

Part Number	Dimensions (mm)				
Part Number	L	W	T	е	g min.
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15 to 0.3	0.4
GRM188*	1.6 ±0.1	0.8 ±0.1	0.8 ±0.1	0.2 to 0.5	0.5
GRM216		1.25 ±0.1	0.6 ±0.1	0.2 to 0.7	0.7
GRM219	2.0 ±0.1		0.85 ±0.1		
GRM21B			1.25 ±0.1		
GRM319	3.2 ±0.15	4 (10 45	0.85 ±0.1	0.3 to 0.8	
GRM31M	3.2 ±0.15	1.0 ±0.15	1.15 ±0.1		1.5
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2		
* Bulk Case : 1.6 ±0.07(L)×0.8 ±0.07(W)×0.8 ±0.07(T)					

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickne (mm
GRM155R61A683KA01	X5R (EIA)	10	68000pF±10%	1.0	0.5	0.50
GRM155R61A104KA01	X5R (EIA)	10	0.1μF±10%	1.0	0.5	0.50
GRM188R61A334KA61	X5R (EIA)	10	0.33 μF±10%	1.6	0.8	0.80
GRM188R61A474KA61	X5R (EIA)	10	$0.47\mu F \pm 10\%$	1.6	0.8	0.80
GRM188R61A684KA61	X5R (EIA)	10	0.68μF±10%	1.6	0.8	0.80
GRM188R61A105KA61	X5R (EIA)	10	1μF ±10%	1.6	0.8	0.80
GRM188R60J105KA01	X5R (EIA)	6.3	1μF ±10%	1.6	0.8	0.80
GRM219R61A105KC01	X5R (EIA)	10	1μF ±10%	2.0	1.25	0.90
GRM21BR61A225KA01	X5R (EIA)	10	2.2μF ±10%	2.0	1.25	1.25
GRM219R60J155KC01	X5R (EIA)	6.3	1.5μF ±10%	2.0	1.25	0.90
GRM21BR60J225KA01	X5R (EIA)	6.3	2.2μF ±10%	2.0	1.25	1.25
GRM21BR60J335KA11	X5R (EIA)	6.3	$3.3\mu F \pm 10\%$	2.0	1.25	1.25
GRM21BR60J475KA11	X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	1.25
GRM319R61A225KC01	X5R (EIA)	10	2.2μF ±10%	3.2	1.6	0.90
GRM31XR61A335KC12	X5R (EIA)	10	$3.3\mu F \pm 10\%$	3.2	1.6	1.30
GRM31CR61A475KA01	X5R (EIA)	10	4.7μF ±10%	3.2	1.6	1.60
GRM31MR60J475KC11	X5R (EIA)	6.3	4.7μF ±10%	3.2	1.6	1.15
GRM31CR61A106KA01	X5R (EIA)	10	10μF ±10%	3.2	1.6	1.60
GRM31CR60J106KA01	X5R (EIA)	6.3	10μF ±10%	3.2	1.6	1.60
GRM31CR60J226ME20	X5R (EIA)	6.3	22μF ±20%	3.2	1.6	1.60
GRM32ER61A106KC01	X5R (EIA)	10	10μF ±10%	3.2	2.5	2.50
GRM55DR61H106KA01	X5R (EIA)	50	10μF ±10%	5.7	5.0	2.00
GRM15XR71H221KA86	X7R (EIA)	50	220pF±10%	1.0	0.5	0.25
GRM155R71H221KA01	X7R (EIA)	50	220pF±10%	1.0	0.5	0.50
GRM15XR71H331KA86	X7R (EIA)	50	330pF±10%	1.0	0.5	0.25
GRM155R71H331KA01	X7R (EIA)	50	330pF±10%	1.0	0.5	0.50
GRM15XR71H471KA86	X7R (EIA)	50	470pF±10%	1.0	0.5	0.25
GRM155R71H471KA01	X7R (EIA)	50	470pF±10%	1.0	0.5	0.50
GRM15XR71H681KA86	X7R (EIA)	50	680pF±10%	1.0	0.5	0.25
GRM155R71H681KA01	X7R (EIA)	50	680pF±10%	1.0	0.5	0.50
GRM15XR71H102KA86	X7R (EIA)	50	1000pF±10%	1.0	0.5	0.25
GRM155R71H102KA01	X7R (EIA)	50	1000pF±10%	1.0	0.5	0.50
GRM15XR71H152KA86	X7R (EIA)	50	1500pF±10%	1.0	0.5	0.25
GRM155R71H152KA01	X7R (EIA)	50	1500pF±10%	1.0	0.5	0.50
GRM155R71H222KA01	X7R (EIA)	50	2200pF±10%	1.0	0.5	0.50

Note • This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering. Especially, please read rating and &CAUTION (for storage and operating, rating, soldering and mounting, handling) in them to prevent smoking and/or burning, etc.
• You are able to read a detailed specification in the website (http://search.murata.co.jp/) before to require our product specification or to transact the approval sheet for product specification.

GRM155R71H472KA01	X7R (EIA)	50	4700pF±10%	1.0	0.5	0.50
GRM15XR71E182KA86	X7R (EIA)	25	,	1.0	0.5	0.25
GRM15XR71E162KA86	X7R (EIA)	25	1800pF±10% 2200pF±10%	1.0	0.5	0.25
GRM155R71E682KA01	X7R (EIA)	25	6800pF±10%	1.0	0.5	0.25
GRM155R71E103KA01	X7R (EIA)	25	10000pF±10%	1.0	0.5	0.50
GRM153R71C332KA86	X7R (EIA)	16	3300pF±10%	1.0	0.5	0.30
GRM15XR71C332KA86	X7R (EIA)	16	4700pF±10%	1.0	0.5	0.25
GRM15XR71C472KA86	X7R (EIA)	16	4700pF±10% 6800pF±10%	1.0	0.5	0.25
GRM155R71C153KA01	X7R (EIA)	16	15000pF±10%	1.0	0.5	0.25
GRM155R71C133KA01	X7R (EIA)	16	22000pF±10%	1.0	0.5	0.50
GRM155R71C223RA01	X7R (EIA)	10	33000pF±10%	1.0	0.5	0.50
GRM155R71A473KA01	X7R (EIA)	10	47000pF±10%	1.0	0.5	0.50
GRM188R71H221KA01	X7R (EIA)	50	220pF±10%	1.6	0.8	0.80
GRM188R71H331KA01	X7R (EIA)	50	330pF±10%	1.6	0.8	0.80
GRM188R71H471KA01	X7R (EIA)	50	470pF±10%	1.6	0.8	0.80
GRM188R71H681KA01	X7R (EIA)	50	470pF±10% 680pF±10%	1.6	0.8	0.80
GRM188R71H102KA01	X7R (EIA)	50	1000pF±10%	1.6	0.8	0.80
GRM188R71H152KA01		50		1.6	0.8	
GRM188R71H152KA01	X7R (EIA) X7R (EIA)	50	1500pF±10%	1.6	0.8	0.80 0.80
GRM188R71H232KA01	X7R (EIA) X7R (EIA)	50	2200pF±10% 3300pF±10%	1.6	0.8	0.80
GRM188R71H332KA01	X7R (EIA) X7R (EIA)	50	4700pF±10%	1.6	0.8	0.80
GRM188R71H472KA01 GRM188R71H682KA01	X7R (EIA) X7R (EIA)	50	4700pr±10% 6800pF±10%	1.6	0.8	0.80
GRM188R71H103KA01	X7R (EIA) X7R (EIA)	50	10000pF±10%	1.6	0.8	0.80
GRM188R71H103KA01	X7R (EIA) X7R (EIA)	50	15000pF±10%	1.6	0.8	0.80
	X7R (EIA) X7R (EIA)	50	22000pF±10%	1.6	0.8	0.80
GRM188R71H223KA01 GRM188R71E333KA01	X7R (EIA) X7R (EIA)	25	33000pF±10%	1.6	0.8	0.80
GRM188R71E333KA01	X7R (EIA) X7R (EIA)	25	,	1.6	0.8	0.80
GRM188R71E473KA01	X7R (EIA) X7R (EIA)	25	47000pF±10% 68000pF±10%	1.6	0.8	0.80
GRM188R71E104KA01	X7R (EIA)	25	0.1μF±10%	1.6	0.8	0.80
GRM188R71C104KA01	X7R (EIA)	16	0.1μF±10% 0.1μF±10%	1.6	0.8	0.80
GRM188R71A154KA01	X7R (EIA)	10	0.1μF±10% 0.15μF±10%	1.6	0.8	0.80
GRM188R71A224KA01	X7R (EIA)	10	22000pF±10%	1.6	0.8	0.80
GRM219R71H333KA01	X7R (EIA)	50	33000pF±10%	2.0	1.25	0.90
GRM21BR71H473KA01	X7R (EIA)	50	47000pF±10%	2.0	1.25	1.25
GRM21BR71H683KA01	X7R (EIA)	50	68000pF±10%	2.0	1.25	1.25
GRM21BR71H104KA01	X7R (EIA)	50	0.1μF±10%	2.0	1.25	1.25
GRM21BR71H154KA01	X7R (EIA)	50	0.15μF±10%	2.0	1.25	1.25
GRM21BR71H224KA01	X7R (EIA)	50	22000pF±10%	2.0	1.25	1.25
GRM21BR71E104KA01	X7R (EIA)	25	0.1μF±10%	2.0	1.25	1.25
GRM21BR71E154KA01	X7R (EIA)	25	0.15μF±10%	2.0	1.25	1.25
GRM219R71E224KC01	X7R (EIA)	25	22000pF±10%	2.0	1.25	0.90
GRM21BR71E334KC01	X7R (EIA)	25	0.33 μF±10%	2.0	1.25	1.25
GRM21BR71E474KC01	X7R (EIA)	25	0.47μF±10%	2.0	1.25	1.25
GRM219R71C474KC01	X7R (EIA)	16	0.47μF±10%	2.0	1.25	0.90
GRM219R71C684KC01	X7R (EIA)	16	0.68μF±10%	2.0	1.25	0.90
GRM21BR71C105KA01	X7R (EIA)	16	1μF ±10%	2.0	1.25	1.25
GRM319R71H334KA01	X7R (EIA)	50	0.33 μF±10%	3.2	1.6	0.90
GRM31MR71H474KA01	X7R (EIA)	50	0.47μF±10%	3.2	1.6	1.15
GRM319R71E684KC01	X7R (EIA)	25	0.68μF±10%	3.2	1.6	0.90
GRM31MR71E105KC01	X7R (EIA)	25	1μF ±10%	3.2	1.6	1.15
GRM319R71C105KC11	X7R (EIA)	16	1μF ±10%	3.2	1.6	0.90
GRM31MR71C155KC11	X7R (EIA)	16	1.5μF ±10%	3.2	1.6	1.15
GRM31MR71C225KA35	X7R (EIA)	16	2.2μF ±10%	3.2	1.6	1.15

Continued on the following p

0.90

1.6

 $1\mu F \pm 10\%$

3.2

10

GRM319R71A105KC01

X7R (EIA)

Note • This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering. Especially, please read rating and &CAUTION (for storage and operating, rating, soldering and mounting, handling) in them to prevent smoking and/or burning, etc.
• You are able to read a detailed specification in the website (http://search.murata.co.jp/) before to require our product specification or to transact the approval sheet for product specification.

GRM32NR71H684KA01	X7R (EIA)	50	0.68μF±10%	3.2	2.5	1.35
GRM32RR71H105KA01	X7R (EIA)	50	1μF ±10%	3.2	2.5	1.80
GRM32RR71E225KC01	X7R (EIA)	25	2.2μF ±10%	3.2	2.5	1.80
GRM32MR71C225KC01	X7R (EIA)	16	2.2μF ±10%	3.2	2.5	1.15
GRM32NR71C335KC01	X7R (EIA)	16	3.3μF ±10%	3.2	2.5	1.35
GRM32RR71C475KC01	X7R (EIA)	16	4.7μF ±10%	3.2	2.5	1.80
GRM43ER71H225KA01	X7R (EIA)	50	2.2μF ±10%	4.5	3.2	2.50
GRM55RR71H105KA01	X7R (EIA)	50	1μF ±10%	5.7	5.0	1.80
GRM55RR71H155KA01	X7R (EIA)	50	1.5μF ±10%	5.7	5.0	1.80
GRM155F51H222ZA01	Y5V (EIA)	50	2200pF +80%, -20%	1.0	0.5	0.50
GRM155F51H472ZA01	Y5V (EIA)	50	4700pF +80%, -20%	1.0	0.5	0.50
GRM155F51H103ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.0	0.5	0.50
GRM155F51E223ZA01	Y5V (EIA)	25	22000pF +80%, -20%	1.0	0.5	0.50
GRM155F51C473ZA01	Y5V (EIA)	16	47000pF +80%, -20%	1.0	0.5	0.50
GRM155F51C104ZA01	Y5V (EIA)	16	10000pF +80%, -20%	1.0	0.5	0.50
GRM188F51H103ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.6	0.8	0.80
GRM188F51H223ZA01	Y5V (EIA)	50	22000pF +80%, -20%	1.6	0.8	0.80
GRM188F51H473ZA01	Y5V (EIA)	50	47000pF +80%, -20%	1.6	0.8	0.80
GRM188F51H104ZA01	Y5V (EIA)	50	10000pF +80%, -20%	1.6	0.8	0.80
GRM188F51E104ZA01	Y5V (EIA)	25	10000pF +80%, -20%	1.6	0.8	0.80
GRM188F51C224ZA01	Y5V (EIA)	16	22000pF +80%, -20%	1.6	0.8	0.80
GRM188F51C474ZA01	Y5V (EIA)	16	0.47μF +80%, -20%	1.6	0.8	0.80
GRM188F51A474ZC01	Y5V (EIA)	10	0.47μF +80%, -20%	1.6	0.8	0.80
GRM188F51A105ZA01	Y5V (EIA)	10	1μF +80%, -20%	1.6	0.8	0.80
GRM219F51H104ZA01	Y5V (EIA)	50	10000pF +80%, -20%	2.0	1.25	0.90
GRM21BF51H224ZA01	Y5V (EIA)	50	22000pF +80%, -20%	2.0	1.25	1.25
GRM219F51E224ZA01	Y5V (EIA)	25	22000pF +80%, -20%	2.0	1.25	0.90
GRM21BF51E474ZA01	Y5V (EIA)	25	0.47μF +80%, -20%	2.0	1.25	1.25
GRM219F51E105ZA01	Y5V (EIA)	25	1μF +80%, -20%	2.0	1.25	0.90
GRM21BF51E225ZA01	Y5V (EIA)	25	2.2μF +80%, -20%	2.0	1.25	1.25
GRM219F51C105ZA01	Y5V (EIA)	16	1μF +80%, -20%	2.0	1.25	0.90
GRM21BF51C225ZA01	Y5V (EIA)	16	2.2μF +80%, -20%	2.0	1.25	1.25
GRM219F51A105ZA01	Y5V (EIA)	10	1μF +80%, -20%	2.0	1.25	0.90
GRM21BF51A225ZA01	Y5V (EIA)	10	2.2μF +80%, -20%	2.0	1.25	1.25
GRM21BF51A475ZA01	Y5V (EIA)	10	4.7μF +80%, -20%	2.0	1.25	1.25
GRM31MF51H474ZA01	Y5V (EIA)	50	0.47μF +80%, -20%	3.2	1.6	1.15
GRM31MF51E105ZA01	Y5V (EIA)	25	1μF +80%, -20%	3.2	1.6	1.15
GRM31MF51E475ZA01	Y5V (EIA)	25	4.7μF +80%, -20%	3.2	1.6	1.15
GRM319F51C105ZA01	Y5V (EIA)	16	1μF +80%, -20%	3.2	1.6	0.90
GRM31MF51C225ZA01	Y5V (EIA)	16	2.2μF +80%, -20%	3.2	1.6	1.15
GRM31MF51C475ZA12	Y5V (EIA)	16	4.7μF +80%, -20%	3.2	1.6	1.15
GRM319F51A225ZA01	Y5V (EIA)	10	2.2μF +80%, -20%	3.2	1.6	0.90
GRM31MF51A475ZA01	Y5V (EIA)	10	4.7μF +80%, -20%	3.2	1.6	1.15
GRM31MF51A106ZA01	Y5V (EIA)	10	10μF +80%, -20%	3.2	1.6	1.15
GRM31MF50J106ZA01	Y5V (EIA)	6.3	10μF +80%, -20%	3.2	1.6	1.15
GRM32RF51H105ZA01	Y5V (EIA)	50	1μF +80%, -20%	3.2	2.5	1.80
GRM329F51E475ZA01	Y5V (EIA)	25	4.7μF +80%, -20%	3.2	2.5	0.90
GRM32NF51E106ZA01	Y5V (EIA)	25	10μF +80%, -20%	3.2	2.5	1.35
GRM32NF51C106ZA01	Y5V (EIA)	16	10μF +80%, -20%	3.2	2.5	1.35
GRM188E41H103MA01	Z5U (EIA)	50	10000pF±20%	1.6	0.8	0.80
GRM188E41H223MA01	Z5U (EIA)	50	22000pF±20%	1.6	0.8	0.80
GRM216E41H473MA01	Z5U (EIA)	50	47000pF±20%	2.0	1.25	0.60
GRM219E41H104MA01	Z5U (EIA)	50	10000pF±20%	2.0	1.25	0.90
ODI4040E441100 *** * * * * * * * * * * * * * * * *	7-11/-11					

 [⚠]Note
 This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering. Especially, please read rating and ⚠CAUTION (for storage and operating, rating, soldering and mounting, handling) in them to prevent smoking and/or burning, etc.
 You are able to read a detailed specification in the website (http://search.murata.co.jp/) before to require our product specification or to transact the approval sheet for product specification.

22000pF±20%

3.2

1.6

0.90

50

GRM319E41H224MA01

Z5U (EIA)

1	Operating Temperature Range	–55 to +125℃	B1, B3, F1: -25°C to +85°C R1, R7: -55°C to +125°C E4: +10°C to +85°C F5: -30°C to +85°C		mperature : 25℃ 1, B3, F1, R1 : 2		
2	Rated Voltage	See the previous pages		may be applied When AC volta	age is defined as d continuously to age is superimpo arger, should be	o the capacitor. osed on DC volt	tage, V ^{P-P} or
3	Appearance	No defects or abnormalities		Visual inspecti	ion		
4	Dimensions	Within the specified dimensions		Using calipers			
5	Dielectric Strength	No defects or abnormalities		(temperature of (high dielectric	uld be observed compensating ty constant type) or 1 to 5 seconds than 50mA.	pe) or 250% of is applied between	the rated vo
6	Insulation Resistance	C ≤0.047 μ F : More than 10,000I C >0.047 μ F : 500 Ω • F	MΩ C : Nominal Capacitance	voltage not ex	resistance shou ceeding the rate and within 2 min rge current is les	ed voltage at 20° nutes of charging	C/25℃ and
7	Capacitance	Within the specified tolerance			ce/D.F. should b		20℃/25℃ at
8	Q/ Dissipation Factor (D.F.)	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C<3.3μF) : 0.1max. (C≧3.3μF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1μF) : 0.09max. (C≥0.1μF) W.V.: 16V/10V: 0.125max.	Char. Item Frequency Voltage	ΔC to ΔU, 1X (1000pF and below) 1±0.1MHz 0.5 to 5Vrms	ΔC to ΔU, 1X (more than 1000pF) R6, R7, F5 B1, B3, F1 1±0.1kHz 1±0.2Vrms	E4 1±0.1kH 0.5±0.05V

W.V.: 6.3V: 0.15max.

Continued on the following pa

		No bias	Within the specified tolerance (Table A-1)	B1, B3 : Within±10% (-25°C to +85°C) R1, R7 : Within±15% (-55°C to +125°C) R6 : Within±15% (-55°C to +85°C) E4 : Within +22/-56% (+10°C to +85°C) F1 : Within +30/-80% (-25°C to +85°C) F5 : Within +22/-82% (-30°C to +85°C)	
		50% of the Rated Voltage		B1: Within +10/-30% R1: Within +15/-40% F1: Within +30/-95%	
9	Capacitance Temperature Characteristics	Capacitance Drift	Temperature Characteristics Capacitance Drift Within ±0 (Whichev	Within ±0.2% or ±0.05pF (Whichever is larger.) *Not apply to 1X/25V	*Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour and then set for 48±4 hours at room temperature. Perform the initial measurement.
10	Adhesive Strength of Termination		No removal of the terminations of the termination of		

The capacitance change should be measured after 5min. each specified temp. stage.

(1)Temperature Compensating Type

The temperature coefficient is determind using the capac measured in step 3 as a reference.

When cycling the temperature sequentially from step 1 th 5 (5C: $+25^{\circ}$ c to $+125^{\circ}$ c/ Δ C: $+20^{\circ}$ c to $+125^{\circ}$ c: other tem coeffs. : $+25^{\circ}$ c to $+85^{\circ}$ c/ $+20^{\circ}$ c to $+85^{\circ}$ c) the capacitance should be within the specified tolerance for the temperatu coefficient and capacitance change as Table A-1.

The capacitance drift is caluculated by dividing the difference between the maximum and minimum measured values in step 1, 3 and 5 by the cap. value in step 3.

Step	Temperature (℃)
1	Reference Temperature±2
2	-55 ± 3 (for Δ C)/ -25 ± 3 (for other T
3	Reference Temperature±2
4	125 \pm 3 (for Δ C)/85 \pm 3 (for other TC
5	Reference Temperature±2

(2) High Dielectric Constant Type

The ranges of capacitance change compared with the 20 value over the temperature ranges shown in the table sho be within the specified ranges.*

In case of applying voltage, the capacitance change show measured after 1 more min. with applying voltage in equilibration of each temp. stage.

Step	Temperature (°C)	Applying Volta
1	Reference Tempereture±2	
2	-55±3 (for R1, R7, R6) -25±3 (for B1, B3, F1) -30±3 (for F5)/10±3 (for E4)	No bios
3 Reference Tempereture±2		No bias
4	125±3 (for R1, R7)/ 85±3 (for B1, B3, R6 F1, F5, E4)	
5	Reference Tempereture±2	
6	−55±3 (for R1)/ −25±3 (for B1, F1)	50% of the ra
7	Reference Tempereture±2	voltage
8	125±3 (for R1)/ 85±3 (for B1, F1)	

Solder the capacitor to the test jig (glass epoxy board) sh Fig. 1a using an eutectic solder. Then apply 10N* force in parallel with the test jig for 10±1 sec.

The soldering should be done either with an iron or using reflow method and should be conducted with care so that soldering is uniform and free of defects such as heat show *2N (GR\superscript{0}3), 5N (GR\superscript{1}5, GRM18)

			(in
Type	a	b	С
GR□03	0.3	0.9	0.3
GR□15	0.4	1.5	0.5
GRM18	1.0	3.0	1.2
GRM21	1.2	4.0	1.65
GRM31	2.2	5.0	2.0
GRM32	2.2	5.0	2.9
GRM43	3.5	7.0	3.7
GRM55	4.5	8.0	5.6

		Appearance	No defects or abnormalities	
		Capacitance	Within the specified tolerance	
11	Vibration Resistance	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C≤3.3μF) : 0.1max. (C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C<0.1μF) : 0.09max. (C≥0.1μF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.
			No crack or marked defect show	uld occur

Solder the capacitor on the test jig (glass epoxy board) in same manner and under the same conditions as (10).

The capacitor should be subjected to a simple harmonic r having a total amplitude of 1.5mm, the frequency being varinformly between the approximate limits of 10 and 55Hz. frequency range, from 10 to 55Hz and return to 10Hz, sho be traversed in approximately 1 minute. This motion should applied for a period of 2 hours in each 3 mutually perpendirections (total of 6 hours).

Solder the capacitor on the test jig (glass epoxy board) shin Fig. 2a using an eutectic solder. Then apply a force in direction shown in Fig. 3a for 5±1sec. The soldering should done either with an iron or using the reflow method and side conducted with care so that the soldering is uniform an of defects such as heat shock.

t : 1.6mm (GR□03/15 : t : 0.8i

Type	a	b	С
GR□03	0.3	0.9	0.3
GR□15	0.4	1.5	0.5
GRM18	1.0	3.0	1.2
GRM21	1.2	4.0	1.65
GRM31	2.2	5.0	2.0
GRM32	2.2	5.0	2.9
GRM43	3.5	7.0	3.7
GRM55	4.5	8.0	5.6

(in

20 50 Pressurizing speed: 1.0mm/sec.
Pressurize

R230

Flexure: ≤1

Capacitance meter

45

45

Fig. 3a

Solderability of Termination 75% of the terminations are to be soldered evenly and continuously

The measured and observed characteristics should satisfy

12

Deflection

			The measured and observed ch specifications in the following ta	•
		Appearance	No defects or abnormalities	
		Capacitance Change	Within ±2.5% or ±0.25pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±7.5% F1, F5, E4 : Within ±20%
14	Resistance to Soldering Heat	Q/D.F.	30pF and over : Q≥1000 30pF and below : Q≥400+20C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max. W.V.: 6.3V/4V : 0.05max. (C≤3.3μF) : 0.1max. (C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.05max. (C≤0.1μF) : 0.09max. (C≥0.1μF) W.V.: 16V/10V: 0.125max. W.V.: 6.3V: 0.15max.
		I.R.	More than $10,000 \mathrm{M}\Omega$ or 500Ω	F (Whichever is smaller)
		Dielectric	No defects	

No defects

Immerse the capacitor in a solution of ethanol (JIS-K-810 rosin (JIS-K-5902) (25% rosin in weight propotion) . Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in an eutectic solder solution for 2 \pm 0.5 seconds at 230 \pm 5°C.

Preheat the capacitor at 120 to 150°C for 1 minute. Immerse the capacitor in an eutectic solder solution at 27 for 10±0.5 seconds. Set at room temperature for 24±2 ho (temperature compensating tyoe) or 48±4 hours (high die constant type), then measure.

•Initial measurement for high dielectric constant type Perform a heat treatment at 150+0/-10°C for one hour ar then set at room temperature for 48±4 hours. Perform the initial measurement.

• Preheating for GRM32/43/55

Step	Temperature	Time
1	100℃ to 120℃	1 min.
2	170℃ to 200℃	1 min.

Continued on the following pa

⚠Note • This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering. Especially, please read rating and ⚠CAUTION (for storage and operating, rating, soldering and mounting, handling) in them to prevent smoking and/or burning, etc.
 You are able to read a detailed specification in the website (http://search.murata.co.jp/) before to require our product specification or to transact the approval sheet for product specification.

Appearance No defects or abnormalities					The measured and observed ch specifications in the following ta	•					
Capacitance Change Cha				Appearance	No defects or abnormalities		1				
Set for 24±2 hours (temperature compensating type) or 4 hour (high dielectric constant type) at room temperature compensating type) or 4 hour (high dielectric constant type) at room temperature, when the following table Moderate Perform the initial measurement. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours. Set the capacitor at 40±2'c and in 90 to 95% humiduty for 500±12 hours.					·	: Within ±7.5%	manner and under the same conditions as (10). Perform the five cycles according to the four heat tr			s as (10).	atme
15 Cycle Q/D.F. Q/D.						W.V.: 25Vmin.: 0.025max. W.V.: 16/10V: 0.035max.	Set for 24±2 h hours (high die	ours (temperat			
Comparison C	1	י ו	Temperature		30pF and over : Q≥1000		Step	1	2	3	4
State C. Notinital Capacitatice (pF) :0.05max. (C<0.1μF) :0.09max. (C≥0.1μF) W.V. :16V/10V :0.125max. No defects Strength W.V. :6.3V :0.15max. Perform a heat treatment at 150+0/−10°C for one hour arthen set at room temperature for 48±4 hours. Perform the initial measurement. Perform the initial measurement. Perform the initial measurement. Perform the initial measurement. Perform the initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour arthen set at room temperature for 48±4 hours. Perform the initial measurement. Perform the initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour arthen set at room temperature for 48±4 hours. Perform the initial measurement. Perform the initial measurement for high dielectric constant type Perform a heat treatment at 150+0/−10°C for one hour arthen set at room temperature for 48±4 hours. Perform the initial measurement. Perform the in			Cycle	Q/D.F.	30pF and below :	: 0.1max. (C≧3.3µF)	Temp. (°C)	Operating	1	Operating	Tor
Co.05max. (C≥0.1μF)					C : Nominal Capacitance (pF)	1	Time (min.)	30±3	2 to 3	30±3	2 to
LR. More than 10,000MΩ or 500Ω • F (Whichever is smaller)						: 0.09max. (C≧0.1µF) W.V. : 16V/10V : 0.125max.	Perform a heathen set at roo	t treatment at 1 m temperature	50+0/- for 48±4	10℃ for one ho	
Strength Strength No defects				I.R.	More than 10,000M Ω or 500 Ω			· · · · ·			
					No defects						
Capacitance Change						•					
Humidity 16 (Steady State) State State State				Appearance	No defects or abnormalities]				
Humidity 16 (Steady State) 30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF) W.V. : 25Vmin. : 0.05max. W.V. : 16/10V : 0.05max. W.V. : 16/10V : 0.05max. W.V. : 6.3V/4V : 0.075max. (C<3.3μF) : 0.125max. (C≥3.3μF) : 0.125max. (C≥0.1μF) W.V. : 25Vmin. : 0.075max. (C<0.1μF) W.V. : 25Vmin. : 0.05max. W.V. : 6.3V/4V : 0.075max. (C<0.1μF) W.V. : 25Vmin. : 0.05max. W.V. : 6.3V/4V : 0.075max. (C≥0.1μF) W.V. : 16V/10V : 0.15max. W.V. : 6.3V : 0.2max.						: Within ±12.5%					
I.R. More than 1,000MΩ or 50Ω • F (Whichever is smaller)	1	16	(Steady State)	Q/D.F.	10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C	W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V/4V : 0.075max. (C<3.3μF) : 0.125max. (C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.075max. (C<0.1μF) : 0.125max. (C≥0.1μF) W.V.: 16V/10V: 0.15max.	500±12 hours. Remove and set for 24±2 hours (temperature comtype) or 48±4 hours (high dielectric constant type)			perature compe	ensat
				I.R.	More than 1,000M Ω or 50 Ω • F	(Whichever is smaller)					

				The measured and observed ch specifications in the following ta	•	
			Appearance	No defects or abnormalities		
			Capacitance Change	Within ±7.5% or ±0.75pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [W.V.: 10Vmax.] F1, F5: Within +30/-40%	Apply the rated voltage at 40±2℃ and 90 to 95% humidity 500±12 hours. Remove and set for 24±2 hours (tempera
17	Humidity Load	Q/D.F.	30pF and over : Q≥200 30pF and below : Q≥100+10C/3 C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.05max. W.V.: 16/10V: 0.05max. W.V.: 6.3V : 0.075max. (C<3.3μF) : 0.125max. (C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.075max. (C<0.1μF) : 0.125max. (C≥0.1μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3V: 0.2max.	compensating type) or 48±4 hours (high dielectric constatype) at room temprature, then muasure. The charge/discurrent is less than 50mA. •Initial measurement for F1, F5/10V max. Apply the rated DC voltage for 1 hour at 40±2°C. Remove and set for 48±4 hours at room temperature. Perform initial measurement.	
			I.R.	More than $500 \mathrm{M}\Omega$ or $25 \Omega \bullet \mathrm{F}$ (V	Vhichever is smaller)	
				The measured and observed ch specifications in the following ta	•	
			Appearance	No defects or abnormalities		
			Capacitance Change	Within ±3% or ±0.3pF (Whichever is larger)	B1, B3, R1, R6, R7 : Within ±12.5% F1, F5, E4: Within ±30% [Exept 10Vmax. and. C≥1.0µF] F1, F5: Within +30/−40% [10Vmax. and. C≥1.0µF]	Apply 200% of the rated voltage at the maximum operatin temperature ±3°C for 1000±12 hours. Set for 24±2 hours (temperature compensating type) or 48±4 hours (high dielectric constant type) at room
1	8	High Temperature Load	Q/D.F.	30pF and over : Q≥350 10pF and over 30pF and below : Q≥275+2.5C 10pF and below : Q≥200+10C C : Nominal Capacitance (pF)	[B1, B3, R1, R6, R7, E4] W.V.: 25Vmin.: 0.04max. W.V.: 16/10V: 0.05max. W.V: 6.3V : 0.075max.(C<3.3μF) : 0.125max.(C≥3.3μF) [F1, F5] W.V.: 25Vmin. : 0.075max.(C<0.1μF) : 0.125max.(C≥0.1μF) W.V.: 16V/10V: 0.15max. W.V.: 6.3V: 0.2max.	temperature, then measure. The charge/discharge current is less than 50mA. •Initial measurement for high dielectric constant type. Apply 200% of the rated DC voltage at the maximun oper temperature ±3°C for one hour. Remove and set for 48±4 hours at room temperature. Perform initial measurement.
			I.R.	More than 1,000M Ω or 50 Ω •F (Whichever is smaller)	

Char.	Nominal values (ppm/°C)" I	-55		-30		-10	
		Max.	Min.	Max.	Min.	Max.	Mir
5C	0± 30	0.58	-0.24	0.40	-0.17	0.25	-0. ²
6C	0± 60	0.87	-0.48	0.59	-0.33	0.38	-0.2
6P	-150± 60	2.33	0.72	1.61	0.50	1.02	0.3
6R	-220± 60	3.02	1.28	2.08	0.88	1.32	0.5
6S	-330± 60	4.09	2.16	2.81	1.49	1.79	0.9
6T	-470± 60	5.46	3.28	3.75	2.26	2.39	1.4
7U	-750±120	8.78	5.04	6.04	3.47	3.84	2.2
1X	+350 to -1000	_	_	_	_	_	_

^{*1}Nominal values denote the temperature coefficient within a range of 25℃ to 125℃ (for ΔC)/85℃ (for other TC).

(2)

			1	Capacitance Cha	ange from 20℃ (%))	
Char.	Nominal Values (ppm/℃)*2	-	-55	_	-25	-	-10
		Max.	Min.	Max.	Min.	Max.	N
2C	0± 60	0.82	-0.45	0.49	-0.27	0.33	_
3C	0±120	1.37	-0.90	0.82	-0.54	0.55	_
4C	0±250	2.56	-1.88	1.54	-1.13	1.02	-
2P	-150 ± 60	_	_	1.32	0.41	0.88	
3P	-150±120	_	_	1.65	0.14	1.10	
4P	-150±250	_	_	2.36	-0.45	1.57	-
2R	-220± 60	_	_	1.70	0.72	1.13	
3R	-220±120	_	_	2.03	0.45	1.35	
4R	-220±250	_	_	2.74	-0.14	1.83	
2S	-330± 60	_	_	2.30	1.22	1.54	
3S	-330±120	_	_	2.63	0.95	1.76	
4S	-330±250	_	_	3.35	0.36	2.23	
2T	-470± 60	_	_	3.07	1.85	2.05	
3T	-470±120	_	_	3.40	1.58	2.27	
4T	-470±250	_	_	4.12	0.99	2.74	
3U	-750±120	_	_	4.94	2.84	3.29	
4U	-750±250	_	_	5.65	2.25	3.77	

^{*2}Nominal values denote the temperature coefficient within a range of 20°C to 125°C (for Δ C)/85°C (for other TC).

Part Number	TC Code	(Vdc)	Capacitance	(mm)	(mm)	(mm
GRM188R72A222KD01	X7R (EIA)	100	2200pF±10%	1.6	0.8	0.80
GRM188R72A332KD01	X7R (EIA)	100	3300pF±10%	1.6	0.8	0.80
GRM219R72A472KA01	X7R (EIA)	100	4700pF±10%	2.0	1.25	0.90
GRM219R72A682KA01	X7R (EIA)	100	6800pF±10%	2.0	1.25	0.90
GRM21BR72A103KA01	X7R (EIA)	100	10000pF±10%	2.0	1.25	1.25
GRM31MR72A333KA01	X7R (EIA)	100	33000pF±10%	3.2	1.6	1.15
GRM31MR72A473KA01	X7R (EIA)	100	47000pF±10%	3.2	1.6	1.15
GRM32NR72A683KA01	X7R (EIA)	100	68000pF±10%	3.2	2.5	1.35
GRM32NR72A104KA01	X7R (EIA)	100	0.1μF±10%	3.2	2.5	1.35
GRM43RR72A154KA01	X7R (EIA)	100	0.15μF±10%	4.5	3.2	1.80
GRM43RR72A224KA01	X7R (EIA)	100	22000pF±10%	4.5	3.2	1.80
GRM43DR72A474KA01	X7R (EIA)	100	0.47μF±10%	4.5	3.2	2.00
GRM55DR72A105KA01	X7R (EIA)	100	1μF ±10%	5.7	5.0	2.00
GRM188F52A472ZD01	Y5V (EIA)	100	4700pF +80%, -20%	1.6	0.8	0.80
GRM32NF52A104ZA01	Y5V (EIA)	100	10000pF +80%, -20%	3.2	2.5	1.35
GRM55RF52A474ZA01	Y5V (EIA)	100	0.47μF +80%, -20%	5.7	5.0	1.80

Monolithic Ceramic Capacitors GR_R6/R7/F5/E4 (X5R/X7R/Y5V/Z5

Thin Layer Large-Capacitance type

Part Number	Dimensions (mm)							
Part Number	L	W	Т	e min.	g min.			
GRM033	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1 to 0.2	0.2			
GRM155	1.0 ±0.05	0.5 ±0.05	0.5 ± 0.05	0.15 to 0.3	0.4			
GRM185	1.6 ±0.1	0.8 ±0.1	0.5 +0/-0.2	0.2 to 0.5	0.5	_5		
GRM188	1.6 ±0.1	0.8 ±0.1	0.8 ± 0.1	0.2 to 0.5	0.5			
GRM216			0.6 ±0.1					
GRM219	2.0 ±0.1	1.25 ±0.1	0.85 ±0.1	0.2 to 0.7	0.7			
GRM21B			1.25 ±0.1					
GRM316			0.6 ±0.1					
GRM319	3.2 ±0.15	1.6 ±0.15	0.85 ±0.1	0.3 to 0.8	1.5	е		
GRM31M			1.15 ±0.1	0.3 10 0.6				
GRM31C	3.2 ±0.2	1.6 ±0.2	1.6 ±0.2					
GRM32D	3.2 ±0.3	2.5 +0.2	2.0 ±0.2	0.3	1.0			
GRM32E	3.2 ±0.3	2.5 ±0.2	2.5 ±0.2	0.3	1.0			
GRM43D			2.0 ±0.2					
GRM43E	4.5 ±0.4	3.2 ±0.3	2.5 ±0.2	0.3	2.0			
GRM43S			2.8 ±0.2			1-		
GRM55F	5.7 ±0.4	5.0 ±0.4	3.2 ±0.2	0.3	2.0			

Part Number	TC Code	Rated Voltage (Vdc)	Capacitance*	Length L (mm)	Width W (mm)	Thickne (mm
GRM155R60J154KE01	X5R (EIA)	6.3	0.15μF±10%	1.0	0.5	0.50
GRM155R60J224KE01	X5R (EIA)	6.3	22000pF±10%	1.0	0.5	0.50
GRM155R60J334KE01	X5R (EIA)	6.3	0.33 μF±10%	1.0	0.5	0.50
GRM155R60J474KE19	X5R (EIA)	6.3	0.47μF±10%	1.0	0.5	0.50
GRM188R60J225KE01	X5R (EIA)	6.3	2.2μF ±10%	1.6	0.8	0.80
GRM219R60J475KE01	X5R (EIA)	6.3	4.7μF ±10%	2.0	1.25	0.90
GRM21BR60J106KE01	X5R (EIA)	6.3	10μF ±10%	2.0	1.25	1.25
GRM21BR60J106ME01	X5R (EIA)	6.3	10μF ±20%	2.0	1.25	1.25
GRM32DR60J226KA01	X5R (EIA)	6.3	22μF ±10%	3.2	2.5	2.00
GRM32ER60J476ME20	X5R (EIA)	6.3	47μF ±20%	3.2	2.5	2.50
GRM43SR60J107ME20	X5R (EIA)	6.3	100μF ±20%	4.5	3.2	2.80
GRM55FR60J107KA01	X5R (EIA)	6.3	100μF ±10%	5.7	5.0	3.20
GRM55FR60J107MA01	X5R (EIA)	6.3	100μF ±20%	5.7	5.0	3.20
GRM21BF50J106ZE01	Y5V (EIA)	6.3	10μF +80%, -20%	2.0	1.25	1.25

⚠Note
 This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering. Especially, please read rating and ⚠CAUTION (for storage and operating, rating, soldering and mounting, handling) in them to prevent smoking and/or burning, etc.
 You are able to read a detailed specification in the website (http://search.murata.co.jp/) before to require our product specification or to transact the approval sheet for product specification.

1	Temperat Range	ture	F5: -30°C to +85°C C8: -55°C to +105°C, C7: -55°C to +125°C				
2	Rated Vo	Itage	See the previous pages				
3	Appearar	nce	No defects or abnormalities				
4	Dimensio	ns	Within the specified dimensions				
5	Dielectric	Strength	No defects or abnormalities				
6	Insulation Resistand		More than 50Ω • F				
			Within the specified tolerance				
7	Capacita	nce	*Table 1 GRM155 B3/R6 1A 124 to 224 GRM185 B3/R6 1A 105 GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475 GRM21B B3/R6 1C/1A 106				
			B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.				
			*Table 1				
8	Dissipation	on Factor	GRM155 B3/R6 1A 124 to 224				
0	(D.F.)		GRM185 B3/R6 1A 105				
			GRM188 B3/R6 1C/1A 225 GRM219 B3/R6 1A 475				
			GRM21B B3/R6 1C/1A 106				
		No bias	B1, B3: Within +/-10% (-25°C to +85°C) F1 : Within +30/-80% (-25°C to +85°C) R6 : Within +/-15% (-55°C to +85°C) F5 : Within +22/-82% (-30°C to +85°C) C7 : Within +/-22% (-55°C to +125°C) C8 : Within +/-22% (-55°C to +105°C)				
9	Capacitance Temperature Characteristics						
		50% of the Rated Voltage	B1: Within +10/-30% F1: Within +30/-95%				

(B1, B3, F1 : 20°C)

The rated voltage is defined as the maximum voltage whi may be applied continuously to the capacitor.

When AC voltage is superimposed on DC voltage, VP-P or whichever is larger, should be maintained within the rated voltage range.

Visual inspection

Using calipers

No failure should be observed when 250% of the rated vo is applied between the terminations for 1 to 5 seconds, provided the charge/discharge current is less than 50mA.

The insulation resistance should be measured with a DC v not exceeding the rated voltage at Reference Temperature 75%RH max. and within 1 minutes of charging, provided th charge/discharge current is less than 50mA.

The capacitance should be measured at Reference Temperature at the frequency and voltage shown in the ta

Capacitance	Frequency	Voltage
C≦10µF (10V min.)*1	1±0.1kHz	1.0±0.2Vrn
C≦10µF (6.3V max.)	1±0.1kHz	0.5±0.1Vrn
C>10µF	120±24Hz	0.5±0.1Vrn

*1 However the Voltage is 0.5+/-0.1Vrms about Tal items on the left side.

The D.F. should be measured at Reference Temperature frequency and voltage shown in the table.

Capacitance	Frequency	Voltage
C≦10µF (10V min.)*1	1±0.1kHz	1.0±0.2Vrr
C≦10µF (6.3V max.)	1±0.1kHz	0.5±0.1Vrr
C>10µF	120±24Hz	0.5±0.1Vrr

*1 However the Voltage is 0.5+/-0.1Vrms about Tal items on the left side.

The capacitance change should be measured after 5min. each specified temp. stage.

The ranges of capacitance change compared with the Reference Temperature value over the temperature range shown in the table should be within the specified ranges.* In case of applying voltage, the capacitance change shou measured after 1 more min. with applying voltage in equilibration of each temp. stage.

*GRM43 B1/R6 0J/1A 336/476 only : 1.0±0.2Vrms

Step	Temperature (°C)	Applying Volta
1	Reference Tempereture±2	
2	-55±3 (for R6, C7, C8)/ -25±3 (for B1, B3, F1) -30±3 (for F5)	No bios
3	Reference Tempereture±2	No bias
4	85±3 (for B1, B3, F1, R6, F5) 125±3 (for C7)/ 105±3 (for C8)/	
5	20±2	
6	-25±3 (for B1, F1)	50% of the ra
7	20±2	voltage
8	85±3 (for B1, F1)	

•Initial measurement for high dielectric constant type Perform a heat treatment at 150 +0/-10°C for one hour a then set for 48±4 hours at room temperature. Perform the initial measurement.

Continued on the following pa

♠Note • This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering. Especially, please read rating and ♠CAUTION (for storage and operating, rating, soldering and mounting, handling) in them to prevent smoking and/or burning, etc.
• You are able to read a detailed specification in the website (http://search.murata.co.jp/) before to require our product specification or to transact the approval sheet for product specification.

		+C+-	parallel with the test jig for 10+/–1sec. The soldering should be done either with an iron or using reflow method and should be conducted with care so that soldering is uniform and free of defects such as heat show *5N: GR□15/GRM18, 2N: GR□33			
	A alla a air ra Chuana anh la		Туре	а	b	С
10	Adhesive Strength		GR□03	0.3	0.9	0.3
	of Termination		GR□15	0.4	1.5	0.5
		Solder resist	GRM18	1.0	3.0	1.2
		Baked electrode or	GRM21	1.2	4.0	1.65
		copper foil	GRM31	2.2	5.0	2.0
		· · · · · · · · · · · · · · · · · · ·	GRM32	2.2	5.0	2.9
		Fig. 1a	GRM43	3.5	7.0	3.7
			GRM55	4.5	8.0	5.6
			GRIVISS	7.0	0.0	0.0
11	Appearance Capacitance Vibration D.F.	No defects or abnormalities Within the specified tolerance B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	Solder the capacitor same manner and The capacitor shou having a total amplication of the capacitor should be the capacitor of the capacitor o	under the samuld be subjected itude of 1.5mr the approximation 10 to 55H. broximately 1 rd of 2 hours in	ne conditions and to a simple I on, the frequence the limits of 10 or and return to oninute. This m	s (10). narmonic r cy being va and 55Hz. 10Hz, sho otion shou
12	Deflection	No cracking or marking defects should occur 20 50 Pressunzing speed: 1.0mm/sec. Pressunze R230 Capacitance meter 45 45	Solder the capacitor in Fig. 2a using an direction shown in be done either with should be conducted and free of defects	eutectic solde Fig. 3a for 5+, an iron or usi ed with care so	r. Then apply a /—1 sec. The sing the reflow roothat the solde shock.	a force in t oldering sl nethod an
		* * * * 			(GR□03, GF	R□15 : t : 0.8r
		Fig.3a	Туре	а	b	С
			GR□03	0.3	0.9	0.3
			GR□15	0.4	1.5	0.5
			GRM18	1.0	3.0	1.2
			GRM21	1.2	4.0	1.65
			GRM31	2.2	5.0	2.0
			GRM32	2.2	5.0	2.9
			GRM43	3.5	7.0	3.7
			GRM55	4.5	8.0	5.6
						(in ı
13	Solderability of Termination	75% of the terminations is to be soldered evenly and continuously	Immerse the capacitor in a solution of ethanol (JIS-K-810 rosin (JIS-K-5902) (25% rosin in weight propotion) . Preheat at 80 to 120°C for 10 to 30 seconds. After preheating, immerse in an eutectic solder solution for 2+/-0.5 seconds at 230+/-5°C.			

14		Capacitance Change	F1, F5 : Within ±20%	270+/−5°C for 10+/−0.5 seconds. Set at room temperatu 24+/−2 hours (temperature compensating tyoe) or 48+/-					
		Q/D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	hours (high dielectric constant type), then measure.					
	Resistance	I.R.	More than 50Ω • F	•Initial measurement for high dielectric constant type					
	Soldering Heat	Dielectric Strength	No defects	Perform a heat treatment at 150+0/−10°C for one hour ar then set at room temperature for 48+/−4 hours. Perform the initial measurement.					
				*Preheating for GRM32/43/55					
				Step Temperature Time					
				1 100°C to 120°C 1 min.					
				2 170°C to 200°C 1 min.					
15	Temperature Sudden Change	Appearance	No defects or abnormalities	Fix the capacitor to the supporting jig in the same manne under the same conditions as (10).					
		Capacitance Change	B1, B3, R6, C7, C8 : Within ±7.5% F1, F5 : Within ±20%	Perform the five cycles according to the four heat treatments shown in the following table.					
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.2 max.	Set for 24+/-2 hours (temperature compensating type) of 48+/-4 hours (high dielectric constant type) at room					
		I.R.	More than 50Ω • F	temperature, then measure.					
		Dielectric	No defects	Step 1 2 3 4					
		Strength		Temp. (°C) Min. Room Room Temp. Room Temp. Room Temp. Temp. H3/-0					
				Time (min.) 30±3 2 to 3 30±3 2 to					
16	High Temperature High Humidity (Steady)	Appearance Capacitance Change	No defects or abnormalities B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	then set at room temperature for 48+/-4 hours. Perform the initial measurement. Apply the rated voltage at 40+/-2°C and 90 to 95% humic 500+/-12 hours. The charge/discharge currentis less tha 50mA.					
		D.F.	B1, B3, R6, C7, C8 : 0.2 max. F1, F5 : 0.4 max.	 Initial measurement Perform a heat treatment at 150+0/−10°c for one hour ar then let sit for 48+/−4 hours at room temperature. Perform 					
		I.R.	More than 12.5Ω • F	initial measurement.					
				 Measurement after test Perform a heat treatment at 150+0/-10°C for one hour ar then let sit for 48+/-4 hours at room temperature, then measure. 					
		Appearance	No defects or abnormalities	Apply 150% of the rated voltage for 1000+/-12 hours at					
17	Durability .	Capacitance Change	B1, B3, R6, C7, C8 : Within ±12.5% F1, F5 : Within ±30%	maximum operating temperature +/-3°C. Let sit for 48+/- hours at room temperature, then measure. The charge/ discharge current is less than 50mA.					
		D.F.	B1, B3, R6, C7, C8 : 0.1 max. F1, F5 : 0.4 max.	•Initial measurement					
		I.R.	More than 25Ω • F	Perform a heat treatment at 150+0/-10°C for one hour ar then let sit for 48+/-4 hours at room temperature. Perfori initial measurement.					
				 Measurement after test Perform a heat treatment at 150+0/−10°C for one hour ar then let sit for 48+/−4 hours at room temperature, then measure. 					

Note • This catalog has only typical specifications because there is no space for detailed specifications. Therefore, please approve our product specification or transact the approval sheet for product specification before ordering. Especially, please read rating and ACAUTION (for storage and operating, rating, soldering and mounting, handling) in them to prevent smoking and/or burning, etc.
• You are able to read a detailed specification in the website (http://search.murata.co.jp/) before to require our product specification or to transact the approval sheet for product specification.