Features

- SOT-25 Low Cost Miniature Plastic Package
- 6.5 dB Typical Conversion Loss
- +7 to +13 dBm LO Drive
- $\mathrm{HMIC}^{\text {тм }}$ Patented Process
- Silicon Medium Barrier Schottky Diodes
- Double Balanced Passive Mixer
- RoHS* Compliant with $260^{\circ} \mathrm{C}$ Reflow Capability
- 100\% Matte Tin Plating

Description and Applications

M/A-COM's MAMX-000600-1225MT is a $4200-6000 \mathrm{MHz}$ silicon monolithic double balanced mixer in a low cost miniature surface mount SOT-25 package. The die uses M/A-COM's unique HMIC silicon/glass process to achieve low loss passive elements while retaining the advantages of medium barrier silicon Schottky barrier diodes.

These mixers are well suited for high volume WLL and WLAN applications where small size and repeatability are required. Typical applications include frequency conversion, modulation, and demodulation in wireless receivers and transmitters.

Absolute Maximum Ratings ${ }^{1,2}$

Parameter	Maximum Ratings
Operating Temperature	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Incident LO Power	+20 dBm
Incident RF Power	+20 dBm
Soldering Temperature	$+260^{\circ} \mathrm{C}$ max.

1. Exceeding these limits may cause permanent damage.
2. Please refer to application note M538 for surface mounting instructions.

SOT-25 Package Outline

 (Topview)

PIN Configuration

PIN	Function	PIN	Function
1	RF	4	GND
2	GND	5	IF
3	LO		

Schematic

[^0]Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Electrical Specifications @ +25 ${ }^{\circ} \mathrm{C}$

Parameter	Frequency Range	Test Conditions	Units	Min.	Typ.	Max.
Conversion Loss	$\begin{gathered} 5000 \mathrm{MHz} \\ 4.2-6.0 \mathrm{GHz} \end{gathered}$	$\begin{gathered} \text { LO Drive }=+10 \mathrm{dBm} \\ \mathrm{RF}=-10 \mathrm{dBm}, \mathrm{IF}=60 \mathrm{MHz} \end{gathered}$	dB		$\begin{aligned} & 6.5 \\ & 6.8 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 9.5 \end{aligned}$
L - R Isolation	$\begin{gathered} 5000 \mathrm{MHz} \\ 4.2-6.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \text { LO Drive }=+10 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$	dB		$\begin{aligned} & 27.0 \\ & 26.0 \end{aligned}$	
L - I Isolation	$\begin{gathered} 5000 \mathrm{MHz} \\ 4.2-6.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \text { LO Drive }=+10 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$	dB		$\begin{aligned} & 27.0 \\ & 26.0 \end{aligned}$	
R-I Isolation	$\begin{gathered} 5000 \mathrm{MHz} \\ 4.2-6.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \text { LO Drive }=+10 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$	dB		$\begin{aligned} & 12 \\ & 13 \end{aligned}$	
LO VSWR	$\begin{gathered} 5000 \mathrm{MHz} \\ 4.2-6.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \text { LO Drive }=+10 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$			$\begin{aligned} & 2.20: 1 \\ & 2.19: 1 \end{aligned}$	
RF VSWR	$\begin{gathered} 5000 \mathrm{MHz} \\ 4.2-6.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \text { LO Drive }=+10 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$			$\begin{aligned} & 1.16: 1 \\ & 1.62: 1 \end{aligned}$	
IF VSWR	DC - 400 MHz	$\begin{aligned} & \text { LO Drive }=+10 \mathrm{dBm} \\ & \text { RF Level }=-10 \mathrm{dBm} \end{aligned}$			$\begin{aligned} & 1.63: 1 \\ & 1.64: 1 \end{aligned}$	-
Input IP3	$\begin{gathered} 5000 \mathrm{MHz} \\ 4.2-6.0 \mathrm{GHz} \end{gathered}$	$\begin{gathered} \text { LO Drive }=+10 \mathrm{dBm} \\ \mathrm{RF}=-10 \mathrm{dBm}, \mathrm{IF}=60 \mathrm{MHz} \end{gathered}$	dBm		$\begin{aligned} & 10.1 \\ & 12.0 \end{aligned}$	
Input 1 dB Compression	$\begin{gathered} 5000 \mathrm{MHz} \\ 4.2-6.0 \mathrm{GHz} \end{gathered}$	$\begin{aligned} & \text { LO Drive }=+10 \mathrm{dBm} \\ & \text { IF }=60 \mathrm{MHz} \end{aligned}$	dBm		$\begin{aligned} & 2.7 \\ & 2.8 \end{aligned}$	
IF 1 dB Bandwidth	DC - 2000 MHz	$\mathrm{LO}=5000 \mathrm{MHz} @+10 \mathrm{dBm}$	MHz	0		2000

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 • China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Typical Performance Curves (LO Drive $=\mathbf{+ 1 0} \mathbf{d B m}, ~ R F=-10 d B m, ~ I F=60 ~ M H z) ~$

Conversion Loss

VSWR

Isolation

INPUT IP3 \& 1dB Compression Power

Case Style - SOT-25

Ordering Information

Part Number	Package
MAMX-000600-1225MT	Tape and Reel

SOT-25 Dimensions

Dim	Inches		Millimeters	
	Min.	Max.	Min.	Max.
A	.106	.122	2.70	3.10
B	.100	.118	2.54	3.00
C	-	.051	-	1.30
D	.063 REF.		1.60 REF.	
E	.032	.043	.80	1.10
F	.014	.020	.35	.50
G	.003	-	.08	-
H	.000	.006	.00	.15
J	.018 REF.		.45 REF.	

Note: 1. Lead coplanarity should be 0.003 (0.08) max.

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

