—	—		_
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PID<	3:0> (1)			EP<	<3:0>	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-8	Unimplemen	ted: Read as '	o'				
bit 7-4	PID<3:0>: To	ken Type Ident	ifier bits ⁽¹⁾				
	1101 = SETI	JP (TX) token t	pe transactior	า			
	1001 = IN (R	X) token type ti	ansaction				
	0001 = OUT	(TX) token type	e transaction				
bit 3-0	EP<3:0>: Tol	ken Command	Endpoint Addr	ess bits			

This value must specify a valid endpoint on the attached device.

Note 1: All other combinations are reserved and are not to be used.

© 2009-2011 Microchip Technology Inc.

REGISTER 22-9: UxSOF: USB OTG START-OF-TOKEN THRESHOLD REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT	<7:0>			
bit 7							bit 0
I eqend.							

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-0	CNT<7:0>: Start of Frame Count bits
	Value represents 10 + (packet size of n bytes); for example:
	0100 1010 = 64-byte packet
	0010 1010 = 32-byte packet
	0001 0010 = 8-byte packet

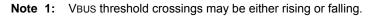
REGISTER 22-10: UxCNFG1: USB CONFIGURATION REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	—	—	—	—	—
bit 15							bit 8
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0
UTEYE	UOEMON	—	USBSIDL	—	—	—	—
bit 7					•	•	bit 0
Legend:							

Legenu.			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	UTEYE: USB Eye Pattern Test Enable bit
	1 = Eye pattern test enabled
	0 = Eye pattern test disabled
bit 6	UOEMON: USB OE Monitor Enable bit
	1 = \overline{OE} signal active; it indicates intervals during which the D+/D- lines are driving 0 = \overline{OE} signal inactive ⁽¹⁾
bit 5	Unimplemented: Read as '0'
bit 4	USBSIDL: USB OTG Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode
	0 = Continue module operation in Idle mode
bit 3-0	Unimplemented: Read as '0'

Note 1: When the UTRIS (UxCNFG2<0>) bit is set, the \overline{OE} signal is active regardless of the setting of UOEMON.


	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
	—	—	_	_	—	—	_		
bit 15							bit		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	UVCMPSEL	PUVBUS	EXTI2CEN	UVBUSDIS(1)	UVCMPDIS ⁽¹⁾	UTRDIS ⁽¹⁾		
bit 7							bit		
Legend:									
R = Readab	le bit	W = Writable b	oit	U = Unimplen	nented bit, read	l as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own		
bit 15-6 bit 5	-	ted: Read as '0 External Comp		lode Select bit					
bit 5		UVCMPSEL: External Comparator Input Mode Select bit							
	When UVCMPDIS is set: 1 = Use 3 pin input for external comparators								
	0 = Use 2 pin input for external comparators								
bit 4	PUVBUS: VB	us Pull-up Enab	ole bit						
bit 4		∪s Pull-up Enab n Vв∪s pin enab							
bit 4	1 = Pull-up o 0 = Pull-up o	n VBUS pin enat n VBUS pin disa	bled						
bit 4 bit 3	1 = Pull-up o 0 = Pull-up o EXTI2CEN: I ²	n VB∪s pin enat n VB∪s pin disa ²C™ Interface F	bled bled for External M		Enable bit				
	1 = Pull-up o 0 = Pull-up o EXTI2CEN: I ² 1 = External	n VB∪s pin enat n VB∪s pin disa 2C™ Interface F module(s) contr	bled bled for External M olled via I ² C i	nterface	Enable bit				
bit 3	1 = Pull-up o 0 = Pull-up o EXTI2CEN: I ² 1 = External 0 = External	n VB∪s pin enat n VB∪s pin disa ² C™ Interface F module(s) contr module(s) contr	oled bled or External M olled via I ² C i oller via dedic	nterface ated pins					
	1 = Pull-up o 0 = Pull-up o EXTI2CEN: l ² 1 = External 0 = External UVBUSDIS: 0	n VB∪s pin enat n VB∪s pin disal ² C™ Interface F module(s) contr module(s) contr Dn-Chip 5V Boc	oled bled or External M olled via I ² C i oller via dedic ost Regulator	nterface cated pins Builder Disable	bit ⁽¹⁾				
bit 3	1 = Pull-up o 0 = Pull-up o EXTI2CEN: I ² 1 = External 0 = External UVBUSDIS: 0 1 = On-chip b	n VBUS pin enat n VBUS pin disal C™ Interface F module(s) contr module(s) contr On-Chip 5V Boc poost regulator I	oled bled or External M olled via I ² C i oller via dedic ost Regulator ouilder disable	nterface cated pins Builder Disable	bit ⁽¹⁾	ice enabled			
bit 3 bit 2	1 = Pull-up o 0 = Pull-up o EXTI2CEN: I ² 1 = External 0 = External UVBUSDIS: 0 1 = On-chip b 0 = On-chip b	n VBUS pin enat n VBUS pin disal C™ Interface F module(s) contr module(s) contr On-Chip 5V Boc poost regulator I poost regulator I	oled bled for External M olled via I ² C i oller via dedic ost Regulator ouilder disable ouilder active	nterface cated pins Builder Disable ed; digital outpu	bit ⁽¹⁾	ice enabled			
bit 3	1 = Pull-up o 0 = Pull-up o EXTI2CEN : I ² 1 = External 0 = External UVBUSDIS : 0 1 = On-chip t 0 = On-chip t	n VBUS pin enat n VBUS pin disal C™ Interface F module(s) contr module(s) contr On-Chip 5V Boc poost regulator I	oled bled or External M olled via I ² C i oller via dedic ost Regulator ouilder disable ouilder active Comparator D	nterface cated pins Builder Disable ed; digital outpu isable bit ⁽¹⁾	bit ⁽¹⁾ ıt control interfa				
bit 3 bit 2	1 = Pull-up o 0 = Pull-up o EXTI2CEN: I ² 1 = External 0 = External UVBUSDIS: 0 1 = On-chip t 0 = On-chip t 1 = On-chip t 0 = On-chip t	n VBUS pin enat n VBUS pin disal C [™] Interface F module(s) contr module(s) contr On-Chip 5V Boc boost regulator I const regulator I On-Chip VBUS Co charge VBUS con charge VBUS con	oled bled or External M olled via I ² C i oller via dedic ost Regulator ouilder disable ouilder active Comparator Di mparator disa mparator activ	nterface cated pins Builder Disable ed; digital outpu isable bit ⁽¹⁾ bled; digital inp /e	bit ⁽¹⁾ ıt control interfa				
bit 3 bit 2	1 = Pull-up o 0 = Pull-up o EXTI2CEN: I ² 1 = External 0 = External UVBUSDIS: 0 1 = On-chip t 0 = On-chip t 1 = On-chip t 0 = On-chip t	n VBUS pin enat n VBUS pin disal C [™] Interface F module(s) contr module(s) contr On-Chip 5V Boc poost regulator I Doost regulator I On-Chip VBUS Co charge VBUS co	oled bled or External M olled via I ² C i oller via dedic ost Regulator ouilder disable ouilder active Comparator Di mparator disa mparator activ	nterface cated pins Builder Disable ed; digital outpu isable bit ⁽¹⁾ bled; digital inp /e	bit ⁽¹⁾ ıt control interfa				

REGISTER 22-11: UxCNFG2: USB CONFIGURATION REGISTER 2

Note 1: Do not change this bit while the USBPWR bit is set (UxPWRC<0> = 1).

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8
R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	U-0	R/K-0, HS
IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	—	VBUSVDIF
bit 7							bit 0
Legend:		U = Unimplen	nented bit, read	l as '0'			
R = Readabl	e bit	K = Write '1' t	o clear bit	HS = Hardwa	re Settable bit		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-8	Unimplemen	ted: Read as '	כ'				
bit 7	IDIF: ID State	Change Indica	ator bit				
	0	n ID state dete	cted				
	0 = No ID sta	-					
bit 6		Millisecond Ti					
		lisecond timer	•	4			
bit 5		ne State Stable		J			
DIL D				nd ISTATE hite	s) has been stat	ole for 1 ms bu	ut different from
	last time				5) 1123 Deeri Star		
	0 = USB line	state has not b	een stable for	1 ms			
bit 4	ACTVIF: Bus	Activity Indicat	or bit				
		n the D+/D- line					
		y on the D+/D-					
bit 3		ssion Valid Ch	•				
		s crossed VA_S s not crossed V		efined in the US	SB OTG Specifi	cation)(")	
bit 2		B-Device VBUS		tor bit			
DIL Z			•		d VB SESS END) (as defined in	the USB OTG
	Specifica	tion) ⁽¹⁾					
	0 = VBUS has	not crossed V	A_SESS_END				
bit 1	Unimplemen	ted: Read as '	כ'				
bit 0	VBUSVDIF: A	A-Device VBUS	Change Indica	tor bit			
	1 = VBUS cha Specifica		ce detected; VE	BUS has crosse	d Va_vbus_vld	(as defined ir	the USB OTG
	0 = No VBUS	change on A-d	levice detected				

REGISTER 22-12: UxOTGIR: USB OTG INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	<u> </u>		_	_		—	<u> </u>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0
IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	—	VBUSVDIE
bit 7							bit 0
Legend:							
R = Readable		W = Writable I	oit	•	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
1.1.45.0			. 1				
bit 15-8	-	ted: Read as '()				
bit 7		rupt Enable bit					
	1 = Interrupt 0 = Interrupt						
bit 6	•	Millisecond Tir	mer Interrupt E	nable bit			
	1 = Interrupt						
	0 = Interrupt						
bit 5	LSTATEIE: Li	ne State Stable	Interrupt Enal	ole bit			
	1 = Interrupt						
L:1 4	0 = Interrupt						
bit 4	1 = Interrupt	Activity Interru	pt Enable bit				
	1 = Interrupt 0 = Interrupt						
bit 3	•	ession Valid Inte	errupt Enable b	oit			
	1 = Interrupt						
	0 = Interrupt						
bit 2		B-Device Session	on End Interrup	ot Enable bit			
	1 = Interrupt						
1.11.4	0 = Interrupt		. 1				
bit 1	-	ted: Read as '(En aleta 111			
bit 0		A-Device VBUS	valid Interrupt	Enable bit			
	1 = Interrupt 0 = Interrupt						
	2 interrupt						

REGISTER 22-13: UxOTGIE: USB OTG INTERRUPT ENABLE REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>		
bit 15							bit 8	
R/K-0, HS	U-0	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R-0	R/K-0, HS	
STALLIF	—	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	URSTIF	
bit 7							bit 0	
Legend: U = Unimplemented bit, read as '0'								
R = Readable	e bit	K = Write '1' to	o clear bit	HS = Hardwa	re Settable bit			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 15-8	Unimplemen	ted: Read as ')'					
bit 7		ALL Handshake	•					
		handshake wa	s sent by the p	eripheral during	g the handshal	ke phase of the	transaction in	
		handshake ha	s not been sen	t				
bit 6		ted: Read as '(
bit 5	-	Resume Interru						
bit o		e is observed or	-	oin for 2.5 us (d	ifferential '1' for	low-speed, dif	ferential '0' for	
	full-speed					ien opeea, ai		
	0 = No K-Sta	te observed						
bit 4		Detect Interrupt						
		lition detected (ondition detected		tate of 3 ms or	more)			
bit 3		n Processing Co		upt bit				
		ng of current to	-	-	Γ register for er	ndpoint BDT in	formation	
		ng of current to			TAT register o	r load next tok	en from STAT	
1.11.0		this bit causes		O to advance.)				
bit 2		of Frame Toker	•	the peripheral				
		Frame token ha			ripheral			
bit 1		B Error Conditio			•			
		sked error cond	-		states enabled	in the UxEIE re	egister can set	
	this bit							
h:4 0		sked error con		irred				
bit 0		3 Reset Interrup B Reset has as			not otato muct	ha alaarad haf	are this hit es-	
	⊥ = valid US	B Reset has oc erted		asi 2.5 μs; κes	set state must		Die this dit can	
		Reset has occu	ırred					

REGISTER 22-14: UxIR: USB INTERRUPT STATUS REGISTER (DEVICE MODE ONLY)

REGISTER 22-15: UxIR: USB INTERRUPT STATUS REGISTER (HOST MODE ONLY)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R-0	R/K-0, HS
STALLIF	ATTACHIF	RESUMEIF	IDLEIF	TRNIF	SOFIF	UERRIF	DETACHIF
bit 7							bit 0

Legend:	U = Unimplemented bit, re	ad as '0'	
R = Readable bit	K = Write '1' to clear bit	HS = Hardware Settable	e bit
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	STALLIF: STALL Handshake Interrupt bit
	1 = A STALL handshake was sent by the peripheral device during the handshake phase of the transaction in Device mode
	0 = A STALL handshake has not been sent
bit 6	ATTACHIF: Peripheral Attach Interrupt bit
	 1 = A peripheral attachment has been detected by the module; set if the bus state is not SE0 and there has been no bus activity for 2.5 μs
	0 = No peripheral attachement detected
bit 5	RESUMEIF: Resume Interrupt bit
	1 = A K-State is observed on the D+ or D- pin for 2.5 μs (differential '1' for low-speed, differential '0' for full-speed)
	0 = No K-State observed
bit 4	IDLEIF: Idle Detect Interrupt bit
	 1 = Idle condition detected (constant Idle state of 3 ms or more) 0 = No Idle condition detected
bit 3	TRNIF: Token Processing Complete Interrupt bit
	 1 = Processing of current token is complete; read USTAT register for endpoint BDT information 0 = Processing of current token is not complete; clear USTAT register or load next token from STAT
bit 2	SOFIF: Start of Frame Token Interrupt bit
	 1 = Start of Frame threshold reached by the host 0 = No Start of Frame token threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit
	 1 = An unmasked error condition has occurred; only error states enabled in the UxEIE register can set this bit
	0 = No unmasked error condition has occurred
bit 0	DETACHIF: Detach Interrupt bit
	 1 = A peripheral detachment has been detected by the module 0 = No peripheral detachment detected

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
_		—	_		_		_				
bit 15							bit				
R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
STALLIE		RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	URSTIE				
bit 7							bit				
Legend:											
R = Readabl	e bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown				
bit 15-8	Unimplemen	ted: Read as '0	,								
bit 7	STALLIE: STALL Handshake Interrupt Enable bit										
	1 = Interrupt enabled										
	0 = Interrupt	disabled									
bit 6	Unimplemen	ted: Read as '0	,								
bit 5	RESUMEIE: Resume Interrupt bit										
	1 = Interrupt enabled										
	0 = Interrupt	disabled									
bit 4	IDLEIE: Idle Detect Interrupt bit										
	1 = Interrupt enabled										
	0 = Interrupt disabled										
bit 3	TRNIE: Token Processing Complete Interrupt bit										
	1 = Interrupt enabled 0 = Interrupt disabled										
bit 2			Interrupt bit								
	SOFIE: Start of Frame Token Interrupt bit										
	 1 = Interrupt enabled 0 = Interrupt disabled 										
bit 1	•	B Error Conditio	n Interrunt bit								
	1 = Interrupt		in interrupt on								
	0 = Interrupt										
bit 0	URSTIE: USE	B Reset Interrup	t Enable bit								
	1 = Interrupt										
		onabioa									

REGISTER 22-16: UxIE: USB INTERRUPT ENABLE REGISTER (DEVICE MODE)

STALLIE ATTACHIE ⁽¹⁾ RESUMEIE IDLEIE TRNIE SOFIE UERRIE DETA bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15 STALLIE: STALL Handshake Interrupt Enable bit 1 = Interrupt anabled 0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
R/W-0 R/W-0 <th< td=""><td>—</td><td>_</td><td>_</td><td>—</td><td>_</td><td>—</td><td>—</td><td>—</td></th<>	—	_	_	—	_	—	—	—			
STALLIE ATTACHIE ⁽¹⁾ RESUMEIE IDLEIE TRNIE SOFIE UERRIE DETA bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	bit 15							bit 8			
STALLIE ATTACHIE ⁽¹⁾ RESUMEIE IDLEIE TRNIE SOFIE UERRIE DETA bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'											
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 7 STALLIE: STALL Handshake Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled bit 6 ATTACHIE: Peripheral Attach Interrupt bit ⁽¹⁾ 1 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt disabled bit 4 IDLEIE: dle Detect Interrupt bit 1 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 Interrupt disabled								R/W-0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' '0' = Bit is cleared x = Bit is unknown bit 15 STALLIE: STALL Handshake Interrupt Enable bit 1 1 Interrupt enabled 0 = Interrupt disabled bit 6 ATTACHIE: Peripheral Attach Interrupt bit 1 Interrupt disabled 0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 Interrupt disabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled		ATTACHIE ⁽¹⁾	RESUMEIE	IDLEIE	TRNIE	SOFIE	UERRIE	DETACHIE			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 7 STALLIE: STALL Handshake Interrupt Enable bit 1 1 = Interrupt enabled 0 = Interrupt disabled bit 6 ATTACHIE: Peripheral Attach Interrupt bit ⁽¹⁾ 1 1 = Interrupt enabled 0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 1 = Interrupt enabled 0 = Interrupt disabled bit 4 IDLEIE: Resume Interrupt bit 1 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 1 = Interrupt disabled = Interrupt disabled = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enab	bit 7							bit C			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' In = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' x = Bit is unknown bit 15-8 Unimplemented: Read as '0' x = Bit is unknown bit 15-8 Unimplemented: Read as '0' x = Bit is unknown bit 15-8 Interrupt enabled 0 0 = Interrupt disabled 0 = Interrupt enabled 0 bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled bit 1 UERRIE:	Legend:										
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-8 Unimplemented: Read as '0' bit 7 STALLIE: STALL Handshake Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt disabled 0 = Interrupt disabled	-	le bit	W = Writable b	bit	U = Unimplem	nented bit, read	d as '0'				
bit 15-8 Unimplemented: Read as 'o' bit 7 STALLIE: STALL Handshake Interrupt Enable bit 1 = Interrupt disabled 0 = Interrupt disabled bit 6 ATTACHIE: Peripheral Attach Interrupt bit ⁽¹⁾ 1 = Interrupt enabled 0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt disabled	-n = Value at	t POR	'1' = Bit is set		-			nown			
bit 7 STALLIE: STALL Handshake Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled bit 6 ATTACHIE: Peripheral Attach Interrupt bit ⁽¹⁾ 1 = Interrupt enabled 0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled											
1 = Interrupt enabled 0 = Interrupt disabled bit 6 ATTACHIE: Peripheral Attach Interrupt bit ⁽¹⁾ 1 = Interrupt enabled 0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled	bit 15-8	Unimplement	ted: Read as 'o	,							
0 = Interrupt disabled bit 6 ATTACHIE: Peripheral Attach Interrupt bit ⁽¹⁾ 1 = Interrupt enabled 0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt disabled 0 = Interrupt disabled	bit 7	STALLIE: ST/	ALL Handshake	e Interrupt Ena	able bit						
bit 6 ATTACHIE: Peripheral Attach Interrupt bit ⁽¹⁾ 1 = Interrupt enabled 0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled 0 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 4 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled			= Interrupt enabled								
1 = Interrupt enabled 0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled 0 = Interrupt enabled 0 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt enabled 0 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled 0 = Interrupt disabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled					1)						
0 = Interrupt disabled bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 4 IDLEIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled	bit 6			n Interrupt bit	")						
bit 5 RESUMEIE: Resume Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 4 DEFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled											
1 = Interrupt enabled 0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled	bit 5	-									
0 = Interrupt disabled bit 4 IDLEIE: Idle Detect Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled											
1 = Interrupt enabled 0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt disabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled											
0 = Interrupt disabled bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled	bit 4	IDLEIE: Idle D	DLEIE: Idle Detect Interrupt bit								
bit 3 TRNIE: Token Processing Complete Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled		1 = Interrupt enabled									
1 = Interrupt enabled 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled		-									
 0 = Interrupt disabled bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt enabled 0 = Interrupt disabled 	bit 3		-	omplete Interr	upt bit						
bit 2 SOFIE: Start of Frame Token Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled											
1 = Interrupt enabled 0 = Interrupt disabled bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled	hit 2	•		Interrunt hit							
 bit 1 UERRIE: USB Error Condition Interrupt bit 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled 											
 1 = Interrupt enabled 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled 											
 0 = Interrupt disabled bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled 	bit 1	UERRIE: USE	3 Error Conditio	n Interrupt bit							
bit 0 DETACHIE: USB Detach Interrupt Enable bit 1 = Interrupt enabled 0 = Interrupt disabled											
<pre>1 = Interrupt enabled 0 = Interrupt disabled</pre>		0 = Interrupt	disabled								
0 = Interrupt disabled	bit 0			errupt Enable	bit						
Note 1: Unimplemented in OTG mode read as '0'			นเอลมเยน								
	Note 1: U	nimplemented ir	n OTG mode, re	ad as '0'.							

REGISTER 22-17: UxIE: USB INTERRUPT ENABLE REGISTER (HOST MODE)

U-0

U-0

bit 15											
DICTO							bit 8				
R/K-0, HS	R/K-0,HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS	R/K-0, HS				
BTSEF	BUSACCEF	DMAEF	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF				
bit 7	Deerteel	DIWALI	BIOLI	DI NOLI	ONOTOEI	ONOOLI	bit C				
Legend:		U = Unimplem	nented bit, read	d as '0'							
R = Readabl	e bit	K = Write '1' to	o clear bit	HS = Hardwa	re Settable bit						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	Iown				
bit 15-8	Unimplement	ted: Read as 'd)'								
bit 7	BTSEF: Bit St	tuff Error Flag b	bit								
	1 = Bit stuff error has been detected										
bit 6) = No bit stuff error BUSACCEF: Bus Access Error Flag bit									
bit 0	1 = Peripheral tried to access an unimplemented RAM location										
		0 = RAM location access was successful									
bit 5	DMAEF: DMA Error Flag bit										
	1 = A USB DMA error condition detected; the data size indicated by the buffer descriptor byte count field is less than the number of received bytes. The received data is truncated										
						lanoutou					
hit 4	0 = No DMA	error									
bit 4	0 = No DMA	error Turnaround Tin	ne-out Error Fl	ag bit							
bit 4	0 = No DMA BTOEF: Bus 1 = Bus turna	Turnaround Tin around time-out	has occurred	ag bit							
	0 = No DMA BTOEF: Bus 1 = Bus turna 0 = No bus tu	Turnaround Tin around time-out urnaround time-	has occurred	ag bit							
bit 4 bit 3	0 = No DMA BTOEF: Bus 1 = Bus turna 0 = No bus tu DFN8EF: Data	Turnaround Tin around time-out	has occurred out ror Flag bit								
	 0 = No DMA BTOEF: Bus ¹ 1 = Bus turna 0 = No bus tu DFN8EF: Data 1 = Data field 	Turnaround Tin around time-out irnaround time- a Field Size Eri	has occurred out ror Flag bit egral number o	of bytes							
	0 = No DMA BTOEF: Bus 1 = Bus turna 0 = No bus tu DFN8EF: Data 1 = Data field 0 = Data field CRC16EF: CF	Turnaround Tin around time-out irnaround time- a Field Size En was not an int was an integra RC16 Failure F	has occurred out ror Flag bit egral number of al number of b	of bytes							
bit 3	0 = No DMA BTOEF: Bus 1 = Bus turna 0 = No bus tu DFN8EF: Data 1 = Data field 0 = Data field CRC16EF: CF 1 = CRC16 fa	Turnaround Tin around time-out imaround time- a Field Size En was not an int was an integra RC16 Failure F ailed	has occurred out ror Flag bit egral number of al number of b	of bytes							
bit 3 bit 2	0 = No DMA BTOEF: Bus 1 = Bus turna 0 = No bus tu DFN8EF: Data 1 = Data field 0 = Data field CRC16EF: CF 1 = CRC16 fa 0 = CRC16 p	Turnaround Tin around time-out irnaround time- a Field Size Ern I was not an int I was an integra RC16 Failure F ailed assed	has occurred out ror Flag bit egral number of al number of by lag bit	of bytes							
bit 3	0 = No DMA BTOEF: Bus 1 = Bus turna 0 = No bus tu DFN8EF: Data 1 = Data field 0 = Data field CRC16EF: CF 1 = CRC16 fa 0 = CRC16 p CRC5EF: CR	Turnaround Tin around time-out imaround time- a Field Size En was not an int was an integra RC16 Failure F ailed	has occurred out ror Flag bit egral number of al number of by lag bit	of bytes ytes							
bit 3 bit 2	0 = No DMA BTOEF: Bus 1 = Bus turna 0 = No bus tu DFN8EF: Data 1 = Data field 0 = Data field CRC16EF: CF 1 = CRC16 fa 0 = CRC16 p CRC5EF: CR 1 = Token page	Turnaround Tin around time-out irnaround time- a Field Size Err I was not an int was an integra RC16 Failure F ailed assed C5 Host Error I	has occurred out ror Flag bit egral number of by al number of by lag bit Flag bit ue to CRC5 er	of bytes ytes ror							
bit 3 bit 2	0 = No DMA BTOEF: Bus 1 = Bus turna 0 = No bus tu DFN8EF: Data 1 = Data field 0 = Data field CRC16EF: CF 1 = CRC16 fa 0 = CRC16 p CRC5EF: CR 1 = Token par 0 = Token par	Turnaround Tin around time-out irnaround time- a Field Size Ern was not an int was an integra RC16 Failure F ailed assed C5 Host Error I cket rejected di cket accepted of	has occurred out ror Flag bit egral number of by al number of by lag bit Flag bit ue to CRC5 erro	of bytes ytes ror							
bit 3 bit 2 bit 1	0 = No DMA BTOEF: Bus 1 = Bus turna 0 = No bus tu DFN8EF: Data 1 = Data field 0 = Data field CRC16EF: CF 1 = CRC16 fa 0 = CRC16 p CRC5EF: CR 1 = Token par 0 = Token par	Turnaround Tin around time-out irnaround time- a Field Size Ern was not an int was an integra RC16 Failure F ailed C5 Host Error I cket rejected di cket accepted of theck Failure Fi k failed	has occurred out ror Flag bit egral number of by al number of by lag bit Flag bit ue to CRC5 erro	of bytes ytes ror							

REGISTER 22-18: UXEIR: USB ERROR INTERRUPT STATUS REGISTER (DEVICE MODE) U-0

U-0

U-0

U-0

U-0

U-0

							/
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—			—
bit 15							bit 8
R/K-0, HS	R/K-0,HS	R/K-0, HS					
BTSEF	BUSACCEF	DMAEF	BTOEF	DFN8EF	CRC16EF	EOFEF	PIDEF

REGISTER 22-19: UxEIR: USB ERROR INTERRUPT STATUS REGISTER (HOST MODE)

Legend:		U = Unimplemented bit, re	U = Unimplemented bit, read as '0'							
R = Readab	le bit	K = Write '1' to clear bit	HS = Hardware Settable b	vit						
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown						
bit 15-8	Unimplem	ented: Read as '0'								
bit 7	BTSEF: B	it Stuff Error Flag bit								
	1 = Bit stu 0 = No bit	iff error has been detected stuff error								
bit 6	BUSACCE	EF: Bus Access Error Flag bit								
		neral tried to access an unimple location access was successful								
bit 5	DMAEF:	MA Error Flag bit								
	field is	A USB DMA error condition detected; the data size indicated by the buffer descriptor byte coun field is less than the number of received bytes. The received data is truncated No DMA error								
bit 4	BTOEF: B	BTOEF: Bus Turnaround Time-out Error Flag bit								
		Irnaround time-out has occurre	•							
	0 = No bu	s turnaround time-out								
bit 3	DFN8EF:	DFN8EF: Data Field Size Error Flag bit								
	1 = Data field was not an integral number of bytes									
		0 = Data field was an integral number of bytes								
bit 2		: CRC16 Failure Flag bit								
	1 = CRC1									
	0 = CRC1	-								
bit 1		nd of Frame Error Flag bit								
		f Frame error has occurred f Frame interrupt disabled								
bit 0		D Check Failure Flag bit								
	1 = PID cl	•								
		neck passed								

bit 7

bit 0

U-0	22-20: UxEIE U-0	U-0		U-0	U-0		U-0			
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0			
 bit 15	_	—	_	_	_	_	bit			
bit 10							DI			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
BTSEE	BUSACCEE	DMAEE	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE			
bit 7							bit			
Legend:										
Legend: R = Readab	le bit	W = Writable t	oit	U = Unimplen	nented bit, read	l as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own			
					alou		own			
bit 15-8	Unimplement	ted: Read as '0	3							
bit 7	BTSEE: Bit St	tuff Error Interru	pt Enable bit							
	1 = Interrupt									
	0 = Interrupt of	disabled								
bit 6	BUSACCEE: Bus Access Error Interrupt Enable bit									
	1 = Interrupt enabled									
	0 = Interrupt of									
bit 5		A Error Interrup	t Enable bit							
	1 = Interrupt e									
	0 = Interrupt (L 11					
bit 4	BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit									
	1 = Interrupt enabled 0 = Interrupt disabled									
bit 3			or Interrunt Fi	nable hit						
DIL D		DFN8EE: Data Field Size Error Interrupt Enable bit 1 = Interrupt enabled								
	0 = Interrupt enabled									
bit 2	•		terrupt Enable	e bit						
	CRC16EE: CRC16 Failure Interrupt Enable bit 1 = Interrupt enabled									
	0 = Interrupt disabled									
bit 1	CRC5EE: CR	C5 Host Error I	nterrupt Enabl	e bit						
	1 = Interrupt	enabled								
	0 = Interrupt of	disabled								
bit 0		heck Failure In	terrupt Enable	e bit						
	1 = Interrupt e									
	0 = Interrupt	disabled								

UNCER USD EDDOD INTERDURT ENABLE DECISTED (DEVICE MODE) DECISTED 22 20.

U-0	22-21: UxEIE U-0	U-0	U-0	U-0	U-0	U-0	<u>,</u> U-0				
_		_	_	_	_	_	_				
oit 15							bit				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BTSEE	BUSACCEE	DMAEE	BTOEE	DFN8EE	CRC16EE	EOFEE	PIDEE				
bit 7							bit (
Legend:											
R = Readabl	le bit	W = Writable bi	it	U = Unimplen	nented bit, read	l as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown				
bit 15-8	Unimplement	ted: Read as '0'									
bit 7	BTSEE: Bit St	tuff Error Interru	pt Enable bit								
	1 = Interrupt										
	0 = Interrupt										
bit 6	BUSACCEE:	Bus Access Erro	or Interrupt E	nable bit							
	•	1 = Interrupt enabled 0 = Interrupt disabled									
L:1 F	•		F achle 1:4								
bit 5		A Error Interrupt	Enable bit								
	1 = Interrupt (0 = Interrupt (
bit 4	•	3TOEE: Bus Turnaround Time-out Error Interrupt Enable bit									
	1 = Interrupt enabled										
	0 = Interrupt disabled										
bit 3	DFN8EE: Dat	a Field Size Erro	or Interrupt Ei	nable bit							
		1 = Interrupt enabled									
	0 = Interrupt of										
bit 2	CRC16EE: CRC16 Failure Interrupt Enable bit										
	1 = Interrupt (0 = Interrupt (
bit 1			interrunt Ena	hle hit							
		EOFEE: End-Of-Frame Error interrupt Enable bit 1 = Interrupt enabled									
	0 = Interrupt										
		beck Failure Int	errupt Enable	e bit							
bit 0	PIDEE: PID C										
bit 0	1 = Interrupt										

DECICIER DO DA. UVELE, USB EDDOD INTERDURT ENABLE DECISTED (LOST MODE)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	—	—	—	—				
bit 15	•						bit			
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
LSPD ⁽¹⁾	RETRYDIS ⁽¹⁾		EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK			
bit 7							bit			
Legend:										
R = Readat	ole bit	W = Writable	bit	U = Unimplem	nented bit, read	l as '0'				
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-8	Unimplement	ted: Read as '	כ'							
bit 7	LSPD: Low-S	peed Direct Co	onnection Enab	le bit (UEP0 or	1y) ⁽¹⁾					
			w-speed device							
			w-speed device							
bit 6	RETRYDIS: Retry Disable bit (UEP0 only) ⁽¹⁾									
	 1 = Retry NAK transactions disabled 0 = Retry NAK transactions enabled; retry done in hardware 									
L:4 F	-		-	uone in narowa	are					
bit 5	-	ted: Read as '		L :4						
bit 4	EPCONDIS: Bidirectional Endpoint Control bit If EPTXEN and EPRXEN = 1:									
	1 = Disable Endpoint n from control transfers; only TX and RX transfers are allowed									
	0 = Enable Endpoint n for control (SETUP) transfers; TX and RX transfers are allowed									
	For all other combinations of EPTXEN and EPRXEN:									
	This bit is ignored.									
bit 3	EPRXEN: End	dpoint Receive	Enable bit							
		n receive enat								
		n receive disa								
bit 2	EPTXEN: Endpoint Transmit Enable bit									
	1 = Endpoint n transmit enabled 0 = Endpoint n transmit disabled									
bit 1	•	ndpoint Stall Sta								
	1 = Endpoint	•								
		n was not stall	ed							
bit 0	•	dpoint Handsh								
		•								
	 1 = Endpoint handshake enabled 0 = Endpoint handshake disabled (typically used for isochronous endpoints) 									

LICO ENDONIT " CONTROL DECICTERS (" 0 TO 15) CICTED 22 22. . . .

Note 1: These bits are available only for UxEP0, and only in Host mode. For all other UxEPn registers, these bits are always unimplemented and read as '0'.

REGISTER 22-23: UxBDTP1: USB BUFFER DESCRIPTION TABLE REGISTER 1

	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
bit 15	—	—	—	—		—	—	—
	bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
BDTPTRL<7:1>							
bit 7							bit 0

Legend:			
R = Readable bit	W =Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-1	BDTPTRL<15:9>: Endpoint BDT Start Address bits
	Defines bits 15-9 of the 32-bit endpoint buffer descriptor table start address.
bit 0	Unimplemented: Read as '0'

REGISTER 22-24: UxBDTP2: USB BUFFER DESCRIPTION TABLE REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	-	—	—
bit 15							bit 8

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BDTPTF	RH<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 BDTPTRH<23:16>: Endpoint BDT Start Address bits

Defines bits 23-16 of the 32-bit endpoint buffer descriptor table start address.

© 2009-2011 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—		—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			BDTPTR	U<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable b	it	U = Unimpler	mented bit, rea	d as '0'	

REGISTER 22-25: UxBDTP3: USB BUFFER DESCRIPTION TABLE REGISTER 3

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 BDTPTRU<31:24>: Endpoint BDT Start Address bits Defines bits 31-24 of the 32-bit endpoint buffer descriptor table start address.

REGISTER 22-26: UXPWMCON: USB VBUS PWM GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0			
PWMEN	—	—	—	—	_	PWMPOL	CNTEN			
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
	—	—	—	—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'										
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown						own				
bit 15	•	nerator is enab		neld in Reset st	ate specified t	by PWMPOL				
bit 14-10	Unimplemen	Unimplemented: Read as '0'								
bit 9	PWMPOL: P	WM Polarity bi	t							
			w and resets h igh and resets							
bit 8	CNTEN: PWI	VI Counter Ena	ble bit							
	1 = Counter i 0 = Counter i									
bit 7-0	Unimplemen	ted: Read as '	0'							

REGISTER 22-27: UxPWMRRS: DUTY CYCLE AND PWM PERIOD REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DC	<7:0>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PEF	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				
bit 15-8	DC<7:0>: [Outy Cycle bits					
	These bits	select the PWM	duty cycle.				
bit 7-0	PER<7:0>:	PWM Period bit	s				

These bits select the PWM period.

REGISTER 22-28: UxFRMH: USB FRAME NUMBER HIGH REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
_	_	—	_	—	FRM<10:8>		
bit 7							bit C
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-3 Unimplemented: Read as '0'

bit 2-0

FRM<10:8>: 11-bit Frame Number Upper 3 bits

The register bits are updated with the current frame number whenever a SOF token is received.

© 2009-2011 Microchip Technology Inc.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	_	—	
bit 15							bit 8
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			FRM<	7:0>			
bit 7							bit 0
Legend:							
R = Readable b	it	W = Writable	bit	U = Unimplei	mented bit, rea	ad as '0'	
-n = Value at PC)R	'1' = Bit is se	t	'0' = Bit is cleared x = Bit is unknown			

REGISTER 22-29: UxFRML: USB FRAME NUMBER LOW REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **FRM<7:0>:** 11-bit Frame Number Lower 8 bits The register bits are updated with the current frame number whenever a SOF token is received.

23.0 10-BIT/12-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70621) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices have two ADC modules, ADC1 and ADC2. The ADC1 module supports up to 32 analog input channels. The ADC2 module supports up to 16 analog input channels.

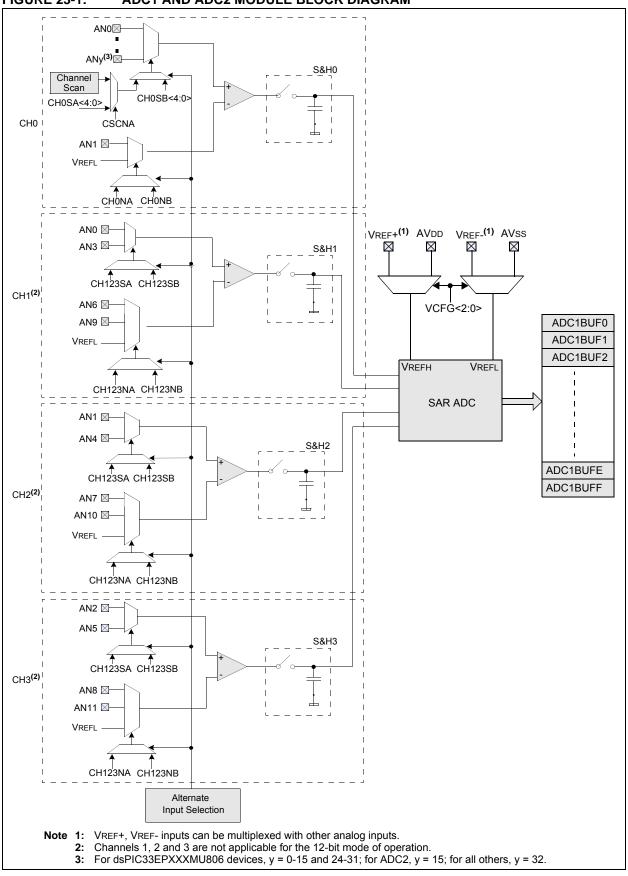
On ADC1, the AD12B bit (AD1CON1<10>) allows each of the ADC modules to be configured by the user as either a 10-bit, 4 Sample and Hold (S&H) ADC (default configuration) or a 12-bit, 1 S&H ADC.

Note: The ADC1 module needs to be disabled before modifying the AD12B bit.

The ADC2 module only supports 10-bit operation with 4 S&H.

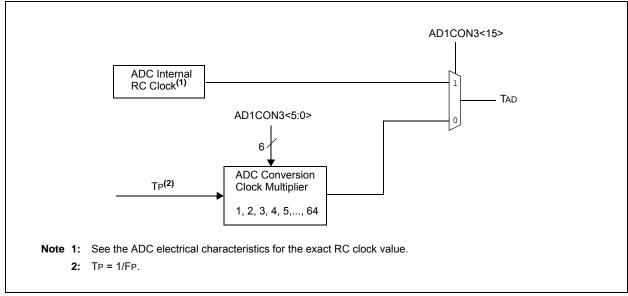
23.1 Key Features

The 10-bit ADC configuration has the following key features:


- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- · Up to 32 analog input pins
- External voltage reference input pins
- Simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- · Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes

The 12-bit ADC configuration supports all the above features, except:

- In the 12-bit configuration, conversion speeds of up to 500 ksps are supported
- There is only one S&H amplifier in the 12-bit configuration, so simultaneous sampling of multiple channels is not supported.


Depending on the particular device pinout, the ADC can have up to 32 analog input pins, designated AN0 through AN31. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs can be shared with other analog input pins. The actual number of analog input pins and external voltage reference input configuration depends on the specific device.

A block diagram of the ADC module is shown in Figure 23-1. Figure 23-2 provides a diagram of the ADC conversion clock period.

REGISTER 23	B-1: ADxCO	ON1: ADCx (CONTROL RE	GISTER 1			
R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	—	AD12B ⁽¹⁾	FORM	1<1:0>
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HSC	R/C-0, HS
	SSRC<2:0>		SSRCG	SIMSAM	ASAM	SAMP	DONE
bit 7							bit
Legend:		HSC = Set or	Cleared by Ha	rdware			
R = Readable I	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADON: ADC	Operating Mod	de bit				
	1 = ADC mod	ule is operatin	g				
	0 = ADC is of	f					
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	ADSIDL: Stop	o in Idle Mode	bit				
			eration when de		e mode		
	0 = Continue	module operat	tion in Idle mode	e			
bit 12	ADDMABM:	DMA Buffer Bu	uild Mode bit				
			in the order of				ss to the DM
			e as the address				- 41
			in Scatter/Gath sed on the inde				
bit 11		ted: Read as '			g input and the		A builei.
bit 10			eration Mode bit	.(1)			
bit 10		hannel ADC c					
		channel ADC c	•				
bit 9-8	-	Data Output F	•				
	For 10-bit ope	•					
			T=sddd dddd	dd00 0000	, where $s = .N$	OT.d<9>)	
	10 = Fraction	al (Dout = dda	dd dddd dd00	0000)			
			ssss sssd •		vhere s = .NO	ſ.d<9>)	
			00dd dddd d	lddd)			
	For 12-bit ope						
			T=sddd dddo dd dddd dddo		, where $s = .N$	01.d<11>)	
			=ssss sddd		where s = NO	[d<11>)	
			dddd dddd d				
		2001 0000	uuuu uuuu o	lada)			
Note 1: This	bit is only ava	ilable in the Al	DC1 module. In	the ADC2 mo	dule, this bit is	unimplemented	d and is rea

REGISTER 23-1: ADxCON1: ADCx CONTROL REGISTER 1

Note 1: I his bit is only available in the ADC1 module. In the ADC2 module, this bit is unimplemented and is read as '0'.

2: This setting is available in dsPIC33EPXXXMU806/810/814 devices only.

REGIST	ER 23-1: ADxCON1: ADCx CONTROL REGISTER 1 (CONTINUED)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
	If SSRCG = 1:
	111 = Reserved
	110 = PWM Generator 7 primary trigger compare ends sampling and starts conversion ⁽²⁾
	101 = PWM Generator 6 primary trigger compare ends sampling and starts conversion ⁽²⁾
	100 = PWM Generator 5 primary trigger compare ends sampling and starts conversion ⁽²⁾
	011 = PWM Generator 4 primary trigger compare ends sampling and starts conversion ⁽²⁾
	010 = PWM Generator 3 primary trigger compare ends sampling and starts conversion ⁽²⁾
	001 = PWM Generator 2 primary trigger compare ends sampling and starts conversion ⁽²⁾ 000 = PWM Generator 1 primary trigger compare ends sampling and starts conversion ⁽²⁾
	<u>If SSRCG = 0:</u>
	111 = Internal counter ends sampling and starts conversion (auto-convert) 110 = Reserved
	101 = PWM secondary Special Event Trigger ends sampling and starts conversion ⁽²⁾
	100 = Timer5 compare ends sampling and starts conversion
	011 = PWM primary Special Event Trigger ends sampling and starts conversion ⁽²⁾
	010 = Timer3 compare ends sampling and starts conversion
	001 = Active transition on the INTO pin ends sampling and starts conversion
h :+ 4	000 = Clearing the Sample bit (SAMP) ends sampling and starts conversion (Manual mode)
bit 4	SSRCG: Sample Clock Source Group bit [See bits 7-5 for details.]
bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or $1x$)
	When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0'
	1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or
	Samples CH0 and CH1 simultaneously (when CHPS<1: $0> = 01$)
	0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set. 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	1 = ADC S&H amplifiers are sampling
	0 = ADC S&H amplifiers are holding
	If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1.
	If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC \neq 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
DILU	
	 1 = ADC conversion cycle is completed. 0 = ADC conversion not started or in progress
	Automatically set by hardware when A/D conversion is complete. Software can write '0' to clear DONE
	status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in progress.
	Automatically cleared by hardware at start of a new conversion.
Note 1.	This hit is only available in the ADC1 module. In the ADC2 module, this hit is unimplemented and is read

- **Note 1:** This bit is only available in the ADC1 module. In the ADC2 module, this bit is unimplemented and is read as '0'.
 - 2: This setting is available in dsPIC33EPXXXMU806/810/814 devices only.

REGISTER	23-2: AD	xCON2: ADCx C	ONTROL RI	EGISTER 2			
R/W-0	R/W-0	-	U-0	U-0	R/W-0	R/W-0	R/W-0
	VCFG<2:	0>			CSCNA	CHPS	
bit 15							bit
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUFS			SMPI<4:0>			BUFM	ALTS
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15-13	VCFG<2:	0>: Converter Volta	ige Reference	Configuration	bits		
		Vrefh	VREFL				
	000	Avdd	Avss				
	001	External VREF+	Avss				
	010	AVDD	External VR				
	011	External VREF+	External VR	EF-			
	1xx	AVDD	Avss				
bit 12-11	-	nented: Read as '0					
bit 10		nput Scan Select b					
		inputs for CH0+ du t scan inputs	ring Sample A	bit			
bit 9-8		0>: Channel Select	bite				
Dit 9-0		12B = 1, CHPS<1:0		mplemented [Pead as '0'		
		verts CH0, CH1, Cl		inplemented, i			
		verts CH0 and CH1					
	00 = Con	verts CH0					
bit 7	BUFS: Bu	uffer Fill Status bit (only valid whe	n BUFM = 1)			
		s currently filling the alf of the buffer	e second half c	of the buffer. Th	e user applicat	ion should acce	ess data in th
		is currently filling th d half of the buffer.		the buffer. The	user application	on should acce	ss data in th
bit 6-2	SMPI<4:0	>: Increment Rate	bits				
	11111 = 	ncrements the DM	A address or g	enerates inter	rupt after comp	letion of every	32nd sample
		conversion operatio				-	-
		ncrements the DM	-	jenerates inter	rupt after comp	oletion of every	31st sample
	•						
	•						
	•						
		ncrements the DM	-	enerates inter	rupt after comp	oletion of every	2nd sample/
		conversion operatio		ionoratos intor	rupt after comr	lation of overv	samplo/
		conversion operatio			rupi aller comp		sample/
bit 1		uffer Fill Mode Sele					
		buffer filling the first		uffer on the firs	st interrupt and	the second hal	f of the buff
		xt interrupt					
		s starts filling the b	uffer from the	start address.			
bit 0	ALTS: Alte	ernate Input Sampl	e Mode Selec	t bit			
						_	
		channel input selec s uses channel inp			ple and Sample	e B on next san	nple

REGISTER 23-2: ADxCON2: ADCx CONTROL REGISTER 2

REGISTER 2	23-3: ADxCC	ON3: ADCx C	ONTROL R	EGISTER 3			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	—	—			SAMC<4:0>(1)	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS<	:7:0> ^(2,3)			
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ADRC: ADC (Conversion Cloc	k Source bit	t			
	1 = ADC Inter	nal RC Clock					
		ived From Syste	em Clock				
bit 14-13	Unimplement	ted: Read as '0'	,				
bit 12-8	SAMC<4:0>:	Auto Sample Ti	me bits ⁽¹⁾				
	11111 = 31 T	AD					
	•						
	•						
	•						
	00001 = 1 TA						
bit 7-0	00000 = 0 Tai	D ADC Conversion	n Claak Sala	at hita(2.3)			
Dit 7-0		TP · (ADCS<7:0					
	· · · · · · · · · · · · · · · · · · ·	1P · (ADC3<7.0)- + 1) - 200	$\mathbf{J} \cdot \mathbf{I} \mathbf{C} \mathbf{Y} = \mathbf{I} \mathbf{A} \mathbf{D}$			
	•						
	•						
	•			Test Tes			
		ТР • (ADCS<7:0 ТР • (ADCS<7:0					
		ТР • (ADCS<7:(ТР • (ADCS<7:(,				
Note 1: Thi	is bit is only use	d if ADxCON1<	7:5> (SSRC·	<2:0>) = 111 ar	nd ADxCON1<	4> (SSRCG) =	0.
	is bit is not used		-	-		()	
	= 1/Fp.		(

REGISTER 23-3: ADxCON3: ADCx CONTROL REGISTER 3

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
_	_		_	_		_	ADDMAEN	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
	—		—	—		DMABL<2:0>		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit					mented bit, rea			
-n = Value at POR '1' = Bit is set '0				'0' = Bit is cleared x = Bit is unknown				
bit 15-7	Unimplemen	ted: Read as '0'	,					
bit 8	•	ADC DMA Enabl						
DILO								
		on results stored		0 ,		0		
		on results stored		0 through AD	CXBUFF regist	ers; DMA will r	not be used	
bit 7-3	Unimplemen	ted: Read as '0'	,					
bit 2-0	DMABL<2:0>	Selects Numb	er of DMA Bu	uffer Locations	per Analog In	out bits		
	111 = Allocat	es 128 words of	buffer to eac	h analog input	t			
	110 = Allocat	es 64 words of b	ouffer to each	analog input				
		es 32 words of b		0 1				
		es 16 words of b		0 1				
		es 8 words of bu						
		es 4 words of bu						
		es 2 words of bu		• .				
	000 = Allocat	es 1 word of buf	iei to each ar	laiog input				

REGISTER 23-4: ADxCON4: ADCx CONTROL REGISTER 4

REGISTER	23-3: ADXU	HS123: ADC)		ANNULL $1, 2, 3$	S SELECT KI		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	_	_	—	CH123	NB<1:0>	CH123SB
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—			—	CH123	NA<1:0>	CH123SA
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unl	known
bit 15-11 bit 10-9 bit 8	CH123NB<1: When AD12B 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SB: CH When AD12B 1 = CH1 positi	= 1, CHxNB is gative input is A gative input is A 12, CH3 negati hannel 1, 2, 3 F = 1, CHxSA is tive input is AN	2, 3 Negative 2, 3 Negative 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,	e Input Select fo emented, Reac ative input is A ative input is A EFL Select for Sam emented, Read ve input is AN4, ve input is AN1,	l as '0' N10, CH3 nega N7, CH3 negat ble B bit as '0' CH3 positive i	ative input is A ive input is AN nput is AN5	
bit 7-3	Unimplemen	ted: Read as '	כי				
bit 2-1 bit 0	When AD12B 11 = CH1 neg 10 = CH1 neg 0x = CH1, CH CH123SA: CI When AD12B	s = 1, CHxNA is gative input is A gative input is A H2, CH3 negative hannel 1, 2, 3 F s = 1, CHxSA is tive input is AN	: U-0, Unimpl N9, CH2 neg N6, CH2 neg ve input is VR Positive Input : U-0, Unimpl	e Input Select fo emented, Reac ative input is Al ative input is Al EFL Select for Sam emented, Read /e input is AN4,	I as '0' N10, CH3 nega N7, CH3 negat Dle A bit	ative input is A ive input is AN	

REGISTER 23-5: ADxCHS123: ADCx INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	B 8 4 4 6				
	0=0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				CH0SB<4:0>(1)	
						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				CH0SA<4:0>(1)	
						bit C
Legend: R = Readable bit W = Writable bit				mented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set				eared	x = Bit is unkr	nown
Unimplement CH0SB<4:0>: Same definitio CH0NA: Char 1 = Channel 0 0 = Channel 0	ed: Read as 'C Channel 0 Po n as bit<4:0>. nel 0 Negative negative input negative input	sitive Input Se Input Select 1 is AN1 is VREFL				
Unimplement	ed: Read as '0)'				
11111 = Char 11110 = Char • • • • • • • •	nnel 0 positive nnel 0 positive nnel 0 positive	input is AN31 input is AN30 input is AN2	elect for Sampl	e A bits ⁽¹⁾		
	bit OR CH0NB: Char Same definitio Unimplement CH0SB<4:0>: Same definitio CH0NA: Char 1 = Channel 0 0 = Channel 0 Unimplement CH0SA<4:0>: 11111 = Char 11110 = Char 00010 = Char 00010 = Char 00011 = Char	interference interference interference interference		- - - - bit W = Writable bit U = Unimple OR '1' = Bit is set '0' = Bit is cle CHONB: Channel 0 Negative Input Select for Sample B to Same definition as bit 7. Unimplemented: Read as '0' CHOSB<4:0>: Channel 0 Positive Input Select for Sample B to Same definition as bit 7. Unimplemented: Read as '0' CHONA: Channel 0 Positive Input Select for Sample A to 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL Unimplemented: Read as '0' CHOSA<4:0>: Channel 0 Positive Input Select for Sample 1111 = Channel 0 positive input is AN31 11110 = Channel 0 positive input is AN30 0 0 0 positive input is AN2 00010 = Channel 0 positive input is AN1	— — CH0SA<4:0> ⁽¹⁾ bit W = Writable bit U = Unimplemented bit, read 'OR '1' = Bit is set '0' = Bit is cleared CH0NB: Channel 0 Negative Input Select for Sample B bit Same definition as bit 7. Unimplemented: Read as '0' CH0SB CH0NB: Channel 0 Negative Input Select for Sample B bit Same definition as bit 7. Unimplemented: Read as '0' CH0SB CH0NA: Channel 0 Negative Input Select for Sample B bits ⁽¹⁾ Same definition as bit<4:0>. CH0NA: Channel 0 Negative Input Select for Sample A bit 1 = Channel 0 negative input is AN1 0 = Channel 0 negative input is VREFL Unimplemented: Read as '0' CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits ⁽¹⁾ 1111 = Channel 0 positive input is AN31 11110 = Channel 0 positive input is AN30 . . 00010 = Channel 0 positive input is AN2 00010 = Channel 0 positive input is AN1	

REGISTER 23-6: ADxCHS0: ADCx INPUT CHANNEL 0 SELECT REGISTER

Note 1: The AN16 through AN31 pins are not available for the ADC2 module. The AN16 through AN23 pins are not available for dsPIC33EP256MU806 (64-pin) devices.

						••	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS31	CSS30	CSS29	CSS28	CSS27	CSS26	CSS25	CSS24
bit 15	pit 15						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS23	CSS22	CSS21	CSS20	CSS19	CSS18	CSS17	CSS16
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

REGISTER 23-7: AD1CSSH: ADC1 INPUT SCAN SELECT REGISTER HIGH^(1,2,3)

bit 15-0

CSS<31:16>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

- **2:** CSSx = ANx, where x = 16-31.
- 3: ADC2 only supports analog inputs AN0-AN15; therefore, no ADC2 Input Scan Select register exists.

	x = Readable bitW = Writable bitn = Value at POR'1' = Bit is set			U = Unimplemented bit, read as '0' '0' = Bit is cleared x = Bit is unknown				
Legend:								
bit 7							bit C	
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
bit 15							bit 8	
CSS15	CSS14	CSS13	CSS12	CSS11	CSS10	CSS9	CSS8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

REGISTER 23-8: ADxCSSL: ADCx INPUT SCAN SELECT REGISTER LOW^(1,2)

bit 15-0 CSS<15:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

- Note 1: On devices with less than 16 analog inputs, all ADxCSSL bits can be selected by the user. However, inputs selected for scan without a corresponding input on device convert VREFL.
 - **2:** CSSx = ANx, where x = 0-15.

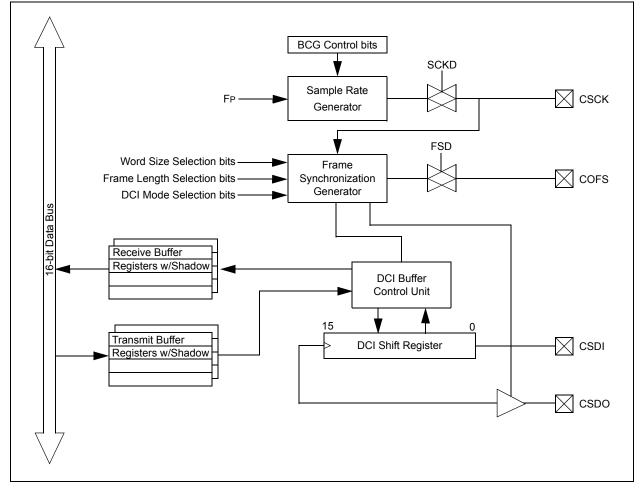
Note 1: On devices with less than 32 analog inputs, all ADxCSSH bits can be selected by user software. However, inputs selected for scan without a corresponding input on device convert VREFL.

NOTES:

24.0 DATA CONVERTER INTERFACE (DCI) MODULE (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Section 20. Data Converter Interface (DCI)" (DS70288) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

24.1 Module Introduction


The dsPIC33EPXXXMU806/810/814 Data Converter Interface (DCI) module allows simple interfacing of devices, such as audio coder/decoders (Codecs), ADC and D/A converters. The following interfaces are supported:

- Framed Synchronous Serial Transfer (Single or Multi-Channel)
- Inter-IC Sound (I²S) Interface
- · AC-Link Compliant mode

The DCI module provides the following general features:

- Programmable word size up to 16 bits
- Supports up to 16 time slots, for a maximum frame size of 256 bits
- Data buffering for up to 4 samples without CPU overhead

FIGURE 24-1: DCI MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
DCIEN		DCISIDL		DLOOP	CSCKD	CSCKE	COFSD		
bit 15							bit		
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0		
UNFM	CSDOM	DJST				COFS	M<1:0>		
bit 7		-					bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	DCIEN: DCI	Module Enable	bit						
	1 = Module is 0 = Module is								
bit 14	Reserved: F								
bit 13		CI Stop in Idle C	ontrol hit						
		vill halt in CPU							
		vill continue to		PU Idle mode					
bit 12	Reserved: F	Read as '0'							
bit 11	DLOOP: Dig	ital Loopback N	Iode Control	bit					
	•	oopback mode i oopback mode i		SDI and CSDO	pins internally	connected.			
bit 10	CSCKD: Sar	mple Clock Dire	ction Control	bit					
		n is an input wh n is an output w							
bit 9	CSCKE: Sar	nple Clock Edg	e Control bit						
				edge, sampled c dge, sampled o					
bit 8	COFSD: Fra	me Synchroniz	Synchronization Direction Control bit						
		n is an input wh n is an output w							
bit 7	UNFM: Unde	erflow Mode bit							
		last value writte '0's on a transi		smit registers o	n a transmit un	derflow			
bit 6	CSDOM: Se	rial Data Outpu	t Mode bit						
				abled transmit t transmit time s					
bit 5	DJST: DCI D	ata Justification	n Control bit						
	synchro	nization pulse	- C	n during the san					
h #4.0			ption is begur	n one serial cloo	CK CYCle after fra	ame synchroniz	ation pulse		
bit 4-2	Reserved: R		Mada 1:4-						
bit 1-0		Frame Sync C-Link mode	IVIODE DITS						
		C-Link mode							
	01 = I²S Fra	me Sync mode							
		hannel Frame S							

REGISTER 24-1: DCICON1: DCI CONTROL REGISTER 1

U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
_	—	_	_	BLEN	\ <1:0>	—	COFSG3
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
	COFSG<2:0>		—		WS	<3:0>	
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable I	oit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown
bit 15-12	Reserved: Re	ead as '0'					
bit 11-10	11 = Four data 10 = Three da 01 = Two data	ata words will b a words will be	buffered be e buffered be buffered bet	tween interrupts etween interrupt ween interrupts			
1.11.0		a word will be b	uffered betw	een interrupts			
bit 9	Reserved: Re						
bit 8-5		: Frame Sync (frame has 16 w		ontrol dits			
	•						
	•						
	•						
	0001 = Data f	rame has 3 wo rame has 2 wo rame has 1 wo	rds				
bit 4	Reserved: Re						
bit 3-0		I Data Word Si	ze hits				
		word size is 16					
	•						
	•						
	•						
		word size is 5 b					
	0010 = Invali	d Selection. D	o not use. U o not use. U	nexpected resul nexpected resul	ts may occur.		

REGISTER 24-2: DCICON2: DCI CONTROL REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	_	BCG<11:8>				
			bi				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		BCC	G<7:0>				
bit 7						bit 0	
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	
		R/W-0 R/W-0		— — — R/W-0 R/W-0 R/W-0 BCG<7:0> bit W = Writable bit U = Unimplen	— — BCG R/W-0 R/W-0 R/W-0 R/W-0 BCG<7:0> BCG BCG BCG	— — BCG<11:8> R/W-0 R/W-0 R/W-0 R/W-0 BCG<7:0> BCG<7:0>	

REGISTER 24-3: DCICON3: DCI CONTROL REGISTER 3

bit 15-12 **Reserved:** Read as '0'

bit 11-0 BCG<11:0>: DCI bit Clock Generator Control bits

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
—	_	—	_	SLOT<3:0>						
bit 15	·						bit 8			
U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0			
	—	_	_	ROV	RFUL	TUNF	TMPTY			
bit 7							bit 0			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15-12	Reserved: Re	ead as '0'								
bit 11-8	SLOT<3:0>:									
	1111 = Slot 15 is currently active									
	•									
	•									
	0010 = Slot 2 is currently active									
	0001 = Slot 1 is currently active									
		0000 = Slot 0 is currently active								
bit 7-4		Reserved: Read as '0'								
bit 3	ROV: Receive Overflow Status bit									
	 1 = A receive overflow has occurred for at least one receive register 0 = A receive overflow has not occurred 									
bit 2	RFUL: Receive Buffer Full Status bit									
	1 = New data is available in the receive registers									
	0 = The receive registers have old data									
bit 1	TUNF: Transmit Buffer Underflow Status bit									
	 1 = A transmit underflow has occurred for at least one transmit register 0 = A transmit underflow has not occurred 									
bit 0	TMPTY: Trans									
	1 = The trans	1 = The transmit registers are empty								
		0 = The transmit registers are not empty								

REGISTER 24-4: DCISTAT: DCI STATUS REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE15	RSE14	RSE13	RSE12	RSE11	RSE10	RSE9	RSE8
bit 15			•				bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RSE7	RSE6	RSE5	RSE4	RSE3	RSE2	RSE1	RSE0
bit 7		•	•	•	•		bit C

REGISTER 24-5: RSCON: DCI RECEIVE SLOT CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 RSE<15:0>: Receive Slot Enable bits

1 = CSDI data is received during the individual time slot n

0 = CSDI data is ignored during the individual time slot n

REGISTER 24-6: TSCON: DCI TRANSMIT SLOT CONTROL REGISTER

Legend: R = Readable bit W = Writable bit			bit	U = Unimpler	mented bit, read	as '0'	
bit 7							bit 0
TSE7	TSE6	TSE5	TSE4	TSE3	TSE2	TSE1	TSE0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
TSE15	TSE14	TSE13	TSE12	TSE11	TSE10	TSE9	TSE8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-0

-n = Value at POR

TSE<15:0>: Transmit Slot Enable Control bits

'1' = Bit is set

1 = Transmit buffer contents are sent during the individual time slot n

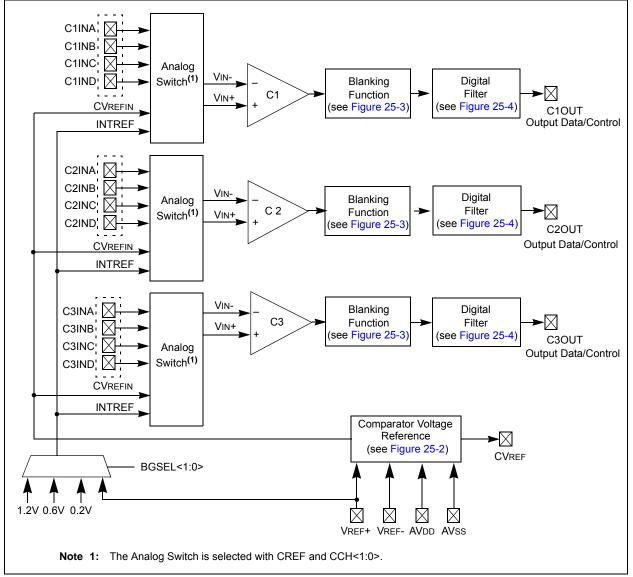
0 = CSDO pin is tri-stated or driven to logic '0', during the individual time slot, depending on the state of the CSDOM bit

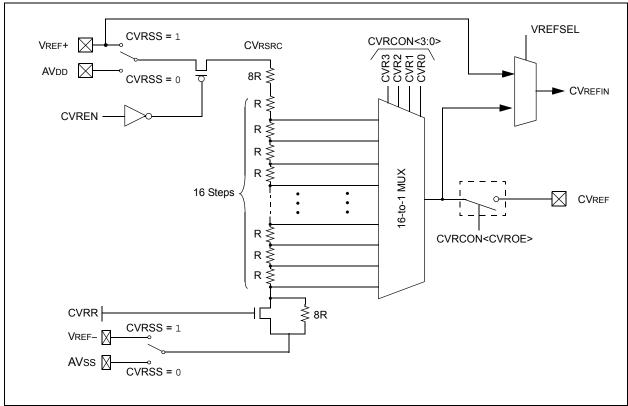
'0' = Bit is cleared

x = Bit is unknown

25.0 COMPARATOR MODULE

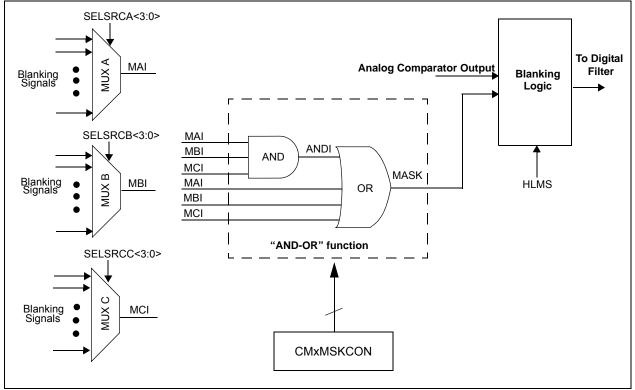
- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 26. "Comparator" (DS70357) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 Comparator module provides three comparators that can be configured in different ways. As shown in Figure 25-1, individual comparator options are specified by the Comparator module's Special Function Register (SFR) control bits.


These options allow users to:

- Select the edge for trigger and interrupt generation
- Configure the comparator voltage reference and band gap
- · Configure output blanking and masking

The comparator operating mode is determined by the input selections (i.e., whether the input voltage is compared to a second input voltage, to an internal voltage reference.



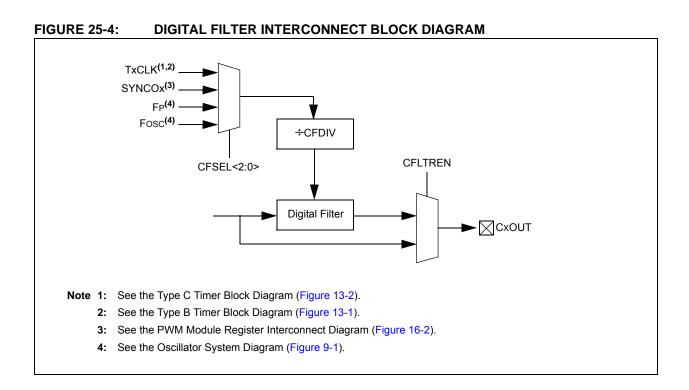


FIGURE 25-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0				
CMSIDL			_		C3EVT	C2EVT	C1EVT				
bit 15							bit 8				
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0				
					C3OUT	C2OUT	C10UT				
bit 7					00001	02001	bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
bit 15	CMSIDL: Sto	p in Idle Mode	bit								
		ue operation of operation of all			ce enters Idle m	ode					
bit 14-11	Unimplemer	ted: Read as '	0'								
bit 10	Unimplemented: Read as '0' C3EVT: Comparator 3 Event Status bit										
	1 = Comparator event occurred										
	0 = Comparator event did not occur										
bit 9	C2EVT: Comparator 2 Event Status bit										
	1 = Compara	1 = Comparator event occurred									
	0 = Compara	tor event did no	ot occur								
bit 8	C1EVT: Comparator 1 Event Status bit										
	 1 = Comparator event occurred 0 = Comparator event did not occur 										
	-										
bit 7-3	Unimplemented: Read as '0'										
bit 2	C3OUT: Comparator 3 Output Status bit										
	When CPOL = 0:										
	1 = VIN + > VIN										
	$0 = VIN + \langle VIN - VIN \rangle$										
	When CPOL = 1:										
	$1 = VIN + \langle VIN - VIN \rangle$										
	0 = VIN + > VIN -										
bit 1	C2OUT: Comparator 2 Output Status bit										
	$\frac{\text{When CPOL} = 0}{1 - V(n) + 2V(n)}$										
	1 = VIN + > VIN -										
	$0 = VIN + \langle VIN - VIN \rangle$										
	$\frac{\text{When CPOL} = 1}{1 - 1}$										
	1 = VIN+ < VIN-										
hit O	0 = VIN+ > VIN- C1OUT: Comparator 1 Output Status bit										
bit 0	When CPOL		ul Slalus Dil								
	1 = VIN + > VI										
	1 = VIN + > VI $0 = VIN + < VI$										
	When CPOL										
	$\frac{\text{VITIENT CFOL}}{1 = \text{VIN} + < \text{VI}}$										
	1 = VIN + < VI $0 = VIN + > VI$										
		IN .									

REGISTER 25-1: CMSTAT: COMPARATOR STATUS REGISTER

REGISTER	25-2: CMxC	ON: COMPA	RATOR CO	NTROL REG	ISTER					
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
CON	COE	CPOL	—		_	CEVT	COUT			
bit 15	•						bit 8			
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
EVPC	DL<1:0>		CREF			CCH	<1:0>			
bit 7							bit (
Logondi										
Legend:	. 1. 14		L 1			-l (O)				
R = Readable		W = Writable			mented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown			
bit 15	1 = Compara 0 = Compara	arator Enable b tor is enabled tor is disabled								
bit 14	1 = Compara	rator Output E tor output is pr tor output is int	esent on the C	CxOUT pin						
bit 13	1 = Compara	barator Output tor output is inv tor output is no	verted	t bit						
bit 12-10	Unimplemen	ted: Read as '	0'							
bit 9	-	CEVT: Comparator Event bit								
	interrupts	tor event accor until the bit is tor event did no	cleared	0L<1:0> setting	s occurred; disa	ables future trig	gers and			
bit 8										
	When CPOL 1 = VIN+ < VII		<u>olarity):</u>							
bit 7-6	11 = Trigger// 10 = Trigger// compara <u>If CPOL</u> Low-to- If CPOL High-to- 01 = Trigger// compara <u>If CPOL</u> High-to- <u>If CPOL</u> Low-to-	Event/Interrupt Event/Interrupt ator output (wh $_= 1$ (inverted high transition $_= 0$ (non-inve low transition of Event/Interrupt ator output (wh $_= 1$ (inverted -low transition of $_= 0$ (non-inve high transition	generated on generated on ile CEVT = 0) <u>polarity):</u> of the compara ted polarity): of the compara generated on ile CEVT = 0) <u>polarity):</u> of the compara <u>rted polarity):</u> of the compara	ator output ator output ator output ator output ator output	f the comparate w transition of t	or output (while the polarity-sele the polarity-sele	ected			
		Event/Interrupt	-	disabled						
bit 5	Unimplemen	ted: Read as '	0'							

REGISTER 25-2: CMxCON: COMPARATOR CONTROL REGISTER

REGISTER 25-2: CMxCON: COMPARATOR CONTROL REGISTER (CONTINUED)

- bit 4 CREF: Comparator Reference Select bit (VIN+ input)
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 CCH<1:0>: Comparator Channel Select bits
 - 11 = VIN- input of comparator connects to INTREF
 - 10 = VIN- input of comparator connects to CXIND pin
 - 01 = VIN- input of comparator connects to CxINC pin
 - ${\tt 00}$ = VIN- input of comparator connects to CxINB pin

REGISTER 25-3: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0	
—			—	SELSRCC<3:0>				
bit 15							bit 8	

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SELSRC	:B<3:0>			SELSRO	CA<3:0>	
bit 7							bit 0

Legend:

•			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

DIL 15-12	Unimplemented. Read as 0
bit 11-8	SELSRCC<3:0>: Mask C Input Select bits
	1111 = FLT4
	1110 = FLT2
	1101 = PWM7H
	1100 = PWM7L
	1011 = PWM6H
	1010 = PWM6L
	1001 = PWM5H
	1000 = PWM5L
	0111 = PWM4H
	0110 = PWM4L
	0101 = PWM3H
	0100 = PWM3L
	0011 = PWM2H
	0010 = PWM2L
	0001 = PWM1H
	0000 = PWM1L
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits
bit 7-4	SELSRCB<3:0>: Mask B Input Select bits 1111 = FLT4
bit 7-4	•
bit 7-4	1111 = FLT4
bit 7-4	1111 = FLT4 1110 = FLT2
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4H 0101 = PWM3H 0100 = PWM3L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4H 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L
bit 7-4	1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4H 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H

© 2009-2011 Microchip Technology Inc.

REGISTER 25-3: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER (CONTINUED)

bit 3-0 SELSRCA<3:0>: Mask A Input Select bits 1111 = FLT4 1110 = FLT2 1101 = PWM7H 1100 = PWM7L 1011 = PWM6H 1010 = PWM6L 1001 = PWM5H 1000 = PWM5L 0111 = PWM4H 0110 = PWM4L 0101 = PWM3H 0100 = PWM3L 0011 = PWM2H 0010 = PWM2L 0001 = PWM1H 0000 = PWM1L

REGISTER 25-4: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN				
bit 15					• 		bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN				
bit 7			/			,	bit 0				
Legend:											
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unk	nown				
bit 15	•		Masking Select								
					erted ('0') compa erted ('1') compa						
bit 14	Unimplemer	nted: Read as	'0'								
bit 13	OCEN: OR O	Gate C Input In	verted Enable	bit							
		OCEN: OR Gate C Input Inverted Enable bit 1 = MCI is connected to OR gate									
	0 = MCI is no	ot connected to	o OR gate								
bit 12	OCNEN: OR Gate C Input Inverted Enable bit										
	 1 = Inverted MCI is connected to OR gate 0 = Inverted MCI is not connected to OR gate 										
			-	-							
bit 11	OBEN: OR Gate B Input Inverted Enable bit 1 = MBI is connected to OR gate										
			•								
bit 10		0 = MBI is not connected to OR gate									
	OBNEN: OR Gate B Input Inverted Enable bit 1 = Inverted MBI is connected to OR gate										
	0 = Inverted MBI is not connected to OR gate										
bit 9	OAEN: OR O	OAEN: OR Gate A Input Enable bit									
	1 = MAI is connected to OR gate										
	0 = MAI is no	ot connected to	OR gate								
bit 8		-	Inverted Enable								
	 1 = Inverted MAI is connected to OR gate 0 = Inverted MAI is not connected to OR gate 										
bit 7	•	NAGS: Negative AND Gate Output Select 1 = Inverted ANDI is connected to OR gate									
			-								
bit 6	 Inverted ANDI is not connected to OR gate PAGS: Positive AND Gate Output Select 										
		1 = ANDI is connected to OR gate									
	0 = ANDI is r	not connected	to OR gate								
bit 5		-	out Inverted En	able bit							
		onnected to AN ot connected to	•								
bit 4			nput Inverted E	nable bit							
			ted to AND gat								
			nected to AND								

REGISTER 25-4: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER (CONTINUED)

bit 3	ABEN: AND Gate A1 B Input Inverted Enable bit 1 = MBI is connected to AND gate 0 = MBI is not connected to AND gate
bit 2	ABNEN: AND Gate A1 B Input Inverted Enable bit
	1 = Inverted MBI is connected to AND gate0 = Inverted MBI is not connected to AND gate
bit 1	AAEN: AND Gate A1 A Input Enable bit
	1 = MAI is connected to AND gate0 = MAI is not connected to AND gate
bit 0	AANEN: AND Gate A1 A Input Inverted Enable bit
	1 = Inverted MAI is connected to AND gate0 = Inverted MAI is not connected to AND gate

	U-0	U-0	U-0	U-0	U-0	U-0	I-0		
_	—	—	_	—	_	—	_		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—		CFSEL<2:0>		CFLTREN		CFDIV<2:0>			
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable b	bit	U = Unimplem	nented bit, rea	ad as '0'			
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 6-4 bit 3	111 = T5CLK 110 = T4CLK 101 = T3CLK 100 = T2CLK 011 = SYNCC 010 = SYNCC 001 = Fosc ⁽⁴⁾ 000 = Fp ⁽⁴⁾	(2) (1) (2) (2(3) (2) (3) (3) () (3) (3) (3) (3) (3) (3) (3)		ock Select dits					
	1 = Digital filter enabled 0 = Digital filter disabled								

REGISTER 25-5: CMxFLTR: COMPARATOR FILTER CONTROL REGISTER

- 2: See the Type B Timer Block Diagram (Figure 13-1).
- 3: See the PWM Module Register Interconnect Diagram (Figure 16-2).
- 4: See the Oscillator System Diagram (Figure 9-1).

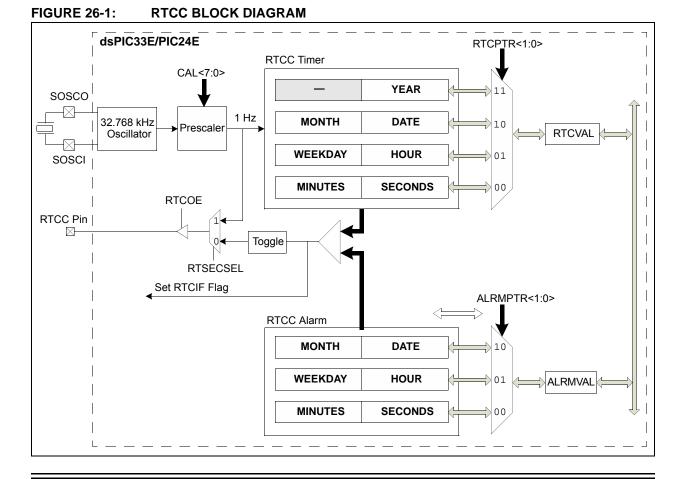
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
_	—	_	_	_	VREFSEL	BGSE	L<1:0>			
bit 15							bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE ⁽¹⁾	CVRR	CVRSS		CVR	<3:0>				
bit 7							bit			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown			
bit 15-11	Unimplemen	ted: Read as '	0'							
bit 10	1 = CVREFIN :	oltage Referen	ce Select bit							
		s generated by	/ the resistor r	network						
bit 9-8		: Band Gap R								
	11 = INTREF		D.							
		10 = INTREF = 0.2 V (nominal) 01 = INTREF = 0.6 V (nominal)								
		= 1.2 V (nomi								
bit 7	CVREN: Com	nparator Voltag	e Reference E	Enable bit						
	 1 = Comparator voltage reference circuit powered on 0 = Comparator voltage reference circuit powered down 									
	•	•								
bit 6		ROE: Comparator Voltage Reference Output Enable bit ⁽¹⁾								
	 = Voltage level is output on CVREF pin = Voltage level is disconnected from CVREF pin 									
bit 5	CVRR: Comp	CVRR: Comparator Voltage Reference Range Selection bit								
	1 = CVRSRC/2									
	0 = CVRSRC/3	•								
bit 4		CVRSS: Comparator Voltage Reference Source Selection bit								
		1 = Comparator voltage reference source, CVRsRc = (VREF+) – (VREF-) 0 = Comparator voltage reference source, CVRsRc = AVDD – AVss								
bit 3-0	•	•			ion $0 \leq CVR < 3$:)> ≤15 bits				
	When CVRR	= 1:	•							
	CVREFIN = (C	VR<3:0>/24) •	(CVRSRC)							
	When CVRR				、					
	CVREFIN = 1/4	4 ● (CVRSRC) +	· (CVR<3:0>/3	52) ● (CVRSRC)					

REGISTER 25-6: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

26.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 29. "Real-Time (RTCC)" Clock and Calendar (DS70584) of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com). 2: Some registers and associated bits
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices, and its operation.


Some of the key features of this module are:

- · Time: hours, minutes, and seconds
- 24-hour format (military time)
- · Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

© 2009-2011 Microchip Technology Inc.

26.1 Writing to the RTCC Timer

Note: To allow the RTCC module to be clocked by the secondary crystal oscillator, the Secondary Oscillator Enable (LPOSCEN) Oscillator Control bit in the (OSCCON<1>) register must be set. For further details. refer to Section 7. "Oscillator" (DS70580) in the 'dsPIC33E/PIC24E Family Reference Manual'.

The user application can configure the time and calendar by writing the desired seconds, minutes, hours, weekday, date, month, and year to the RTCC registers. Under normal operation, writes to the RTCC timer registers are not allowed. Attempted writes will appear to execute normally, but the contents of the registers will remain unchanged. To write to the RTCC register, the RTCWREN bit (RCFGCAL<13>) must be set. Setting the RTCWREN bit allows writes to the RTCC registers. Conversely, clearing the RTCWREN bit prevents writes.

To set the RTCWREN bit, the following procedure must be executed. The RTCWREN bit can be cleared at any time:

- 1. Write 0x55 to NVMKEY.
- 2. Write 0xAA to NVMKEY.
- 3. Set the RTCWREN bit using a single cycle instruction.

The RTCC module is enabled by setting the RTCEN bit (RCFGCAL<15>). To set or clear the RTCEN bit, the RTCWREN bit (RCFGCAL<13>) must be set.

If the entire clock (hours, minutes, and seconds) needs to be corrected, it is recommended that the RTCC module should be disabled to avoid coincidental write operation when the timer increment. Therefore, it stops the clock from counting while writing to the RTCC Timer register.

R/W-0	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0			
RTCEN ⁽¹⁾		RTCWREN	RTCSYNC	HALFSEC ⁽²⁾	RTCOE	RTCPT	R<1:0>			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
N/W-U	N/W-0	FX/VV-0		<7:0>	N/ VV-U	N/ VV-U	N/W-0			
bit 7			UAL	<1.0r			bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkr	nown			
bit 15		C Enable bit ⁽¹⁾								
		odule is enable								
bit 14		ited: Read as '(
bit 13	-	RTCC Value Re		Enable bit						
			•	the user applica	ation					
	0 = RTCVAL	register is lock	ed out from b	eing written to b	y the user app	lication				
bit 12		RTCSYNC: RTCC Value Registers Read Synchronization bit								
		 1 = A rollover is about to occur in 32 clock edges (approximately 1 ms) 0 = A rollover will not occur 								
bit 11		alf-Second Sta	tus bit(2)							
		half period of a								
		period of a sec								
bit 10		CC Output Enab								
		1 = RTCC output is enabled								
bit 9-8		utput is disabled		ntor hito						
DIL 9-0		D>: RTCC Value	•			the RTCVAL				
	Pointe to th	e correenondir	NG RICC V2	alue remeter w	hen reading		redictor ind			

REGISTER 26-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION

1: A write to the RTCEN bit is only allowed when RTCWREN = 1.

2: This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

Note: The RCFGCAL register is only affected by a POR.

REGISTER 26-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER (CONTINUED)

Note 1: A write to the RTCEN bit is only allowed when RTCWREN = 1.

2: This bit is read-only. It is cleared when the lower half of the MINSEC register is written.

Note: The RCFGCAL register is only affected by a POR.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	_	_	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	_	_	_	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							

REGISTER 26-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2	Unimplemented: Read as '0'
----------	----------------------------

bit 1

RTSECSEL: RTCC Seconds Clock Output Select bit⁽¹⁾

1 = RTCC seconds clock is selected for the RTCC pin

0 = RTCC alarm pulse is selected for the RTCC pin

bit 0 Not used by the RTCC module

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL) must be set.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME		AMA	SK<3:0>		ALRMP	TR<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ARP	T<7:0>			
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	1 as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15		larm Enable bit					
	1 = Alarm is CHIME	enabled (clear	ed automatic	ally after an ala	rm event when	ever ARPT<7:0)> = 0x00 an
	0 = Alarm is	,					
bit 14		me Enable bit					
		s enabled; ARP	T<7:0> bits a	re allowed to ro	II over from 0x0	00 to 0xFF	
		s disabled; ARP					
bit 13-10	AMASK<3:0	>: Alarm Mask	Configuration	bits			
		y half second					
	0001 = Ever						
	0010 = Ever 0011 = Ever	y 10 seconds					
		y 10 minutes					
	0101 = Ever	•					
	0110 = Once	•					
	0111 = Once 1000 = Once						
		e a year (except	when config	ured for Februa	ry 29th, once e	very 4 years)	
		erved – do not u	-		,	, , , , , , , , , , , , , , , , , , ,	
		erved – do not u					
bit 9-8		1:0>: Alarm Val	-				
		corresponding 1:0> value decre					
bit 7-0	ARPT<7:0>:	Alarm Repeat	Counter Value	e bits			
	11111111 =	Alarm will repe	at 255 more f	imes			
	•						
	•						
	•						
		Alarm will not r decrements on		ent. The counte	er is prevented	from rolling ove	r from 0x00 t

REGISTER 26-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

REGISTER 26-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	_	—	—	—
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
	YRTEN<3:0>			YRONE<3:0>				
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 26-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0	MTHONE<3:0>			
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN<1:0>		DAYONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1

- bit 11-8MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9bit 7-6Unimplemented: Read as '0'
- bit 5-4 DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
- bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 26-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—		WDAY<2:0>	
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	HRTEN<1:0>			HRONE<3:0>		
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6

bit 7-6 Unimplemented: Read as '0'

bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2

bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 26-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	E<3:0>	
bit 15							bit 8

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		SECTEN<2:0>			SECON	IE<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	—	_	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8
11_0	11_0						

REGISTER 26-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTE	N<1:0>		DAYON	IE<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 26-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—		—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
U-0	U-0 —		R/W-x N<1:0>	R/W-x	R/W-x HRONE		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2009-2011 Microchip Technology Inc.

REGISTER 26-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—		MINTEN<2:0>			MINONE<3:0>			
bit 15							bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		SECTEN<2:0>			SECONE<3:0>			
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

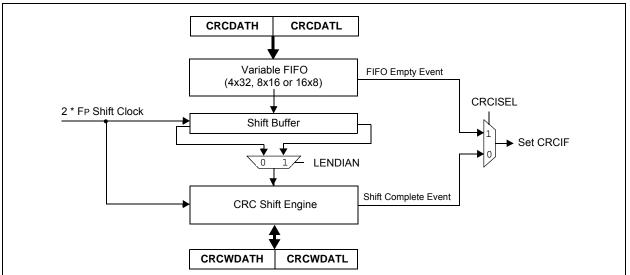
bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

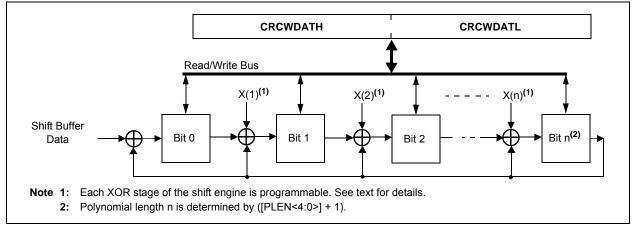
27.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 27. "Programmable Cyclic Redundancy Check (CRC)" (DS70346) of the "dsPIC33E/ PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

FIGURE 27-1: CRC BLOCK DIAGRAM


The programmable CRC generator offers the following features:

- User-programmable (up to 32nd order) polynomial CRC equation
- Interrupt output
- Data FIFO


The programmable CRC generator provides a hardware-implemented method of quickly generating checksums for various networking and security applications. It offers the following features:

- User-programmable CRC polynomial equation, up to 32 bits
- Programmable shift direction (little or big-endian)
- · Independent data and polynomial lengths
- Configurable Interrupt output
- Data FIFO

A simplified block diagram of the CRC generator is shown in Figure 27-1. A simple version of the CRC shift engine is shown in Figure 27-2.

27.1 Overview

The CRC module can be programmed for CRC polynomials of up to the 32nd order, using up to 32 bits. Polynomial length, which reflects the highest exponent in the equation, is selected by the PLEN<4:0> bits (CRCCON2<4:0>).

The CRCXORL and CRCXORH registers control which exponent terms are included in the equation. Setting a particular bit includes that exponent term in the equation; functionally, this includes an XOR operation on the corresponding bit in the CRC engine. Clearing the bit disables the XOR. For example, consider two CRC polynomials, one a 16bit equation and the other a 32-bit equation:

$$x16 + x12 + x5 + 1$$

$$x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1$$

To program these polynomials into the CRC generator, set the register bits as shown in Table 27-1.

Note that the appropriate positions are set to '1' to indicate that they are used in the equation (for example, X26 and X23). The 0 bit required by the equation is always XORed; thus, X0 is a don't care. For a polynomial of length N, it is assumed that the *N*th bit will always be used, regardless of the bit setting. Therefore, for a polynomial length of 32, there is no 32nd bit in the CRCxOR register.

TABLE 27-1: CRC SETUP EXAMPLES FOR 16 AND 32-BIT POLYNOMIAL

CRC Control Bits	Bit Values					
	16-bit Polynomial	32-bit Polynomial				
PLEN<4:0>	01111	11111				
X<31:16>	0000 0000 0000 000x	0000 0100 1100 0001				
X<15:0>	0001 0000 0010 000x	0001 1101 1011 011x				

R/W-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0				
CRCEN	_	CSIDL			VWORD<4:0>	•					
bit 15			•				bit 8				
R-0	R-1	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0				
CRCFUL	CRCMPT	CRCISEL	CRCGO	LENDIAN							
bit 7							bit C				
Legend:											
R = Readable	∍ hit	W = Writable	hit	U = Unimpler	nented bit, read	l as '0'					
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own				
							0000				
bit 15	CRCEN: CR	C Enable bit									
	1 = CRC mo	1 = CRC module is enabled									
	0 = CRC mo	dule is disabled	I. All state ma	chines, pointer	s, and CRCWD	AT/CRCDAT are	e reset. Othe				
		e not reset.									
bit 14	-	ted: Read as '									
bit 13		CSIDL: CRC Stop in Idle Mode bit									
		 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode 									
bit 12-8	VWORD<4:0>: Pointer Value bits										
DIL 12-0	Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEN<4:0> > 7,										
		PLEN<4:0> ≤7.					1.0, ,				
bit 7	CRCFUL: FI	FO Full bit									
	1 = FIFO is f	1 = FIFO is full									
	0 = FIFO is r	not full									
bit 6	CRCMPT: FI	FO Empty Bit									
		1 = FIFO is empty									
	0 = FIFO is r										
bit 5		RC Interrupt Se		•		50					
		 1 = Interrupt on FIFO empty; final word of data is still shifting through CRC 0 = Interrupt on shift complete and CRCWDAT results ready 									
	°										
bit 4	CRCGO: Sta	rt CRC bit									
bit 4	CRCGO: Sta 1 = Start CR										
bit 4	1 = Start CR	rt CRC bit C serial shifter ial shifter is turi	ned off								
bit 4 bit 3	1 = Start CR 0 = CRC ser	C serial shifter		guration bit							
	1 = Start CR 0 = CRC ser LENDIAN: D 1 = Data wor	C serial shifter ial shifter is turi ata Word Little- rd is shifted into	Endian Config the CRC sta	rting with the L	Sb (little endian	•					
	1 = Start CR 0 = CRC ser LENDIAN: D 1 = Data wor 0 = Data wor	C serial shifter ial shifter is turi ata Word Little- rd is shifted into	Endian Config the CRC sta the CRC sta	rting with the L	Sb (little endian ISb (big endian	•					

REGISTER 27-1: CRCCON1: CRC CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			DWIDTH<4:0	>		
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—	PLEN<4:0>					
bit 7		•					bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	unknown	
bit 15-13	Unimplemen	ted: Read as '	כי					
bit 12-8	DWIDTH<4:0>: Data Width Select bits							

REGISTER 27-2: CRCCON2: CRC CONTROL REGISTER 2

These bits set the width of the data word (DWIDTH<4:0> + 1)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **PLEN<4:0>:** Polynomial Length Select bits These bits set the length of the polynomial (Polynomial Length = PLEN<4:0> + 1)

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<3	31:24>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			X<2	23:16>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpler	mented bit, read	l as '0'	

'0' = Bit is cleared

x = Bit is unknown

REGISTER 27-3: CRCXORH: CRC XOR POLYNOMIAL HIGH REGISTER

bit 15-0 X<31:16>: XOR of Polynomial Term Xⁿ Enable bits

'1' = Bit is set

-n = Value at POR

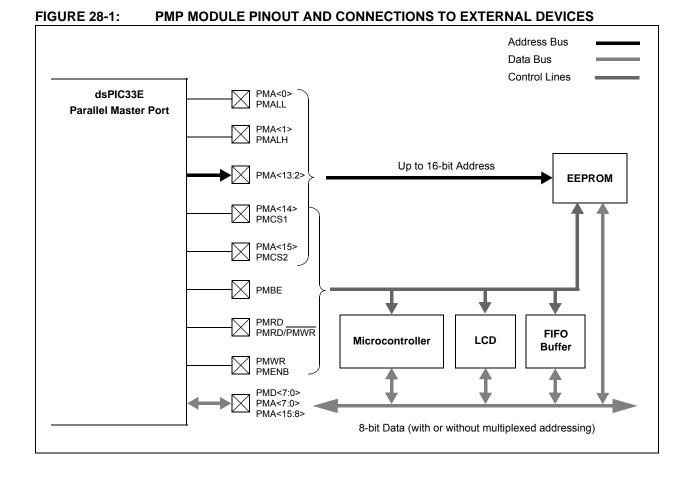
REGISTER 27-4: CRCXORL: CRC XOR POLYNOMIAL LOW REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit (
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at P	= Value at POR '1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	

bit 15-1X<15:1>: XOR of Polynomial Term Xⁿ Enable bitsbit 0Unimplemented: Read as '0'

© 2009-2011 Microchip Technology Inc.

NOTES:


28.0 PARALLEL MASTER PORT (PMP)

- Note 1: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 28. "Parallel Master Port (PMP)" (DS70576) of the "dsPIC33E/PIC24E Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

Key features of the PMP module include:

- Eight Data Lines
- Up to 16 Programmable Address Lines
- · Up to two Chip Select Lines
- Programmable Strobe Options:
 - Individual read and write strobes, or
 - Read/Write strobe with enable strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- Legacy Parallel Slave Port (PSP) Support
- · Enhanced Parallel Slave Support:
 - Address support
 - 4-byte deep auto-incrementing buffer
- · Programmable Wait States

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PMPEN	_	PSIDL	ADRMI	JX<1:0>	PTBEEN	PTWREN	PTRDEN		
bit 15							bit		
D # # / 0	D 444 0	D (1)	R/W-0 ⁽¹⁾		D111	D 444 0	D 444 0		
R/W-0	R/W-0	R/W-0 ⁽¹⁾		R/W-0 ⁽¹⁾	R/W-0	R/W-0	R/W-0		
	=<1:0>	ALP	CS2P	CS1P	BEP	WRSP	RDSP		
bit 7							bit		
Legend:									
R = Readabl	le bit	W = Writable b	oit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at	t Reset	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	iown		
bit 15	DMDEN. Dor	allel Master Port	Enable bit						
DIL 10		dule is enabled							
		dule is disabled,	no off-chip ac	cess performed	1				
bit 14	Unimplemen	ted: Read as '0	,						
bit 13	PSIDL: Stop	in Idle Mode bit							
		ue module operation			mode				
bit 12-11	ADRMUX<1:	0>: Address/Da	ta Multiplexing	Selection bits					
	11 = Reserve								
		ts of address are				r aight bita ana a			
		ght bits of addre and data appea			:0> pins, uppe	r eight bits are c	ON PIMAS 15:8		
bit 10		PTBEEN: Byte Enable Port Enable bit (16-bit Master mode)							
	1 = PMBE po				- /				
	0 = PMBE po	rt is disabled							
bit 9	PTWREN: Write Enable Strobe Port Enable bit								
	 1 = PMWR/PMENB port is enabled 0 = PMWR/PMENB port is disabled 								
	0 = PIVIVVR/P								
hit 8		-	sabled	hit.					
bit 8		ad/Write Strobe	sabled Port Enable t	pit					
bit 8	1 = PMRD/P	-	sabled Port Enable b ibled	pit					
	1 = PMRD/P 0 = PMRD/P	ad/Write Strobe	sabled Port Enable t ibled abled	Dit					
	1 = PMRD/P1 0 = PMRD/P1 CSF<1:0>: C 11 = Reserve	ad/Write Strobe <u>WWR</u> port is ena MWR port is disa hip Select Func	sabled Port Enable b abled abled tion bits						
	1 = PMRD/PI 0 = PMRD/PI CSF<1:0>: C 11 = Reserve 10 = PMCS1	ad/Write Strobe <u>MWR</u> port is ena MWR port is disa hip Select Func ed and PMCS2 fur	sabled Port Enable b abled abled tion bits action as Chip	Select					
	1 = PMRD/PI 0 = PMRD/PI CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2	ad/Write Strobe <u>MWR</u> port is ena MWR port is disa hip Select Func ed and PMCS2 fur functions as Ch	sabled Port Enable b abled abled tion bits action as Chip ip Select, PM	Select CS1 functions a		14			
bit 7-6	1 = PMRD/PI 0 = PMRD/PI CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2 00 = PMCS1	ad/Write Strobe <u>MWR</u> port is ena MWR port is disa hip Select Func and PMCS2 fur functions as Ch and PMCS2 fur	sabled Port Enable b abled abled tion bits nction as Chip ip Select, PM nction as addre	Select CS1 functions a		14			
bit 8 bit 7-6 bit 5	1 = PMRD/PI 0 = PMRD/PI CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2 00 = PMCS1 ALP: Address	ad/Write Strobe <u>MWR</u> port is ena MWR port is disa hip Select Func ed and PMCS2 fur functions as Ch	sabled Port Enable b abled abled tion bits nction as Chip ip Select, PM nction as addre bit ⁽¹⁾	Select CS1 functions a		14			
bit 7-6	1 = PMRD/PI 0 = PMRD/PI CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2 00 = PMCS1 ALP: Address 1 = Active-hig	ad/Write Strobe <u>MWR</u> port is ena MWR port is disa hip Select Func- ed and PMCS2 fur functions as Ch and PMCS2 fur s Latch Polarity	sabled Port Enable b abled abled tion bits nction as Chip ip Select, PM nction as addre bit ⁽¹⁾ PMALH)	Select CS1 functions a		14			
bit 7-6	1 = PMRD/PI 0 = PMRD/PI CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2 00 = PMCS1 ALP: Address 1 = Active-hig 0 = Active-low CS2P: Chip S	ad/Write Strobe <u>MWR</u> port is ena MWR port is disa hip Select Func- and PMCS2 fur functions as Ch and PMCS2 fur s Latch Polarity gh (PMALL and F Select 1 Polarity	sabled Port Enable b abled abled tion bits nction as Chip ip Select, PM bit(1) PMALH) WALH)	Select CS1 functions a		14			
bit 7-6 bit 5	1 = PMRD/PI 0 = PMRD/PI CSF<1:0>: C 11 = Reserve 10 = PMCS1 01 = PMCS2 00 = PMCS1 ALP: Address 1 = Active-hig 0 = Active-low	ad/Write Strobe <u>MWR</u> port is ena MWR port is disa hip Select Func- and PMCS2 fur functions as Ch and PMCS2 fur s Latch Polarity gh (PMALL and F Select 1 Polarity gh (PMCS2)	sabled Port Enable b abled abled tion bits nction as Chip ip Select, PM bit(1) PMALH) WALH)	Select CS1 functions a		14			

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER

Note 1: These bits have no effect when their corresponding pins are used as address lines.

2: PMCS1 applies to Master mode and PMCS applies to Slave mode.

REGISTER 28-1: PMCON: PARALLEL MASTER PORT CONTROL REGISTER (CONTINUED)

- bit 3 **CS1P:** Chip Select 0 Polarity bit⁽¹⁾ 1 = Active-high (PMCS1/PMCS)⁽²⁾ 0 = Active-low (PMCS1/PMCS)
- bit 2 BEP: Byte Enable Polarity bit 1 = Byte enable active-high (PMBE) $0 = Byte enable active-low (\overline{PMBE})$ WRSP: Write Strobe Polarity bit bit 1 For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR) For Master Mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB) bit 0 RDSP: Read Strobe Polarity bit For Slave Modes and Master Mode 2 (PMMODE<9:8> = 00, 01, 10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)For Master Mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMRD/ \overline{PMWR}) 0 = Enable strobe active-low (PMRD/PMWR)
- **Note 1:** These bits have no effect when their corresponding pins are used as address lines.
 - 2: PMCS1 applies to Master mode and PMCS applies to Slave mode.

R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
BUSY	IRQI	VI<1:0>	INCM	/<1:0>	MODE16	MODE	E<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	B<1:0> ^(1,2,3)			M<3:0>			1:0> ^(1,2,3)
bit 7							bit (
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value	at Reset	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15	BUSY: Busy 1 = Port is bu 0 = Port is no		de only)				
bit 14-13	11 = Interrup or on a 10 = Reserve 01 = Interrup	read/write opera	en Read Buffe ation when PN	IA<1:0> = 11 (Vrite Buffer 3 is w Addressable PSI e		d PSP mode
bit 12-11	INCM<1:0>: 11 = PSP re: 10 = Decrem 01 = Increme	Increment Mod	ffers auto-incre every read/wr every read/writ	ite cycle te cycle	PSP mode only))	
bit 10	1 = 16-bit mo				ne data register ir data register invo		
bit 9-8	MODE<1:0> 11 = Master 10 = Master 01 = Enhanc	: Parallel Port M Mode 1 (PMCS Mode 2 (PMCS ced PSP, control	lode Sele <u>ct bit</u> x, PMRD/PMV x, PMRD, PMV signals (PMR	<u>'s</u> VR, PMENB, F WR, PMBE, PI D, PMWR, PM	PMBE, PMA <x:0> MA<x:0>, and PM ICSx, PMD<7:0> PMWR, PMCSx,</x:0></x:0>	>, and PMD<7 //D<7:0>) ∙, and PMA<1:	:0>) 0>)
bit 7-6	WAITB<1:0 > 11 = Data wa 10 = Data wa 01 = Data wa	•: Data Setup to ait of 4 TP (demi ait of 3 TP (demi ait of 2 TP (demi	Read/Write/A ultiplexed/mult ultiplexed/mult ultiplexed/mult	ddress Phase iplexed); addre iplexed); addre iplexed); addre	Wait State Config ess phase of 4 Tr ess phase of 3 Tr ess phase of 2 Tr ess phase of 1 Tr	guration bits ^{(1,} P (multiplexed P (multiplexed P (multiplexed	2,3)))
bit 5-2	WAITM<3:0: 1111 = Wait	Read to Byte of additional 15	Enable Strobe				,
hit 1 0	0000 = No a	of additional 1 dditional Wait c Data Hold Afte	ycles (operatic				
oit 1-0	11 = Wait of 10 = Wait of 01 = Wait of 00 = Wait of	4 ТР 3 ТР 2 ТР	er Strode Walt	State Conligui			
Note 1:	The applied Wait 28.4.1.8 "Wait S						

REGISTER 28-2: PMMODE: PARALLEL MASTER PORT MODE REGISTER

3: TP = 1/FP.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CS2	CS1			ADDR	<13:8>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADD	R<7:0>			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable b	pit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at Reset '1' = Bit is set			'0' = Bit is clea	ared	x = Bit is unknown		
bit 15		elect 2 bit :6> = 10 or 01: ect 2 is active					
	If PMCON<7 Bit functions	ect 2 is inactive :6> = 11 or 00: as ADDR<15>.					
bit 14							
bit 13-0	Bit functions	:6> = 11 or 0x: as ADDR<14>. >: Destination Ac					

Note 1: In Enhanced Slave mode, PMADDR functions as PMDOUT1, one of the two data buffer registers.

© 2009-2011 Microchip Technology Inc.

-

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTEN15	PTEN14	PTEN13	PTEN12	PTEN11	PTEN10	PTEN9	PTEN8		
bit 15							bit 8		
DAM 0		D 444 0	DAMA		D 444 0	DAMA			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PTEN7	PTEN6	PTEN5	PTEN4	PTEN3	PTEN2	PTEN1	PTEN0		
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'						
-n = Value at Reset		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15	PTEN15: PMCS2 Strobe Enable bit								
	1 = PMA15 functions as either PMA<15> or PMCS2								
		inctions as por							
bit 14	PTEN14: PM	CS1 Strobe En	able bit						
		inctions as eith		r PMCS1					
		inctions as por							
bit 13-2	PTEN<13:2>	: PMP Address	Port Enable b	its					
		2> function as		ines					
		2> function as							
bit 1-0		PMALH/PMAL							
				IA<1:0> or PM/	ALH and PMAL	.L			
	0 = PMA1 an	d PMA0 functio	on as port I/O						

REGISTER 28-4: PMAEN: PARALLEL MASTER PORT ADDRESS ENABLE REGISTER

R-0	R/W-0 HS	U-0	U-0	R-0	R-0	R-0	R-0
IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F
bit 15							bit 8
R-1	R/W-0 HS	U-0	U-0	R-1	R-1	R-1	R-1
OBE	OBUF	—	—	OB3E	OB2E	OB1E	OB0E
bit 7							bit 0
Legend: HS = Hardware Set HC = Hardware Cle				re Cleared			
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at Reset		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15 IBF: Input Buffer Full Status bit							
DIC 15	1 = All writable input buffer registers are full						
0 = Some or all of the writable input buffer registers are empty							
bit 14	IBOV: Input Buffer Overflow Status bit						

1 = A write attempt to a full input byte register occurred (must be cleared in software)

REGISTER 28-5: PMSTAT: PARALLEL MASTER PORT STATUS REGISTER (SLAVE MODE ONLY)

bit 13-12	Unimplemented: Read as '0'
bit 11-8	IBxF: Input Buffer x Status Full bit
	1 = Input buffer contains data that has not been read (reading buffer will clear this bit)0 = Input buffer does not contain any unread data
bit 7	OBE: Output Buffer Empty Status bit
	1 = All readable output buffer registers are empty
	0 = Some or all of the readable output buffer registers are full
bit 6	OBUF: Output Buffer Underflow Status bit
	1 = A read occurred from an empty output byte register (must be cleared in software)0 = No underflow occurred
bit 5-4	Unimplemented: Read as '0'
bit 3-0	OBxE: Output Buffer x Status Empty bit
	1 = Output buffer is empty (writing data to the buffer will clear this bit)

1 = Output buffer is empty (writing data to the buffer will clear this bit)

0 = No overflow occurred

0 = Output buffer contains data that has not been transmitted

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	_	_	—	_	—	RTSECSEL	PMPTTL
bit 7							bit 0
Legend:							

REGISTER 28-6: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1 Not used by the PMP module.

bit 0 PMPTTL: PMP Module TTL Input Buffer Select bit

1 = PMP module uses TTL input buffers

0 = PMP module uses Schmitt Trigger input buffers

29.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- · In-Circuit emulation

29.1 Configuration Bits

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices provide nonvolatile memory implementation for device Configuration bits. Refer to **Section 30.** "Device Configuration" (DS70618) of the "dsPIC33E/PIC24E Family Reference Manual" for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 29-2.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

To prevent inadvertent configuration changes during code execution, some programmable Configuration bits are write-once. For such bits, changing a device configuration requires that the device be Reset. For other Configuration bits, the device configuration changes immediately after an RTSP operation. The RTSP Effect column in Table 29-2 indicates when the device configuration changes after a bit is modified using RTSP.

The Device Configuration register map is shown in Table 29-1.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0xF80000	Reserved	_	—	—	—	—	—	—	—
0xF80002	Reserved		—	—	—	—	—	—	—
0xF80004	FGS	_	_	GSSK	<<1:0>	_	—	GSS	GWRP
0xF80006	FOSCSEL	IESO	_	—	—	_	FNOSC<2:0>		
0xF80008	FOSC	FCKSM	<1:0>	IOL1WAY	_	_	OSCIOFNC	POSCM	1D<1:0>
0xF8000A	FWDT	FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTPOST.	<3:0>	
0xF8000C	FPOR		_	ALTI2C2 ⁽²⁾	ALTI2C1	BOREN	FPW	/RT<2:0>	
0xF8000E	FICD	Reserv	ed ⁽¹⁾	JTAGEN	Reserved ⁽¹⁾	_	RSTPRI ICS<1:0>		
0xF80010	FAS		_	APLK	<1:0>	—	— APL AW		AWRP
0xF80012	FUID0				User Unit ID	Byte 0			

TABLE 29-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'

Note 1: These bits are reserved for use by development tools and must be programmed as '1'.

2: These bits are reserved on dsPIC33EP256MU806 (64-pin) devices and always read as '1'.

Bit Field	Register	RTSP Effect	Description
GSSK<1:0>	FGS	Immediate	General Segment Key bits. These bits must be set to '00' if GWRP = 1 and GSS = 1. These bits must be set to '11' for any other value of the GWRP and GSS bits. Any mismatch between either the GWRP or GSS bits, and the GSSK bits (as described above), will result in code protection getting enabled for the General Segment. A Flash bulk erase will be required to unlock the device.
GSS	FGS	Immediate	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = User program memory is code-protected
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, the RTSP effect is on any device Reset; otherwise, immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) Oscillator with postscaler 110 = Internal Fast RC (FRC) Oscillator with divide-by-16 101 = LPRC Oscillator 100 = Secondary (LP) Oscillator 011 = Primary (XT, HS, EC) Oscillator with PLL 010 = Primary (XT, HS, EC) Oscillator 001 = Internal Fast RC (FRC) Oscillator with PLL 000 = FRC Oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary Oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC Oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode

TABLE 29-2: CONFIGURATION BITS DESCRIPTION

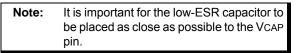
Note 1: This bit is not available on dsPIC33EP256MU806 (64-pin) devices.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

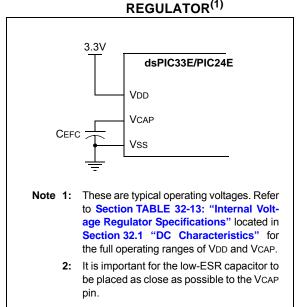
Bit Field	Register	RTSP Effect	Description
PLLKEN	FWDT		PLL Lock Wait Enable bit
PLLKEN	FVUI	Immediate	1 = Clock switches to the PLL source will wait until the PLL lock signal is valid
			0 = Clock switch will not wait for PLL lock
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32
APLK<1:0>	FAS	Immediate	Auxiliary Segment Key bits These bits must be set to '00' if AWRP = 1 and APL = 1. These bits must be set to '11' for any other value of the AWRP and APL bits. Any mismatch between either the AWRP or APL bits, and the APL
			bits (as described above), will result in a code protection getting enabled for the Auxiliary Segment. A Flash bulk erase will be required to unlock the device.
APL	FAS	Immediate	Auxiliary Segment Code-protect bit 1 = Auxiliary program memory is not code-protected 0 = Auxiliary program memory is code-protected
AWRP	FAS	Immediate	Auxiliary Segment Write-protect bit 1 = Auxiliary program memory is not write-protected 0 = Auxiliary program memory is write-protected
WDTPOST<3:0>	FWDT	Immediate	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • 0001 = 1:2 0000 = 1:1
FPWRT<2:0>	FPOR	Immediate	Power-on Reset Timer Value Select bits 111 = PWRT = 128 ms 110 = PWRT = 64 ms 101 = PWRT = 32 ms 100 = PWRT = 16 ms 011 = PWRT = 8 ms 010 = PWRT = 4 ms 001 = PWRT = 2 ms 000 = PWRT = Disabled
BOREN	FPOR	Immediate	Brown-out Reset (BOR) Detection Enable bit 1 = BOR is enabled 0 = BOR is disabled
ALTI2C2 ⁽¹⁾	FPOR	Immediate	Alternate I ² C [™] pins for I2C2 1 = I2C2 mapped to SDA2/SCL2 pins 0 = I2C2 mapped to ASDA2/ASCL2 pins
ALTI2C1	FPOR	Immediate	Alternate I ² C pins for I2C1 1 = I2C1 mapped to SDA1/SCL1 pins 0 = I2C1 mapped to ASDA1/ASCL1 pins
JTAGEN	FICD	Immediate	JTAG Enable bit 1 = JTAG enabled 0 = JTAG disabled

Note 1: This bit is not available on dsPIC33EP256MU806 (64-pin) devices.

-							
Bit Field	Register	RTSP Effect	Description				
RSTPRI	FICD	On any device Reset	Reset Target Vector Select bit 1 = Device will reset to Primary Flash Reset location 0 = Device will reset to Auxiliary Flash Reset location				
ICS<1:0>	FICD	Immediate	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use				


TABLE 29-2: CONFIGURATION BITS DESCRIPTION (CONTINUED)

Note 1: This bit is not available on dsPIC33EP256MU806 (64-pin) devices.


29.2 On-Chip Voltage Regulator

All of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices power their core digital logic at a nominal 1.8V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. A low-ESR (less than 1 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 29-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 32-13 located in Section 32.0 "Electrical Characteristics".

FIGURE 29-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE

29.3 BOR: Brown-out Reset (BOR)

The Brown-out Reset module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on). The BOR feature is enabled by setting the BOREN Configuration bit (FPOR<3>).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM is applied. The total delay in this case is TFSCM. Refer to parameter SY35 in Table 32-22 of **Section 32.0 "Electrical Characteristics"** for specific TFSCM values.

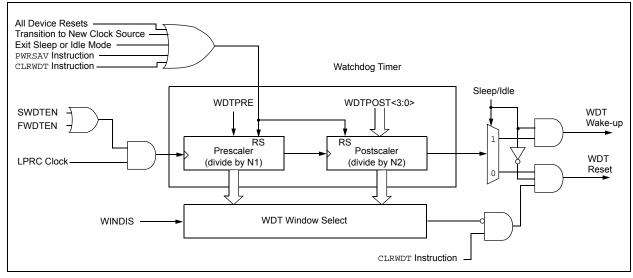
The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit, if enabled, continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

Note: When BOR is disabled, an external POR circuit should be used to ensure that the device remains in Reset until the minimum VDD is reached.

© 2009-2011 Microchip Technology Inc.

29.4 Watchdog Timer (WDT)

For dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices, the WDT is driven by the LPRC Oscillator. When the WDT is enabled, the clock source is also enabled.


29.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler that can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution
- Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

FIGURE 29-2: WDT BLOCK DIAGRAM

29.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3,2>) needs to be cleared in software after the device wakes up.

29.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note:	If the WINDIS bit (FWDT<6>) is cleared,
	the CLRWDT instruction should be executed
	by the application software only during the
	last 1/4 of the WDT period. This CLRWDT
	window can be determined by using a timer.
	If a CLRWDT instruction is executed before
	this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

29.5 JTAG Interface

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices implement a JTAG interface, which supports boundary scan device testing. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70608) of the "dsPIC33E/PIC24E Family Reference Manual" for further information on usage, configuration and operation of the JTAG interface.

29.6 In-Circuit Serial Programming

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33E/PIC24E Flash Programming Specification"* (DS70619) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

29.7 In-Circuit Debugger

When MPLAB[®] ICD 3 or REAL ICE[™] is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/ Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to \overline{MCLR} , VDD, VSS, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

29.8 Code Protection and CodeGuard™ Security

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices offer basic implementation of CodeGuard Security that supports only General Segment (GS) security. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33E implemented. The following sections provide an overview of these features.

The dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 devices do not support Boot Segment (BS), Secure Segment (SS), and RAM protection.

Note:	Refer to Section 23. "CodeGuard™
	Security" (DS70624) of the "dsPIC33E/
	PIC24E Family Reference Manual" for
	further information on usage,
	configuration and operation of
	CodeGuard Security.

^{© 2009-2011} Microchip Technology Inc.

NOTES:

30.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 families of devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to the related section of the "dsPIC33E/PIC24E Family Reference Manual', which is available from the Microchip web site (www.microchip.com).

The dsPIC33EP instruction set is almost identical to that of the dsPIC30F and dsPIC33F. The PIC24EP instruction set is almost identical to that of the PIC24F and PIC24H.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- · DSP operations
- Control operations

 Table 30-1 lists the general symbols used in describing the instructions.

The dsPIC33E instruction set summary in Table 30-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The ${\tt MAC}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- · The X and Y address space prefetch operations
- · The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction, or a PSV or table read is performed. In these cases, the execution takes multiple instruction cycles with the additional instruction cycle(s) executed as a NOP. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set,
	refer to the "16-bit MCU and DSC
	Programmer's Reference Manual"
	(DS70157).

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
$a\in \{b,c,d\}$	a is selected from the set of values b, c, d
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) ∈ {015}
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal ∈ {0,1}
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)

TABLE 30-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}

TABLE 30-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
1	ADD	ADD	Acc ⁽¹⁾	Add Accumulators	1	1	OA,OB,SA,SE
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,2
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,2
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,2
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,S
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,
		ADDC	f,WREG	WREG = f + WREG + (C)	1	1	C,DC,N,OV,
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
1	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
5	BRA	BRA	C,Expr	Branch if Carry	1	1 (4)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (4)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (4)	None
		BRA	GT,Expr	Branch if greater than	1	1 (4)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (4)	None
		BRA	LE,Expr	Branch if less than or equal	1	1 (4)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (4)	None
		BRA	LT, Expr	Branch if less than	1	1 (4)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (4)	None
		BRA	N,Expr	Branch if Negative	1	1 (4)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (4)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (4)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (4)	None
		BRA	NZ, Expr	Branch if Not Zero	1	1 (4)	None
		BRA	OA, Expr(1)	Branch if Accumulator A overflow	1	1 (4)	None
		BRA	OB, Expr(1)	Branch if Accumulator B overflow	1	1 (4)	None
		BRA	OV, Expr(1)	Branch if Overflow	1	1 (4)	None
		BRA	SA, Expr(1)	Branch if Accumulator A saturated	1	1 (4)	None
		BRA	SB, Expr ⁽¹⁾	Branch if Accumulator B saturated	1	1 (4)	None
		BRA	Expr	Branch Unconditionally	1	4	None
				Branch if Zero	1		None
		BRA	Z,Expr	Computed Branch	1	1 (4) 4	None
,	DOPT	BRA	Wn				
	BSET	BSET	f,#bit4	Bit Set f	1	1	None

TABLE 30-2: INSTRUCTION SET OVERVIEW

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	4	SFA
		CALL	Wn	Call indirect subroutine	1	4	SFA
		CALL.L	Wn	Call indirect subroutine (long address)	1	4	SFA
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB(1)	Clear Accumulator	1	1	OA,OB,SA,SE
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	СОМ	СОМ	f	$f = \overline{f}$	1	1	N,Z
		СОМ	f,WREG	WREG = f	1	1	N,Z
		СОМ	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
10	01	CP	Wb,#lit8	Compare Wb with lit8	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
	010	CPO	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
20	CID	CPB	Wb,#lit8	Compare Wb with lit8, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - \overline{C})$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb,Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
	CPBEQ	CPBEQ	Wb,Wn,Expr	Compare Wb with Wn, branch if =	1	1 (5)	None
22	CPSGT	CPSGT	Wb,Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
	CPBGT	CPBGT	Wb,Wn,Expr	Compare Wb with Wn, branch if >	1	1 (5)	None
23	CPSLT	CPSLT	Wb,Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
	CPBLT	CPBLT	Wb,Wn,Expr	Compare Wb with Wn, branch if <	1	1 (5)	None
24	CPSNE	CPSNE	Wb,Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
	CPBNE	CPBNE	Wb,Wn,Expr	Compare Wb with Wn, branch if ≠	1	1 (5)	None

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = f – 2	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DISI	DISI	#lit14	Disable Interrupts for k instruction cycles	1	1	None
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	_{Wm} , _{Wn} (1)	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	<pre>#lit15,Expr(1)</pre>	Do code to PC + Expr, lit15 + 1 times	2	2	None
		DO	Wn, Expr(1)	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd ⁽¹⁾	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	4	None
		GOTO	Wn	Go to indirect	1	4	None
		GOTO.L	Wn	Go to indirect (long address)	1	4	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	SFA
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd,AWB ⁽¹⁾	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd(1)	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
6	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	None
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG,f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
7	MOVPAG	MOVPAG	#lit10,DSRPAG	Move 10-bit literal to DSRPAG	1	1	None
		MOVPAG	#lit9,DSWPAG	Move 9-bit literal to DSWPAG	1	1	None
		MOVPAG	#lit8,TBLPAG	Move 8-bit literal to TBLPAG	1	1	None
		MOVPAGW	Ws, DSRPAG	Move Ws<9:0> to DSRPAG	1	1	None
		MOVPAGW	Ws, DSWPAG	Move Ws<8:0> to DSWPAG	1	1	None
		MOVPAGW	Ws, TBLPAG	Move Ws<7:0> to TBLPAG	1	1	None
8	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wy, Wyd, AWB(1)	Prefetch and store accumulator	1	1	None
9	MPY	MPY	$Wm*Wn, Acc, Wx, Wxd, Wy, Wyd^{(1)}$	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OA SA,SB,SA
		MPY	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd(1)	Square Wm to Accumulator	1	1	OA,OB,OAI SA,SB,SAI
0	MPY.N	MPY.N	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd ⁽¹⁾	-(Multiply Wm by Wn) to Accumulator	1	1	None
1	MSC	MSC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd, AWB(1)	Multiply and Subtract from Accumulator	1	1	OA,OB,OA SA,SB,SA
52	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SS	Wb,Ws,Acc(1)	Accumulator = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,Ws,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Acc ⁽¹⁾	Accumulator = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.US	Wb,Ws,Acc(1)	Accumulator = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.UU	Wb, #lit5, Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,Ws,Acc ⁽¹⁾	Accumulator = unsigned(Wb) * unsigned(Ws)	1	1	None
			Wb,Ws,Wnd	Wnd = signed(Wb) * signed(Ws)	1	1	None
			Wb,Ws,Wnd	Wnd = signed(Wb) * unsigned(Ws)	1	1	None
			Wb,Ws,Wnd	Wnd = unsigned(Wb) * signed(Ws)	1	1	None
		MULW.UU MUL.SU	Wb,Ws,Wnd Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(Ws) {Wnd + 1, Wnd} = signed(Wb) *	1 1	1	None None
				unsigned(lit5)	,		. .
		MUL.SU MUL.UU	Wb,#lit5,Wnd Wb,#lit5,Wnd	Wnd = signed(Wb) * unsigned(lit5) {Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1 1	1	None None
		MUL.UU	Wb,#lit5,Wnd	Wnd = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None

Note 1:

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
53	NEG	NEG ACC ⁽¹⁾		Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
54	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
55	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
56	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
57	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
58	RCALL	RCALL	Expr	Relative Call	1	4	SFA
		RCALL	Wn	Computed Call	1	4	SFA
59	REPEAT	REPEAT	#lit15	Repeat Next Instruction lit15 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
60	RESET	RESET		Software device Reset	1	1	None
61	RETFIE	RETFIE		Return from interrupt	1	6 (5)	SFA
62	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	6 (5)	SFA
63	RETURN	RETURN		Return from Subroutine	1	6 (5)	SFA
64	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry f	1	1	C,N,Z
		RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
65	RLNC	RLNC	f	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws	1	1	N,Z
66	RRC	RRC	f	f = Rotate Right through Carry f	1	1	C,N,Z
		RRC	f,WREG	WREG = Rotate Right through Carry f	1	1	C,N,Z
~7		RRC	Ws,Wd	Wd = Rotate Right through Carry Ws	1	1	C,N,Z
67	RRNC	RRNC	f	f = Rotate Right (No Carry) f WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG		1	1	N,Z
60	a. a	RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
68	SAC	SAC	Acc,#Slit4,Wdo ⁽¹⁾ Acc,#Slit4,Wdo ⁽¹⁾	Store Accumulator	1	1	None
60	2 7	SAC.R		Store Rounded Accumulator	1	1	None
69 70	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
10	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
71	SFTAC	SETM SFTAC	Ws Acc, Wn ⁽¹⁾	Ws = 0xFFFF Arithmetic Shift Accumulator by (Wn)	1	1 1	None OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6 ⁽¹⁾	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB

Note 1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.

Base Instr #	Assembly Mnemonic			Description	# of Words	# of Cycles ⁽²⁾	Status Flags Affected
72	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
73	SUB	SUB	_{ACC} (1)	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,Z
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z
		SUB	#lit10,Wn	Wn = Wn – lit10	1	1	C,DC,N,OV,Z
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,Z
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,Z
74	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	Wn = Wn - lit10 - (\overline{C})	1	1	C,DC,N,OV,Z
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
75	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z
76	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
77	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
78	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	5	None
79	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	5	None
80	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
81	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
82	ULNK	ULNK		Unlink Frame Pointer	1	1	SFA
83	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
84	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

Note 1

1: This instruction is available in dsPIC33EPXXXMU806/810/814 devices only.

NOTES:

31.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- · Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit™ 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

31.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- · A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- · Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

31.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

31.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

31.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- · Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

31.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

31.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB IDE compatibility

31.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

31.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

31.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

31.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

31.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

31.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

31.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

32.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	
Voltage on any pin that is not 5V tolerant, with respect to Vss ⁽³⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(3)}$	
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(3)}$	0.3V to 3.6V
Voltage on D+ OR D- pin with respect to VUSB	0.3V to (VUSB +3.0V)
Voltage on VBUS with respect to VSS	-0.3V to +5.5V
Voltage on VCAP with respect to Vss	1.62V to 1.98V
Maximum current out of Vss pin	320 mA
Maximum current into VDD pin ⁽²⁾	
Maximum current sunk by any I/O pin except OSC2 and SOSCO	8 mA
Maximum current sourced by any I/O pin except OSC2 and SOSCO	8 mA
Maximum current sunk by OSC2 and SOSCO pins	10 mA
Maximum current sourced by OSC2 and SOSCO pins	12 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 32-2).
 - **3:** See the "**Pin Diagrams**" section for the 5V tolerant pins.

32.1 DC Characteristics

	Voo Benge	Tomp Dongo	Max MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814
—	3.0V-3.6V ⁽¹⁾	-40°C to +85°C	60
—	3.0V-3.6V ⁽¹⁾	-40°C to +125°C	60

TABLE 32-1: OPERATING MIPS VS. VOLTAGE

Note 1: See the DC10 parameter in Table 32-4 for the VDD minimum and maximum limits when BOR is enabled.

TABLE 32-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	_	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD PINT + PI/O			W	
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(ГЈ — ТА)/ӨЈ	IA	W

TABLE 32-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 64-pin QFN (9x9 mm)	θја	28		°C/W	1
Package Thermal Resistance, 64-pin TFQP (10x10 mm)	θја	47	—	°C/W	1
Package Thermal Resistance, 100-pin TQFP (12x12 mm)	θја	43	_	°C/W	1
Package Thermal Resistance, 100-pin TQFP (14x14 mm)	θја	43	_	°C/W	1
Package Thermal Resistance, 121-pin BGA (10x10 mm)	θја	40	—	°C/W	1
Package Thermal Resistance, 144-pin LQFP (20x20 mm)	θја	33	_	°C/W	1
Package Thermal Resistance, 144-pin TQFP (16x16 mm)	θја	33	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le + 85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
Operati	ng Voltage	8						
DC10	Vdd	Supply Voltage ⁽⁴⁾	3.0 3.0	_	3.6 3.6	V V	BOR disabled ⁽⁵⁾ BOR enabled	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_		V	_	
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_	
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	_	V/ms	0-3.0V in 0.1s	
DC18	VCORE	VDD Core ⁽³⁾ Internal regulator voltage	1.62	1.8	1.98	V	Voltage is dependent on load, temperature and VDD	

TABLE 32-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

3: These parameters are characterized but not tested in manufacturing.

4: VDD voltage must remain at Vss for a minimum of 200 µs to ensure POR.

5: When BOR is disabled, an external POR circuit should be used to ensure that the device remains in Reset until the minimum VDD is reached.

© 2009-2011 Microchip Technology Inc.

DC CHARACTERISTICS			(unless oth	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le + 85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No.	Тур	Max	Units		Conditions				
Operating Curr	ent (IDD) ⁽¹⁾		•	·					
DC20d	22	50	mA	-40°C					
DC20a	22	50	mA	+25°C	2.21/				
DC20b	22	50	mA	+85°C	- 3.3V	10 MIPS			
DC20c	24	50	mA	+125°C					
DC22d	33	60	mA	-40°C					
DC22a	33	60	mA	+25°C	2.21/	20 MIPS			
DC22b	33	60	mA	+85°C	- 3.3V				
DC22c	37	65	mA	+125°C					
DC24d	58	100	mA	-40°C					
DC24a	58	100	mA	+25°C	2.21/				
DC24b	58	100	mA	+85°C	- 3.3V	40 MIPS			
DC24c	60	100	mA	+125°C	7				
DC25d	78	120	mA	-40°C					
DC25a	78	120	mA	+25°C	2.21/				
DC25b	78	120	mA	+85°C	- 3.3V	60 MIPS			
DC25c	79	120	mA	+125°C	7				

TABLE 32-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows: OSC1 driven with external square wave from rail to rail. All I/O pins are configured as inputs and pulled to Vss. MCLR = VDD, WDT and FSCM are disabled. CPU, SRAM, program memory and data memory are operational. No peripheral modules are operating; however, every peripheral is being clocked (PMD bits are all zeroed).

DC CHARACTE	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +35^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No.	Тур	Max	Units	Units Conditions				
Idle Current (III	DLE) ⁽¹⁾							
DC40d	8	20	mA	-40°C				
DC40a	8	20	mA	+25°C	_	10 MIPS		
DC40b	9	20	mA	+85°C	3.3V	TO MIPS		
DC40c	10	20	mA	+125°C				
DC42d	15	30	mA	-40°C				
DC42a	15	30	mA	+25°C	3.3∨	20 MIPS		
DC42b	16	30	mA	+85°C	- 3.3V			
DC42c	17	30	mA	+125°C	_			
DC44d	28	60	mA	-40°C				
DC44a	28	60	mA	+25°C	2.21/			
DC44b	29	60	mA	+85°C	- 3.3V	40 MIPS		
DC44c	30	60	mA	+125°C				
DC45d	43	80	mA	-40°C				
DC45a	43	80	mA	+25°C	2.21/			
DC45b	44	80	mA	+85°C	- 3.3V	60 MIPS		
DC45c	46	80	mA	+125°C				

TABLE 32-6: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Base IIDLE current is measured with core and Flash off, clock on and all modules turned off. Peripheral Module Disable SFR registers are zeroed. All I/O pins are configured as inputs and pulled to Vss.

DC CHARACT	ERISTICS		(unless oth	perating Con erwise state emperature	d) -40°C ≤Ta ≤	V to 3.6V + 85°C for Industrial +125°C for Extended
Parameter No.	Тур	Max	Units			Conditions
Power-Down	Current (IPD) ⁽	1)				
DC60d	50	100	μΑ	-40°C		
DC60a	60	200	μΑ	+25°C	2.21/	Base Power-Down Current ^(1,3)
DC60b	250	500	μΑ	+85°C	3.3V	Base Power-Down Current
DC60c	700	1000	μΑ	+125°C		
DC61d	8	10	μΑ	-40°C		
DC61a	10	15	μΑ	+25°C	2 2)/	Watchdog Timer Current: $\Delta IWDT^{(2)}$
DC61b	12	20	μA	+85°C	3.3V	
DC61c	13	25	μA	+125°C		

TABLE 32-7: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off and VREGS (RCON<8>) = 1.

2: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

DC CHARACTER	ISTICS	Standard C (unless oth Operating to	erwise st	ated) e -40°C	≤Ta ≤+ 85	3.6V 5°C for Industrial 5°C for Extended	
Parameter No.	Тур	Doze Ratio	Units		Conc	litions	
DC73a	78	110	1:2	mA	-40°C	3.3V	60 MIPS
DC73g	62	100	1:128	mA	-40 C	5.50	
DC70a	78	110	1:2	mA	+25°C	3.3V	60 MIPS
DC70g	63	100	1:128	mA	725 C	3.3V	
DC71a	78	110	1:2	mA	+85°C	3.3V	60 MIPS
DC71g	65	100	1:128	mA	+05 C	3.3V	60 MIPS
DC72a	78	110	1:2	mA	+125°C	3.3V	60 MIPS
DC72g	67	100	1:128	mA	+125 C	5.50	

TABLE 32-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)⁽¹⁾

Note 1: The test conditions for all IDOZE measurements are as follows:

• OSC1 is driven with an external square wave from rail to rail

- All I/O pins are configured as inputs and pulled to Vss, with the exception of one I/O pin that is configured as an output and driving a logic level 1
- MCLR = VDD
- WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- All peripherals are enabled and clocked (PMD bits are all '0'), but not actively operating

DC CH/	DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
	VIL	Input Low Voltage								
DI10		I/O pins	Vss	_	0.2 VDD	V				
DI11		PMP pins	Vss	_	0.15 VDD	V	PMPTTL = 1			
DI15		MCLR	Vss	—	0.2 VDD	V				
DI16		I/O Pins with OSC1 or SOSCI	Vss	_	0.2 VDD	V				
DI18		I/O Pins with SDAx, SCLx	Vss	_	0.3 VDD	V	SMBus disabled			
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8	V	SMBus enabled			
	Viн	Input High Voltage ⁽¹⁰⁾								
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd	_	Vdd	V				
		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 Vdd	_	5.3	V				
		PMP pins	0.25 VDD + 0.8	—	—	V	PMPTTL = 1			
		I/O Pins with SDAx, SCLx	0.7 VDD	—	5.3	V	SMBus disabled			
		I/O Pins with SDAx, SCLx	2.1	_	5.3	V	SMBus enabled			
	ICNPU	Change Notification Pull-up Current								
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS			
	ICNPD	Change Notification Pull- down Current ⁽⁵⁾								
DI31			—	50	—	μA	VDD = 3.3V, VPIN = VDI			

TABLE 32-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.
- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- 5: Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- **10:** These parameters are characterized, but not tested.

DC CHARACTERISTICS		Standard Ope (unless other Operating tem					
Param No.	Symbol	Characteristic	Min	Min Typ ⁽¹⁾		Units	Conditions
	lı∟	Input Leakage Current ^(2,3)					
DI50		I/O pins 5V Tolerant ⁽⁴⁾	—	—	±1	μA	Vss ⊴VPIN ⊴VDD, Pin at high-impedance
DI51		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	-	±1	μA	Vss ≤VPIN ≤VDD, Pin at high-impedance, -40°C ≤ TA ≤+85°C
DI51a		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	-	±1	μA	Analog pins shared with external reference pins, -40°C ≤ TA ≤+85°C
DI51b		I/O Pins Not 5V Tolerant ⁽⁴⁾	_	—	±1	μA	Vss ⊴VPIN ⊴VDD, Pin at high-impedance, -40°C ⊴TA ⊴+125°C
DI51c		I/O Pins Not 5V Tolerant ⁽⁴⁾	_		±1	μA	Analog pins shared with external reference pins, -40°C ≤TA ≤+125°C
DI55		MCLR	—	-	±1	μA	Vss ⊴Vpin ⊴Vdd
DI56		OSC1	_	—	±1	μA	Vss ⊴VPIN ⊴VDD, XT and HS modes

TABLE 32-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- **5:** Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.
- 10: These parameters are characterized, but not tested.

DC CH	ARACTER	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions			
DI60a	licl	Input Low Injection Current	0		₋₅ (5,8)	mA	VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, D+, D-, VUSB, and VBUS			
DI60b	ІІСН	Input High Injection Current	0		+5 ^(6,7,8)	mA	VDD, VSS, AVDD, AVSS, MCLR, VCAP, SOSCI, SOSCO, D+, D-, VUSB, and VBUS, and all 5V tolerant pins ⁽⁷⁾			
DI60c	∑ист	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all ± input injection currents from all I/O pins (IICL + IICH) ≤∑ICT			

TABLE 32-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- **3:** Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- 5: Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

10: These parameters are characterized, but not tested.

DC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions						
	Vol	Output Low Voltage							
DO10		All I/O pins except OSC2 and SOSCO	—	_	0.4	V	IOL = 8 mA, VDD = 3.3V		
DO16		OSC2 and SOSCO pins	_		0.4	V	IOL = 10 mA, VDD = 3.3V		
	Voh	Output High Voltage							
DO20		All I/O pins except OSC2 and SOSCO	2.40	-	_	V	IOH = -8 mA, VDD = 3.3V		
DO26		OSC2 and SOSCO pins	2.40	—	—	V	Iон = -12 mA, Vdd = 3.3V		

TABLE 32-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

TABLE 32-11: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Тур	Max	Units	Conditions	
BO10	VBOR	BOR Event on VDD transition high-to-low		2.7		2.9	V	—	

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions		
		Program Flash Memory							
D130	Eр	Cell Endurance	10,000	—	_	E/W	-40° C to +125° C		
D131	Vpr	VDD for Read	3.0	—	3.6	V			
D132b	VPEW	VDD for Self-Timed Write	3.0	—	3.6	V			
D134	TRETD	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated, -40° C to +125° C		
D135	IDDP	Supply Current during Programming	_	10	—	mA			
D136a	Trw	Row Write Time	1.32	—	1.74	ms	Trw = 11064 FRC cycles, Ta = +85°C, See Note 2		
D136b	Trw	Row Write Time	1.28	—	1.79	ms	Trw = 11064 FRC cycles, Ta = +125°C, See Note 2		
D137a	TPE	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +85°C, See Note 2		
D137b	TPE	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2		
D138a	Tww	Word Write Cycle Time	42.3	—	55.9	μs	Tww = 355 FRC cycles, TA = +85°C, See Note 2		
D138b	Tww	Word Write Cycle Time	41.1	—	57.6	μs	Tww = 355 FRC cycles, Ta = +125°C, See Note 2		

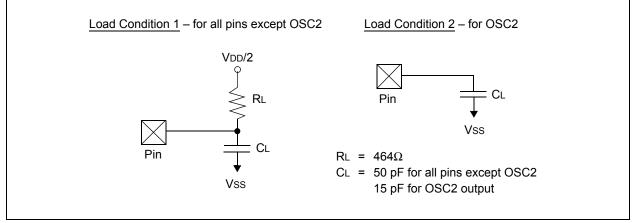
TABLE 32-12: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 32-20) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

TABLE 32-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

	Standard Operating Conditions (unless otherwise stated): Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended									
Param No.	Symbol Characteristics Min Typ Max Units Comments									
—	CEFC External Filter Capacitor 4.7 10 — μF Capacitor must have a low series resistance (< 1 Ohm)									


32.2 AC Characteristics and Timing Parameters

This section defines dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814 AC characteristics and timing parameters.

TABLE 32-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Section 32.1 "DC Characteristics".

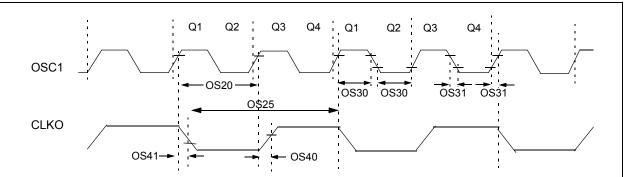

FIGURE 32-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 32-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2 pin	_	_	15	•	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	_	_	400	pF	In I ² C™ mode

AC CHA	RACTER	RISTICS	(unless other	vise state				
			Operating tem	perature	-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended			
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	_	40	MHz	EC	
		Oscillator Crystal Frequency	3.5		10	MHz	ХТ	
			10		40	MHz	HS	
			32.4	32.768	33.1	kHz	Sosc	
OS20	Tosc	Tosc = 1/Fosc	8.33	—	DC	ns	—	
OS25	TCY	Instruction Cycle Time ⁽²⁾	16.67		DC	ns	—	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	—	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾		5.2		ns	_	
OS41	TckF	CLKO Fall Time ⁽³⁾	_	5.2		ns		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	_	12	_	mA/V	HS, VDD = 3.3V TA = +25°C	
				6	—	mA/V	XT, VDD = 3.3V TA = +25°C	

TABLE 32-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- 2: Instruction cycle period (TCY) equals two times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max" cycle time limit is "DC" (no clock) for all devices.
- **3:** Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: This parameter is characterized, but not tested in manufacturing.

TABLE 32-17: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS				$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteris	Characteristic			Max	Units	Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8		8.0	MHz	ECPLL, XTPLL modes		
OS51	Fsys	On-Chip VCO System Frequency		120	—	340	MHz	—		
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	—		
OS53	DCLK	CLKO Stability (Jitter	.) (2)	-3	0.5	3	%	—		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: This jitter specification is based on clock cycle-by-clock cycle measurements. To get the effective jitter for individual time bases or communication clocks used by the application, use the following formula:

$$Effective Jitter = \frac{DCLK}{\sqrt{\frac{Fosc}{Time Base or Communication Clock}}}$$

For example, if Fosc = 120 MHz and the SPI bit rate = 10 MHz, the effective jitter is as follows:

Effective Jitter =
$$\frac{DCLK}{\sqrt{\frac{120}{10}}} = \frac{DCLK}{\sqrt{12}} = \frac{DCLK}{3.464}$$

TABLE 32-18: AUXILIARY PLL CLOCK TIMING SPECIFICATIONS

АС СНА	RACTERI	STICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteris	stic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
OS54	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		3		5.5	MHz	ECPLL, XTPLL modes	
OS55	Fsys	On-Chip VCO System Frequency		60	—	120	MHz	_	
OS56	Тгоск	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	—	
OS57	DCLK	CLKO Stability (Jitter	.)	-2	0.25	2	%	—	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

TABLE 32-19: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Typ Max Units Conditions							
	Internal FRC Accuracy @	FRC Fr	equency	= 7.37 N	IHz ⁽¹⁾					
F20a	FRC	-2	_	+2	%	-40°C ≤TA ≤+85°C	VDD = 3.0-3.6V			
F20b	FRC	$-5 \qquad -5 \qquad +5 \qquad \% \qquad -40^{\circ}C \le TA \le +125^{\circ}C \qquad VDD = 3.0-3.6V$								

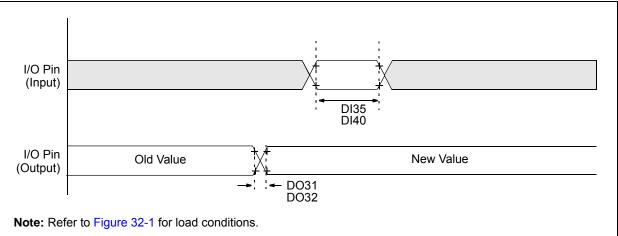
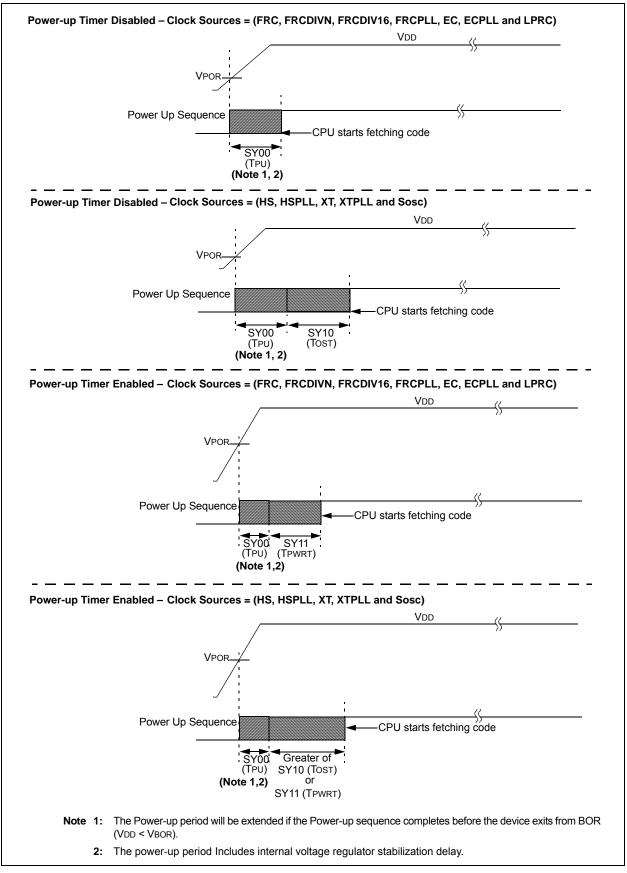
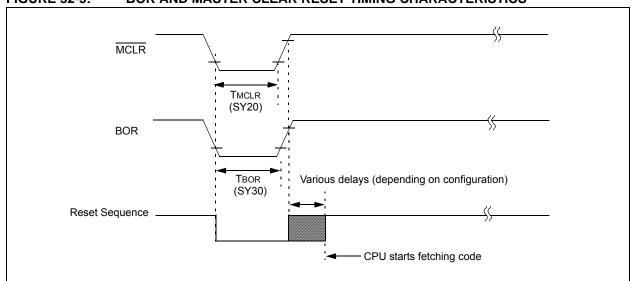

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 32-20: INTERNAL LPRC ACCURACY

АС СН	ARACTERISTICS		$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Characteristic	Min	Min Typ Max Units Conditions							
	LPRC @ 32.768 kHz ⁽¹⁾									
F21a	LPRC	-20	±6	+20	%	$-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = 3.0-3.6V				
F21b	LPRC	-70	±6	+70	%	$-40^{\circ}C \le TA \le +125^{\circ}C$ VDD = 3.0-3.6V				

Note 1: Change of LPRC frequency as VDD changes.




	2-21: 1/0 1 ACTERISTI	<u>TIMING REQUIREM</u> CS	Standard Oper (unless otherw	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Character	Min	Typ ⁽¹⁾	Max	Units	Conditions		
DO31	TioR	Port Output Rise Tim	е		5	10	ns	_	
DO32	0032 TIOF Port Output Fall Time			_	5	10	ns	—	
DI35	TINP	INTx Pin High or Low	20	_		ns	—		
DI40	Trbp	CNx High or Low Tim	2		_	TCY			

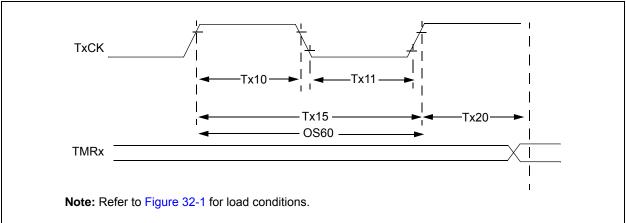
Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 32-4: POWER-ON RESET TIMING CHARACTERISTICS

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

FIGURE 32-5: BOR AND MASTER CLEAR RESET TIMING CHARACTERISTICS

TABLE 32-22: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS


AC CH	ARACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions			
SY00	Tpu	Power-up Period	_	400	600	μs	—			
SY10	Tost	Oscillator Start-up Time		1024 Tosc	_	—	Tosc = OSC1 period			
SY11	TPWRT	Power-up Timer Period	_	_		_	See Section 29.1 "Configuration Bits" and LPRC specification F21 (Table 32-20)			
SY12	Тwdt	Watchdog Timer Time-out Period	_	_		_	See Section 29.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 32-20)			
SY13	Tioz	I/O H <u>igh-Im</u> pedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_			
SY20	TMCLR	MCLR Pulse Width (low)	2	_	_	μs	—			
SY30	TBOR	BOR Pulse Width (low)	1	_		μs	—			
SY35	TFSCM	Fail-Safe Clock Monitor Delay	_	500	900	μs	-40°C to +85°C			
SY36	TVREG	Voltage regulator standby-to-active mode transition time		_	30	μs	_			
SY37	TOSCDFRC	FRC Oscillator start-up delay	_	—	29	μs	—			
SY38	Toscdlprc	LPRC Oscillator start-up delay		—	70	μs	—			

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

TABLE 32-23: TIMER	EXTERNAL CLOCK TIMING REQUIREMENTS ⁽¹⁾
--------------------	---

AC CH	ARACTERIS	TICS	(unle	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended							
Param No.	Symbol	Charac	teristic ⁽²⁾	Min	Тур	Мах	Units	Conditions			
TA10	ТтхН	TxCK High Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet parameter TA15 N = prescaler value (1, 8, 64, 256)			
			Asynchronous	35	_	—	ns	—			
TA11	ΤτxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (Tcy + 20)/N		_	ns	Must also meet parameter TA15 N = prescaler value (1, 8, 64, 256)			
			Asynchronous	10		—	ns	—			
TA15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N		_	ns	N = prescale value (1, 8, 64, 256)			
OS60	Ft1	SOSC1/T1CP Input frequen (oscillator ena ting bit TCS (cy Range abled by set-	DC		50	kHz	_			
TA20	TCKEXTMRL	Delay from Ex Clock Edge to ment	xternal TxCK o Timer Incre-	0.75 Tcy + 40		1.75 Tcy + 40	ns	_			

Note 1: Timer1 is a Type A.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 32-24: TIMER2, TIMER4, TIMER6, TIMER8 (TYPE B TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CH	ARACTERIS	TICS		(unles	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Charao	cteristic	(1)	Min	Тур	Мах	Units	Conditions			
TB10	TtxH	TxCK High Time	Synchro mode	onous	Greater of: 20 or (Tcy + 20)/N	_	_	ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)			
TB11	TtxL	TxCK Low Time	Synchro mode	onous	Greater of: 20 or (Tcy + 20)/N	_		ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)			
TB15	TtxP	TxCK Input Period	mode		Greater of: 40 or (2 Tcy + 40)/N	—	_	ns	N = prescale value (1, 8, 64, 256)			
TB20	TCKEXTMRL		from External TxC Edge to Timer		0.75 Tcy + 40	—	1.75 Tcy + 40	ns	—			

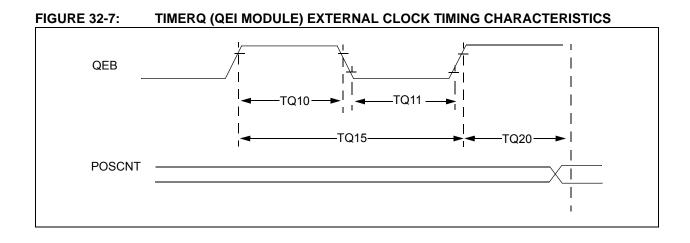

Note 1: These parameters are characterized, but are not tested in manufacturing.

TABLE 32-25: TIMER3, TIMER5, TIMER7, TIMER9 (TYPE C TIMER) EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHA	ARACTERIST	FICS	(un	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No. Symbol Characteristic			teristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
TC10	TtxH	TxCK High Time	Synchronou	s TCY + 20	—	_	ns	Must also meet parameter TC15		
TC11	TtxL	TxCK Low Time	Synchronou	s Tcy + 20	—	—	ns	Must also meet parameter TC15		
TC15	TtxP	TxCK Input Period	Synchronou with prescale			_	ns	N = prescale value (1, 8, 64, 256)		
TC20	TC20 TCKEXTMRL Delay from External Tx0 Clock Edge to Timer Inc ment					1.75 Tcy + 40	ns	_		

Note 1: These parameters are characterized, but are not tested in manufacturing.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

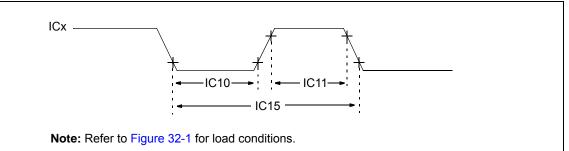

IABLE	32-26: QE	I MODULE EXTE	RNAL CLO	CK TIMING REC	JUIKEN	IENIS			
AC CHA	ARACTERIS	rics	(unl	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No. Symbol Characteristic ⁽¹⁾				Min	Тур	Max	Units	Conditions	
TQ10	TtQH	TQCK High Time	Synchronous with prescale	· · · ·	—	_	ns	Must also meet parameter TQ15.	
TQ11	TtQL	TQCK Low Time	Synchronous with prescale		—		ns	Must also meet parameter TQ15.	
TQ15	TtQP	TQCP Input Period	Synchronous with prescale		—	—	ns	_	
TQ20	TCKEXTMRL	Delay from Extern Edge to Timer Inc		× _	1	Тсү	—	_	

TABLE 32-26: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

FIGURE 32-8: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

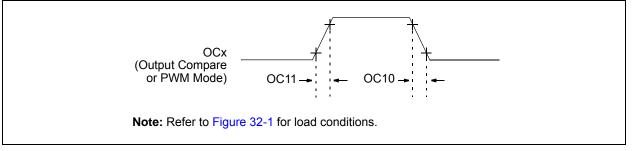


TABLE 32-27: INPUT CAPTURE MODULE TIMING REQUIREMENTS

AC CHA	RACTERI	ISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param. No.	Symbol	Charac	acteristics ⁽¹⁾ Min Max Units Condition						
IC10	TccL	ICx Input	t Low Time	[Greater of (12.5 or 0.5 Tcy)/N] + 25	_	ns	Must also meet parameter IC15.	N = prescale value (1, 4, 16)	
IC11	ТссН	ICx Input	t High Time	[Greater of (12.5 or 0.5 Tcy)/N] + 25	-	ns	Must also meet parameter IC15.		
IC15	TccP	ICx Input	t Period	[Greater of (25 or 1 Tcʏ)/N] + 50		ns	—		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 32-9: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

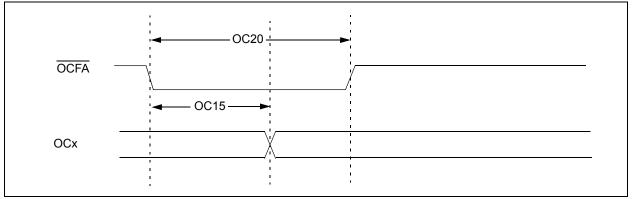
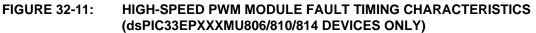


TABLE 32-28: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions							
OC10	TccF	OCx Output Fall Time		-	_	ns	See parameter DO32			
OC11	TccR	OCx Output Rise Time	— — ns See parameter DO31							

Note 1: These parameters are characterized but not tested in manufacturing.


FIGURE 32-10: OC/PWM MODULE TIMING CHARACTERISTICS

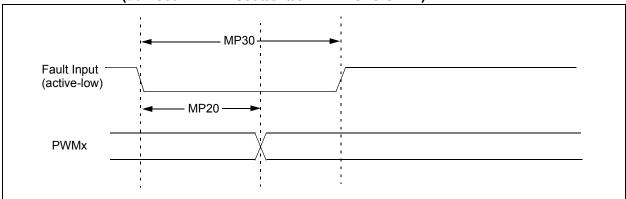
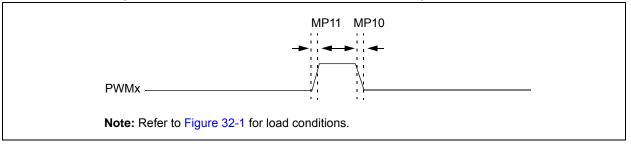


TABLE 32-29: OC/PWM MODE TIMING REQUIREMENTS


AC CHAI	RACTERIS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions					
OC15	Tfd	Fault Input to PWM I/O Change	— — Tcy + 20 ns —				_	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20	-	—	ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

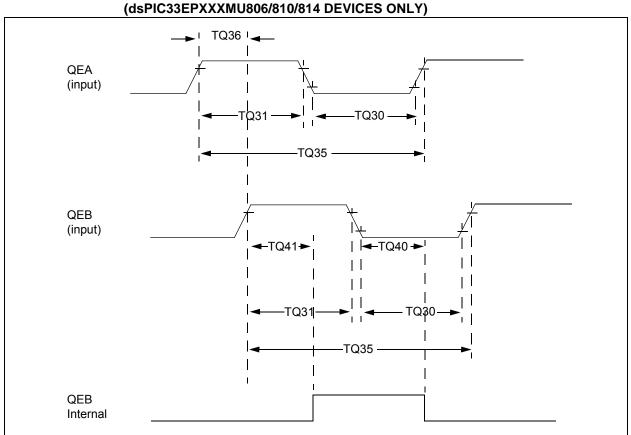

FIGURE 32-12: HIGH-SPEED PWM MODULE TIMING CHARACTERISTICS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

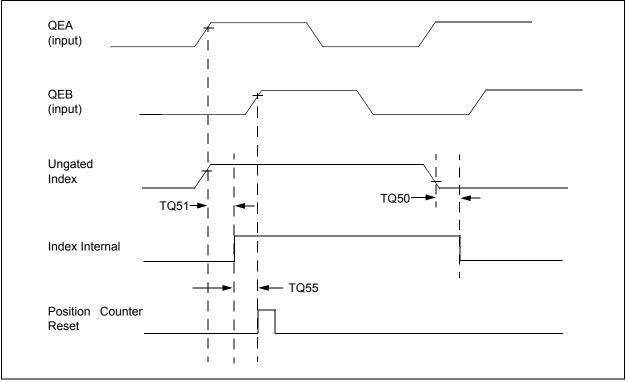
TABLE 32-30: HIGH-SPEED PWM MODULE TIMING REQUIREMENTS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

AC CHARACTERISTICS			(unless	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ Max Units Conditions					
MP10	TFPWM	PWM Output Fall Time	_	_	_	ns	See parameter DO32		
MP11	TRPWM	PWM Output Rise Time	_	_		ns	See parameter DO31		
MP20	Tfd	Fault Input ↓to PWM I/O Change	-	_	15	ns	_		
MP30	Tfh	Fault Input Pulse Width	15	15 <u> </u>					

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 32-13: QEA/QEB INPUT CHARACTERISTICS

TABLE 32-31: QUADRATURE DECODER TIMING REQUIREMENTS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)


			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾		Тур ⁽²⁾	Max	Units	Conditions	
TQ30	TQUL	Quadrature Input Low Time		6 Tcy	—	ns	_	
TQ31	ΤουΗ	Quadrature Input High Time		6 Tcy	_	ns	—	
TQ35	TQUIN	Quadrature Input Period		12 TCY	_	ns	—	
TQ36	ΤουΡ	Quadrature Phase Period		3 TCY	_	ns	—	
TQ40	TQUFL	Filter Time to Recognize Low with Digital Filter	Ι,	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	
TQ41	TQUFH	Filter Time to Recognize Hig with Digital Filter	h,	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 3)	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

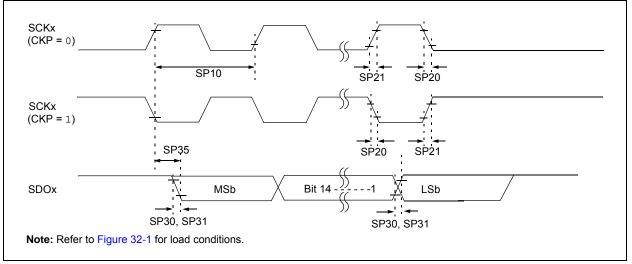
3: N = Index Channel Digital Filter Clock Divide Select bits. Refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70601) in the "dsPIC33E/PIC24E Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.

© 2009-2011 Microchip Technology Inc.

FIGURE 32-14: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

TABLE 32-32: QEI INDEX PULSE TIMING REQUIREMENTS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

AC CHA	RACTERI	STICS	(unless othe	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	;(1)	Min	Max	Units	Conditions		
TQ50	TqIL	Filter Time to Recognize with Digital Filter	Low,	3 * N * Tcy		ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)		
TQ51	TqiH	Filter Time to Recognize with Digital Filter	High,	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)		
TQ55	Tqidxr	Index Pulse Recognized Counter Reset (ungated		3 TCY		ns	_		


Note 1: These parameters are characterized but not tested in manufacturing.

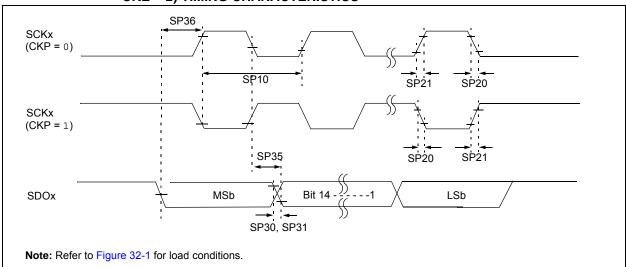
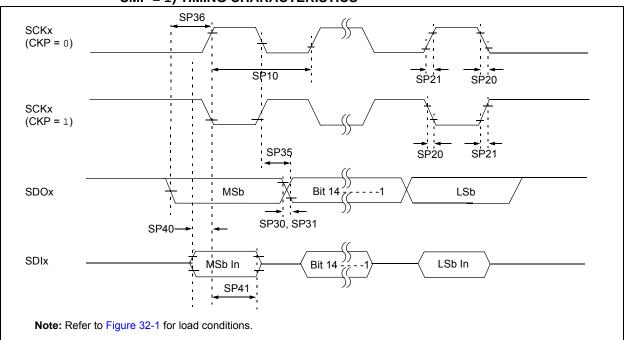

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

TABLE 32-33:	SPI1, SPI3,	AND SPI4 MAXIMUM DATA/CLOCK RATE SUMMARY
--------------	-------------	--

AC CHARAC	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP			
10 MHz	Table 32-33	—	_	0,1	0,1	0,1			
10 MHz	—	Table 32-34	—	1	0,1	1			
10 MHz	—	Table 32-35	—	0	0,1	1			
15 MHz	—	—	Table 32-36	1	0	0			
15 MHz	—	—	Table 32-37	1	1	0			
15 MHz	—	—	Table 32-38	0	1	0			
15 MHz	_	_	Table 32-39	0	0	0			

FIGURE 32-15: SPI1, SPI3, AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 32-16: SPI1, SPI3, AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS


TABLE 32-34: SPI1, SPI3, AND SPI4 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

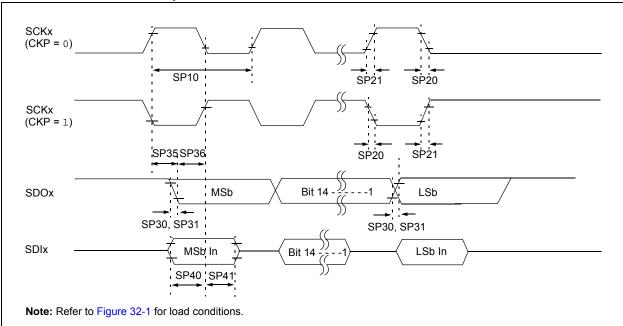
АС СНА	ARACTERIST	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Conditions			
SP10	TscP	Maximum SCK Frequency	—	_	10	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	-		ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	-		ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	-	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	6	20	ns	—	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

FIGURE 32-17: SPI1, SPI3, AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 32-35:SPI1, SPI3, AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1)TIMING REQUIREMENTS

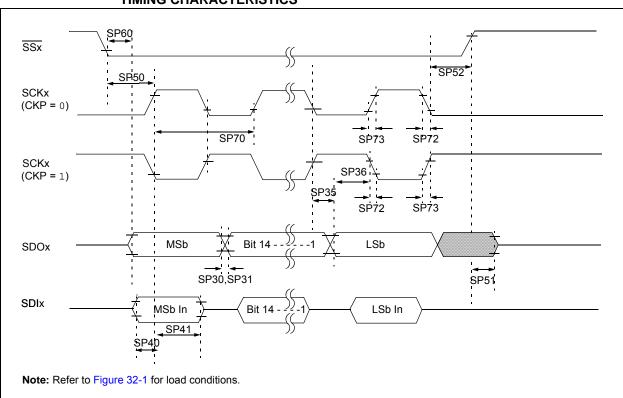
АС СНА	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions						
SP10	TscP	Maximum SCK Frequency	_	_	10	MHz	See Note 3		
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-18: SPI1, SPI3, AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 32-36:SPI1, SPI3, AND SPI4 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1)TIMING REQUIREMENTS

АС СНА	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended								
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions							
SP10	TscP	Maximum SCK Frequency	_	—	10	MHz	-40°C to +125°C and see Note 3			
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4			
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4			
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4			
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4			
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—			
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—			
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	—	ns	—			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—			

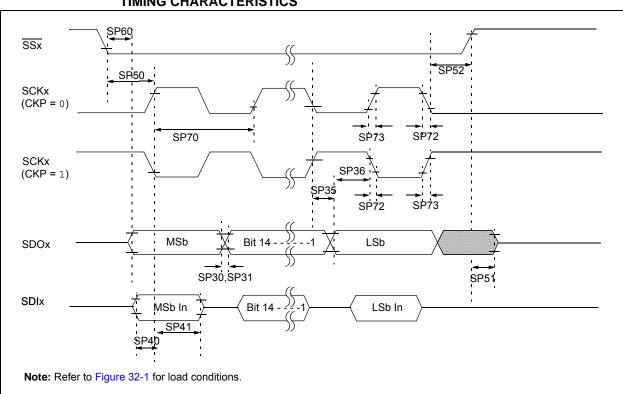
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- **4:** Assumes 50 pF load on all SPIx pins.

FIGURE 32-19: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

© 2009-2011 Microchip Technology Inc.


TABLE 32-37:SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0)TIMING REQUIREMENTS

АС СНА	RACTERIS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120		—	ns	_
SP51	TssH2doZ	SSx	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx	1.5 Tcy + 40	_	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—		50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

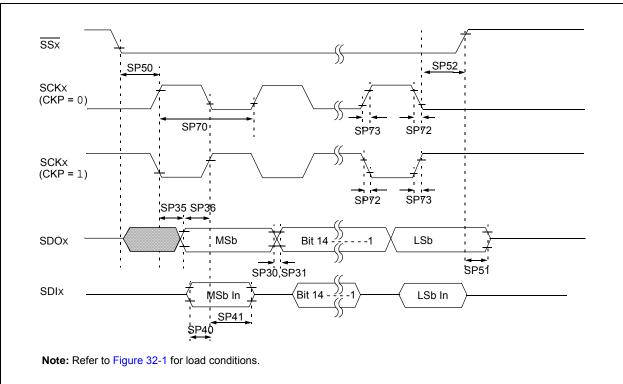
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

FIGURE 32-20: SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

© 2009-2011 Microchip Technology Inc.

TABLE 32-38:SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0)TIMING REQUIREMENTS

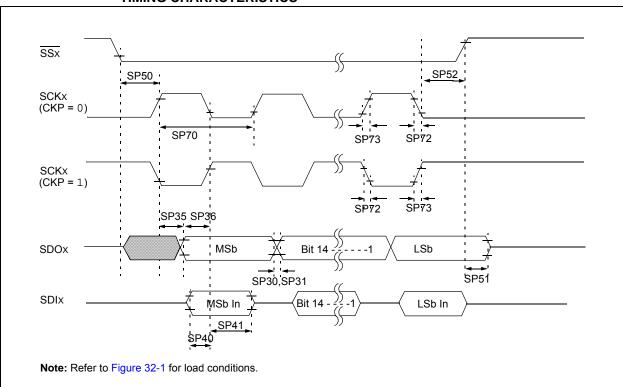

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	_	_	_	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	_			ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—	
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	_	—	ns	_	
SP51	TssH2doZ	SSx	10	_	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	_		ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	_	50	ns	_	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.67 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

TABLE 32-39:SPI1, SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0)TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	—	_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	_	—		ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—	
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	_	_	ns	_	
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40			ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

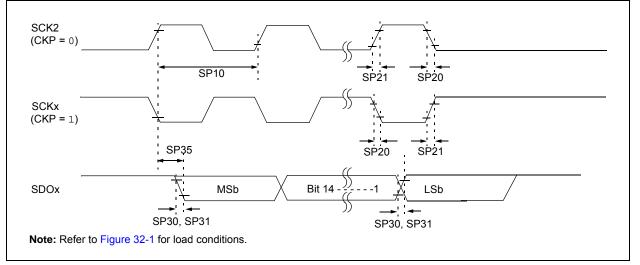
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

TABLE 32-40:SPI3, AND SPI4 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0)TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	bol Characteristic ⁽¹⁾ Min Typ ⁽²⁾ Max			Units	Conditions		
SP70	TscP	Maximum SCK Input Frequency	—	_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	—	
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	_	—	ns	—	
SP51	TssH2doZ	SSx	10	—	50	ns	-	
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.


2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

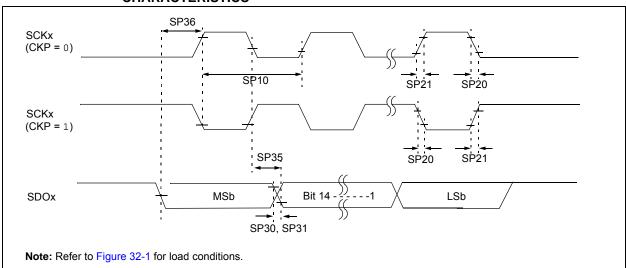
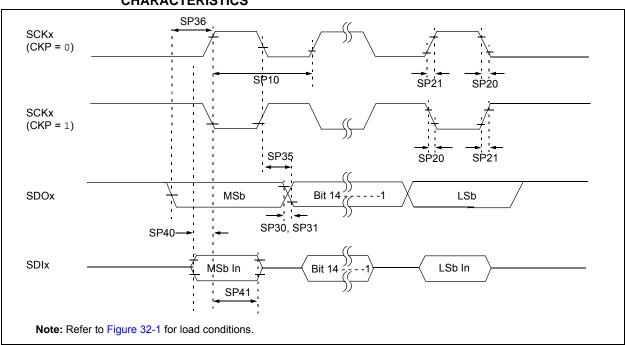

3: The minimum clock period for SCKx is 66.67 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

TABLE 32-41: S	SPI2 MAXIMUM DATA/CLOCK RATE SUMMARY
----------------	--------------------------------------

AC CHARAG	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	e CKE CKP		SMP		
25 MHz	Table 32-42	_	—	0,1	0,1	0,1		
25 MHz	—	Table 32-43	—	1	0,1	1		
25 MHz	—	Table 32-44		0	0,1	1		
25 MHz	—	—	Table 32-45	1	0	0		
25 MHz	_	_	Table 32-46	1	1	0		
25 MHz	_	_	Table 32-47	0	1	0		
25 MHz			Table 32-48	0	0	0		

FIGURE 32-23: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 32-24: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS


TABLE 32-42: SPI2 MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

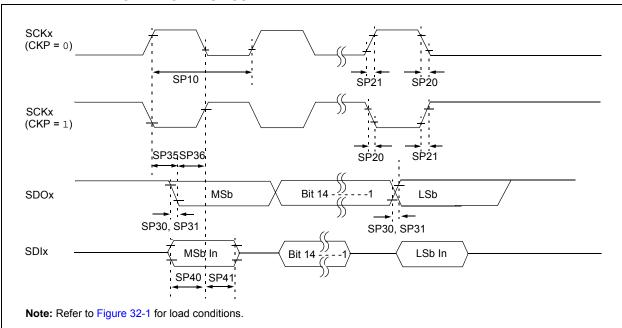
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	_	_	25	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	6	20	ns	—	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	_	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 40 ns. Therefore, the clock generated in Master mode must not violate this specification.

FIGURE 32-25: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS


TABLE 32-43:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP10	TscP	Maximum SCK Frequency		_	25	MHz	See Note 3		
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—		
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	_		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	_	ns	—		

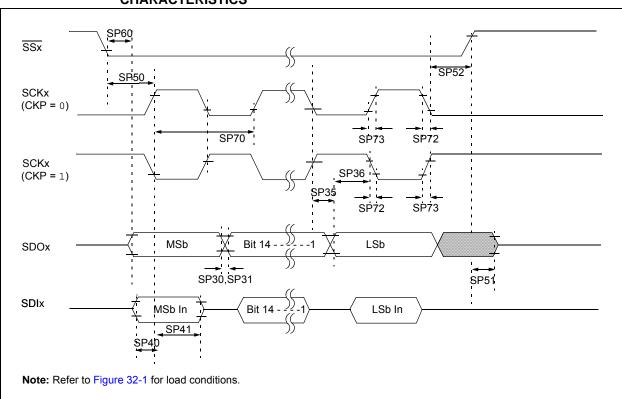
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

- **3:** The minimum clock period for SCKx is 40 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 32-26: SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 32-44:SPI2 MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS


AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP10	TscP	Maximum SCK Frequency			25	MHz	-40°C to +125°C and see Note 3		
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	_	—		ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	_	_	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—	_	ns	_		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns	_		

Note 1: These parameters are characterized, but are not tested in manufacturing.

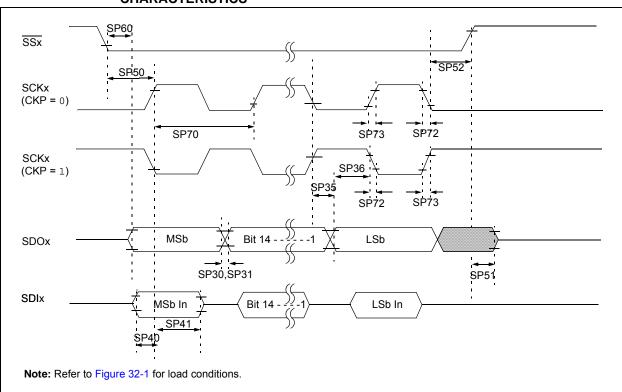
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 40 ns. The clock generated in Master mode must not violate this specification.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

FIGURE 32-27: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

© 2009-2011 Microchip Technology Inc.


TABLE 32-45:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

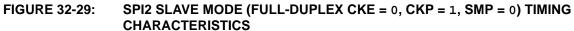
АС СНА		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency		_	25	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time		_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	_	_		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	_	ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	-		ns	—
SP51	TssH2doZ	SSx	10	—	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx	1.5 Tcy + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	—	50	ns	—

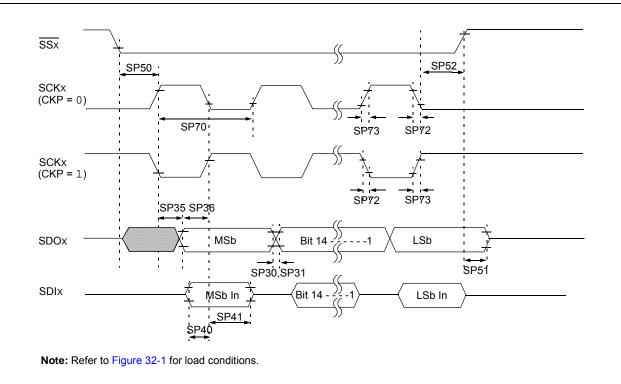
Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 40 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

FIGURE 32-28: SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

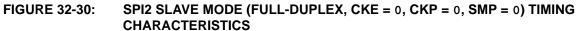

TABLE 32-46:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

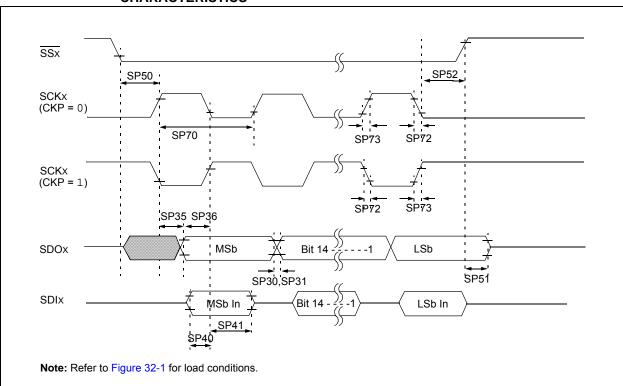

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—	_	25	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—		ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	_	_	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40	—		ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	—	50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 40 ns. Therefore, the SCK clock generated by the Master must not violate this specification.


TABLE 32-47:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

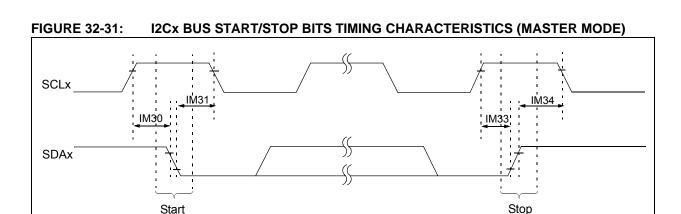

АС СНА	ARACTERIS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	25	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	-	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	—		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	_		ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	_	_	ns	_
SP51	TssH2doZ	SSx	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 Tcy + 40			ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 40 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

TABLE 32-48:SPI2 SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	25	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	20	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	20	—	_	ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx ↓ Input	120	_	_	ns	_
SP51	TssH2doZ	SSx	10	_	50	ns	—
SP52	TscH2ssH TscL2ssH	SSx ↑ after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 40 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

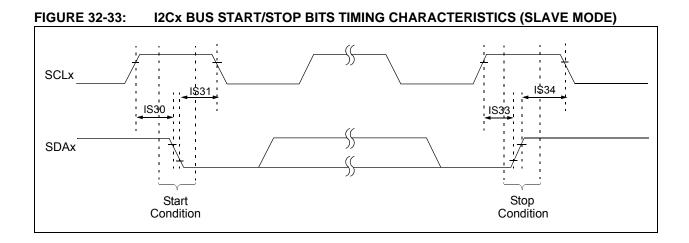


Condition

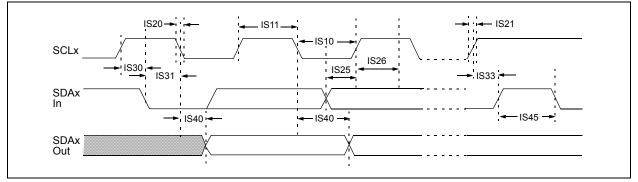
Note: Refer to Figure 32-1 for load conditions.

Condition

	RACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Charact	teristic	Min ⁽¹⁾	Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	—		
			400 kHz mode	Tcy/2 (BRG + 2)		μs	—		
	1 MHz mode ⁽²⁾		Tcy/2 (BRG + 2)	_	μs	—			
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	—		
			400 kHz mode	Tcy/2 (BRG + 2)		μs	—		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	—		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾		300	ns			
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns			
		Setup Time	400 kHz mode	100	_	ns	-		
			1 MHz mode ⁽²⁾	40	_	ns			
IM26 THD:DA	THD:DAT	Data Input	100 kHz mode	0	_	μs	_		
		Hold Time	400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽²⁾	0.2	_	μs	-		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	condition		
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	After this period the		
		Hold Time	400 kHz mode	Tcy/2 (BRG +2)	_	μs	first clock pulse is		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	generated		
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	μs	_		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)	_	μs	-		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 2)	_	, μs	_		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 2)	_	μs	-		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 2)		μs			
IM40	TAA:SCL	Output Valid	100 kHz mode		3500	ns	_		
		From Clock	400 kHz mode		1000	ns	_		
			1 MHz mode ⁽²⁾		400	ns	_		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time the bus must be		
-			400 kHz mode	1.3	_	μs	free before a new		
			1 MHz mode ⁽²⁾	0.5		μs	transmission can start		
IM50	Св	Bus Capacitive L			400	pF	_		
IM51	TPGD	Pulse Gobbler De		65	390	ns	See Note 3		
				erator Refer to Sec					


TABLE 32-49: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70330) in the "dsPIC33E/PIC24E Family Reference Manual". Please see the Microchip web site for the latest family reference manual sections.


2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

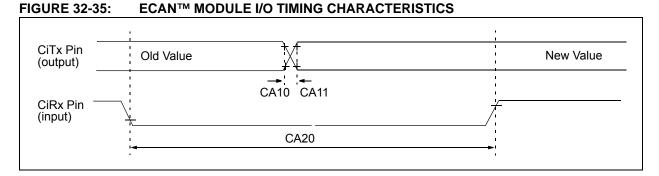
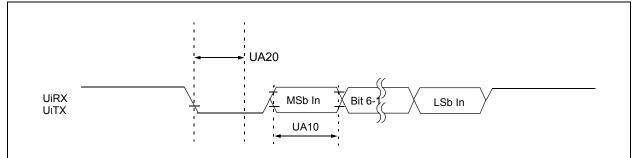

	RACTERI	STICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industria $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extend				
Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	—	
			400 kHz mode	1.3	—	μs	—	
			1 MHz mode ⁽¹⁾	0.5		μs	_	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	—	μs	—	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	—	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	25 TSU:DAT	Data Input	100 kHz mode	250	—	ns	_	
		Setup Time	400 kHz mode	100		ns		
			1 MHz mode ⁽¹⁾	100		ns		
IS26	THD:DAT	Data Input	100 kHz mode	0		μs	_	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition Setup Time	100 kHz mode	4.7		μs	Only relevant for Repeated	
			400 kHz mode	0.6		μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25		μs		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μs	_	
		Setup Time	400 kHz mode	0.6		μs		
			1 MHz mode ⁽¹⁾	0.6	—	μs		
IS34	THD:STO	Stop Condition	100 kHz mode	4	—	μs	—	
		Hold Time	400 kHz mode	0.6	—	μs		
			1 MHz mode ⁽¹⁾	0.25		μs		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	—	
		From Clock	400 kHz mode	0	1000	ns]	
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time the bus must be free	
			400 kHz mode	1.3	—	μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	—	μs	can start	
IS50	Св	Bus Capacitive Lo	ading	—	400	pF	—	
S51	TPGD	Pulse Gobbler De	lay	65	390	ns	See Note 2	

TABLE 32-50: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

2: The Typical value for this parameter is 130 ns.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814


TABLE 32-51: ECAN™ MODULE I/O TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
CA10	TioF	Port Output Fall Time	_	_	_	ns	See parameter DO32	
CA11	TioR	Port Output Rise Time	_	_		ns	See parameter DO31	
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120	_		ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

FIGURE 32-36: UART MODULE I/O TIMING CHARACTERISTICS

TABLE 32-52: UART MODULE I/O TIMING REQUIREMENTS

AC CHARA				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+125°C					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Max	Units	Conditions		
UA10	Tuabaud	UART Baud Time	66.67			ns	—		
UA11	Fbaud	UART Baud Frequency	—	—	15	mbps	—		
UA20	Tcwf	Start Bit Pulse Width to Trigger UART Wake-up	500	_	_	ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

^{© 2009-2011} Microchip Technology Inc.

AC CHAF	RACTERIS	STICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristics ⁽¹⁾	Min Typ Max Units Conditions					
USB313	VUSB	USB Voltage	3.0		3.6	V	Voltage on bus must be in this range for proper USB operation	
USB315	VILUSB	Input Low Voltage for USB Buffer	—		0.8	V	_	
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0		-	V	_	
USB318	VDIFS	Differential Input Sensitivity	_	_	0.2	V	_	
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	The difference between D+ and D- must be within this range while VCM is met	
USB320	Zout	Driver Output Impedance	28.0	_	44.0	Ω		
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	14.25 kΩ load connected to 3.6V	
USB322	Vон	Voltage Output High	2.8	_	3.6	V	14.25 k Ω load connected to ground	

TABLE 32-53: USB OTG TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
			Device	Supply	/				
AD01	AVDD	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	_		
AD02	AVss	Module Vss Supply	Vss – 0.3	_	Vss + 0.3	V	—		
			Reference	e Inpu	ts				
AD05	VREFH	Reference Voltage High	AVss + 2.7	_	AVDD	V	See Note 1 VREFH = VREF+ VREFL = VREF-		
AD05a			3.0	_	3.6	V	VREFH = AVDD VREFL = AVSS = 0		
AD06	Vrefl	Reference Voltage Low	AVss		AVDD - 2.7	V	See Note 1		
AD06a			0	—	0	V	VREFH = AVDD VREFL = AVSS = 0		
AD07	VREF	Absolute Reference Voltage	2.7	_	3.6	V	Vref = Vrefh - Vrefl		
AD08	IREF	Current Drain		_	10 600	μΑ μΑ	ADC off ADC on		
AD09	Iad	Operating Current	—	9.0	—	mA	ADC operating in 10-bit mode, see Note 1		
			—	3.2	—	mA	ADC operating in 12-bit mode, see Note 1		
	-		Analog	g Input	-				
AD12	VINH	Input Voltage Range VINH	VINL	_	Vrefh	V	This voltage reflects Sample & Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input		
AD13	VINL	Input Voltage Range Vın∟	Vrefl	—	AVss + 1V	V	This voltage reflects Sample & Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input		
AD17	Rin	Recommended Imped- ance of Analog Voltage Source	—	—	200	Ω	_		

TABLE 32-54: ADC MODULE SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
		ADC Accuracy (12-bit Mod	de) – Mea	sureme	nts with	externa	I VREF+/VREF-		
AD20a	Nr	Resolution	12	2 data bi	ts	bits	—		
AD21a	INL	Integral Nonlinearity	-2	_	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD23a	Gerr	Gain Error	1.25	1.5	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24a	EOFF	Offset Error	1.25	1.52	2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25a	—	Monotonicity	—			—	Guaranteed		
		ADC Accuracy (12-bit Mo	de) – Mea	asureme	nts with	interna	VREF+/VREF-		
AD20a	Nr	Resolution	12	2 data bi	ts	bits	—		
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23a	Gerr	Gain Error	2	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	EOFF	Offset Error	2	3	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25a	—	Monotonicity	—	—	—	—	Guaranteed		
		Dynamie	c Perforn	nance (1	2-bit Mo	de)			
AD30a	THD	Total Harmonic Distortion	_	_	-75	dB	_		
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	—		
AD32a	SFDR	Spurious Free Dynamic Range	80	_	_	dB	_		
AD33a	Fnyq	Input Signal Bandwidth	—	_	250	kHz	—		
AD34a	ENOB	Effective Number of Bits	11.09	11.3	—	bits			

TABLE 32-55: ADC MODULE SPECIFICATIONS (12-BIT MODE)

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
		ADC Accuracy (10-bit Mode	e) – Meas	urement	ts with e	xternal	VREF+/VREF-		
AD20b	Nr	Resolution	1() data bi	ts	bits	—		
AD21b	INL	Integral Nonlinearity	-1	_	+1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD23b	Gerr	Gain Error	1	3	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD24b	EOFF	Offset Error	1	2	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25b	—	Monotonicity	—			_	Guaranteed		
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with ir	nternal	VREF+/VREF-		
AD20b	Nr	Resolution	1(0 data bi	ts	bits	—		
AD21b	INL	Integral Nonlinearity	-1.5		+1.5	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22b	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23b	Gerr	Gain Error	1	5	6	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24b	EOFF	Offset Error	1	2	5	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25b	—	Monotonicity			_	—	Guaranteed		
		Dynamic	Performa	nce (10-	bit Mode	e)			
AD30b	THD	Total Harmonic Distortion	—	—	-64	dB	—		
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_		
AD32b	SFDR	Spurious Free Dynamic Range	72			dB	_		
AD33b	Fnyq	Input Signal Bandwidth	—	—	550	kHz	—		
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits			

TABLE 32-56: ADC MODULE SPECIFICATIONS (10-BIT MODE)

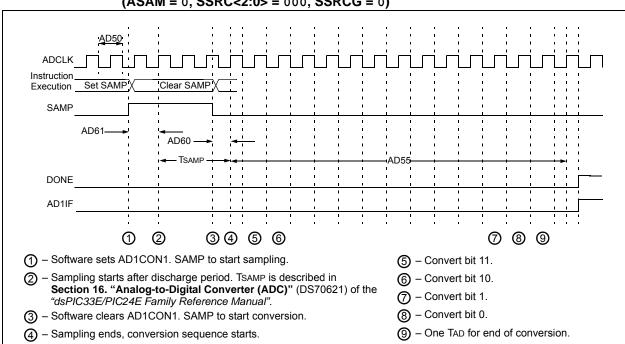
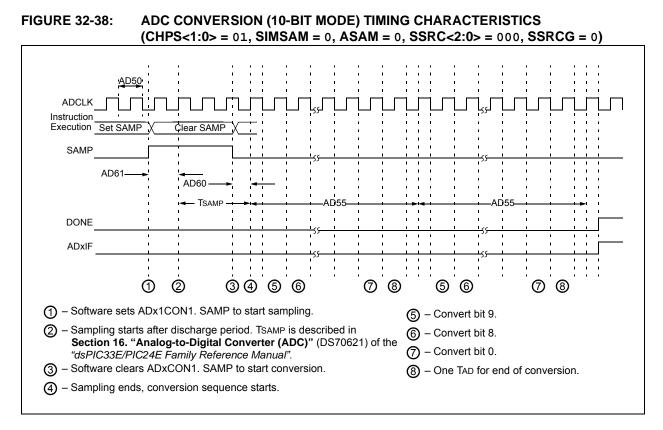
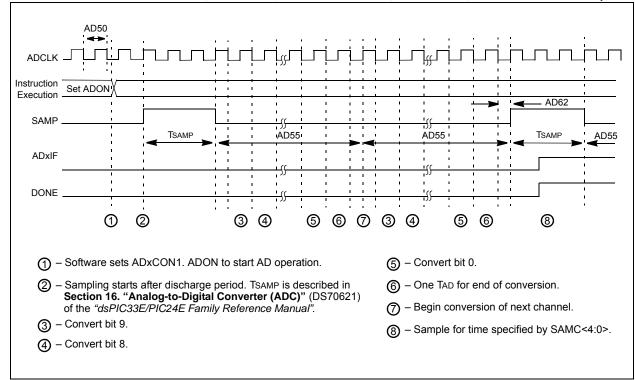


FIGURE 32-37: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000, SSRCG = 0)

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min Typ Max Units Condition						
	•	Cloc	k Parame	ters			•		
AD50	Tad	ADC Clock Period	117.6			ns	_		
AD51	tRC	ADC Internal RC Oscillator Period	ns						
	•	Con	version R	ate					
AD55	tCONV	Conversion Time	_	14 Tad		ns	_		
AD56	FCNV	Throughput Rate	—	_	500	Ksps	—		
AD57	TSAMP	Sample Time	3 Tad	_	_		_		
		Timir	ng Parame	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	-	3 Tad	_	Auto convert trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad	_	_		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 TAD	_	—	_		
AD63	tDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	—	—	20	μs	See Note 3		


TABLE 32-57: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.


2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

FIGURE 32-39: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SSRCG = 0, SAMC<4:0> = 00010)

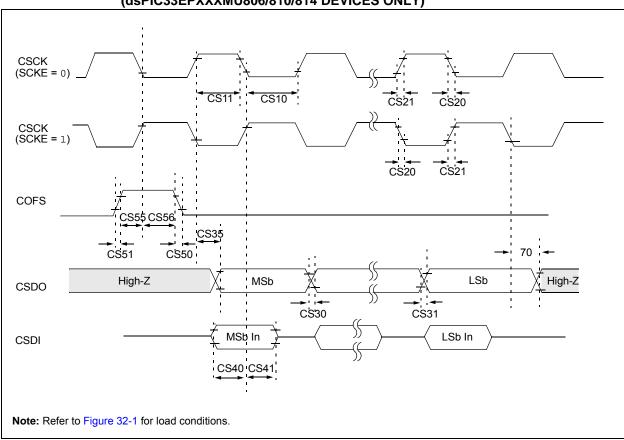

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions	
	•	Cloc	k Parame	eters		•	•	
AD50	Tad	ADC Clock Period	76	_		ns	_	
AD51	tRC	ADC Internal RC Oscillator Period		250		ns	_	
		Con	version F	Rate		•		
AD55	tCONV	Conversion Time		12 Tad	_	—	_	
AD56	FCNV	Throughput Rate	—		1.1	Msps	Using Sequential Sampling	
AD57	TSAMP	Sample Time	2 Tad	—	_	—	_	
		Timin	g Param	eters				
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad	—	3 Tad		Auto-Convert Trigger not selected	
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	—	3 Tad	—	—	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 TAD	_	—	-	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	—	—	20	μs	See Note 3	

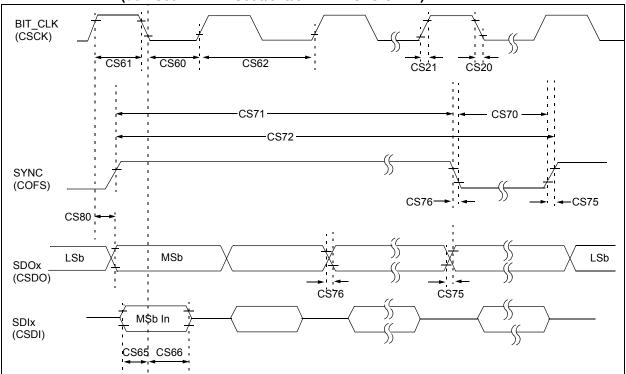
TABLE 32-58: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (ADxCON1<ADON> = 1). During this time, the ADC result is indeterminate.

FIGURE 32-40: DCI MODULE (MULTI-CHANNEL, I²S MODES) TIMING CHARACTERISTICS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)


TABLE 32-59:DCI MODULE (MULTI-CHANNEL, I²S MODES) TIMING REQUIREMENTS
(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

			Standard O (unless oth	erwise st	ated)		
		5105	Operating te	emperatur			°C for Industrial 5°C for Extended
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
CS10	TCSCKL	CSCK Input Low Time (CSCK pin is an input)	Tcy/2 + 20	_	—	ns	—
		CSCK Output Low Time ⁽³⁾ (CSCK pin is an output)	30	_	—	ns	_
CS11	Тсѕскн	CSCK Input High Time (CSCK pin is an input)	Tcy/2 + 20	—	—	ns	_
		CSCK Output High Time ⁽³⁾ (CSCK pin is an output)	30	—	—	ns	—
CS20	TCSCKF	CSCK Output Fall Time (CSCK pin is an output)	—	—	_	ns	See parameter DO32
CS21	TCSCKR	CSCK Output Rise Time (CSCK pin is an output)	—	—	_	ns	See parameter DO31
CS30	TCSDOF	CSDO Data Output Fall Time	—	—	—	ns	See parameter DO32
CS31	TCSDOR	CSDO Data Output Rise Time	—	—	_	ns	See parameter DO31
CS35	Tdv	Clock Edge to CSDO Data Valid	_	—	10	ns	—
CS36	TDIV	Clock Edge to CSDO Tri-Stated	10	—	20	ns	—
CS40	Tcsdi	Setup Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	—	_	ns	_
CS41	THCSDI	Hold Time of CSDI Data Input to CSCK Edge (CSCK pin is input or output)	20	—	_	ns	_
CS50	TCOFSF	COFS Fall Time (COFS pin is output)	—	—	—	ns	See parameter DO32
CS51	TCOFSR	COFS Rise Time (COFS pin is output)	_	—	—	ns	See parameter DO31
CS55	TSCOFS	Setup Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	—	_	ns	—
CS56	THCOFS	Hold Time of COFS Data Input to CSCK Edge (COFS pin is input)	20	_		ns	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

3: The minimum clock period for CSCK is 100 ns. Therefore, the clock generated in Master mode must not violate this specification.

FIGURE 32-41: DCI MODULE (AC-LINK MODE) TIMING CHARACTERISTICS (dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

TABLE 32-60:	DCI MODULE (AC-LINK MODE) TIMING REQUIREMENTS
	(dsPIC33EPXXXMU806/810/814 DEVICES ONLY)

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ^(1,2)	Min	Тур ⁽³⁾	Max	Conditions				
CS60	TBCLKL	BIT_CLK Low Time	36	40.7	45	ns	—			
CS61	TBCLKH	BIT_CLK High Time	36	40.7	45	ns	—			
CS62	TBCLK	BIT_CLK Period	—	81.4	_	ns	Bit clock is input			
CS65	TSACL	Input Setup Time to Falling Edge of BIT_CLK	—	—	10	ns	_			
CS66	THACL	Input Hold Time from Falling Edge of BIT_CLK	—	—	10	ns	_			
CS70	TSYNCLO	SYNC Data Output Low Time	—	19.5	_	μs	—			
CS71	TSYNCHI	SYNC Data Output High Time	—	1.3	_	μs	—			
CS72	TSYNC	SYNC Data Output Period	—	20.8	_	μs	—			
CS77	TRACL	Rise Time, SYNC, SDATA_OUT	—	—		ns	See parameter DO32			
CS78	TFACL	Fall Time, SYNC, SDATA_OUT	—	—	_	ns	See parameter DO31			
CS80	TOVDACL	Output Valid Delay from Rising Edge of BIT_CLK	—	—	15	ns	—			

Note 1: These parameters are characterized but not tested in manufacturing.

2: These values assume BIT_CLK frequency is 12.288 MHz.

3: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

TABLE 32-61:	COMPARATOR TIMING SPECIFICATIONS
--------------	----------------------------------

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
300	TRESP	Response Time ⁽²⁾	—	150	400	ns	—	
301	TMC2OV	Comparator Mode Change to Output Valid	—		10	μs	_	

Note 1: Parameters are characterized but not tested.

2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

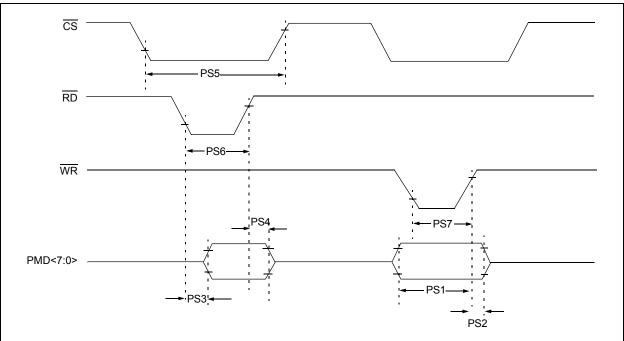
TABLE 32-62: COMPARATOR MODULE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	ic ⁽¹⁾ Min Typ Max Units Conditions					
D300	VIOFF	Input Offset Voltage	—	±10	—	mV	—	
D301	VICM	Input Common Mode Voltage	0	—	AVDD-1.5V	V	_	
D302	302 CMRR Common Mode Rejection Ratio -5-				—	dB	_	

Note 1: Parameters are characterized but not tested.

TABLE 32-63: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS

AC CHA				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions						
VR310	TSET	Settling Time	<u> </u>						


Note 1: Setting time measured while CVRR = 1 and CVR<3:0> bits transition from '0000' to '1111'.

2: These parameters are characterized, but not tested in manufacturing.

TABLE 32-64: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

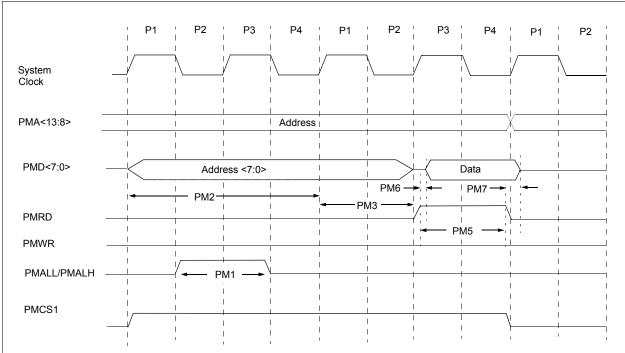

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions						
VRD310	CVRES	Resolution	CVRSRC/24 — CVRSRC/32 LSb —						
VRD311	CVRAA	Absolute Accuracy	— — 0.5 LSb —						
VRD312	CVRur	Unit Resistor Value (R)	2kΩ						

FIGURE 32-42: PARALLEL SLAVE PORT TIMING

Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial -40°C ≤TA ≤+125°C for Extended Param Symbol Characteristic Min Units Conditions Тур Max No. Data in Valid before \overline{WR} or \overline{CS} PS1 TdtV2wrH 20 ns Inactive (setup time) \overline{WR} or \overline{CS} Inactive to Data-In PS2 TwrH2dtl 20 ns ____ Invalid (hold time) PS3 TrdL2dtV RD and CS to Active Data-Out 80 ns Valid PS4 TrdH2dtl RD or CS Inactive to Data-Out 10 30 ns ____ Invalid PS5 Tcs CS Active Time 33.33 _____ ns PS6 Twr RD Active Time 33.33 ns ____ ____ ___ PS7 Trd WR Active Time 33.33 ns _ _

TABLE 32-65: PARALLEL SLAVE PORT TIMING SPECIFICATIONS

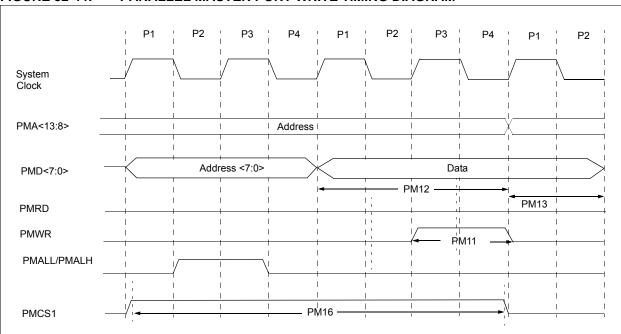


FIGURE 32-43: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 32-66: PARALLEL MASTER PORT READ TIMING REQUIREMENTS

АС СНА	RACTERISTICS	$ \begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array} $					
Param No.	Characteristic	Min	Тур	Мах	Units	Conditions	
PM1	PMALL/PMALH Pulse Width	—	0.5 TCY	_	ns		
PM2	Address Out Valid to PMALL/PMALH Invalid (address setup time)	—	1 Тсү	—	ns		
PM3	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	—	0.5 TCY	—	ns	_	
PM5	PMRD Pulse Width	_	0.5 TCY		ns	_	
PM6	PMRD or PMENB Active to Data In Valid (data setup time)	150	—	_	ns	_	
PM7	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	—	5	ns		

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

FIGURE 32-44: PARALLEL MASTER PORT WRITE TIMING DIAGRAM

TABLE 32-67: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

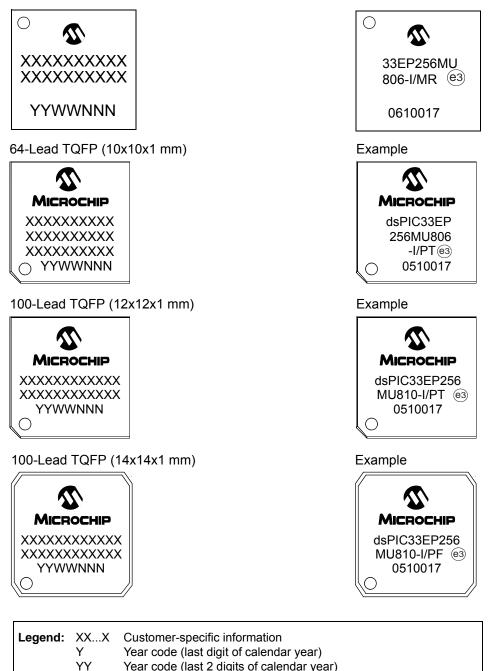
АС СНИ	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param Characteristic Min Typ				Max	Units	Conditions	
PM11	PMWR Pulse Width	—	0.5 TCY	_	ns	—	
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	1 Tcy	_	ns	—	
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	0.5 TCY	—	ns	—	
PM16 PMCSx Pulse Width		Тсү - 5	—	_	ns	ADRMUX<1:0>=00 (demultiplexed address)	

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 32-68: DMA MODULE TIMING REQUIREMENTS

АС СНА	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Characteristic	Min Typ Max Units Condition				Conditions	
DM1	DMA Byte/Word Transfer Latency	1 Tcy	—		ns	—	

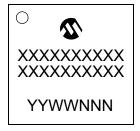
^{© 2009-2011} Microchip Technology Inc.


NOTES:

Example

33.0 PACKAGING INFORMATION

33.1 Package Marking Information


64-Lead QFN (9x9x0.9 mm)

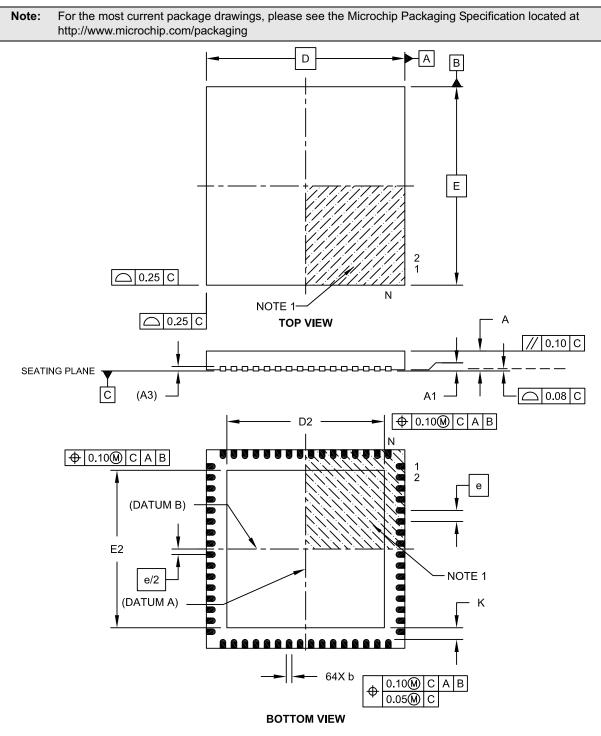
3		
	Y	Year code (last digit of calendar year)
	YY	Year code (last 2 digits of calendar year)
	WW	Week code (week of January 1 is week '01')
	NNN	Alphanumeric traceability code
	e 3	Pb-free JEDEC designator for Matte Tin (Sn)
	*	This package is Pb-free. The Pb-free JEDEC designator ((e3))
		can be found on the outer packaging for this package.
Note:	In the eve	nt the full Microchip part number cannot be marked on one line, it will
		d over to the next line, thus limiting the number of available
	characters	s for customer-specific information.

33.1 Package Marking Information (Continued)

121-Lead BGA (10x10x1.2 mm)

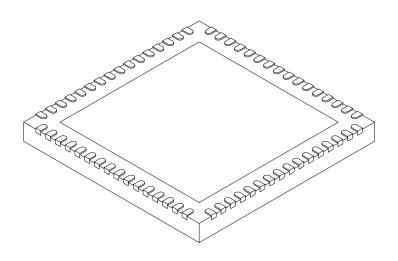
144-Lead LQFP (20x20x1.4 mm)

144-Lead TQFP (16x16x1 mm)



Legenc	I: XXX Y YY WW NNN ©3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (e3) can be found on the outer packaging for this package.
Note:	be carrie	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.

33.2 Package Details


64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

Microchip Technology Drawing C04-149C Sheet 1 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 7.15 x 7.15 Exposed Pad [QFN]

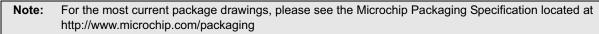
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

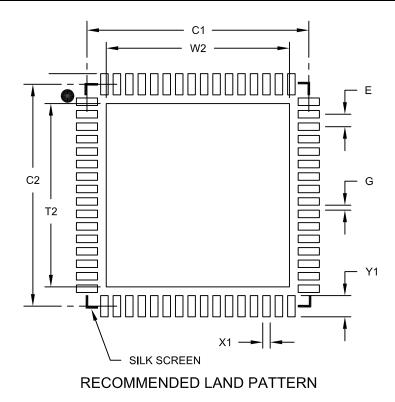
	Units					
Dimensio	n Limits	MIN	NOM	MAX		
Number of Pins	N		64			
Pitch	е		0.50 BSC			
Overall Height	Α	0.80	0.90	1.00		
Standoff	A1	0.00	0.02	0.05		
Contact Thickness	A3	0.20 REF				
Overall Width	Е		9.00 BSC			
Exposed Pad Width	E2	7.05	7.15	7.50		
Overall Length	D		9.00 BSC			
Exposed Pad Length	D2	7.05	7.15	7.50		
Contact Width	b	0.18	0.25	0.30		
Contact Length	L	0.30	0.40	0.50		
Contact-to-Exposed Pad	K	0.20	-	-		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.


3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

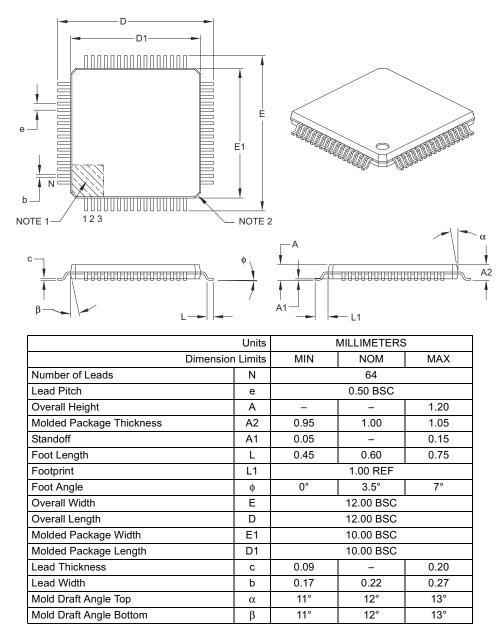
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-149C Sheet 2 of 2

64-Lead Plastic Quad Flat, No Lead Package (MR) – 9x9x0.9 mm Body [QFN] With 0.40 mm Contact Length

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Optional Center Pad Width	W2	7.35			
Optional Center Pad Length	T2			7.35	
Contact Pad Spacing	C1		8.90		
Contact Pad Spacing	C2		8.90		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			0.85	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2149A

64-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

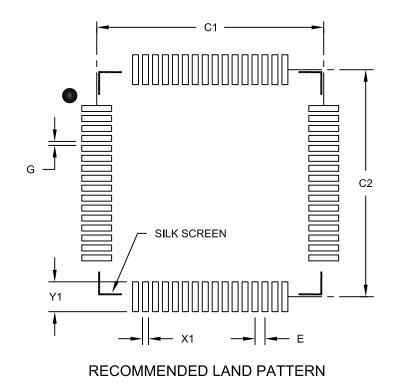
1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-085B

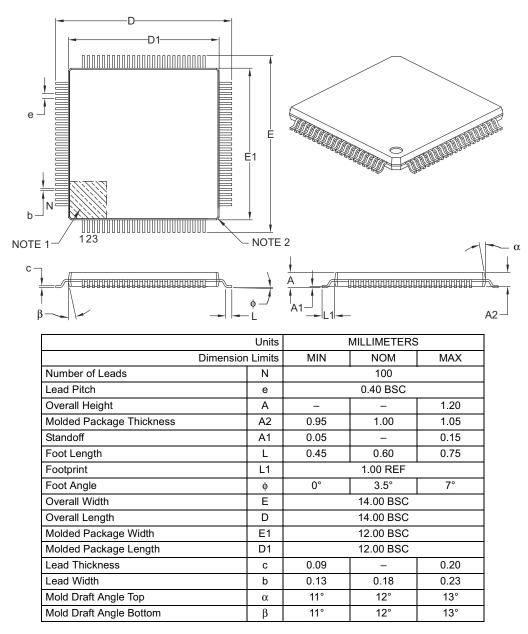
dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

64-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		11.40		
Contact Pad Spacing	C2		11.40		
Contact Pad Width (X64)	X1			0.30	
Contact Pad Length (X64)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2085B

100-Lead Plastic Thin Quad Flatpack (PT) – 12x12x1 mm Body, 2.00 mm Footprint [TQFP]

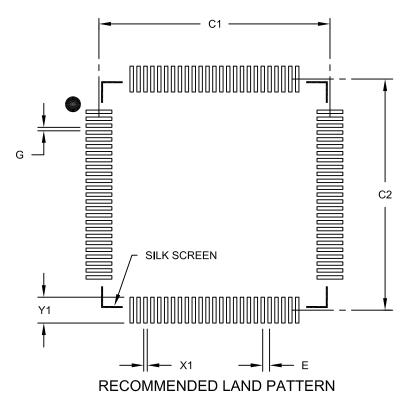
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

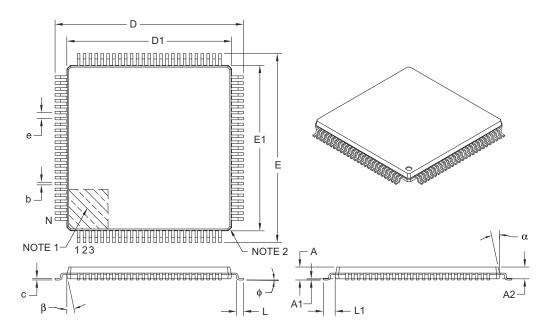
Microchip Technology Drawing C04-100B

100-Lead Plastic Thin Quad Flatpack (PT)-12x12x1mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.40 BSC			
Contact Pad Spacing	C1		13.40		
Contact Pad Spacing	C2		13.40		
Contact Pad Width (X100)	X1			0.20	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2100B

100-Lead Plastic Thin Quad Flatpack (PF) – 14x14x1 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

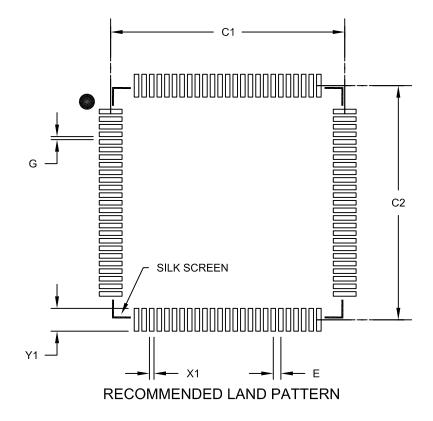
Units		MILLIMETERS			
	Dimension Limits	MIN	NOM	MAX	
Number of Leads	Ν	100			
Lead Pitch	е	0.50 BSC			
Overall Height	А	_	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	φ	0°	3.5°	7°	
Overall Width	E	16.00 BSC			
Overall Length	D	16.00 BSC			
Molded Package Width	E1	14.00 BSC			
Molded Package Length	D1	14.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.17	0.22	0.27	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β	11°	12°	13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.


- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

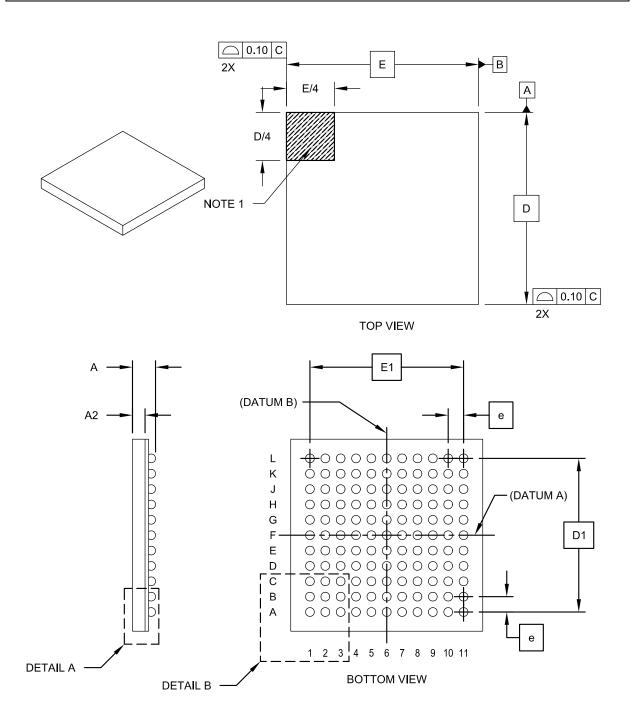
Microchip Technology Drawing C04-110B

100-Lead Plastic Thin Quad Flatpack (PF) - 14x14x1 mm Body 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS			
Dimension Limits		MIN	NOM	MAX	
Contact Pitch	E	0.50 BSC			
Contact Pad Spacing	C1		15.40		
Contact Pad Spacing	C2		15.40		
Contact Pad Width (X100)	X1			0.30	
Contact Pad Length (X100)	Y1			1.50	
Distance Between Pads	G	0.20			

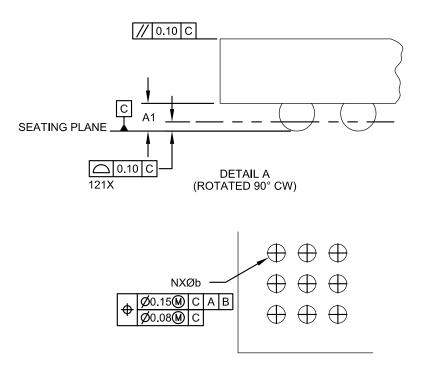
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2110B

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-148B Sheet 1 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL B

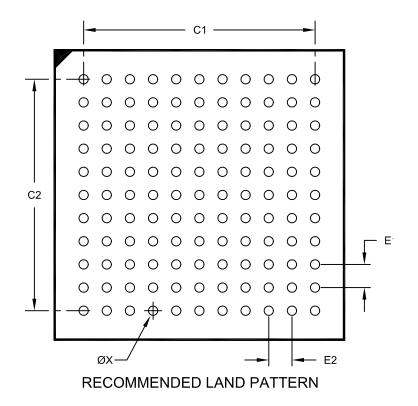
	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Number of Contacts	N	121			
Contact Pitch	е	0.80 BSC			
Overall Height	Α	1.00 1.10 1.20			
Standoff	A1	0.25 0.30 0.3			
Molded Package Thickness	A2	0.55 0.60 0.6			
Overall Width	E	10.00 BSC			
Array Width	E1	8.00 BSC			
Overall Length	D	10.00 BSC			
Array Length	D1	8.00 BSC			
Contact Diameter	b	0.40 TYP			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

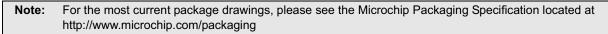
3. The outer rows and colums of balls are located with respect to datums A and B.

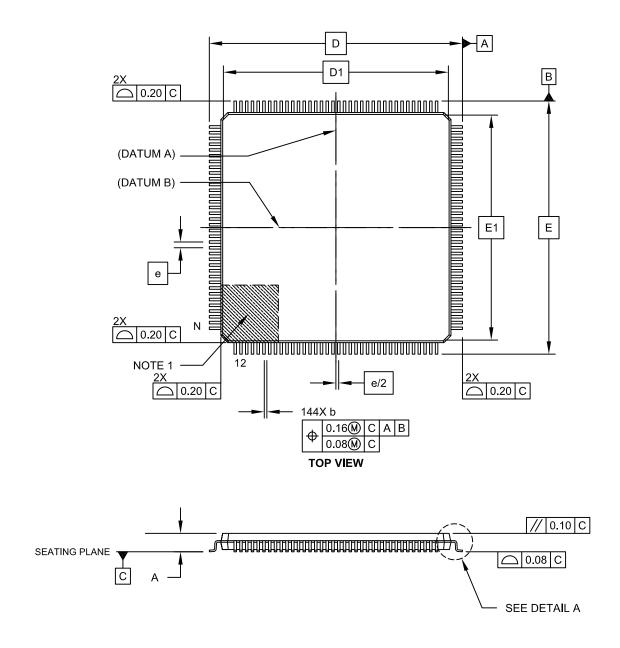
Microchip Technology Drawing C04-148 Rev B Sheet 2 of 2

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS		
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E1	0.80 BSC		
Contact Pitch	E2	0.80 BSC		
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Diameter (X121)	Х			0.32

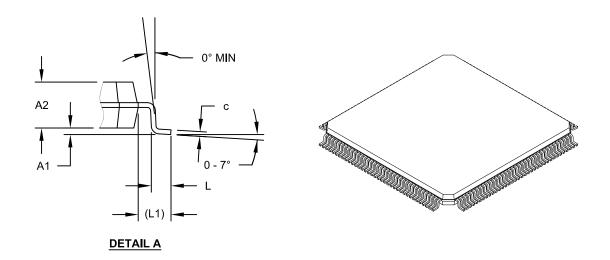

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148B

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]



Microchip Technology Drawing C04-044B Sheet 1 of 2

144-Lead Plastic Low Profile Quad Flatpack (PL) – 20x20x1.40 mm Body, with 2.00 mm Footprint [LQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

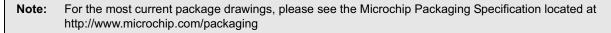
	Units	Ν	ILLIMETER	S
Dimension	Dimension Limits		NOM	MAX
Number of Leads	N		144	
Lead Pitch	е		0.50 BSC	
Overall Height	A	-	-	1.60
Molded Package Height	A2	1.35	1.40	1.45
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 (REF)	
Overall Width	Е	22.00 BSC		
Overall Length	D		22.00 BSC	
Molded Body Width	E1	20.00 BSC		
Molded Body Length	D1	20.00 BSC		
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.17	0.22	0.27

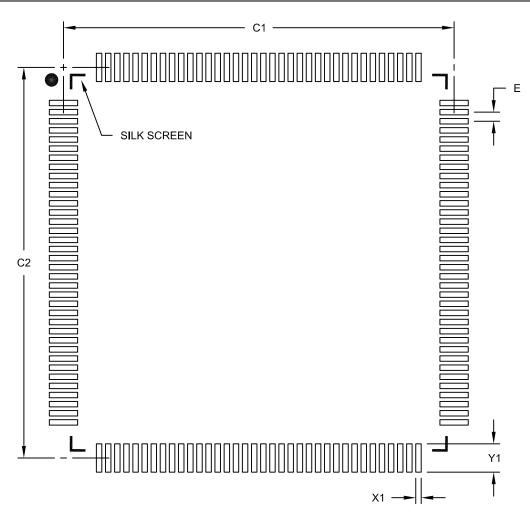
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.


REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-044B Sheet 2 of 2

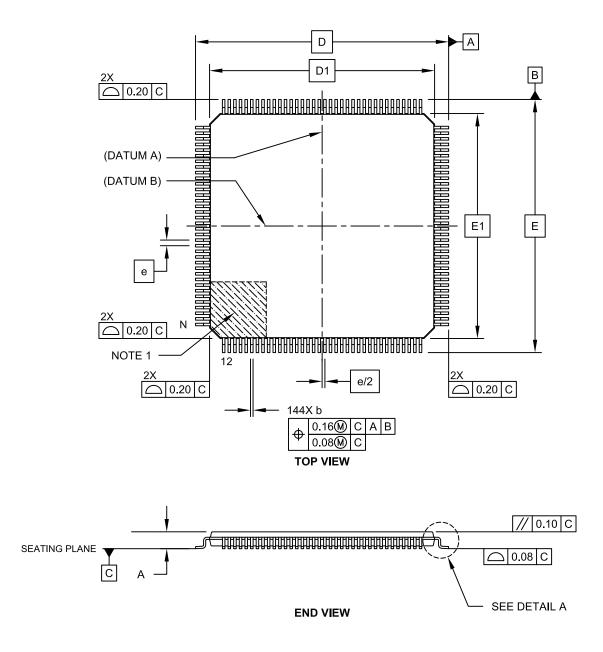
dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

144-Lead Plastic Low Profile Quad Flatpack (PL) - 20x20x1.40 mm Body [LQFP] 2.00 mm Footprint

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimension	Dimension Limits		NOM	MAX	
Contact Pitch	E		0.50 BSC		
Contact Pad Spacing	C1		21.40		
Contact Pad Spacing	C2		21.40		
Contact Pad Width (X144)	X1			0.30	
Contact Pad Length (X144)	Y1			1.55	

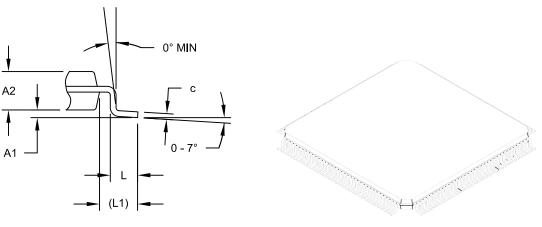
Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2044B

144-Lead Plastic Thin Quad Flatpack (PH)-16x16x1mm Body, 2.00 mm Footprint [TQFP]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-155B Sheet 1 of 2

144-Lead Plastic Thin Quad Flatpack (PH)-16x16x1mm Body, 2.00 mm Footprint [TQFP]

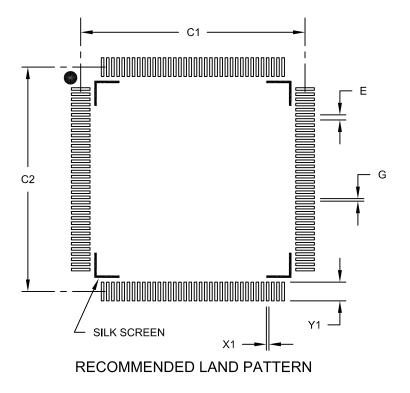
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	Units	N	/ILLIMETER	S	
Dimension Limits		MIN	NOM	MAX	
Number of Pins	N	144			
Lead Pitch	е		0.40 BSC		
Overall Height	A	-	-	1.20	
Molded PackageThickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1		1.00 REF		
Overall Width	D	18.00 BSC			
Overall Length	E	18.00 BSC			
Molded Body Width	D1	16.00 BSC			
Molded Body Length	E1	16.00 BSC			
Lead Thickness	С	0.09	-	0.20	
Lead Width	b	0.13	-	0.23	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


2. Package is saw singulated.

- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 - REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-155B Sheet 2 of 2

144-Lead Plastic Thin Quad Flat Pack (PH) - 16x16 mm Body, 2.00 mm Footprint [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		ILLIMETER	S
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.40 BSC	
Contact Pad Spacing	C1		17.40	
Contact Pad Spacing	C2		17.40	
Contact Pad Width (X144)	X1			0.20
Contact Pad Length (X144)	Y1			1.45
Distance Between Pads	G	0.20		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2155B

APPENDIX A: REVISION HISTORY

Revision A (December 2009)

This is the initial released version of this document.

Revision B (July 2010)

This revision includes minor typographical and formatting changes throughout the data sheet text.

The major changes are referenced by their respective section in Table A-1.

Section Name	Update Description
"High-Performance, 16-bit Digital	Removed reference to dual triggers for Motor Control Peripherals.
Signal Controllers and Microcontrollers"	Relocated the VBUSST pin in all pin diagrams (see " Pin Diagrams ", Table 2 and Table 3).
	Added SCK2, SDI2, SDO2 pins in pin location 4,5 and 6 respectively in 64-pin QFN.
	Added SCK2, SDI2, SDO2 pins in pin location 4,5 and 6 respectively in 64-pin TQFP.
	Added SCK2, SDI2, SDO2 pins in pin location 10,11 and 12 respectively in 100-pin TQFP.
	Added SCK2, SDI2, SDO2 pins in Table 2 and Table 3.
	Moved the RP30 pin to pin location 95, and the RP31 pin to pin location 96 in the 144-pin TQFP and 144-pin LQFP pin diagrams.
Section 1.0 "Device Overview"	Removed the SCL1 and SDA1 pins from the Pinout I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers and Microcontrollers"	Removed Section 2.8 "Configuration of Analog and Digital Pins During ICSP Operations"
Section 3.0 "CPU"	Added Note 4 to the CPU Status Register (SR) in Register 3-1.
	Added the VAR bit (CORCON<15>) to Register 3-2.

TABLE A-1: MAJOR SECTION UPDATES

TABLE A-1:	MAJOR SECTION UPDATES (CONTINUED))

Section Name	Update Description
Section 4.0 "Memory Organization"	Added the Write Latch and Auxiliary Interrupt Vector to the Program Memory Map (see Figure 4-1).
	Updated the All Resets value for the DSRPAG and DSWPAG registers in the CPU Core Register Maps (see Table 4-1 and Table 4-2).
	Updated the All Resets value for the INTCON2 register in the Interrupt Controller Register Maps (see Table 4-3 through Table 4-6).
	Updated the All Resets values for all registers in the Output Compare 1 - Output Compare 16 Register Map, with the exception of the OCxTMR and OCxCON1 registers (see Table 4-9).
	Removed the DTM bit (TRGCON1<7> from all PWM Generator # Register Maps (see Table 4-11 through Table 4-17).
	Updated the All Resets value for the QEI1IOC register in the QEI1 Register Map (see Table 4-18).
	Updated the All Resets value for the QEI2IOC register in the QEI1 Register Map (see Table 4-19).
	Added Note 4 to the USB OTG Register Map (see Table 4-25)
	Updated all addresses in the Real-Time Clock and Calendar Register Map (see Table 4-34).
	Removed RPINR22 from Table 4-37 through Table 4-40.
	Updated the All Resets values for all registers in the Peripheral Pin Select Input Register Maps and modified the RPIN37-RPINR43 registers (see Table 4-37 through Table 4-40).
	Added the VREGSF bit (RCON<11>) to the System Control Register Map (see Table 4-43).
	Added the REFOMD bit (PMD4<3>) to the PMD Register Maps (see Table 4-44 through Table 4-47).
	Changed the bit range for CNT from <15:0> to <13:0> for all DMAxCNT registers in the DMAC Register Map (see Table 4-49).
	Updated the All Resets value and removed the ANSC15 and ANSC12 bits in the ANSLEC registers in the PORTC Register Maps (see Table 4-52 and Table 4-53).
	Updated DSxPAG and Page Description of O, Read and U, Read in Table 4-66
	Added Note to the Table 4-67.
	Updated Arbiter Architecture in Figure 4-8.
	Updated the Unimplemented value and removed the LATG3 and LATG2 bits in the LATG registers and the CNPUG3 and CNPUG2 bits from the CNPUG registers in the PORTG Register Maps (see Table 4-60 and Table 4-61)
	Updated the All Resets value and removed the TRISG3 and TRISG2 bits in the TRISG registers and the ODCG3 and ODCG2 bits from the ODCG registers in the PORTG Register Maps (see Table 4-60 and Table 4-61).
Section 5.0 "Flash Program Memory"	Updated the NVMOP<3:0> = 1110 definition to Reserved and added Note 6 to the Nonvolatile Memory (NVM) Control Register (see Register 5-1).
Section 6.0 "Resets"	Added the VREGSF bit (RCON<11>) to the Reset Control Register (see Register 6-1).

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

Section Name	Update Description
Section 7.0 "Interrupt Controller"	Added the VAR bit (CORCON<15>) to the Core Control Register (see Register 7-2)
	Changed the default POR value for the GIE bit (INTCON2<15) to R/W-1 (see Register 7-4).
	Changed the VECNUM<7:0> = 11111111 pending interrupt vector number to 263 in the Interrupt Control and Status Register (see Register 7-7).
Section 8.0 "Direct Memory	Updated Section 8.1 "DMAC Registers".
Access (DMA)"	Updated DMA Controller in Figure 8-1.
	Added Note 1 to the DMA Channel x Peripheral Address Register (see Register 8-7).
	Added Note 1 and Note 2 to the DMA Channel x Transfer Count Register (see Register 8-8).
	Updated all RQCOLx bit definitions, changing Peripheral Write to Transfer Request in the DMA Request Collision Status Register (see Register 8-12).
Section 9.0 "Oscillator	Added the Reference Oscillator Control Register (see Register 9-7).
Configuration"	Added Note 3 and 4 to the CLKDIV Register (see Register 9-2)
Section 10.0 "Power-Saving Features"	Added the DCIMD and C2MD bits to the Peripheral Module Disable Control Register 1 (see Register 10-1)
	Added the IC6MD, IC5MD, IC4MD, IC3MD, OC8MD, OC7MD, OC6MD, and OC5MD bits to the Peripheral Module Disable Control Register 2 (see Register 10-2)
	Added the T9MD, T8MD, T7MD, and T6MD bits and removed the DSC1MD bit in the Peripheral Module Disable Control Register 3 (see Register 10-3).
	Added the REFOMD bit (PMD4<3>) to the Peripheral Module Disable Control Register 4 (see Register 10-4).
Section 11.0 "I/O Ports"	Updated the first paragraph of Section 11.2 "Configuring Analog and Digital Port Pins".
	Updated the PWM Fault, Dead Time Compensation, and Synch Input register numbers of the Selectable Input Sources (see Table 11-2).
	Removed RPINR22 register.
	Bit names and definitions were modified in the following registers:
	Peripheral Pin Select Input Register 37 (see Register 11-37)
	Peripheral Pin Select Input Register 38 (see Register 11-38)
	Peripheral Pin Select Input Register 39 (see Register 11-39)
	 Peripheral Pin Select Input Register 40 (see Register 11-40)
	Peripheral Pin Select Input Register 41 (see Register 11-41)
	 Peripheral Pin Select Input Register 42 (see Register 11-42) Peripheral Pin Select Input Register 43 (see Register 11-43)
Section 12.0 "Timer1"	Added Note in Register 12-1.
Section 12.0 "Input Capture"	Added Note 1 to the Input Capture Block Diagram (see Figure 14-1).
Section 15.0 "Output Compare"	Added Note 1 to the Output Compare Module Block Diagram (see Figure 14-1).
Soction 16.0 "Wigh Speed DMM	Added Note 2 to the Output Compare x Control Register 2 (see Register 15-2).
Section 16.0 "High-Speed PWM Module (dsPIC33EPXXXMU806/ 810/814 Devices Only)"	Added Comparator bit values for the CLSRC<4:0> and FLTSRC<4:0> bits in the PWM Fault Current-Limit Control Register (see Register 16-21).

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

© 2009-2011 Microchip Technology Inc.

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Section Name	Update Description
Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810/814 Devices Only)"	Reordered the bit values for the OUTFNC<1:0> bits and updated the default POR bit value to 'x' for the HOME, INDEX, QEB, and QEA bits in the QEI I/O Control Register (see Register 17-2).
Section 23.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated VREFL in the ADC1 and ADC2 Module Block Diagram (see Figure 23-1).
Section 25.0 "Comparator Module"	Added Note 1 to the Comparator I/O Operating Modes (see Figure 25-1). Removed the CLPWR bit (CMxCON<12>) (see Register 25-2).
Section 29.0 "Special Features"	Added a new first paragraph to Section 29.1 "Configuration Bits"
Section 30.0 "Instruction Set Summary"	 The following instructions have been updated (see Table 30-2): BRA CALL CPBEQ
	 CFBLQ CPBGT CPBLT CPBNE GOTO MOVPAG MUL RCALL RETFIE RETLW RETLW TBLRDH
Section 32.0 "Electrical Characteristics"	TBLRDL Updated the Typical and Maximum values for DC Characteristics: Operating Current (IDD) (see Table 32-5). Updated the Typical and Maximum values for DC Characteristics: Idle Current (IIDLE) (see Table 32-6).
	(IDLE) (see Table 32-6). Updated the Maximum values for DC Characteristics: Power-down Current (IPD) (see Table 32-7).
	Updated the Maximum values for DC Characteristics: Doze Current (IDOZE) (see Table 32-8).
	Updated the parameter numbers for Internal FRC Accuracy (see Table 32-19).
	Updated the parameter numbers and the Typical value for parameter F21b for Internal RC Accuracy (see Table 32-20).
	Updated the Minimum value for PM6 and the Typical and Maximum values for PM7 in Parallel Master Port Read Requirements (see Table 32-52).
	Added DMA Module Timing Requirements (see Table 32-54).

Revision C (May 2011)

This revision includes minor typographical and formatting changes throughout the data sheet text.

These global changes were implemented:

- All instances of VDDCORE have been removed.
- References to remappable pins have been updated to clarify output-only pins (RPn) versus input/output pins (RPIn).
- The minimum VDD value was changed from 2.7V to 3.0V to adhere to the current BOR specification.

The major changes are referenced by their respective section in Table A-2.

Section Name	Update Description
High-Performance, 16-bit Digital Signal Controllers and	Removed the shading for D+/RG2 and D-/RG3 pin designations in all pin diagrams, as these pins are not 5V tolerant.
Microcontrollers	References to remappable pins have been updated to clarify input/output pins (RPn) and input-only pins (RPIn).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital	Add information on the VUSB pin in Section 2.1 "Basic Connection Requirements".
Signal Controllers and Microcontrollers"	Updated the title of Section 2.3 to Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP) " and modified the first paragraph.
Section 3.0 "CPU"	Added Note 2 to the Programmer's Model Register Descriptions (see Table 3-1).
Section 4.0 "Memory Organization"	Added the CANCKS bit (CxCTRL1<11>) to the ECAN1 and ECAN 2 Register Maps (see Table 4-26 and Table 4-29).
	Added the SBOREN bit (RCON<13>) to the System Control Register Map (see Table 4-43).
	Added Note 1 to the PORTG Register maps (see Table 4-60 and Table 4-61).
	Updated the Page Description for DSRPAG = 0x1FF and DSRPAG = 0x200 in Table 4-66.
	Updated the second paragraph of Section 4.2.9 "EDS Arbitration and Bus Master Priority".
	Updated the last note box in Section 4.2.10 "Software Stack".
Section 5.0 "Flash Program	Updated the equation formatting in Section 5.3 "Programming Operations".
Memory"	Added the Non-Volatile Memory Upper Address (NVMADRU) and Non-Volatile Memory Address (NVMADR) registers (see Register 5-2 and Register 5-3).
Section 6.0 "Resets"	Added Security Reset to the Reset System Block Diagram (see Figure 6-1).
	Added the SBOREN bit (RCON<13>) and Notes 3 and 4 to the Reset Control register (see Register 6-1).
Section 11.0 "I/O Ports"	References to remappable pins have been updated to clarify input/output pins (RPn) and input-only pins (RPIn).
	Added the new column, Input/Output, to Input Pin Selection for Selectable Input Sources (see Table 11-2).
Section 17.0 "Quadrature Encoder Interface (QEI) Module (dsPIC33EPXXXMU806/810/814 Devices Only)"	Updated the definition for the INTHLD<31:0> bits (see Register 17-19 and Register 17-20).

TABLE A-2: MAJOR SECTION UPDATES

© 2009-2011 Microchip Technology Inc.

Section Name	Update Description
Section 21.0 "Enhanced CAN (ECAN™) Module"	Added the CANCKS bit to the ECAN Control Register 1 (CiCTRL1) (see Register 21-1).
Section 22.0 "USB On-The-Go (OTG) Module"	Removed the USB 3.3V Regulator logic from the USB Interface Diagram (see Figure 22-1).
Section 23.0 "10-bit/12-bit Analog-to-Digital Converter (ADC)"	Updated the ADC Conversion Clock Period Block Diagram (see Figure 23-2).
Section 29.0 "Special Features"	Updated the last paragraph of Section 29.1 "Configuration Bits"
	Added a note box after the last paragraph of Section 29.3 "BOR: Brown-out Reset".
	Added the RTSP Effect column to the Configuration Bits Description (see Table 29-2).
Section 30.0 "Instruction Set Summary"	Updated all Status Flags Affected to None for the MOV instruction and added Note 2 (see Table 30-2).
Section 32.0 "Electrical	Updated the Absolute Maximum Ratings (see page 455).
Characteristics"	Added Note 1 to the Operating MIPS vs. Voltage (see Table 32-1).
	Added parameter DI31 (ICNPD) to the I/O Pin Input Specifications (see Table 32-9).
	Updated the Minimum value for parameter DO26 in the I/O Pin Output Specifications (see Table 32-10).
	Updated the Minimum value for parameter D132b and the Minimum and Maximum values for parameters D136a, D136b, D137a, D137b, D138a, and D138b in the Program Memory specification (see Table 32-12).
	Updated the Minimum, Typical, and Maximum values for parameter OS10 (Oscillator Crystal Frequency: Sosc) in the External Clock Timing Requirements (see Table 32-16).
	Added Note 2 to the PLL Clock Timing Specifications (see Table 32-17).
	Updated all Timer1 External Clock Timing Requirements (see Table 32-23).
	Replaced Table 32-34 with Timer2, Timer4, Timer6, Timer8 External Clock Timing Requirements and Timer3, Timer5, Timer7, Timer9 External Clock Timing Requirements (see Table 32-24 and Table 32-25, respectively).
	Updated the Maximum value for parameter OC15 and the Minimum value for parameter OC20 in the OC/PWM Mode Timing Requirements (see Table 32-29).
	Updated the Operating Temperature in the ECAN Module I/O Timing Requirements and USB OTG Timing Requirements (see Table 32-51 and Table 32-53, respectively).
	Updated all SPI specifications (see Figure 32-15 through Figure 32-30 and Table 32-33 through Table 32-48).
	Removed Note 4 from the DCI Module Timing Requirements (see Table 32-59).
	Updated the Standard Operating Conditions voltage for the Comparator Specifications (see Table 32-61 through Table 32-64).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

CRC

D

CPU Clocking System 162 Sources 162

Customer Change Notification Service...... 557 Customer Support...... 557

Data Address Space...... 43 Memory Map for dsPIC33EP256MU806/810/814

Memory Map for dsPIC33EP512MU810/814

Memory Map for PIC24EP256GU810/814

Memory Map for PIC24EP512GU810/814

I/O Pin Output Specifications

Devices with 28 KB RAM...... 46

Devices with 52 KB RAM...... 44

Devices with 28 KB RAM...... 47

Devices with 52 KB RAM...... 45 Near Data Space 43 Width 43 Data Converter Interface (DCI) Module 391 I/O Pin Input Specifications 461

User Interface 420

INDEX

۸

A	
AC Characteristics	466
Capacitive Loading Requirements on Output Pins.	
Internal FRC Accuracy	
Internal RC Accuracy	
Load Conditions	
ADC	400
Initialization	270
Key Features	
Analog-to-Digital Converter (ADC)	
Arithmetic Logic Unit (ALU)	39
Assembler	
MPASM Assembler	452
В	
-	
Bit-Reversed Addressing	119
Example	120
Implementation	119
Sequence Table (16-Entry)	120
Block Diagrams	
16-bit Timer1 Module	247
ADC Conversion Clock Period	
ADC1 and ADC2 Module	
APLL	
Comparator I/O Operating Modes	
Comparator Voltage Reference	
Connections for On-Chip Voltage Regulator	
CPU Core	
CRC Module	
CRC Shift Engine	
DCI Module	
Digital Filter Interconnect	399
dsPIC33EPXXXMU806/810/814	and
PIC24EPXXXGU810/814	22
ECAN Module	328
Input Capture	255
Oscillator System Diagram	161
Output Compare	259
PLL	
Quadrature Encoder Interface	
Reset System	
RTCC	
Shared Port Structure	
SPIx module	
Type B (Timer2, Timer4, Timer6, Timer8)	
Type C (Timer3, Timer5, Timer7, Timer9)	
UART	
User Programmable Blanking Function	
Watchdog Timer (WDT)	438
С	
-	
C Compilers	
MPLAB C18	452

		I/O Pin Output Specifications	464
CPU Core		Idle Current (IDOZE)	
CRC Module		Idle Current (IDLE)	
CRC Shift Engine		Internal Voltage Regulator	
DCI Module		Operating Current (IDD)	
Digital Filter Interconnect		Power-Down Current (IPD)	
dsPIC33EPXXXMU806/810/814	and	Program Memory	
PIC24EPXXXGU810/814		Temperature and Voltage Specifications	
ECAN Module		DCI	
Input Capture		Introduction	
Oscillator System Diagram		Development Support	
Output Compare		DMA Module	
PLL		DSADR register	153
Quadrature Encoder Interface		supported peripherals	
Reset System		DMAC Registers	
RTCC		DMAxCNT	
Shared Port Structure		DMAxCON	
SPIx module		DMAxPAD	
Type B (Timer2, Timer4, Timer6, Timer8)		DMAxREQ	
Type C (Timer3, Timer5, Timer7, Timer9)		DMAxSTA	
UART		DMAxSTB	
User Programmable Blanking Function		Doze Mode	
Watchdog Timer (WDT)		DSP Engine	
С			
-		E	
C Compilers		ECAN Module	
MPLAB C18		CiBUFPNT1 register	338
Clock Switching		CiBUFPNT2 register	
Code Examples		CiBUFPNT3 register	
Port Write/Read		CiBUFPNT4 register	
PWRSAV Instruction Syntax		CiCFG1 register	
Code Protection	,	CiCFG2 register	
Configuration Bits		CiCTRL1 register	
Configuration Register Map		CiCTRL2 register	
Configuring Analog Port Pins	188	CiEC register	
CPU		CiFCTRL register	
Control Register		CiFEN1 register	

CiFIFO register
CiFMSKSEL1 register
CiFMSKSEL2 register
CiINTE register
CiINTF register
CiRXFnEID register
CiRXFnSID register
CiRXFUL1 register
CiRXFUL2 register
CiRXMnEID register
CiRXMnSID register
CiRXOVF1 register
CiRXOVF2 register
CiTRmnCON register
CiVEC register
Modes of Operation
Overview
ECAN Registers
Acceptance Filter Enable Register (CiFEN1)
Acceptance Filter Extended Identifier Register n
(CiRXFnEID)
Acceptance Filter Mask Extended Identifier Register n
(CiRXMnEID)
Acceptance Filter Mask Standard Identifier Register n
(CiRXMnSID)
Acceptance Filter Standard Identifier Register n
(CiRXFnSID)
Baud Rate Configuration Register 1 (CiCFG1)336
Baud Rate Configuration Register 2 (CiCFG2) 337
Control Register 1 (CiCTRL1)
Control Register 2 (CiCTRL2)
FIFO Control Register (CiFCTRL)
FIFO Status Register (CiFIFO)
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) 338
Filter 12-15 Buffer Pointer Register (CiBUFPNT4) 340
Filter 15-8 Mask Selection Register (CiFMSKSEL2). 343
Filter 4-7 Buffer Pointer Register (CiBUFPNT2) 339
Filter 7-0 Mask Selection Register (CiFMSKSEL1) 342
Filter 8-11 Buffer Pointer Register (CiBUFPNT3) 339
Interrupt Code Register (CiVEC)
Interrupt Enable Register (CiINTE)
Interrupt Flag Register (CiINTF)
Receive Buffer Full Register 1 (CiRXFUL1)
Receive Buffer Full Register 2 (CiRXFUL2)
Receive Buffer Overflow Register 2 (CiRXOVF2)346
Receive Overflow Register (CiRXOVF1)
ECAN Transmit/Receive Error Count Register (CiEC) 336
ECAN TX/RX Buffer m Control Register (CiTRmnCON) 347
Electrical Characteristics
AC
Enhanced CAN Module
Equations Device Operating Frequency162
Errata
Ellata
F
Flash Program Memory123
Control Registers
Operations
Programming Algorithm
RTSP Operation
Table Instructions

Н	
High-Speed PWM	

I

I/O Ports Parallel I/O (PIO) Write/Read Timing	187
In-Circuit Debugger In-Circuit Emulation	439
In-Circuit Serial Programming (ICSP)	
Input Capture	
Registers	
Input Change Notification	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	117
MAC Instructions	
MCU Instructions	116
Move and Accumulator Instructions	117
Other Instructions	117
Instruction Set	
Overview	444
Summary	441
Instruction-Based Power-Saving Modes	173
Idle	174
Sleep	173
Internal RC Oscillator	
Use with WDT	438
Internet Address	557
Interrupt Control and Status Registers	136
IFSx	136
INTCON1	136
INTCON2	136
Interrupt Vector Table (IVT)	131
Interrupts Coincident with Power Save Instructions	174

J

JTAG Boundary Scan Interface	433
JTAG Interface	439

Μ

0

Open-Drain Configuration	188
Output Compare	

Ρ

Packaging	
Details	532
Marking	527, 528
Peripheral Module Disable (PMD)	174
Peripherals supported by DMA	145
Pinout I/O Descriptions (table)	23
Power-Saving Features	173

dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/814

173
41
121
122
121
41
122
122

Q

Quadrature Encoder Interface	(QEI)293
------------------------------	----------

R

Reader Response558 Real-Time Clock and Calender RTCC Module
Register Map
Real-Time Clock and Calendar
Register Maps
ADC1 and ADC275
Comparator
CPU Core (dsPIC33EPXXXMU806/810/814
Devices Only)
CPU Core (PIC24EPXXXGU810/814 Devices Only)51
DCI (dsPIC33EPXXXMU806/810/814 Devices Only).77
DMAC
ECAN1 (When WIN (C1CTRL) = 0 or 1)
ECAN1 (When WIN (C1CTRL) = 0)
ECAN1 (WIN (C1CTRL) = 1)
ECAN2 (WIN (C2CTRL) = 0 or 1)
I2C1 and I2C2
Input Capture 1 through Input Capture 16
Interrupt Controller (dsPIC33EPXXXMU806
Devices Only)
Interrupt Controller (dsPIC33EPXXXMU810
Devices Only)
Interrupt Controller (dsPIC33EPXXXMU814
Devices Only)
Interrupt Controller (PIC24EPXXXGU810/814
Devices Only)
Output Compare 1 through Output Compare 1663
Pad Configuration
Parallel Master/Slave Port
Peripheral Pin Select Input (dsPIC33EPXXXMU806
Devices Only)
Peripheral Pin Select Input (dsPIC33EPXXXMU810
Devices Only)91
Peripheral Pin Select Input (dsPIC33EPXXXMU814
Devices Only) 89
Peripheral Pin Select Input (PIC24EPXXXGU810/814
Devices Only)95
Peripheral Pin Select Output (dsPIC33EPXXXMU806
Devices Only)88
Peripheral Pin Select Output (dsPIC33EPXXXMU810/
814 and PIC24EPXXXGU810/814
Devices Only)87
PMD (dsPIC33EPXXXMU810 Devices Only)97
PMD (PIC24EPXXXGU810/814 Devices Only)98

	PORTA (dsPIC33EPXXXMU810/814	and
	PIC24EPXXXGU810/814 Devices Only)	104
	PORTB	
	PORTC (dsPIC33EPXXXMU806 Devices Only)	105
	PORTC (dsPIC33EPXXXMU810/814 and	
	PIC24EPXXXGU810/814 Devices Only)	104
	PORTD (dsPIC33EPXXXMU806 Devices Only)	
		100
	PORTD (dsPIC33EPXXXMU810/814 and	
	PIC24EPXXXGU810/814 Devices Only)	
	PORTE (dsPIC33EPXXXMU806 Devices Only)	106
	PORTE (dsPIC33EPXXXMU810/814 and	
	PIC24EPXXXGU810/814 Devices Only)	106
	PORTF (dsPIC33EPXXXMU806 Devices Only)	107
	PORTF (dsPIC33EPXXXMU810/814 and	
	PIC24EPXXXGU810/814 Devices Only)	106
	PORTG (dsPIC33EPXXXMU806 Devices Only)	
		107
	PORTG (dsPIC33EPXXXMU810/814 and	
	PIC24EPXXXGU810/814 Devices Only)	107
	PORTH (dsPIC33EPXXXMU814	and
	PIC24EPXXXGU814 Devices Only)	108
	PORTJ (dsPIC33EPXXXMU814 and	100
	PIC24EPXXXGU814 Devices Only)	108
	PORTK (dsPIC33EPXXXMU814 and	
	PIC24EPXXXGU814 Devices Only)	109
	PWM (dsPIC33EPXXXMU806/810/814	
		~ ~
	Devices Only)	. 66
	PWM Generator 1 (dsPIC33EPXXXMU806/810/814	
	Devices Only)	. 66
	PWM Generator 2 (dsPIC33EPXXXMU806/810/814	
		67
	Devices Only)	. 07
	PWM Generator 3 (dsPIC33EPXXXMU806/810/814	
	Devices Only)	. 67
	PWM Generator 4 (dsPIC33EPXXXMU806/810/814	
	Devices Only)	60
		. 00
	PWM Generator 5 (dsPIC33EPXXXMU810/814	
	Devices Only)	. 68
	PWM Generator 6 (dsPIC33EPXXXMU810/814	
	Devices Only)	69
	PWM Generator 7 (dsPIC33EPXXXMU814	. 00
	Devices Only)	. 69
	QEI1 Register Map (dsPIC33EPXXXMU806/810/814	1
	Devices Only)	
	QEI2 Register Map (dsPIC33EPXXXMU806/810/814	1
	Devices Only)	
	Reference Clock	. 96
	SPI1, SPI2, SPI3, and SPI4	. 74
	System Control	
	Timer1 through Timer9	
	UART1, UART2, UART3, and UART4	. 73
	USB OTG	. 78
Reai	isters	
	ACLKDIV2 (Auxiliary Clock Divisor 2)	171
	AD1CSSH (ADC1 Input Scan Select High)	
	ADxCHS0 (ADCx Input Channel 0 Select)	388
	ADxCHS123 (ADCx Input Channel 1, 2, 3 Select)	387
	ADxCON1 (ADCx Control 1)	
	ADxCON2 (ADCx Control 2)	
	ADxCON3 (ADCx Control 3)	
	ADxCON4 (ADCx Control 4)	386
	ADxCSSL (ADCx Input Scan Select Low)	
	ALCFGRPT (Alarm Configuration)	
		414
	ALRMVAL (Alarm Minutes and Seconds - when	
	ALRMPTR = 00)	418
	ALRMVAL (Alarm Month and Day Value - when	
	ALRMPTR = 10)	417

ALRMVAL (Alarm Weekday and Hours - when
ALRMPTR = 01)
ALTDTRx (PWM Alternate Dead-Time)
AUXCONx (PWM Auxiliary Control)
CHOP (PWM Chop Clock Generator)
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer) 340
CiCFG1 (ECAN Baud Rate Configuration 1)
CiCFG2 (ECAN Baud Rate Configuration 2)
CiCTRL1 (ECAN Control 1)
CiCTRL2 (ECAN Control 2)
CiEC (ECAN Transmit/Receive Error Count)
CiFCTRL (ECAN FIFO Control)
CiFEN1 (ECAN Acceptance Filter Enable)
CiFIFO (ECAN FIFO Status)
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) 342
CiFMSKSEL2 (ECAN Filter 15-8 Mask Selection) 343
CiINTE (ECAN Interrupt Enable)
CIINTE (ECAN Interrupt Flag)
CiRXFnEID (ECAN Acceptance Filter n
Extended Identifier)
CiRXFnSID (ECAN Acceptance Filter n Standard Identi-
fier)
CiRXFUL1 (ECAN Receive Buffer Full 1)
CiRXFUL2 (ECAN Receive Buffer Full 2)
CiRXMnEID (ECAN Acceptance Filter Mask n Extended
Identifier)
CiRXMnSID (ECAN Acceptance Filter Mask n
Standard Identifier)
CiRXOVF1 (ECAN Receive Buffer Overflow 1)
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 346
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 346 CiTRBnSID (ECAN Buffer n Standard Identifier) 348,
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 346 CiTRBnSID (ECAN Buffer n Standard Identifier) 348, 349, 351
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 346 CiTRBnSID (ECAN Buffer n Standard Identifier) 348, 349, 351 CiTRmnCON (ECAN TX/RX Buffer m Control) 347
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 346 CiTRBnSID (ECAN Buffer n Standard Identifier) 348, 349, 351 CiTRmnCON (ECAN TX/RX Buffer m Control) 347 CiVEC (ECAN Interrupt Code)
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 346 CiTRBnSID (ECAN Buffer n Standard Identifier) 348, 349, 351 CiTRmnCON (ECAN TX/RX Buffer m Control) 347 CiVEC (ECAN Interrupt Code)
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 346 CiTRBnSID (ECAN Buffer n Standard Identifier) 348, 349, 351 CiTRmnCON (ECAN TX/RX Buffer m Control) 347 CiVEC (ECAN Interrupt Code)
CiRXOVF2 (ECAN Receive Buffer Overflow 2)
CiRXOVF2 (ECAN Receive Buffer Overflow 2) 346 CiTRBnSID (ECAN Buffer n Standard Identifier) 348, 349, 351 CiTRmnCON (ECAN TX/RX Buffer m Control) 347 CiVEC (ECAN Interrupt Code)
CiRXOVF2 (ECAN Receive Buffer Overflow 2)
CiRXOVF2 (ECAN Receive Buffer Overflow 2)346CiTRBnSID (ECAN Buffer n Standard Identifier)348,349, 351351CiTRmnCON (ECAN TX/RX Buffer m Control)347CiVEC (ECAN Interrupt Code)331CLKDIV (Clock Divisor)166CMSTAT (Comparator Status)400CMxCON (Comparator Control)401CMxFLTR (Comparator Filter Control)407CMxMSKCON (Comparator Mask Gating Control)405CMxMSKSRC (Comparator Mask Gating Control)403CORCON (Core Control)37, 138CVRCON (Core Control)37, 138CVRCON (Core Control)392DCICON1 (DCI Control 1)392DCICON2 (DCI Control 2)393DCICON3 (DCI Control 3)394DCISTAT (DCI Status)395DTRx (PWM Dead-Time)281FCLCONx (I2Cx Control)315I2CxMSK (I2Cx Slave Mode Address Mask)319I2CxSTAT (I2Cx Status)317ICxCON1 (Input Capture x Control 1)302INDXxCNTH (Index Counter High Word)302INDXxCNTL (Index Counter Low Word)303INTCON1 (Interrupt Control 1)139
CiRXOVF2 (ECAN Receive Buffer Overflow 2)

INTxHLDL (Interval Timer Hold Low Word)	
INTxTMRH (Interval Timer High Word)	
INTxTMRL (INterval Timer Low Word)	
IOCONx (PWM I/O Control)	
LEBCONx (Leading-Edge Blanking Control)	
LEBDLYx (Leading-Edge Blanking Delay)	
MDC (PWM Master Duty Cycle)	
NVMCOM (Flash Memory Control)	
NVMCON (Non-volatile (NVM) Memory Control)	125
NVMKEY (Non-volatile Memory Key)	
OCxCON1 (Output Compare x Control 1)	
OCxCON2 (Output Compare x Control 2)	
OSCCON (Oscillator Control)	
OSCTUN (FRC Oscillator Tuning)	
PADCFG1 (Pad Configuration Control) PDCx (PWM Generator Duty Cycle)	413
PHASEx (PWM Primary Phase Shift)	278
PLLFBD (PLL Feedback Divisor)	
PMADDR (Parallel Master Port Address	
PMCON (Parallel Master Port Control)	
PMD1 (Peripheral Module Disable Control 1)	
PMD2 (Peripheral Module Disable Control 1)	
PMD3 (Peripheral Module Disable Control 2)	
PMD4 (Peripheral Module Disable Control 5)	
PMD5 (Peripheral Module Disable Control 4)	
PMD6 (Peripheral Module Disable Control 5)	
PMD7 (Peripheral Module Disable Control 0)	
PMMODE (Parallel Master Port Mode)	
PMPEN (Parallel Master Port Address Enable)	
PMSTAT (Parallel Master Port Status)	
POSxCNTH (Position Counter High Word)	
POSxCNTL (Position Counter Low Word)	
POSxHLD (Position Counter Hold)	
PTCON (PWM Time Base Control)	
PTCON2 (Primary Master Clock Divider Select)	
PTPER (Primary Master Time Base Period)	
PWMCAPx (Primary PWM Time Base Capture)	
PWMCONx (PWM Control)	
QEICON (QEI Control)	
QEIxGECH (Greater Than or Equal Compare	
High Word)	305
QEIxGECL (Greater Than or Equal Compare	
Low Word)	305
QEIxICH (Initialization/Capture High Word)	
QEIxICL (Initialization/Capture Low Word)	303
QEIxIOC (QEI I/O Control)	297
QEIxLECH (Less Than or Equal Compare	
High Word)	304
QEIxLECL (Less Than or Equal Compare	
Low Word)	
QEIxSTAT (QEI Status)	
RCFGCAL (RTCC Calibration and Configuration).	
RCON (Reset Control)	
REFOCON (Reference Oscillator Control)	
RPINR0 (Peripheral Pin Select Input 0)	
RPINR1 (Peripheral Pin Select Input 1)	
RPINR10 (Peripheral Pin Select Input 10)	
RPINR11 (Peripheral Pin Select Input 11)	
RPINR12 (Peripheral Pin Select Input 12)	
RPINR13 (Peripheral Pin Select Input 13)	210
RPINR14 (Peripheral Pin Select Input 14) RPINR15 (Peripheral Pin Select Input 15)	011
REINETS (Perinneral Pin Select Input 15)	
	212
RPINR16 (Peripheral Pin Select Input 16)	212 213
	212 213 214

RPINR19 (Peripheral Pin Select Input 19)216	
RPINR2 (Peripheral Pin Select Input 2)	
RPINR20 (Peripheral Pin Select Input 20)217	
RPINR21 (Peripheral Pin Select Input 21)	
RPINR23 (Peripheral Pin Select Input 23)	
RPINR24 (Peripheral Pin Select Input 24)	
RPINR25 (Peripheral Pin Select Input 25)	
RPINR26 (Peripheral Pin Select Input 26) 222	
RPINR27 (Peripheral Pin Select Input 27)223	
RPINR28 (Peripheral Pin Select Input 28) 224	
RPINR29 (Peripheral Pin Select Input 29)225	
RPINR3 (Peripheral Pin Select Input 3) 200	
RPINR30 (Peripheral Pin Select Input 30) 226	
RPINR31 (Peripheral Pin Select Input 31)227	
RPINR32 (Peripheral Pin Select Input 32)	
RPINR33 (Peripheral Pin Select Input 33)	
RPINR34 (Peripheral Pin Select Input 34)	
RPINR35 (Peripheral Pin Select Input 35)	
RPINR36 (Peripheral Pin Select Input 36)	
RPINR37 (Peripheral Pin Select Input 37)	
RPINR38 (Peripheral Pin Select Input 38)234	
RPINR4 (Peripheral Pin Select Input 4)201	
RPINR40 (Peripheral Pin Select Input 40)235	
RPINR41 (Peripheral Pin Select Input 41)236	
RPINR42 (Peripheral Pin Select Input 42)237	
RPINR43 (Peripheral Pin Select Input 43)238	
RPINR45 (Peripheral Pin Select Input 45)	
RPINR5 (Peripheral Pin Select Input 5)	
RPINR6 (Peripheral Pin Select Input 6)	
RPINR7 (Peripheral Pin Select Input 7)	
RPINR8 (Peripheral Pin Select Input 8)	
RPINR9 (Peripheral Pin Select Input 9)	
RPOR0 (Peripheral Pin Select Output 0)239	
RPOR1 (Peripheral Pin Select Output 1)240	
RPOR11 (Peripheral Pin Select Output 11)244	
RPOR12 (Peripheral Pin Select Output 12)245	
RPOR13 (Peripheral Pin Select Output 13)245	
RPOR14 (Peripheral Pin Select Output 14)246	
RPOR15 (Peripheral Pin Select Output 15)246	
RPOR2 (Peripheral Pin Select Output 2)240	
RPOR3 (Peripheral Pin Select Output 3)241	
RPOR4 (Peripheral Pin Select Output 4)241	
RPOR5 (Peripheral Pin Select Output 5)242	
RPOR6 (Peripheral Pin Select Output 6)	
RPOR7 (Peripheral Pin Select Output 7)	
RPOR8 (Peripheral Pin Select Output 8)	
RPOR9 (Peripheral Pin Select Output 9)	
RSCON (DCI Receive Slot Control)	
RTCVAL (Minutes and Seconds Value - when	
RTCPTR = 00)	
RTCVAL (Month and Day Value - when	
RTCPTR = 10)	
RTCVAL (Weekday and Hours Value - when	
RTCPTR = 01)	
RTCVAL (YEAR VALUE Register - when	
RTCPTR = 11)	
SDCx (PWM Secondary Duty Cycle)	
SEVTCMP (Primary Special Event Compare)	
SPHASEx (PWM Secondary Phase Shift)	
SPIxCON1 (SPIx Control 1)	
SPIxCON2 (SPIx Control 2)	
SPIxSTAT (SPIx Status and Control)	
SR (CPU Status)	
SSEVTCMP (PWM Secondary Special	
Event Compare)274	

T1CON (Timer1 Control)	248
TRGCONx (PWM Trigger Control)	282
TRIGx (PWM Primary Trigger Compare Value)	
TSCON (DCI Transmit Slot Control)	
	390
TxCON (T2CON, T4CON, T6CON or	
T8CON Control)	252
TyCON (T3CON, T5CON, T7CON or	
T9CON Control)	253
UxADDR (USB Address)	
UxBDTP1 (USB Buffer Description Table 1)	
· · · · · · · · · · · · · · · · · · ·	
UxBDTP2 (USB Buffer Description Table 2)	
UxBDTP3 (USB Buffer Description Table 3)	
UxCNFG1 (USB Configuration 1)	362
UxCNFG2 (USB Configuration 2)	363
UxCON (USB Control - Device mode)	
UxCON (USB Control - Host mode)	
UxEIE (USB Error Interrupt Enable - Device mode).	
UxEIE (USB Error Interrupt Enable - Host mode)	
UxEIR (USB Error Interrupt Status - Device mode)	370
UxEIR (USB Error Interrupt Status - Host mode)	371
UxEPn (USB Endpoint n Control)	374
UxFRMH (USB Frame Number High)	
UxFRML (USB Frame Number Low)	
UxIE (USB Interrupt Enable - Device mode)	
UxIE (USB Interrupt Enable - Host mode)	
UxIR (USB Interrupt Status - Device mode only)	366
UxIR (USB Interrupt Status - Host mode only)	367
UxMODE (UARTx Mode)	
UxOTGCON (USB OTG Control)	
UxOTGIE (USB OTG Interrupt Enable - Host	000
	~~~
mode only)	305
UxOTGIR (USB OTG Interrupt Status - Host	
mode only)	
UxOTGSTAT (USB OTG Status)	355
UxPWMCON (USB VBUS PWM Generator Control).	
UxPWMRRS (Duty Cycle and PWM Period)	
UxPWRC (USB Power Control)	
UxSOF (USB OTG Start-Of-Token Threshold - Host	
mode only)	
UxSTA (UARTx Status and Control)	324
UxSTAT (USB Status)	358
UxTOK (USB Token - Host mode only)	
VELxCNT (Velocity Counter)	
Reset	002
	407
Illegal Opcode	
Uninitialized W Register	127
Reset Sequence	131
Resets	127
_	
S	
Serial Peripheral Interface (SPI)	307
Software Simulator (MPLAB SIM)	
	400
Software Stack Pointer, Frame Pointer	
CALLL Stack Frame	
Special Features of the CPU	
Symbols Used in Opcode Descriptions	442
T	
Temperature and Voltage Specifications	
AC	466
Timer1	
Timer2/3, Timer4/5, Timer6/7 and Timer8/9	249

**Timing Characteristics** CLKO and I/O ..... 470 **Timing Diagrams** 

10-bit ADC Conversion (CHPS<1:0> = 01, SIMSAM = 0,

ASAM = 0, SSRC<3:0> = 000)	
10-bit ADC Conversion (CHPS<1:0> = 01, SIMSA	M = 0,
ASAM = 1, SSRC<2:0> = 111,	
SAMC<4:0> = 00001)	
10-bit ADC Conversion (CHPS<1:0> = 01, SIMSA	M = 0,
ASAM = 1, SSRC<3:0> = 111,	
SAMC<4:0> = 00010)	516
12-bit ADC Conversion	
(ASAM = 0, SSRC<3:0> = 000)	514
DCI AC-Link Mode	
DCI Multi -Channel, I ² S Modes	518
ECAN I/O	
External Clock	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture (CAPx)	
Motor Control PWM	
Motor Control PWM Fault	
OC/PWM	
Output Compare (OCx)	
Parallel Slave Port	
QEA/QEB Input QEI Module Index Pulse	
Reset, Watchdog Timer, Oscillator Start-up Timer	
Power-up Timer	
Timer1, 2, 3 External Clock	
TimerQ (QEI Module) External Clock	475
Timing Requirements	470
CLKO and I/O	
DCI AC-Link Mode	
DCI Multi-Channel, I ² S Modes	
DMA Module	
External Clock	
Parallel Master Port Read	
Parallel Master Port Write	525
Timing Specifications	
10-bit ADC Conversion Requirements	
12-bit ADC Conversion Requirements	
CAN I/O Requirements	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	
Motor Control PWM Requirements	478
Output Compare Requirements	477
Parallel Slave Port	523
PLL Clock	468
QEI External Clock Requirements	475
QEI Index Pulse Requirements	480
Quadrature Decoder Requirements	
Reset, Watchdog Timer, Oscillator Start-up Timer	,
Power-up Timer and Brown-out Reset	
Requirements	472
Simple OC/PWM Mode Requirements	
Timer1 External Clock Requirements	
Timer2 External Clock Requirements	
Timer3 External Clock Requirements	
U	
Universal Asynchronous Receiver Transmitter (UART).	321
V	

Voltage Regulator (On-Chip)......437

Programming Considerations	. 438
WWW Address	. 557
WWW, On-Line Support	20

W

# THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

#### CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

### CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

#### READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent
From		
	Company	
	Address City / State / ZIP / Country	
		X: ()
Annli	cation (optional):	······································
	d you like a reply? Y N	
	ce: dsPIC33EPXXXMU806/810/814 and PIC24EPXXXGU810/	214 Literature Number DS70616C
Devic		Literature Number: DS70616C
Ques	stions:	
1. V	Vhat are the best features of this document?	
	How does this document meet your hardware and software deve	lopment needs?
_		
3. E	Do you find the organization of this document easy to follow? If r	not, why?
4. V	What additions to the document do you think would enhance the	structure and subject?
5. V	What deletions from the document could be made without affecti	ng the overall usefulness?
_		
6. I	s there any incorrect or misleading information (what and where	)?
_		
_		
7.⊦	low would you improve this document?	
_		
_		

### **PRODUCT IDENTIFICATION SYSTEM**

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Tape and Reel Flag Temperature Range Package	rk ily ize (KB (if appl	) —		Examples: a) dsPIC33EP512MU814T-E/PH: Motor Control with USB dsPIC33, 512 KB program memory, 144-pin, Extended temperature, TQFP package.
Architecture:	33 24	=	16-bit Digital Signal Controller 16-bit Microcontroller	
Flash Memory Family:	EP	=	Enhanced Performance	
Product Group:	MU8 GU8			
Pin Count:	06 10 14	=	64-pin 100-pin, 121-pin 144-pin	
Temperature Range:	l E	=	-40° C to+85° C (Industrial) -40° C to+125° C (Extended)	
Package:	PT PF MR BG PH PL	= = =	10x10 or 12x12 mm TQFP (Thin Quad Flatpack) 14x14 mm TQFP (Thin Quad Flatpack) 9x9mm QFN (Plastic Quad Flatpack) 10X10 mm BGA (Ball Grid Array) 16X16 mm TQFP (Thin Quad Flatpack) 20X20 mm LQFP (Low-Profile Quad Flatpack)	



# **Worldwide Sales and Service**

#### AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

**Chicago** Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

**Cleveland** Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

**Dallas** Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

#### ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8569-7000

Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

**China - Chongqing** Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

**China - Hangzhou** Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

**China - Hong Kong SAR** Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

**China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

**China - Shanghai** Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

**China - Shenzhen** Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

**China - Wuhan** Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

**China - Xian** Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

**China - Xiamen** Tel: 86-592-2388138 Fax: 86-592-2388130

**China - Zhuhai** Tel: 86-756-3210040 Fax: 86-756-3210049

#### ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

**India - New Delhi** Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

**Japan - Yokohama** Tel: 81-45-471- 6166 Fax: 81-45-471-6122

**Korea - Daegu** Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

**Malaysia - Penang** Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

**Thailand - Bangkok** Tel: 66-2-694-1351 Fax: 66-2-694-1350

#### EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

**Germany - Munich** Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

**Italy - Milan** Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

**Spain - Madrid** Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

**UK - Wokingham** Tel: 44-118-921-5869 Fax: 44-118-921-5820

05/02/11