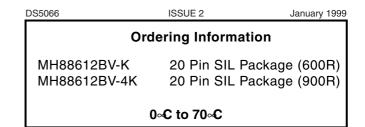
MH88612BV-K

Subscriber Line Interface Circuit (SLIC)


Advance Information

- Transformerless 2-wire to 4-wire conversion
- · Battery and ringing feed to line.
- · Off-hook and dial pulse detection.
- Ring ground over-current protection.
- Constant current feed with constant voltage foldover.
- · Relay driver.
- · Power Denial.
- · Wide Operating Range.
- Pin for pin compatible 600R and 900R variants.

Applications

Line interface for:

- PABX
- Intercoms
- Key Telephone Systems
- Control Systems

Description

The SLIC provides a complete interface between a switching system and a subscriber loop. Functions provided include battery feed and ringing feed to the subscriber line, 2-Wire to 4-Wire hybrid interfacing, constant current feed with constant voltage foldback, and dial pulse detection. The device is fabricated using thick film hybrid technology in a 20-pin single in-line package.

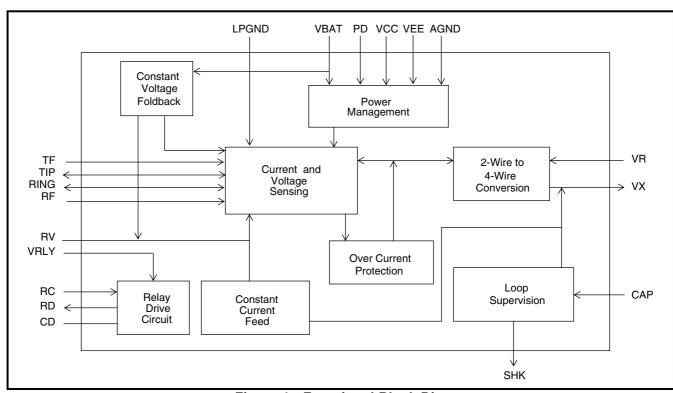


Figure 1 - Functional Block Diagram

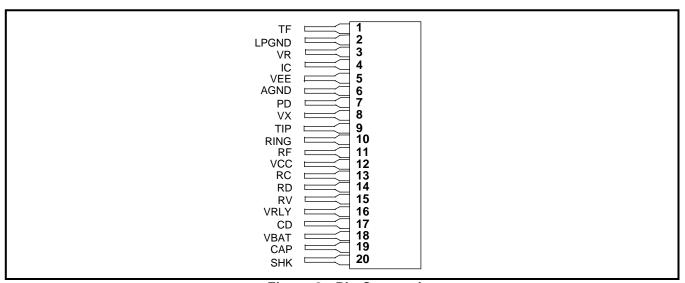


Figure 2 - Pin Connections

Pin Description

Pin #	Name	Description
1	TF	Tip Feed. Connects to external diode for protection
2	LPGND	Loop Ground . Is the system ground reference with respect to VBAT. Normally connected to AGND.
3	VR	Voice Receive (Input). The 4 wire analog signal to the device.
4	IC	Internal Connection. No connection should be made to this pin
5	VEE	Negative Power Supply Voltage (-5V).
6	AGND	Analog Ground. Connects to System Ground (Earth).
7	PD	Power Denial (Input). A logic high will isolate the battery voltage to Tip/Ring.
8	VX	Voice Transmit (Output). The 4-wire analog signal from the device.
9	TIP	Tip Lead. Connects to the "Tip" lead of the telephone line.
10	RING	Ring Lead. Connects to the "Ring" lead of the telephone line.
11	RF	Ring Feed (Input). Normally connected to Ring relay for negative battery feed voltage and ringing voltage input.
12	VCC	Positive Power Supply Voltage (+5V).
13	RC	Relay Control (Input). Active high.
14	RD	Relay Drive. Open collector sinks current when RC is at logic high.
15	RV	Ring Feed Voltage. Normally connected to pin 11 (RF) through a normally closed relay and to external diode protection.
16	VRLY	Relay voltage Supply (+5V).
17	CD	Clamping Diode. Normally connected to AGND.
18	VBAT	Negative Battery Feed Supply Voltage (-48V). Battery supply for the Subscriber Line. Typically -48VDC is applied to this pin.
19	CAP	Ring Trip Filter Capacitor. Normally connected via an external capacitor to ground to prevent false ring trip. Must be open circuit to allow dial pulse detection.
20	SHK	Switch Hook Detect (Output). A logic level 1 will indicate that the Subscriber Line is in the 'Off-Hook' state.

Note 1: C4 in Figure 3 can be added permanently to this pin for certain dial pulse applications.

Functional Description

The SLIC performs a transformerless 2-wire to 4-wire conversion of the analog signal. The 2-wire circuit is the balanced line going to the subscriber loop, while the 4-wire circuit is the audio signal going to and from devices such as the voice codec or switching circuit. The SLIC also provides a switch hook (SHK) status output which goes high when the telephone is set off-hook.

Constant Current Feed

The MH88612BV-K family employs complex feedback circuits to supply a constant current feed or, if necessary, constant voltage feed to the line. With a nominal -48V battery the device will supply a constant current of typically 25mA to a line up to 1100 $\!\Omega$. For longer lines there is insufficient battery voltage so the device automatically switches to constant voltage mode where Tip and Ring will stay at their minimum and maximum voltage levels and the supplied current will be reduced accordingly. The maximum line resistance supported is 2000Ω including the telephone set.

Switch Hook Detection

The SHK pin will go to logic 1 to indicate that a telephone connected to the line has gone off-hook (on-line). Off-hook will not be indicated if the loop resistance (including the telephone set) is too high for the device to support.

The SHK output will toggle to indicate dial pulses on the line. If the capacitor on CAP (Pin 19) has not been switched out of circuit the dial pulses will be distorted.

Ringing And Ring Trip Detection

In Figure 3 a ringing signal (e.g.90 Vrms and -48Vdc) is applied to the line by disconnecting pin 15 (RV) from pin 11(RF), and connecting the ringing voltage at pin 11 (RF) by use of the relay K1.

The SLIC can detect an off-hook condition during ringing but there is a large AC component which must be filtered out to give a true off-hook condition at SHK.

A 1.0µF capacitor connected from pin 19 (CAP) to ground will provide adequate attenuation when ringing is applied. Once an off-hook condition has been detected a logic low should be applied to pin 13 (RC) which will deactivate the relay (K1) to

disconnect the ringing voltage from pin 11 and reconnect to pin 15. At that time the SLIC will revert to constant current feed operation.

For applications requiring Dial Pulse Detection the Capacitor connection to ground C1 should be controlled such that the capacitor is disconnected during Pulse Dialling.

If the signalling method is unknown, a capacitor of approximately 56nf should be permanently fitted between CAP (pin 19) and ground. This should be in addition to the capacitor mentioned in the above paragraph.

During off-hook conditions (on-line), the capacitor (C1) should not have a low impedance path to ground. This can be achieved using a transistor (Q1) and resistor (R2) as shown in Figure 3, with R2 providing a high impedance path for C1. When ringing is applied (RC = 5V) the transistor will short circuit R2 which will give C1 a low impedance path to ground and provide the required filtering.

Other methods can be used to switch out C1, such as a relay or a codec system drive output (with a similar configuration as above).

For applications using DTMF signalling, C1 can be permanently connected to ground.

Current Limit

The Tip or Ring of the telephone line may accidentally be shorted to ground. In such a case, current will only flow through the feed resistor. This high current will be sensed and reduced by the current limit circuit to a lower value to protect the internal circuitry.

Power Denial

The power denial function is a feature of the MH88612 which allows for powering down of the subscriber loop. A logic high voltage applied to the power denial input effectively removes the battery voltage from the loop driver circuitry. The resulting I_{LOOP} is negligible and power consumption is minimised. The power denial function is useful for disabling a loop which may have a ground fault.

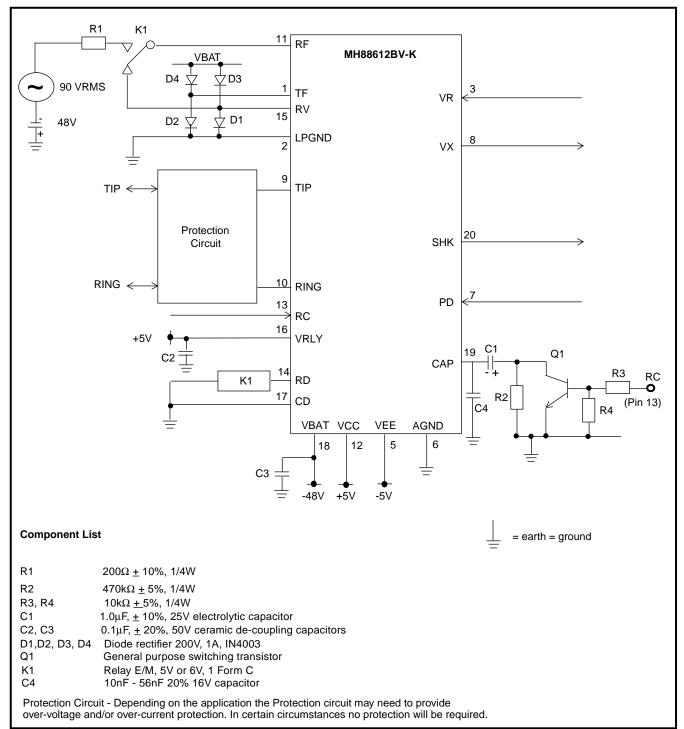


Figure 3 - Typical Application Circuit

4

Absolute Maximum Ratings*

	Parameter	Symbol	Min	Max	Units
1	DC Supply Voltage	V _{CC}	-0.3	9	V
	LPGND = AGND	V_{EE}	-9	0.3	V
		V_{BAT}	-60	0.3	V
		V_{RLY}	-0.3	40	V
2	Storage Temperature	T _S	-40	100	°C
3	Package Power Dissipation	PD		2	W

^{*} Exceeding these values may cause permanent damage. Functional operation under these conditions is not implied.

Recommended Operating Conditions

	Characteristics	Sym	Min	Тур‡	Max	Units	Test Conditions
1	Operating Supply Voltage	V _{CC} V _{EE} V _{BAT}	4.75 -5.25 -54	5.0 -5.0 -48	5.25 -4.75 -42	V V	
		V _{BAT}	-54	5	-42	V	
2	Relay Driver Current	I _{RLY}			100	mA	
3		T _o	0		70	°C	

[‡]Typical figures are at 25°C with nominal 5V supplies and are br design aid only.

DC Electrical Characteristics[†] - Voltages are with respect to GNDA unless otherwise stated.

	Characteristics	Sym	Min	Тур‡	Max	Units	Test Conditions
1	Supply Current V_{CC} V_{EE} V_{BAT}	I _{CC} I _{EE} I _{BAT}		7.5 -5.1 3	800	mA mA μA mA	PD = Logic High PD = Logic Low, Idle
2	Power Consumption	P _C		160 1600		mW mW	Standby V _{BAT} = -48V Active (Off Hook)
3	Constant Current Line Feed	I _{Loop}	23 15	25 16.5	27 19	mA mA	$R_{Loop} < 1100\Omega$ $R_{Loop} \le 2000\Omega$ $V_{BAT} = -48V$
4	Operating Loop Resistance	R _{Loop}			2000	Ω	$V_{BAT} = -48V @ I_{Loop} =$ 16mA, R_{Loop} includes telephone set
5	Ring Ground Over-Current protection				45	mA	V _{BAT} = 48V
6	Off-Hook Detect Output Low Voltage (On-hook) Output High Voltage (Off-hook)	V _{OL} V _{OH}	2.7		0.4	V V	Active high logic I _{OL} = 8mA I _{OL} = -100mA
7	RC, PD Control Input Input Low Volt (no activation) Input High Volt (activation)	V _{IL} V _{IH}	2.0		0.7	V V	Active high logic LSTTL compatible
8	RC, PD control Input Input Low Current (no activation)	I _{IL}			50	μΑ	
	Input high current (activation)	I _{IH}			0.5	mA	
9	PD Control Input Input Low Current Input High Current	I _{IL} I _{IH}			0.5 0.3	mA mA	

DC Electrical Characteristics are over recommended operating supply voltages. ‡Typical figures are at 25°C with nominal 5V supplies and are br design aid only.

AC Electrical Characteristics

	Characteristics	Sym	Min	Typ‡	Max	Units	Test Conditions
1	Ringing Voltage	V_{RING}			90	V_{rms}	Superimposed on V _{BAT} =
	Frequency	F _{RING}	17		25	Hz	-48V
2	Ringer Equivalence Number	REN			2		
3	Ring Trip Detect time			200	300	ms	
4	Input AC Impedance 2-wire	Zin		600 900		$\Omega \Omega$	MH88612BV-K MH88612BV-4K
5	Input Impedance at VR			100		kΩ	
6	Output Impedance at VX			10		Ω	
7	Gain 2-wire to VX		-1.3	-1.0	-0.7	dB	Input + 3dBm, 1kHz across Tip and Ring
	Gain relative to Gain @ 1kHz		-0.3		+0.3		300-3400 Hz
8	Gain VR to 2-wire		-1.3	-1.0	-0.7	dB	Input 0.5Vrms 1kHz at VR Z_{Load} = 600 Ω 300 - 3400 Hz
	Gain relative to Gain @ 1kHz		-0.3		+0.3	dB	
9	2-wire Return Loss over 300-3400Hz		20	30		dB	Input 0.5Vrms, 1kHz across Tip and Ring Z_{Load} = 600 Ω
10	Transhybrid Loss	THL	20	30		dB	300-3400 Hz Z _{Load} = 600Ω
11	Longitudinal to Metallic		40	55		dB	300-600Hz
	Balance		46	55		dB	600-3400Hz
12	Total Harmonic Distortion at VX	THD		0.1	1.0	%	Input + 3dBm, 1kHz across Tip and Ring
	at Tip and Ring			0.1	1.0	%	Input 1.0Vrms 1kHz at VR
13	Common Mode Rejection Ratio	CMRR				dB	Input 0.5Vrms, 1kHz
	2-wire to VX		40	50			
14	Idle channel Noise	Nc			+14	dBrnC	@ 2 Wire and VXC- Message weighted
15	Power supply rejection ratio V_{CC} V_{EE} V_{BAT}	PSRR	26 26 26			dB dB dB	100 mV _{PP} ripple, 1kHz on V _{CC} /V _{EE} /V _{BAT} , measure at VX and across Tip and Ring

[‡]Typical figure are at 25°C and are for design aid only.

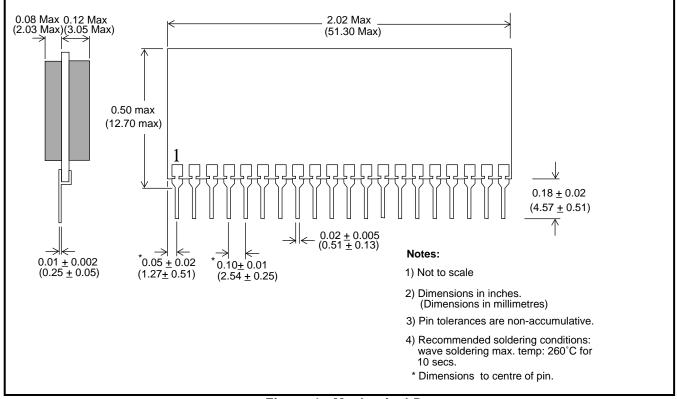


Figure 4 - Mechanical Data

For more information about all Zarlink products visit our Web Site at www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink's I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink, ZL and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE