

PCMCIA Flash Memory Card

256KILOBYTE through 5 MEGABYTE (Intel based)

General Description

WEDC's FLG Series Flash memory cards offer low/medium density linear Flash solid state storage solutions for code and data storage, high performance disk emulation and execute in place (XIP) applications in mobile PC and dedicated (embedded) equipment.

FLG series cards conform to PCMCIA international standard.

The card's control logic provides the system interface and controls the internal Flash memories. Card can be read/written in byte-wide or word-wide mode which allows for flexible integration into various systems. Combined with file management software, such as Flash Translation Layer (FTL), FLG Flash cards provide removable high-performance disk emulation.

The FLG series cards contain separate 2kB EEPROM memory for Card Information Structure (CIS) which can be used for easy identification of card characteristics.

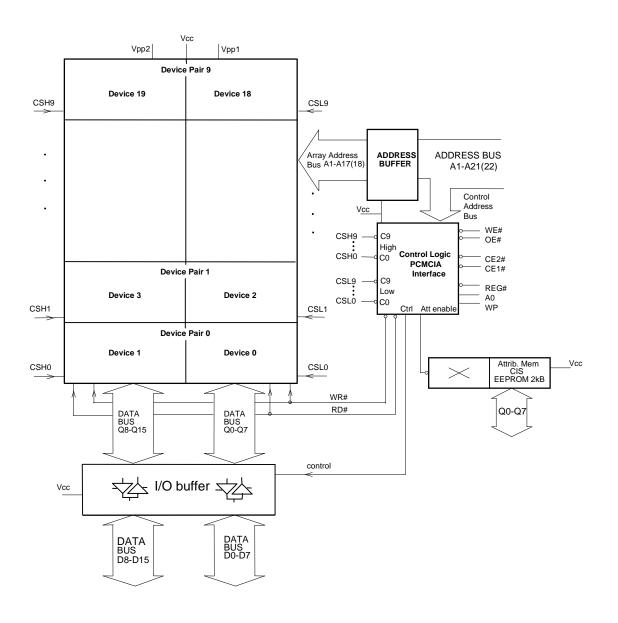
The WEDC FLG series is based on Intel 28F010 or 28F020 Flash memories.

Note: Standard options include attribute memory. Cards without attribute memory are available. Cards are also available with or without a hardware write protect switch.

Features

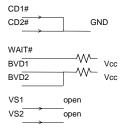
- Low cost Low/Medium Density Linear Flash Card
- Supports 5V systems with 12V VPP.
- Based on Intel CMOS Components
- Fast Read Performance
 - 150ns Maximum Access Time
- x8/ x16 Data Interface
- Quick-Pulse Programming Algorithm
 typical 10µs Byte-Program
- 100,000 Erase/Program Cycles
- PC Card Standard Type I Form Factor

Architecture Overview


WEDC's FLG series is designed to support from 2 to 20, 1Mb or 2MB components, providing a wide range of density options. Cards are based on the 28F010 (1Mb) or 28F020 components which work with 5V Vcc / 12V Vpp applications. Device codes are **B4**h and **BD**h respectively. Systems should be able to recognize both codes. Cards utilizing the 1Mb components provide densities ranging from 256KB to 2.5MB in 256KB increments, cards utilizing 2Mb components provide densities ranging from 512KB to 5MB in 512KB increments.

In support of the PC Card 95 standard for word wide access devices are paired. Write, read and erase operations can be performed as either a word or byte wide operation. By multiplexing A0, CE1# and CE2#, 8-bit hosts can access all data on data lines DQ0 - DQ7. The FLG series cards conform to the PC Card Standard (PCMCIA) and JEIDA, providing electrical and physical compatibility. The PC Card form factor offers an industry standard pinout and mechanical outline, allowing density upgrades without system design changes.

WEDC's standard cards are shipped with WEDC's Logo. Cards are also available with blank housings (no Logo). The blank housings are available in both a recessed (for label) and flat housing. Please contact WEDC sales representative for further information on Custom artwork.



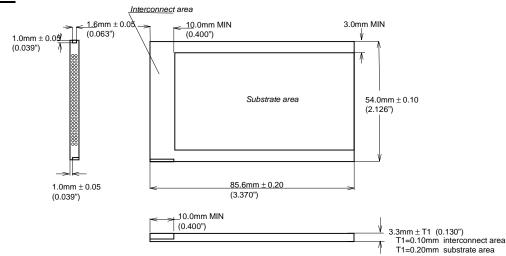
Block Diagram

SUPPORTED COMPONENTS (max 20 X): 28F010 - max 2.5MB

28F010 - max 2.5MB 28F020 - max 5MB

Device type	Manuf ID	Device ID
28F010	89 _H	B4 _H
28F020	89 _H	BD _H

Pinout


Pin	Signal name	I/O	Function	Active
1	GND		Ground	
2	DQ3	I/O	Data bit 3	
3	DQ4	I/O	Data bit 4	
4	DQ5	I/O	Data bit 5	
5	DQ6	I/O	Data bit 6	
6	DQ7	I/O	Data bit 7	
7	CE1#	I	Card enable 1	LOW
8	A10	I	Address bit 10	
9	OE#	ı	Output enable	LOW
10	A11	I	Address bit 11	
11	A9	ı	Address bit 9	
12	A8	I	Address bit 8	
13	A13	I	Address bit 13	
14	A14	I	Address bit 14	
15	WE#	I	Write Enable	LOW
16	RDY/BSY#	0	Ready/Busy	N.C.
17	Vcc		Supply Voltage	
18	Vpp1		Prog. Voltage	
19	A16	I	Address bit 16	
20	A15	I	Address bit 15	
21	A12	I	Address bit 12	
22	A7	I	Address bit 7	
23	A6	I	Address bit 6	
24	A5	ı	Address bit 5	
25	A4	I	Address bit 4	
26	A3	I	Address bit 3	
27	A2	ı	Address bit 2	
28	A1	I	Address bit 1	
29	A0	ı	Address bit 0	
30	DQ0	I/O	Data bit 0	
31	DQ1	I/O	Data bit 1	
32	DQ2	I/O	Data bit 2	
33	WP	0	Write Potect	HIGH
34	GND		Ground	

Pin	Signal name	I/O	Function	Active
35	GND		Ground	
36	CD1#	0	Card Detect 1	LOW
37	DQ11	I/O	Data bit 11	
38	DQ12	I/O	Data bit 12	
39	DQ13	I/O	Data bit 13	
40	DQ14	I/O	Data bit 14	
41	DQ15	I	Data bit 15	
42	CE2#	I	Card Enable 2	LOW
43	VS1	0	Voltage Sense 1	N.C.
44	RFU		Reserved	
45	RFU		Reserved	
46	A17	I	Address bit 17	256KB(2)
47	A18	ı	Address bit 18	512KB(2)
48	A19	I	Address bit 19	1MB(2)
49	A20	ı	Address bit 20	2MB(2)
50	A21	ı	Address bit 21	4MB(2,3)
51	Vcc		Supply Voltage	
52	Vpp2		Prog. Voltage	
53	A22	ı	Address bit 22	8MB(2,3)
54	A23	ı	Address bit 23	N.C.
55	A24	-	Address bit 24	N.C.
56	A25	ı	Address bit 25	N.C.
57	VS2	0	Voltage Sense 2	N.C.
58	RST	ı	Card Reset	N.C.
59	Wait#	0	Extended Bus cycle	LOW(1)
60	RFU		Reserved	
61	REG#	ı	Attrib Mem Select	
62	BVD2	0	Bat. Volt. Detect 2	(1)
63	BVD1	0	Bat. Volt. Detect 1	(1)
64	DQ8	I/O	Data bit 8	
65	DQ9	I/O	Data bit 9	
66	DQ10	0	Data bit 10	
67	CD2#	0	Card Detect 2	LOW
68	GND		Ground	

Notes:

- 1. Wait#, BVD1 and BVD2 are driven high for compatibility
- Shows density for which specified address bit is MSB. Higher order address bits are no connects (i.e. 4MB A21 is MSB A22 - A25 are NC).
- 3. For the 3MB card the memory will wrap at the 4MB boundary, for the 5MB card the memory will wrap at the 8MB boundary.

Mechanical

Card Signal Description

Symbol	Type	Name and Function
A0 - A25	INPUT	ADDRESS INPUTS: A0 through A25 enable direct addressing of up to 64MB of memory on the card. Signal A0 is not used in word access mode. The memory will wrap at the card density boundary (see PINOUT, note 3). The system should not try to access memory beyond the card density. A25 is the most significant bit. A23 – A25 are not connected.
DQ0 - DQ15	INPUT/OUTPUT	DATA INPUT/OUTPUT: DQ0 THROUGH DQ15 constitute the bidirectional databus. DQ0 – DQ7 constitute the lower (even) byte and DQ8 – DQ15 the upper (odd) byte. DQ15 is the MSB.
CE1#, CE2#	INPUT	CARD ENABLE 1 AND 2: CE1# enables even byte accesses, CE2# enables odd byte accesses. Multiplexing A0, CE1# and CE2# allows 8-bit hosts to access all data on DQ0 - DQ7.
OE#	INPUT	OUTPUT ENABLE: Active low signal gating read data from the memory card.
WE#	INPUT	WRITE ENABLE: Active low signal gating write data to the memory card.
RDY/BSY#	N.C.	READY/BUSY OUTPUT: Indicates status of internally timed erase or program algorithms. This signal is not connected.
CD1#, CD2#	OUTPUT	CARD DETECT 1 and 2: Provide card insertion detection. These signals are internally connected to ground on the card. The host shall monitor these signals to detect card insertion (pulled-up on host side).
WP	OUTPUT	WRITE PROTECT: Write protect reflects the status of the Write Protect switch on the memory card. WP set to high = write protected, providing internal hardware write lockout to the Flash array. If card does not include optional write protect switch, this signal will be pulled low internally indicating write protect = "off".
VPP1		PROGRAM/ERASE POWER SUPPLY: Provides programming voltages 12.0V for lower byte (D0 – D7) memory components.
VPP2		PROGRAM/ERASE POWER SUPPLY: Provides programming voltages 12.0V for upper byte (D8 – D15) memory components.
VCC		CARD POWER SUPPLY: (5.0V).
GND		CARD GROUND
REG#	INPUT	ATTRIBUTE MEMORY SELECT: Active low signal, enables access to Attribute Memory Plane, occupied by Card Information Structure and Card Registers.
RST	N.C.	RESET: Active high signal for placing cards in Power-on default state. This signal is not connected.
WAIT#	OUTPUT	WAIT: This signal is pulled high internally for compatibility. No wait states are generated.
BVD1, BVD2	OUTPUT	BATTERY VOLTAGE DETECT: These signals are pulled high to maintain SRAM card compatibility.
VS1, VS2	OUTPUT	VOLTAGE SENSE: Notifies the host socket of the card's VCC requirements. VS1 and VS2 are open to indicate a 5V card.
RFU		RESERVED FOR FUTURE USE
N.C.		NO INTERNAL CONNECTION TO CARD: pin may be driven or left floating

Functional Truth Table

READ function Common Memory Attribute Memory

Function Mode	/CE2	/CE1	A0	/OE	/WE
Standby Mode	Н	Н	Х	Х	Х
Byte Access (8 bits)	Н	L	L	L	Н
	Н	L	Н	L	Н
Word Access (16 bits)	L	L	Х	L	Н
Odd-Byte Only Access	L	Н	Χ	L	Н
WDITE franction*					

/REG	D15-D8	D7-D0
Х	High-Z	High-Z
Н	High-Z	Even-Byte
Н	High-Z	Odd-Byte
Н	Odd-Byte	Even-Byte
Н	Odd-Byte	High-Z

/REG	D15-D8	D7-D0
Х	High-Z	High-Z
L	High-Z	Even-Byte
L	High-Z	Not Valid
L	Not Valid	Even-Byte
L	Not Valid	High-Z

WRITE function*

Standby Mode	Н	Н	Х	X	Х
Byte Access (8 bits)	Η	L	L	Н	L
	Η	L	Н	Н	L
Word Access (16 bits)	L	L	Χ	Н	L
Odd-Byte Only Access	L	Н	Χ	Н	L

X	X	X
Н	Χ	Even-Byte
Н	Χ	Odd-Byte
Н	Odd-Byte	Even-Byte
Н	Odd-Byte	Х

Χ	X
Χ	Even-Byte
Χ	Χ
Χ	Even-Byte
Χ	X
	X X X X

^{*} Require proper programming voltages (Vpp1, Vpp2). Program or Erase with an invalid Vpp should not be attempted.

Absolute Maximum Ratings (1)

Operating Temperature TA (ambient)

Commercial

Industrial

Commercial

Commercial

Commercial

Industrial

Commercial

Industrial

Voltage on any pin relative to VSS

VCC supply Voltage relative to VSS

O°C to +80 °C

-40°C to +85 °C

-0.5V to VCC+0.5V

-0.5V to +7.0V

Note:

(1) Stress greater than those listed under "Absolute Maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

DC Characteristics (1)

Symbol	Parameter	Density	Notes	Typ ⁽³⁾	Max	Units	Test Conditions
I _{CCR}	VCC Read Current	All		10	30	mA	VCC = VCCmax tcycle = 150ns, CMOS levels
I _{CCW}	VCC Program Current	All	Vpp = 12V	1.0	10	mA	Programming in Progress
I _{PPW}	VPP Program Current	All		8.0	30	mA	Vpp=VppH Programming in Progress
I _{CCE}	VCC Erase Current	All	Vpp = 12V	5.0	15	mA	Erasure in Progress
I _{PPE}	VPP Erase Current	All		10	30	mA	Vpp=VppH Erasure in Progress
Iccs	VCC Standby Current	256KB					VCC = VCCmax
(CMOS)		512KB 1MB		100			Control Signals = VCC CMOS levels
		2MB				μΑ	
		3MB					
		4MB					
		5MB					

CMOS Test Conditions: $VCC = 5V \pm 5\%$, $VIL = VSS \pm 0.2V$, $VIH = VCC \pm 0.2V$

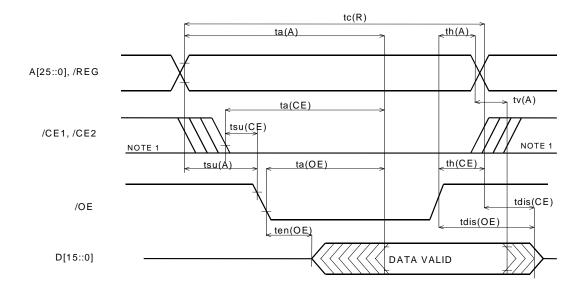
Notes:

- 1. All currents are RMS values unless otherwise specified. ICCR, ICCW and ICCE are based on Byte wide operations. For 16 bit operation values are double.
- 2. Control Signals: CE₁#, CE₂#, OE#, WE#, REG#.
- 3. Typical: VCC = 5V, $T = +25^{\circ}C$.

Symbol	Parameter	Notes	Min	Max	Units	Test Conditions
I _{LI}	Input Leakage Current	1		±1.0	μΑ	VCC = VCCMAX Vin = VCC or VSS
I _{LO}	Output Leakage Current	1		±10	μΑ	VCC = VCCMAX Vout = VCC or VSS
V _{IL}	Input Low Voltage	1	0	0.8	V	
V _{IH}	Input High Voltage	1	0.7VCC	VCC+0.5	V	
V _{OL}	Output Low Voltage	1		0.4	٧	IOL = 3.2mA
V _{OH}	Output High Voltage	1	VCC-0.4	VCC	V	IOH = -2.0mA
V _{LKO}	VCC Erase/Program Lock Voltage	1	2.5		V	

Notes:

- 1. Values are the same for byte and word wide modes for all card densities.
- 2. Exceptions: Leakage currents on CE1#, CE2#, OE#, REG# and WE# will be < 500 μA when VIN = GND due to internal pull-up resistors.


AC Characteristics

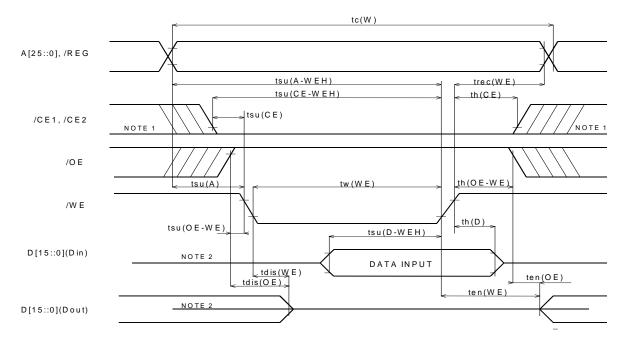
Read Timing Parameters

		150ns		200ns		
SYMBOL (PCMCIA)	Parameter	Min	Max	Min	Max	Unit
$t_{\rm C}(R)$	Read Cycle Time	150		200		ns
t _a (A)	Address Access Time		150		200	ns
t _a (CE)	Card Enable Access Time		150		200	ns
t _a (OE)	Output Enable Access Time		75		100	ns
t _{su} (A)	Address Setup Time		20		20	ns
t _{su} (CE)	Card Enable Setup Time		0		0	ns
t _h (A)	Address Hold Time		20		20	ns
t _h (CE)	Card Enable Hold Time		20		20	ns
t _v (A)	Output Hold from Address Change		0		0	ns
t _{dis} (CE)	Output Disable Time from CE#		60		60	ns
t _{dis} (OE)	Output Disable Time from OE#		60		60	ns
t _{en} (CE)	Output Enable Time from CE#	5		5		ns
t _{en} (OE)	Output Enable Time from OE#	5		5		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

Read Timing Diagram

Note: Signal may be high or low in this area.



Write Timing Parameters

SYMBOL		150ns		200ns		
(PCMCIA)	Parameter	Min	Max	Min	Max	Unit
$t_{C}W$	Write Cycle Time	150		200		ns
t _w (WE)	Write Pulse Width	80		120		ns
t _{su} (A)	Address Setup Time	20		20		ns
t _{su} (A-WEH)	Address Setup Time for WE#	100		100		ns
t _{su} (CE- WEH)	Card Enable Setup Time for WE#	100		100		ns
t _{su} (D-WEH)	Data Setup Time for WE#	50		50		ns
t _h (D)	Data Hold Time	20		20		ns
t _{rec} (WE)	Write Recover Time	20		20		ns
t _{dis} (WE)	Output Disable Time from WE#		60		60	ns
t _{dis} (OE)	Output Disable Time from OE#		60		60	ns
t _{en} (WE)	Output Enable Time from WE#	5		5		ns
t _{en} (OE)	Output Enable Time from OE#	5		5		ns
t _{su} (OE-WE)	Output Enable Setup from WE#	10		10		ns
t _h (OE-WE)	Output Enable Hold from WE#	10		10		ns
t _{su} (CE)	Card Enable Setup Time from OE#	0		0		ns
t _h (CE)	Card Enable Hold Time	20		20		ns

Note: AC timing diagrams and characteristics are guaranteed to meet or exceed PCMCIA 2.1 specifications.

Write Timing Diagram

Notes:

- 1. Signal may be high or low in this area.
- 2. When the data I/O pins are in the output state, no signals shall be applied to the data pins (D15 D0) by the host system.

Data Write and Erase Performance

 $VCC = 5V \pm 5\%$, Vpp1 = Vpp2=12.0V, $T_A = 25$ °C

Parameter	Notes	Min	Typ ⁽¹⁾	Max	Units	
Chin Drogram Time	28F010 1,2,4		2	12.5		
Chip Program Time	28F020 1,2,4		4	25	sec	
Chip Erase Time	28F010 1,3,4		1	10	500	
Chip Erase Time	28F020 1,3,4		2	30	sec	

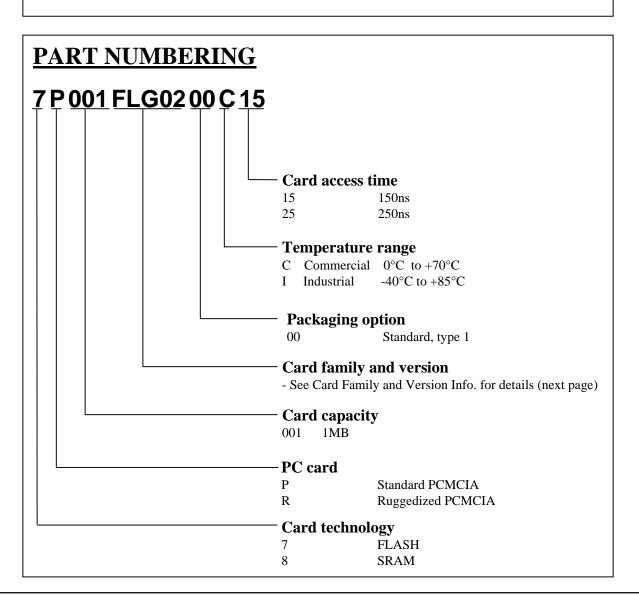
Notes:

- 1. Typical: Nominal voltages and $T_A = 25$ °C.
- 2. Minimum byte programming time excluding system overhead is 16 µs (10µs program + 6µs write recovery), while maximum is 400µs/byte (16 µs x 25 loops allowed by algorithm). Max chip programming time is specified lower than the worst case allowed by the programming algorithm since most bytes program significantly faster than the worst case byte.
- 3. Excludes 00H Programming prior to Erasure.
- 4. Excludes System-Level Overhead.

CIS Information for FLG Series Cards

Address	Value	Description	Address	Value	Description
00H	01H	CISTPL DEVICE	4AH	32H	2
02H	03H	TPL LINK	4CH	35H	5
04H	53H	FLASH = 150ns (device writable)	4EH	36H	6
	52H	FLASH = 200ns (device writable)		35H	5
06H	0CH	CARD SIZE: 256KB		31H	1
	05H	512KB		32H	2
	0DH	1MB		30H	0
	06H	2MB		30H	0
	2DH	3MB		31H	1
	0EH	4MB		30H	0
	4DH	5MB		30H	0
08H	FFH	END OF DEVICE		32H	2
0AH	18H	CISTPL_JEDEC_C		30H	0
0CH	02H	TPL_LINK		30H	0
0EH	89H	INTEL - ID		33H	3
10H	B4H	INTEL 28F010 - ID		30H	0
	BDH	INTEL 28F020 - ID		30H	0
12H	17H	CISTPL_DEVICE_A		34H	4
14H	03H	TPL_LINK		30H	0
16H	42H	EEPROM - 200ns		30H	0
18H	01H	Device Size = 2KBytes		35H	5
1AH	FFH	END OF TUPLE	50H	46H	F
1CH	1EH	CISTPL_DEVICEGEO	52H	4CH	L
1EH	06H	TPL_LINK	54H	47H	G
20H	02H	DGTPL_BUS	56H	30H	0
22H	11H	DGTPL_EBS	58H	32H	2
24H	01H	DGTPL_RBS		30H	0
26H	01H	DGTPL_WBS		36H	6
28H	01H	DGTPL_PART	5AH	2DH	-
2AH	01H	FLASH DEVICE	5CH	2DH	-
		NON-INTERLEAVED	5EH	2DH	-
2CH	20H	CISTPL_MANFID	60H	31H	1
2EH	04H	TPL_LINK(04H)	62H	35H	5
30H	F6H	EDI TPLMID_MANF: LSB	64H	20H	SPACE
32H	01H	EDI TPLMID_MANF: MSB	66H	00H	END TEXT
34H	00H	LSB: Number Not Assigned	68H	43H	С
36H	00H	MSB: Number Not Assigned	6AH	4FH	0
38H	15H	CISTPL_VERS1	6CH	50H	Р
3AH	47H	TPL_LINK	6EH	59H	Y
3CH	05H	TPLLV1_MAJOR	70H	52H	R
3EH	00H	TPLLV1_MINOR	72H	49H	I
40H	45H	E	74H	47H	G
42H	44H	D	76H	48H	H
44H	49H	I	78H	54H	Т
46H	37H	7			
48H	50H	Р			

CIS Information for FLG Series Cards -(Cont.)


Address	Value	Description		
7AH	20H	SPACE		
7CH	45H	Е		
7EH	4CH	L		
80H	45H	E		
82H	43H	C		
84H	54H	Т		
86H	52H	R		
88H	4FH	0		
8AH	4EH	N		
8CH	49H	l		
8EH	43H	С		
90H	20H	SPACE		
92H	44H	D		
94H	45H	E		
96H	53H	S		
98H	49H	I		
9AH	47H	G		
9CH	4EH	N		
9EH	53H	S		
A0H	20H	SPACE		
A2H	49H	I		
A4H	4EH	N		
A6H	43H	С		
A8H	4FH	0		
AAH	52H	R		
ACH	50H	Р		
AEH	4FH	0		
B0H	52H	R		
B2H	41H	А		
B4H	54H	Т		
B6H	45H	Е		
B8H	44H	D		
BAH	20H	SPACE		
BCH	00H	END TEXT		
BEH	31H	1		
C0H	39H	9		
C2H	39H	9		
C4H	37H	7		
C6H	00H	END TEXT		
C8H	FFH	END OF LIST		
CAH	FFH	CISTPL_END		
DCH	00H	INVALID ADDRESS		

PRODUCT MARKING WED 7P001FLG0200C15 C995 9915 Date code Lot code / trace number Part number Company Name Note: Some products are currently marked with our pre-merger company name/acronym (EDI). During our

transition period, some products will also be marked with our new company name/acronym (WED).

Starting October 2000 all PCMCIA products will be marked only with the WED prefix.

Card Family and Version Information

FLG 01-FLG04

Based on **28F010**

FLG01	No Attribute Memory, no Write Protect
FLG02	With Attribute Memory, no Write Protect
FLG03	No Attribute Memory, with Write Protect
FLG04	With Attribute Memory, with Write Protect

Example P/N 7P XXX FLG 02 SS T ZZ

FLG 05-FLG08

Based on 28F020

FLG05	No Attribute Memory, no Write Protect
FLG06	With Attribute Memory, no Write Protect
FLG07	No Attribute Memory, with Write Protect
FLG08	With Attribute Memory, with Write Protect

Example P/N 7P XXX FLG 06 SS T ZZ

Ordering Information

7P XXX FLGYY SS T ZZ

where

XXX:	256 1)	256KB
	512	512KB
	001	1MB
	002	2MB
	003 ²⁾	3MB
	004 ²⁾	4MB
	005 ²⁾	5MB

¹⁾ available only with 28F010

FLGYY: Card Version (See Card Family and Version Information)

SS:	00	WEDC Silkscreen
	01	Blank Housing, Type I

02 Blank Housing, Type I Recessed

T: C Commercial I** Industrial

ZZ: 15 150ns 20 200ns

Note: Options with intermediate memory capacities, without attribute memory and with hardware write protect switch are available.

²⁾ available only with 28F020

^{**} Denotes advanced information.

Revision History:

Rev Level	Description	Date
rev 0	initial release	March 6, 1998
rev 1	Logo change	May 27, 1999
rev 2	Added Page 11	May 31, 2000
	Changed Page Header	
rev 3	Corrected Timing Errors	August 1, 2000
	on pg. 6 & 7	

White Electronic Designs Corporation

One Research Drive, Westborough, MA 01581, USA

tel: (508) 366 5151 fax: (508) 836 4850 www.whiteedc.com

