NEC N

ELECTRON DEVICE

DATA SHEET

DIGITAL TUNING SYSTEM HARDWARE B

MIICROCONTROLLER

MOAS/V'INTEGRATED CIRCUIT
«PD17005

UILT-IN 4-BIT SINGLE-CHIP

1PD17005 is a 4-bit single-chip CMOS micro controller which contains digital tuning system hardware.

17K architecture is used for CPU, data and memory manipulations and various types of operations, and periph-
eral hardware control can be performed directly by one instruction.

Peripheral hardware devices include a prescaler which operates up to 150 MHz, PLL frequency synthesizer, LPF
(Low Pass Filter) amplifier, and frequency counter for digital tuning in addition to various types of input/output
ports, LCD controller/driver, A/D converter, D/A converter (PWM output), and clock generator ports.

Consequently, a high performance digital tuning system with a variety of functions can be constructed using
only one chip. uPD17005 is pin-compatible with uPD17003A and its memory size (ROM) is reduced. One-time
PROM version uPD17P005 is available as uPD17005, and uPD17P005 can be used for program evaluation of
uPD 17005 at small volume production.

FEATURES
® Using 17K architecture ® Various types of peripheral hardware
@ Program memory (ROM) General purpose input/output ports, LCD control-
16K bytes (7932 steps x 16 bits) ler/driver, serial interface, A/D converter, D/A con-
@® General purpose data memory (RAM) verter (PWM output), clock generator, ports, and fre-
432 nibble {432 words x 4 bits) quency counter
® |nstruction execution time ® Various types of interrupt
4.44 us (using 4.5 MHz quarts oscillator) External interrupt: 2 channels
@ Decimal operation enabled Internal interrupt: 3 channels
® Table reference enabled ® Power On Reset, resetting by a CE pin, and built-in
® Built-in PLL frequency synthesizer hardware blackout detection circuit
Dual modules prescaler {150 MHz Max.), pro- ® CMOS low power consumption
grammable divider, phase comparator, charge pump, ® Power supply voltage 5V =10 %
and LPF amplifier
ORDERING INFORMATION
Order Code Package Quality Grade
MPD17005GF-xxx-3B9 80-pin plastic QFP (14 x 20) Standard

Please refer to "“Quality grade on NEC Semiconductor Devices” (Document number |EI-1209) published by
NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Document No. 1G—2451
(0.D.No. 10—7915)

Date Published December 1990 P

Printed in Japan

© NEC Corporation 1990

NEC

uPD17005

#PD17005 FUNCTION OUTLINE

Item

Function

Program memory (ROM)

16K bytes (7932 steps x 16 bits}
Table reference area:
up to 7932 steps

General data memory (RAM)

432 nibble (432 words x 4 bits)
Data buffer : 4 nibbles
General register : 16 nibbles

System register

12 nibbles

Register file

33 nibbles {control register}

General port register
{(including LCD dot data register)

24 nibbles

Instruction execution time

4.44 us {using 4.5 MHz quarts oscillator)

Stack level

7 levels (stack operation enabled)

General purpose port

input/output port : 16
Input ports : 8
Output ports : 9 {+30: LCD segment pin)

Clock generator port {CGP)

1
VDP (Variable Duty Pulse} and SG (Signal Generator) functions

LCD controller/driver

30 segments, 2 common

1/2 duty, 1/2 bias, frame frequency 250 Hz, driving voltage VpD.
segment pin used also for key source: 16 ports

All of the 30 ports can be used as output ports

(4 ports, 4 ports, 6 ports, and 16 ports can be set independently)

Serial interface

Two types (3 channels)
8-bit 3-wire system: 2 channels
8-bit 2-wire system: 1 channel

D/A converter

8 bits x 3 (PWM output and output resisting pressure 16 V Max.)

A/D converter

6 bits x 6 (consecutive comparison method by software)

Interrupt

5 channels {maskable interrupt)
External interrupt : 2 channels (INTg pin and INT pin)

Internal interrupt : 3 channels (timer, serial interface 1, and frequency

counter)

Timer

Two types
Timer carry FF (1,5, 100, 250 ms)
Timer interrupt {1, 5, 100, 250 ms)

Reset

Power On Reset {at power supply connection)
Resetting by CE pin (CE pin Low — High)
Blackout detection function

NEC

«PD17005

Item

Function

PLL frequency Division method
synthesizer

® 2 types
Direct division method
(VCOL pin 20 MHz Max.)
Pulse swallow method
(VCOL pin 40 MHz Max.)
(VCOH pin 150 MHz Max.)

Reference frequency

® 12 types are selected by the program
1,1.26,25,3,5,6.25,9, 10, 12.5, 25,50, 100 kHz

Charge pump

® Two independent error output

Phase comparator

® Unlocking can be detected by a program
Unlocking FF delay time, can be selected

LPF amplifier

® CMOS operation amplifier output resisting pressure 16 V Max.

Frequency counter

® Frequency test
P1D3/FMIFC pin 6-15 MHz
P1D2/AMIFC pin 0.1-1 MHz

® External gate width test
P1A41/FCG pin

Power supply voltage

5V +10%

Package

80-pin plastic QFP (14 x 20)

— Program memory (ROM) =—————rm—— Peripheral hardware \
PLL Frequency A/D D/A Serial
Instruction i
All the instructions are 16-bit one-word counter converter converter interface
instructions . <[%—
A Clock
generator
7 Data memory (RAM) ™
< B
controller
Constant data Data buffer driver
Can be transferred to data buffer : Setting peripheral
(table reference) hardware data
General register - L e’
Performs operation and transfer between
} {} data memory and other data memory
\ | E
General
r~ Control section N\ /" purpose port =\
Program counter Data memory address System register ;
Y Controls CPU peripheral LCD dot register
circuits Display data is set
i I] [| Window register I General output port Input
register port
: / r\‘ Input and output data
: is set
St kStack . Operation Output
eng(é‘egperatlon Decimal operation enabled \. < port
Input/
Register file vk
U U Set peripheral hardware conditions [
Resetting Timer Interrupt Set data via a window register
4 \)
\ _J 1 [

JAN

S00.LQd™ $0 3deduo)

S00L1Lad”

NEC ©+PD17005

PIN CONFIGURATION (Top View)

[Se AN i Yol
O 00O
[apyalya]
<<
- N O
Dgo
£ 28
' 80 ll 8 l77ll'll

LCDg/POYg/KSg

[F}———0 LCD7/POY7/KSy

LCD3/POY3/KS3

[S}———0 LcDy/POYA/KS,

POD@/ADCy
LCD2/POY/KSo

[F}———=0 LCDg/POYg/KSy
T}———=0 LCD1/POY1/KSg
N

[E}——0 LCD5/POY5/KSs
[2}———0 LcDg/PoYg/KSg
[F]——O LCDg/POYg/KSg

Pocy o——{1] [cmos. &4 LCD10/POY10/KS10
pocoo—-{Z] /] O Grouwp1/0 63O LCD11/POY11/KS11
POA3/SDA O+——{3] . 67O LCD12/POY12/KS12
POA/SCLO E4 N-ch open drain bit /O :61 O LCD13/POY13/KS13
| POA1/SCK; Os——{F] [E0———0 LCD14/POY 14/KS
! CMOS bit 1/0 140 A no14
POAG/SO1 Os——{6] [E9}———=0 LCD15/POY5/KS15
POB3/Sl1 Os—=[7] [58}————O LCD16/P0Xg
POB,/SCKy O——{&] 570 LCD17/POX
2/5-"2 CMOS bit 1/0) k !
POB1/SO2 O [B6}———=0 LCD1g/POX2
POBq/Sl2 10 3 [B5————=0 LCD1g/POX3
INT1 O———{1]] a [52——0 LCD20/POX4
INTo O—{TZ] :: 53}——=0 LCD21/POX5
| cE O——{13 % [E2}——0 LCD22/POEg
PIAg O—{13 x [ET——~O LCDo3/POE,
‘ W
PIA TS @ 50'—-——.() LCD24/POES
| ‘ oia G5 | cous bit 110 ©
1 O~——{T¢] [25}———=O LCD25/POE3
PIAQ/FCG O——{T7] [28}—=O LCDyp/POFg
PIB3/PWMy O-——T8] [27}——0 LCD27/POF,
PIBy/PWM1 O=——9] ¢ N-ch open drain [76}———=O LCD2g/POF
PIB1/PWMgO=——A20} [Z5}——=O LCD29/POF3
PIBO/CGPg:% [22}———=0 comp
PIC 22 [23}———=0 com
3 CMOS 23 !
PIC; O-——Z3] CMOS cmos [E———0 P2Ag
. PICq 24 3 state [47——O Vpp2
25| |28 TTT 20] [a1] |a2] Ia3] [34] fes] [oe] [s7] Joe T 40)
| = -
| SPE2o8 a2 5280 25+¢
1 =258868865x88432
1 £§233>>>"x iy
™ ™A o -
2 g a
a o

NEC uPD17005

CONTENTS
1. PINFUNCTIONS . .. i i i i i ittt st et s e e asacasnanans .12
1.1 EXPLANATION ON EACHPIN FUNCTION. e et 12
1.2 NOTESON USING AGENERAL PURPOSEPORT 0.t 29
1.3 PINEQUIVALENT CIRCUITS oo i e e et e 30
2. BLOCKDIAGRAMcvvvnnnn Ceieceerrasiiaaeesarnan e 34
3. PROGRAMMEMORY (ROM) ...ttt iiiii i ie it na e rinenennnaeaennnns 35
3.1 STRUCTURE OF PROGRAM MEMORY i e e 35
3.2 PROGRAM MEMORY FUNCTIONS e e e e e e et 36
3.3 PROGRAM FLOW ..t e e et e e et e e e e e 36
34 PROGRAM BRANCHING e e e e e e 36
38 SUBROUTINE e e e e e e e e e 39
3.6 TABLEREFERENCING i e e e et 42
3.7 NOTES ON USING A BRANCHING INSTRUCTION AND A SUBROUTINE CALL
INSTRUCTION ... e e ettt e e et e et i 42
4. PROGRAMCOUNTER (PC) ...\ttt ie ittt se e sa e cencnanannanans 43
4.1 STRUCTURE ON APROGRAM COUNTER ittt it e e 43
4.2 FUNCTIONS OF APROGRAM COUNTER ... it e e et i i i i e 43
4.3 NOTES ON PROGRAM COUNTER OPERATIONttt ittt et e e e 47
5. STACK ... ittt et e i ainenns Chriearierrsssssseennstanaraans 48
5.1 STRUCTURE OF STACK ... et e et e e ettt 48
5.2 FUNCTIONS OF A STACK .. .o i i e e et e et 49
5.3 STACK POINTER (SP) . ..ot e e ettt e e et e e 50
54 ADDRESS STACK REGISTER (ASR) it i e e e et e e 51
5.5 INTERRUPT STACK REGISTER o i e e et e e et e e e 52
5.6 STACK OPERATION AT EXECUTION OF EACH STATEMENT (SUBROUTINE, TABLE
REFERENCE, AND INTERRUPT) e e e e e e e 53
5.7 STACK NESTING LEVEL, PUSH INSTRUCTION, AND POP INSTRUCTION 59
6. DATAMEMORY (RAM) ...ttt it it ittt s ee s aaa s ar s 61
6.1 STRUCTURE OF DATA MEMORY . ..ottt e e et e e e e 61
6.2 FUNCTIONS OF DATA MEMORY i e et 65
6.3 NOTESONUSING DATAMEMORY i e 70
7. GENERAL REGISTER (GR) .. it itiitiitii ittt ti ittt ee e e aneanens 72

7.1 STRUCTURE OF A GENERAL REGISTER . .. oottt i it et e i ittt e e et 72

7.2 FUNCTION OF AGENERAL REGISTER ...\ ittt e e 74
7.3 GENERAL REGISTER IN EACH INSTRUCTION AND DATA MEMORY ADDRESS

GENERATION AND OPERATION e e e e e e e, 74
7.4 NOTESON USING A GENERAL REGISTERt 80

NEC #PD17005
8. ALU (ARITHMETICLOGICUNIT)BLOCKttt ittt iiiinaennanan 85
8.1 STRUCTURE OF AN ALUBLOCK . . . oo it it e et e e 85
‘ 8.2 FUNCTION OF AN ALUBLOCK . ..ot e i i et e e e 87
8.3 ARITHMETIC OPERATION (ADDITION AND SUBTRACTION IN BINARY MODE OR
DECIMAL MODE) i e e et et et e e 93
8.4 LOGICAL OPERATION ... e et it e e e 105
85 BITCHECKING . . . oo i i ittt et et et e 108
8.6 COMPARISON CHECKING e e e et 109
8.7 ROTATION PROCESSING i i i it e e 112
9. SYSTEMREGISTER (SYSREG)ciiiiiiiiiiii ittt tnanarasnennasnens 114
9.1 STRUCTURE OF ASYSTEM REGISTER it 114
9.2 FUNCTION OF A SYSTEM REGISTER e 116
9.3 ADDRESSREGISTER (AR) e i e 117
9.4 WINDOW REGISTER (WR)t i e et et 121
95 BANK REGISTER (BANK) i e e e i et 123
. 9.6 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER (MP: MEMORY
POINTER) ... i i i i et e e e e 125
9.7 GENERAL REGISTERPOINTER (RP) o e 141
9.8 PROGRAMSTATUSWORD (PSWORD)t i i e it ea e 143
9.9 NOTESONUSING SYSTEM REGISTERS i i i 146
10. REGISTERFILE(RF) ..ottt it iia e itasianasransnannnns 149
10.1 STRUCTUREOF AREGISTERFILE e e 149
. 10.2 FUNCTIONOF AREGISTER FILE i i i i e i et e e 151
10.3 CONTROL REGISTERo i i i e et e e e 153
10.4 NOTESONUSINGAREGISTERFILE i e et e 160
11. DATABUFFER (DBF)ottt ittt iiiiieia e sa st asnasnarensnnsnnns 163
11.1 STRUCTURE OF ADATABUFFER e e e e s ‘163
11.2 FUNCTIONOF ADATABUFFER i i i i i e e 165
11.3 DATABUFFERAND TABLEREFERENCE i, 166
. 11.4 BUFFER DATA AND PERIPHERALHARDWARE i, 170
115 NOTESONUSING DATABUFFERS i e s 175
12. INTERRUPT .. ittt ittt nsasanr s sascasanassaaaanansansnsss 176
12.1 STRUCTURE OF AN INTERRUPT BLOCK i e 176
12.2 INTERRUPT FUNCTION i e e e e s 178
12.3° INTERRUPT ACCEPTANCE OPERATION i i 183
12.4 OPERATION AFTER ACCEPTANCE OF INTERRUPT i, 188
1256 RETURN PROCESSING FROM AN INTERRUPT PROCESSINGROUTINE 189
12.6 INTERRUPT PROCESSING ROUTINE i e 190
12.7 EXTERNAL (INTgPIN AND INT; PIN) INTERRUPT et 193
12.8 INTERNAL (TIMER, SERIAL INTERFACE 1, FREQUENCY COUNTER) INTERRUPT 197
129 MULTIPLE INTERRUPT i e i e e 197
12.10 NOTESON USING INTERRUPT i e 206

NEC #PD17005
13. TIMER FUNCTION ittt it e e ie e e e 208
131 CONFIGURATIONt e e e e e e e e 208
13.2 FUNCTIONS ..o e e e e s e 209
133 TIMERCARRY FLIP-FLOP. e e e e 211
134 CAUTIONS WHEN USING TIMER CARRY FLIP-FLOP oottt e 216
135 TIMER INTERRUPT ... e e e e e e e 222
13.6 CAUTIONS DURING TIMER INTERRUPTttt 226
T4, STANDBY ...ttt ittt ittt ittt et ate e atet s ntet s 230
14.1 STANDBY BLOCK CONFIGURATION . . . ottt ittt e e e ettt e e e 230
14.2 STANDBY FUNCTIONS .« .« oottt ittt e et e it e e ettt ettt e e e 230
14.3 DEVICE OPERATINGMODE USING CEPIN o oottt it e e et 231
144 HALT FUNCTIONS . .o it e e e et e e et e e e e e e 233
145 CLOCK STOP FUNCTION - - ¢ ottt e e et e e it et e e et e e e e e 242
146 DEVICE OPERATION IN HALT AND CLOCK STOPMODES « « « v v v v et i eeeee e e 245
14.7 POWER CONSUMPTION IN HALT AND CLOCK STOPMODES - - -+« v vt veeeeieee e 247
LT 1 - i 252
16,1 RESET BLOCK CONFIGURATION i, 252
16.2 RESET FUNCTION e e e e e e i 252
16.3 CE RESET ... 253
15.4 POWER ON RESET i e i e e e 257
155 RELATION BETWEEN CE RESET AND POWER ON RESET 260
16.6 POWER FAILURE DETECTION i 264
16. PLL FREQUENCY SYNTHESIZERcoiiitttttiiinanieteeennnnnnnereenns 2n
16.1 PLL FREQUENCY SYNTHESIZER CONFIGURATION\t 271
16.2 PLL FREQUENCY SYNTHESIZER FUNCTIONS i, 272
16.3 INPUT SELECTION CIRCUIT AND PROGRAMMABLEDIVIDER 0.\ u... 273
164 REFERENCE FREQUENCY GENERATOR e e e e e 278
16.5 PHASE COMPARATOR (¢-DET), CHARGE PUMP, AND UNLOCK DETECTOR CIRCUIT 280
16.6 LOW-PASS FILTER OPERATIONAL AMPLIFIER ' i, 284
16.7 PLLDISABLEMODE e e e e 285
16.8 USE OF PLL FREQUENCY SYNTHESIZERttt 286
16.9 STATE DURING RESET it e e 289
17. GENERAL-PURPOSE PORTiiitiiiiiiettt e eitiieiie s eeeennnnnnnns, 290
17.1 GENERAL-PURPOSE PORT CONFIGURATION AND FUNCTIONS 290
17.2 GENERAL-PURPOSEPORTFUNCTIONS e e 293
17.3 GENERAL-PURPOSE INPUT/OUTPUT PORTS (POA, POB, POC, ANDP1A) 297
17.4 GENERAL-PURPOSE INPUT PORTS (POD AND PID) . . . o\t v ottt et e e e e e e 302
17.5 GENERAL-PURPOSE OUTPUT PORTS (P1B,P1C,ANDP2A), 304
17.6 GENERAL-PURPOSE OUTPUT PORTS (POE, POF, POX,and POY)o oo 306
8

NEC «PD17005

18. A/DCONVERTER (ADC)t ittt ittt it et sannasansaasnnanssanansnnns 315

18.1 A/D CONVERTER CONFIGURATIONttt it 315

’ 182 A/DCONVERTER FUNCTIONS'innette ettt e 315
18.3 INPUT SELECTOR CIRCUITttt e e e e 316

184 COMPARISON VOLTAGE GENERATOR CIRCUIT\ttt 318

185 COMPARATOR CIRCUIT | ...ttt ettt ettt e e s 321

186 A/D CONVERTERPERFORMANCE\’ 322

18.7 USEOF A/DCONVERTER e e e e 323

18.8 CAUTIONSWHEN USING A/DCONVERTER |ttt 328

189 STATE DURING RESET ittt e et 328

19. D/ACONVERTER (DAC) ... ittt ittt et sansnssaannnassnnnnnns 329

19.1 D/A CONVERTER CONFIGURATION\ttt et ettt et e e eee e 329

19.2 D/ACONVERTER FUNCTIONSttt ettt e e e e e ...330

19.3 OUTPUT SELECTOR CIRCUITS . v\ttt et et e et e e e e e e e e e e 331

19.4 DUTY CYCLE SETTING CIRCUITS AND CLOCK GENERATORCIRCUIT 333

. 1956 STATE DURING RESET . o o\ vttt it e it et et et et e e e e et et 336
20. CLOCK GENERATORPORT(CGP)cvvtviiiiianreennnnnssnsnnssnnnnnnns 337

20.1 CLOCK GENERATOR PORT CONFIGURATION . ..\ ittvtte e eneneeeeeeenaenens 337

20.2 CLOCK GENERATOR PORT FUNCTIONSttt 337

20.3 OUTPUT SELECTOR CIRCUIT . .ottt ittt ettt et e et e 338

20.4 VDP/SG SETTING CIRCUIT AND CLOCK GENERATORCIRCUIT 340

205 USE OF CLOCK GENERATOR PORT . .. o\ vttt ettt e 346

. 206 STATE DURING RESETttt ittt ettt e et et et et 347
20.7 CAUTIONS WHEN USING CLOCK GENERATORPORTttt 348

21. SERIALINTERFACE ittt ittt stttanannensasnasnsssasannanns 349

21.1 SERIAL INTERFACE CONFIGURATION . . .ottt e etee et e et eaaeaens 349

21.2 OUTLINE OF FUNCTIONS OF SERIAL INTERFACEt iii it ii i iaeiaeeee e 350

21.3 CONFIGURATION OF SERIAL INTERFACE 1 (SIO1) .+« v v ti ettt aeaenns 351

21.4 OUTLINE OF FUNCTIONS OF SERIAL INTERFACE 1. ..ttt vttt einaen e, 353

‘ 215 SHIFT CLOCK AND SERIAL DATA INPUT/OUTPUT PIN CONTROLBLOCK 355
21.6 CLOCK GENERATION BLOCK .+ttt vttt et ettt e e e e i e i e 357

21.7 CLOCK COUNTER AND START/STOP DETECTIONBLOCKiiunrnnnnnnnnnn. 362

21.8 PRESETTABLE SHIFT REGISTER (PSR) . .ttt ottt it it e ee it eiieaaeenns 367

21.9 WAIT BLOCK AND ACKNOWLEDGE BLOCK .« .« v itititiiieei i enannens 3an

21.10 INTERRUPT CONTROL BLOCK .+« + s et et ee ettt et et e e e e e a e ae e 378

21.11 HOW TO USE SERIAL INTERFACE T+« « « e vt ot ettt e tee e e e i ineeannens 380

21.12 SERIAL INTERFACE 1 RESET STATUS .+« ettt vt ittt ettt ee i ianane e 391

21.13 CONFIGURATION OF SERIAL INTERFACE 2(SI02) « .« vttt eiiiataeieiaaeanenns 392

21.14 OUTLINE OF FUNCTION OF SERIAL INTERFACE 2t ttiiitiiiin e 393

NEC «PD17005

21.15 SHIFT CLOCK AND SERIAL DATA INPUT/OUTPUT CONTROL BLOCK

................. 394

21.16 CLOCK GENERATION BLOCK ittt e e e e e e e 396
21.17 CLOCK COUNTER ...ttt e e e e e e e 398
21.18 PRESETTABLE SHIFT REGISTER (PSR2)\ttt s et e e e e e e e e s e, 399

| 21119 WAITBLOCK .\ttt ettt et et e e e e e e e e e e e 402
21.20 USAGE OF SERIAL INTERFACE 2 ittt e e e e e s s s, 404
21.21 RESET STATUSOF SERIAL INTERFACE 2ottt et e e e e e i 407
22, FREQUENCY COUNTER (FC) .. vt vttt ittt tteeeetsesensaneneeneannnnns 408
22.1 CONFIGURATION OF FREQUENCY COUNTER ittt it ettt e e e e e e e 408
222 OUTLINE OF FUNCTION OF FREQUENCY COUNTERottt e e e e ii, 408
22.3 INPUT/OUTPUT SWITCH BLOCK AND GATE TIME CONTROLBLOCK 409
224 START/STOP CONTROL BLOCK AND IF COUNTERttt it et e eii 412
225 USAGE OF IF COUNTER FUNCTION e e e e e e s 419
226 USAGE OF FCG FUNCTIONottt it e e e e e e e e e e e e s 420
227 RESETSTATUS e e e e e et e et 421
22.8 PRECAUTIONS IN USING FREQUENCY COUN'!'ER 422
23. LCD CONTROLLER/DRIVERciiiiitiittinn i nnennnns e eeaaeaaa 424
23.1 CONFIGURATION OF LCD CONTROLLER/DRIVER\ttt 424
232 OUTLINE OF FUNCTION OF LCD CONTROLLER/DRIVER . ..ttt i et ot ea e, 424
23.3 LCD DOT REGISTER AND LCD GROUP REGISTER . . v v vt oot e et 426
234 OUTPUT TIMING CONTROL BLOCK AND SEGMENT/PORT SWITCHINGBLOCK 434
235 USAGE OF LCD CONTROLLER/DRIVER ... ittt et e e 440
23.6 RESET STATUS e e e s 442
24. KEY SOURCE CONTROLLER/DECODERcvvvvvvnennnnnnn Cerreeeraeeaan 443
241 CONFIGURATION OF KEY SOURCE CONTROLLER/DECODER - - - -+ + =t v vt vevnnnnnnnn 443
24.2 OUTLINE OF FUNCTIONS OF KEY SOURCE CONTROLLER/DECODER « - =+« v v v v vvvennn a44
24.3 KEY SOURCE DATA SETTING BLOCK « « « « ¢ v v et et ettt e et e et et e e e e e e 445
244 OUTPUT TIMING CONTROL BLOCK AND SEGMENT/PORT SWITCHINGBLOCK - -----... 447
245 KEY INPUT CONTROL BLOCK « - -ttt ettt ettt ettt it et et e e e e et e e 450
24.6 USAGE OF KEY SOURCE CONTROLLER/DECODER « + ¢ttt v ettt ieeenee e 452
24,7 RESET STATUS .« ittt ittt i et it st et et et e et e e e e s, e 460
25. pPD17005 INSTRUCTIONS ... ittt ittt et ttee e e e eeeeenrernannens 461
251 INSTRUCTION SET . . vttt ettt e e e e e e e e e e e e e e s, 461
25,2 LISTOF INSTRUCTIONS . . . i ittt i et e e e e e e e e e e, 462
25.3 ASSEMBLER (AS17K) BUILT-INMACRO INSTRUCTIONo, 465

10

NEC #PD17005

26. uPD17005 RESERVED WORDSttt iiiiiiiienaneannatnatastateanannns 466
26.1 LIST OF RESERVED WORDS . .+« « v oo ettt e et et e e e e e e e e e e e 466
27. ELECTRICAL CHARACTERISTICSttt ittt innttnnnsonssenssnansanss 474
27.1 ABSOLUTE MAXIMUM RATINGS (UNLESS OTHERWISE SPECIFIED, T,=25%2°C)........ 474
27.2 RECOMMENDED OPERATING CONDITIONS . . . o\ vt it eeeeeeeeeens 474

27.3 DC CHARACTERISTICS (UNLESS OTHERWISE SPECIFIED, T, = —40 to +85 °C,
Vop =45t055V) S 475

27.4 AC CHARACTERISTICS (UNLESS OTHERWISE SPECIFIED, T, = —40 to +85 °C,
VDD S4B 1055 V) o oottt e e 477
275 REFERENCE CHARACTERISTICS . ..ot vvtttnttttttte e e 477
28. PACKAGE DIMENSIONiiitiitiiiiitrettateraanssoneraassaasennnnns 478
29. RECOMMENDED SOLDERING CONDITIONScciiiirrrrtnnnnrnecannanenss 479
APPENDIX A DIFFERENCES BETWEEN uPD17003A AND uPD17005 480

APPENDIX B DEVELOPMENT TOOLcciiiiiiiiiiiiiiiennnennassnaananans 481

11

NEC

#PD17005

1. PIN FUNCTIONS

1.1 EXPLANATION ON EACH PIN FUNCTION

Pin No.

Pin symbol

Input/
Output

Output
mode

Pin name

Function

79
80

POC3
POC2
POC4
POCo

Input/
output

CMOS
Push-Pull

Port OC

4-bit general purpose output port. Can be
specified as an input or output port in 4-bit
units (group 1/0). Input/output is specified
by the POCGPIO register (address 27H) of a
register file.

The POC register (address 27H of BANKO) of
the port register is used for reading input data
and setting output data.

At Power On Reset, Clock Stop instruction
execution, or CE Reset, these pins are speci-
fied as input ports.

o O bW

POA3/SDA
POA2/SCL
POA1/SCK}
POAG/SO1

Input/
Output

N-ch

open drain
CMOSs
Push-Puli

Port OA

Used as a 4-bit general purpose input/output
port and also for serial interface.
A general purpose input/output port and
serial interface is switched by the SIO1MODE
register (address 08H) and SIO2MODE regis-
ter (address 02H) of the SIO1MODE register
of the register file.
(1) When the pin is used as a 4-bit general
purpose input/output port
The port can be specified as an input or
output port in bit units (bit 1/0).
Input or output is specified by the
POABIO register (address 35H) of the
register file.
The POA register (address 70H of
BANKO) is used for reading input data
and output data and setting the port
register. Since POA3/SDA, and POAo/
SCL pins are N-ch open drain output,
pull-up resistance is required in the ex-
ternal section.

(2) When the pins are used for serial inter-
face
Two types of serial interfaces are avail-
able, serial interface 1 and serial inter-
face 2 including Port OB (pin numbers 7
to 10).
Serial interface 1 and serial interface 2
can be used concurrently.
Two channels of a 2-wire system and 3-
wire system can be used for serial inter-
face 1 and one channel of a 3-wire
system can be used for serial interface 2.
When using serial interface 1, specify
pins from the SIO1MODE register of the
register file and when using serial inter-
face 2, specify pins using SIO2MODE
register. The function of each pin is
listed below.

12

«PD17005

Pin No. Pin symbol Input/ Output Pin name Function
Output mode
Pin name Function Operating
mode
Data
POA3/SDA input/
output 2-
Clock wire
POAo/SCL input/
output Serial
Clock inter-
POA1/SCK7 | input/ face 1
output
3-
POAQ/SO1 Data wire
output
Data
3 POA3/SDA Input } N-ch POB3/SI1 | out
4 POA>/SCL Output open drain
5 POA?/—S—C_KT P COMS Port OA L F:Iock
o POAQ/SOn } oechpul POB2/SCKy | input/
output Serial
Data 3-, inter-
POB1/S02 output wire face 2
POBg/Sla Pata
input
Since pins POA3/SDA and POA2/SCL are N-ch
open drain, Pull-Up resistance is required
externa‘lly.
At Power On Reset, Clock Stop instruction
execution, and CE Reset, all of these pins
are specified as input ports of general purpose
input/output ports. /
Used for 4-bit general purpose input/output
ports and also for serial interface
The SIOTMODE register (address 08H) or
SI02MODE register (address 02H) of the
register file are used for switching the func-
tion as general purpose input/output port to
serial interface or vice versa.
7 POB3/Slq (1) When using the pins as 4-bit general
8 POB2/SCKo Input CMOS Port OB purpose input/output ports
9 POB1/SO2 Output Push-pull The pins can be specified as input or
10 POBg/Slp output ports in bit units (bit 1/0).

Input or output is specified by the
POBBIO register (address 35H) of the
register file.

The POB register (address 71H of
BANKO) of the port register is used for
reading input data and setting output
data.

13

NEC

«PD17005

Pin No.

Pin symbol

Input/
Output

Output
mode

Pin name

Function

©

10

POB3/SI1
POB5/SCKy
POB1/S02
POBg/Slo

Input
Output

CMOS
Push-pull

Port OB

(2) When the pins are used for serial inter-
face
Two types of serial interface can be used
including Port OA (addresses 3 to 6),
serial interface 1 and serial interface 2.
See the explanation on Port OA for the
function of each pin.
At Power On Reset, Clock Stop instruc-.
tion execution, and CE Reset, all of
these pins are specified as input ports of
general purpose input/output ports,

1
12

INT4
INTo

Input

Interrupt

External interrupt request input pin.

An interrupt request is issued from the input
signal rising edge or falling edge of the input
signal added to the pin. A rising edge and a
falling edge can be specified by the INTEDGE
register (address 1FH) of the register file using
INTg pin and INT{ pin independently.

Even if an interrupt request is issued, interrupt
cannot be accepted unless it is permitted
(maskable interrupt).

Types of interrupt permission include permis-
sion of all the interrupts by the El instruction
and permission of the interrupt of each INTg
pin and INT1 pin. Permission of interrupt for
each pin is specified by the INTPM2 register
(address 2FH) of the register file.

When inierrupt is permitted and when an
interrupt request is issued, the interrupt is
accepted. When interrupt is accepted. When
interrupt is accepted, control of the program
is passed to address 0005H in the case of
interrupt by the INTq pin and address 0004H
in the case of interrupt by the INTq pin.
When interrupts for both INTg pin and INT1
pin are allowed and when interrupts for both
pins are issued, priority is given to the
interrupt by INTQ pin.

Even if an interrupt is not permitted, the
issuing of an interrupt request can be checked
using the INTREQ2 register (address 3FH) of
the register file, When an interrupt function

is not used, the input level of each pin can be
detected by the INTJDG register (address
OFH) of the register file, and the pin can be
used as a general purpose input port.

At Power On Reset, Clock Stop Instruction
execution, or CE Reset, the interrupt permis-
sion and interrupt requests are reset,

14

NEC «PD17005

X . Input/ Output
Pin No. Pin symbol P P Pin name Function

‘ OQutput mode
| Input pins for device operation selection

signal and reset signal. Device operation selec-

tion is to select the operation of the PLL
frequency synthesizer and standby status as
described below.
(1) Device operation selection
When the CE pin is at a High level, the
PLL frequency synthesizer section can be
operated.
When the CE pin is at a Low level, the
PLL frequency synthesizer section sets to
a Disable state {(operation prohibited)
automatically in the device internal sec-
tion. When the CE pin is at a Low level,
_ the operation of quartz oscillation cir-
. cuits in the internal section and CPU can
be stopped by executing a Clock Stop
instruction and data memory can be kept
under a low consumption current {15 uA
or less) (at CE pin = High level, the Clock
Stop instruction operates as the NOP in-
struction). At execution of a Clock Stop
instruction, the LCD controller/driver is

Chi et to a Display Off mode (LCDq-LCD2g,
13 CE Input - P set o a Display Off mode {LCDo-LCD29
Enable COMq, COM1 pin are Low level output)
‘ and general purpose input-output ports

(Port OA, Port OB, Port OC, and Port 1A)

are used as input ports.
(2) Reset signal input
‘ When the CE pin is changed from a Low

level to High level, the device is reset by
synchronizing with the Timer Carry FF
of the internal section (CE Reset).
When the device is reset, the program
starts from address 0. In this case, the

. general purpose input/output ports are
used as input ports. Since four types of
internal Timer Carry FF, 1,5, 160, and
250 ms can be selected, the time elapsing
from when the pin is changed from the
Low level to High level until the device is
reset can be selected. However, if a Clock
Stop instruction has been executed, the
device is reset about 100 ms after the CE
pin is changed to a High level.
This pin does not accept a Low level or
High level of less than 110-165 us to
prevent operation error due to noise.

18

NEC «PD17005

X 5 Input/ Output) .
Pin No. Pin symbol Pin name Function
Output mode

By using the CEJDG register (address
07H) of the register file, the input signal
level of this pin can be detected. In this
case also, the contents of the CEJDG

) register do not change at a Low level or
Chip

13 CE Input - High level of less than 110-165 us.
Enable

Shumit Trigger input with hysterisis
feature is used for this pin, Note that a
voltage higher than that of Vpp pin
must not be supplied at power connec-
tion.

Used as a 4-bit general purpose input/output

port and also as an external gate counter

(P1Ag/FCG pin).

The switching between the general purpose in-

put/output port and an external gate counter

is performed by the IFCMODE register

(address 12H) of the register file.

(1) When the port is used as a 4-bit general
purpose input/output port

The port can be specified as an input or
output port in bit units {bit 1/0).

Input or output is specified by the
P1ABIO register {(address 35H) of the
register file, The P1A register (address
70H of BANK 1) of the port register is
used for reading input data and setting

output data.
(2) When the port is used as an external

gate counter (FCG) (P1Ag/FCG pin)

The counter counts the time from one
Port 1A rising edge to the next rising edge of the
signal sent to the P1Ag/FCG pin. A
reference frequency (1 kHz, 100 kHz,
900 kHz) of the internal section is
counted by a 18-bit counter. The ex-
ternal gate counter is specified by the
IFCMODE register (address 12H) and
IFCCONT register (address 23H) of the
register file. The PIAQ/FCG pin must be
specified as the input port by the
P1ABIO register (address 35H).
Since the IFCMODE register and
IFCCONT register control the frequency
counter (P1D3/FMIFC and P1Do/
AMIFC pins) and a clock generator port

14 P1A3
15 P1Ay Input CMOs

16 P1A1 Output Push-Pull
17 P1Ag/FOG

(P1Bg/CGP pin) also, an external gate
counter, frequency counter, and a lock
generator port cannot be used concur-
rently. At Power On Reset, execution of
a Clock Stop instruction, and CE Reset,
all of these pins are specified for input

ports of the general input/output ports.

16

NEC #«PD17005

. . Input/ Output .
Pin No. Pin symbol P P Pin name Function
Output mode

‘ Used as a 4-bit general output port, D/A
converter (P1B9/PWMas, P1B2/PWM¢, P1B4/
PWNQg pins), and a clock generator port
{P1Bg/CGP pin).

The PWMMODE register (address 13H) of the
register file is used for switching the general

output port, D/A converter and a clock

generator port.

(1) When the port is used as a 4-bit general
purpose output port
The P1B register (address 71H of
BANK1) of the port register is used for
setting output data.

The pins PIB3/PWMa, PIB2/PWM1, and

. P1Bg/PWMg require Pull-Up resistance

. for N-ch open drain output.

(Resisting pressure 16 V Max.)

(2) When the port is used as a D/A converter
(PMW output) (pins P1B3/PWM3, P1B3/
PWM1, and P1B1/PWMp)

Each of pins P1B3/PWM3, P1B2/PWMq,

| and P1B1/PWMq can output an inde-

pendent signal. A pulse width modulation

18 P1B3/PWM .
19 P1 BS/PWMZ N-ch {PWM) method is used as the output
| ” o1 32 /PWM‘ Output open drain | Port 1B method, the frequency is 878.9 Hz (225
‘ 1 o .
kH d duty is 0.25/256-255.25
| . 21 P1Bo/CGP cMOS 2/256) and duty is 0.25/ /

256. (256 stages)

The duty must be set below the PWNMRO-
PWMR2 registers (addresses from O5H to
07H) via a data buffer,

Push-Pull

Function | Frequency Duty

0.25+X
D/A ———x100%

878.9 Hz 256
X converter
; ' ' X =0—255

These three pins are N-ch open drain

| output and the resisting pressure is 16 V
Max.

(3) When the port is used as a clock

| generator port (CGP) (P1Bg/CGP pin)

| The P1Bo/CGP pin is set to a CGP mode
by the PWMMODE register (address 13H)
and IFCMODE register {(address 12H) of
the register file. Two functions are
available for a CGP mode, VDP (Variable
Duty Pulse) and SG (Signal Generator).
The VDP function produces output in
64 stages, duty 2/67-65/67 at frequency

. 269 Hz.

17

NEC

«PD17005

Pin No.

Pin symbol

Input/
Output

Output
mode

Pin name

Function

18
19
20
21

P1B3/PWMy
P1Bo/PWM,
P1B1/PWMg
P1Bg/CGP

Output

N-ch
open drain

CMOS
Push-Pull

Port 1B

The SG function produces output by
dividing with the value of 4-130 (64
stages) using frequency 18 kHz as the
reference frequency.

Both the VDP and SG functions set data
as follows using the CGPR register
(address 20H) via a data buffer.

Function Frequency Duty

2+X

x 100 %
VvDP 269 Hz

X=0-63

18
—— kHz
SG 2(2+X) 50 %

X=0-63

At Power On Reset or execution of Clock
Stop instruction, these pins are specified as
general purpose output ports.

At Power On Reset, undefined data is output.
At execution of a Clock Stop instruction, the
value of the general purpose output port is
retained. At CE reset, the statuses (general
purpose output port, A/D converter, CGP)
which are set at that time are retained.

22
23
24
24

P1C3
P1Co
P1Cyq
P1Co

Output

CMOS
Push-Pull

Port1C

4-bit general purpose output port. Output
data is set via the P1C register (address 72H
of BANK1) of the port register.

At Power On Reset, undefined data is output.
At execution of a Clock Stop instruction or
CE reset, the value which was output
previously is kept.

26
27
28
29

P1D3/FMIFC
P1D2/AMIFC
P1D1/ADC4
P1Do/ADCo

Input

Port 1D

Used as a 4-bit general purpose input port,
frequency counter (pins P1D3/FMIFC and
P1D2/AMIFC), and also A/D converter (pins
P1D1/ADC1q and P1Dg/ADCp).
The IFCMODE register (address 12H) of the
register file is used for switching the general
purpose input port and A/D converter,
The ADCCH register (address 14H) of the
register file is used for switching the general
input port and A/D converter.
(1) When the port is used as a 4-bit
general purpose input port
The P1D register (address 73H of
BANK1) of the port register is used for
reading input data.

18

NEC

«PD17005

Pin No.

Pin symbol

Input/
output

Output
mode

Pin name

Input pin
Function

26
27
28
29

P1D3/FMIFC
P1Do/AMIFC
P1D1/ADC1q
P1Dg/ADCp

Input

Port 1D

(2)

When the port is used as a frequency
counter (P1D3/FMIFC and P1D2/
AMIFC)

Using the IFCMODE register of the
register file, pins P1D3/FMIFC and
P1D2/AMIFC can be used as frequency
test pins. The following frequencies can
be tested.

Input Input

Input pin
pute frequency oscillation

P1D3/FMIFC

5-15 MHz 03 Vpp

10.5-10.9 MHz | 0.06 Vo

P1D2/AMIFC

0.1-1 MHz 0.3 Vpp

0.44-0.46 MHz | 0.05 V.

As the test method, the frequency input
within the gate time (1 ms, 4 ms, 8 ms,
open) is counted by a 16-bit counter.
However, the value divided by 2 is
counted for the P1D3/FMIFC pin.

At termination of the test (when the
gate is closed), an interrupt request can
be issued.

These functions can be used at detection
of broadcast station by counting the
intermediate frequency. When the port
is used as a frequency counter, cut the
direct current section of the input signal
with a condenser because an alternate
current amplifier is used for input. The
pin which was selected is used as an inter-
mediate electric potential (about 1/2
Vpp). Pins which are not selected can be
used as a general purpose input port.

The alternate current amplifier must be
initialized by a program as required
because it is not set to Disabled (prohib-
ited state) even if the CE pin (pin number
13) is set to a Low level (if the amplifier
is operating, the current consumed may
increase the noise factor).

Since the IFCMODE register also
specifies an external gate counter (P1Ag/ .
FCG pin) and clock generator port
{P1Bg/CGP pin), the frequency counter,
external gate counter, and clock gener-
ator port cannot be used concurrently..

19

NEC

uPD17005

Pin No.

Pin Symbol

Input/
output

Output
mode

Pin name

Function

26
27
28

P1D3/FMIFC
P1D2/AMIFC
P1D1/ADCy
P1Dg/ADCq

Input

Port 1D

(3) When the port is used as an A/D con-
verter (pins P1D1/ADCq and P1Dg/
ADCq)

The port can be used as an A/D convert-
er of 6 bits by the ADCCH register
(address 14H) of the register file.

The A/D converter can use six channels
by switching pins POD3/ADCg to PODg/
ADCy (pin numbers from 75 to 78) in
addition to pins P1D{/ACD1 and P1Dgp/
ACDq.

A consecutive comparison type is used as
the conversion method and the reference
voltage is created by dividing power
supply voltage Vpp using the R string
method.

At Power On Reset or execution of a
Clock Stop instruction, all these pins are
specified as a general purpose input port,
At CE reset, the statuses (general purpose
input port, frequency counter, and

A/D converter) set at that time are
retained.

30
41

VpD1
VDb2

Power
supply

Device power supply pin

Voltage of 5 V = 10 % is supplied at opera-
tion of CPU and peripheral functions.

When only CPU is operating the voltage can
be reduced to 3.5 V.

When the CE pin (pin number 13) is at a Low
level and when a Clock Stop instruction is ex-
ecuted, oscillation of the quartz oscillator
stops and a data set backup state is set,
During the clock stop state, the voltage can be
reduced to 2.2 V. When the voltage rises from
0 V to 4.5 V or when the voltage rises to 4.5
V again after decreasing to a degree less than
3.5 V (less than 2.2 V at clock stop), Power
On Reset is performed for the device.

When Power On Reset is performed, the
peripheral circuits, system registers, and
register files are initialized and the program
starts from address 0. The time spent from
the voltage O V to 4.5 V must be within 500
ms. Resetting by a CE pin (CE Pin Reset) is
also available in addition to Power On Reset
described above for resetting a device.

Since the values of timer carry FF if the
register file differs between Power On Reset
and CE Reset, blackout can be detected by
detecting the timer carry FF. A voltage higher
than that of the Vpp pin must not be sup-
plied to all the pins other than Vpp pins
{(Vpp1 and Vpp2). In particular, care is
necessary when the Vpp pin and the CE pin
are started simultaneously.

20

NEC «PD17005

Pin No.

Pin Symbol

Input/
output

Output
mode

Pin name

Function

30
41

VDD1
VbbD2

Power
supply

Latch-Up may occur. The Vpp1 pin and
VpD2 pin must be connected to an electrical
potential.

The Vpp2 pin is used to supply power to
quartz oscillation circuits {(pins X and
XouT). error out circuits (pins EOg and
EO1), and low path filter circuits (pin
LPF)n). Pin Vpp1 is used for supplying
power to other sections.

31
32

VCOL
VCOH

Input

Local
oscillation
Low input

Local
oscillation
High input

Used for inputting local oscillation (VCO)
frequency of PLL.

A direct division method (MF mode) and
pulse swallow method (HF mode and VHF
mode) are available as division methods and
the method is specified by the PLLMODE
register (address 21H) of the register file, The
input pin, input frequency and division ratio
by each division method are as follows.

Division
method

Input
pin

Input
frequency
(MHz2)

Inpdt
voltage

Divi-
sion
ratio

Direct

VCOL

0.5—-30

03

division 2161

Pulse
swallow ([VCOL 5—40 03
(HF)

256—
216 -1

Pulse
swallow |VCOH
(VHF)

256—

9-150 | 03 | o

Since alternate current amplifier is used for
input of these pins, the direct current section
of the input signal must be cut using a con-
denser,

The pin specified by the PLLMODE register is
used as an intermediate electrical potential
{about 1/2 Vpp). Pins which are not specified
are pulled down in the internal section of the
device.

When PLL is disabled or when the CE pin is at
a Low level, these pins are pulled down in the
internal section of the device. At Power On
Reset or execution of a Clock Stop instruc-
tion, a PLL Disabled state is set. At CE reset,
the state specified by the PLLMODE register
is set.

33

GND

Ground

Ground pin of the device

21

NEC

«PD17005

Pin No.

Pin symbol

Input/
output

Output
mode

Pin name

Function

34
35

XouTt
XIN

" Qutput
Input

CMOS

Quartz
oscillator

Quartz oscillator connection pin Connects a
4.5 MHz quarts oscillator as shown below.

uPD17005

XouT XIN
34 35|

D 4.5 MHz quarts

oscillator

C1 c2
The values of C1 and C2 are determined by
the quartz oscillator which is used. When
the values of C1 and C2 are increased to
values which are too high, the oscillation ac-
tivation feature may deteriorate or current
consumption may increase. In general, the
adjustment range of a trimmer condenser for
oscillation frequency adjustment increases
when the oscillator is connected to the X
pin. However, the quartz oscillator which is
actually used, including oscillation stabilizer,
must be used for evaluation.
An oscillation frequency cannot be adjusted
accurately because of the problem at capacity,
etc., if a probe is connected to the XgoyT pin
or X|N pin.

Consequently, the frequency must be tested
while testing the LCD driving wave form (125
Hz) or VCO oscillation frequency.

Since the reference frequency of the timer of
the internal section or PLL is used by dividing
4.5 MHz, if the value is shifted from 4.5 MHz,
the values of the timer and reference frequen-
cy also shift in the same proportion.

36
37

EQg
EO4q

Output

CMOS
3 states

Error out

Used as charge pump output pins of a PLL
frequency synthesizer. When the value pro-
ducing by dividing the local oscillation (VCO)
frequency which is input to the VCOL pin
(pin number 31) or VCOH pin (pin number
32) is higher than the reference frequency, a
High level is output from these pins and when
the value is lower than the reference frequen-
cy,a Low level is output. When the values
match, floating occurs.

22

#PD17005

Pin No.

Pin symbol

Input/
output

Output
mode

Pin name

Function

36
37

EQp
EOq

Qutput

CMOSs
3 states

Error out

A PLL frequency synthesizer can be struc-
tured by adding output of these pins to VCO
(Voltage Controlled Oscillator) via LPF (Low
Pass Filter).

Either of the pins EOq and EO9 can be used
because the same signal is output.

At a PLL Disabled state, these pins are set
floating. That is, when the CE pin (pin
number 13) isat a Low level or at Power On
Reset, floating occurs.

The PLL frequency synthesizer can detect a
PLL unlocked state by the PLLULJDG regis-
ter (address O5H) of the register file, Four
types of time (0.5 us, 1 us, 2 us, and Disable)
can be selected as the delay time for detecting
the PLL unlocated state using the PLULDLY
register {address 15H) of the register file,

38

39

40

LPFIN
LPFouT

VLPF

Input

Output

N-ch
open drain

LPF
amplifier

Pins for a built-in CMOS operation amplifier
for LPF (Low Pass Filter).

Examples of an internal equivalent circuit of
each pin and application of circuit are shown
below.

uPD17005 '

EQg EOq LPFIN LPFouT VLPF

40| LPF power
supply

To FMVCO

Pull-Up resistance is required for the LPFoQuT
pin because of N-ch open drain output. The
resisting pressure is 16 V Max. A voltage
higher than that of the LPFgyT pin must be
supplied to the V_pg pin (16 V Max).

At a PLL Disabled State, the LPF N pin is
pulled up in the device internal section.

23

NEC

#PD17005

Pin No.

Pin symbol

Input/
output

Output
mode

Pin name

Function

42

P2Ag

Output

CMOS
Push-Putl

Port 2A

1-bit general purpose output port. Output
data is set via the P2A register (address 70H
of BANK?2) of the port register.

At Power On Reset, undefined data is output.
At execution of a Clock Stop instruction or
CE reset, the value which was output previ-
ously is kept.

a3

COM¢
COMg

Output

CMOS
3-value
output

Common

signal

Common signal output pins of the LCD con-
troller/driver.

The duty, bias, frame frequency, and driving
voltage of the LCD controller/driver are 1/2,
1/2,250 Hz, and Vpp respectively. Display
of up to 60 dots can be performed by the
matrix with pins LCDg/POYo/KSg-LCD2g/
POF3.

Three types of voltages, 0, 1/2 Vpp, and
Vpp are output from these pins.

The light of the dot from which a potential
difference of +Vpp is produced between
these pins and pins LCDg/P0Y(/KSqg-LCDog/
POF3 comes on. When a Display Off mode is
set by the LCDMODE register (address 10H
of the LCDMODE register of the register file),
a Low level is output at Power On Reset or
execution of a Clock Stop instruction.

At CE Reset, the state is kept if the mode is

a Display On mode.

45

49

52

53

59

74

LCD2g/POF3
|
LCD2g/POFg
LCD25/POE3
LCD292/POEQ
LCD21/P0Xg

LCD4g/POXo

LCD15/POY 5/
KS15

LCDg/POY/KSg

Output

CMOS
Push-Pull

LCD
segment
signal

Used for segment signal output (pins LCD2g/

POF3-LCDg/POY/KSq) of a LCD controller/
driver, key source signal output (pins LCDq5/
POY15/KS15-LCDg/POY/KSp), and also as
a general output port (LCD2g/POF3- LCDg/
POY@/KSp).

The LCDMODE register (address 10H) and

LCDPORT register (address 11H) are used for

outputting segment signals and key source

signals, and switching general purpose output
ports.

(1) When the pins are used for segment
signal output of a LCD controller/driver
(pins LCD29/POF3-LCDg/POYo/KSg)
The duty, bias, and frame frequency
(segment signal output 125 Hz) of a LCD
controller/driver are 1/2, 1/2, and 250
Hz respectively.

Display of up to 60 dots is enabled by
using a matrix of these segment signal
output pins, the COMq pin, and COM1
pin (numbers 43 and 44). The light of
the dot from which a potential differ-
ence of *Vpp is produced between
these segment signal output pins, and
COMg and COM1 pins comes on.

24

NEC «PD17005

. | Input/ Output
Pin No. Pin symbol P P Pin name Function
output mode

Display data of an LCD controller/driver
is set via LCD dot registers (addresses
60H to 6EH of BANKO).
Data can also be set by LCD group
registers (addresses O8H to OFH) via a
data buffer. A display On mode and
Display Off mode of a LCD controller/
driver is set by the LCDMODE register
of the register file. In Display Off mode,
these segment signal output pins output
a Low level. However, for pins which are
specified for a general purpose output
port by the LCDPORT register of the
register file, data of the output port is
output regardless of the display mode,
45 LCD2g/POF3 On or Off.

| | Sixteen pins from LCD15/P0Y 15/KS15
418 LCD2g/POFg to LCDQ/POY/KSq are also used for
key source signal output of a key matrix
49 LCDog/POE3 as described in (2) and an LCD segment

| signal and a key source signal can be
52 L.CD22/POEqg output concurrently.

CMOS Lco (2) When the pins are used as a key source

53 LCD21/P0Xg Output Push-Pull segment signal of a key matrix (pins LCD 15/

signal POY15/KS15-LCDo/POYg/KSg)

58 LCD1g/POXg Using the LCDMODE register of the
register file, sixteen pins from LCDq5/
LCD15/P0OY 15/ POY15/KS15 to LCDg/POYQ/KSq can
KS1g be used as a key source output signal.

A key source signal is output with a LCD

59

74 L.CDQ/POY/KSp segment signal in time sharing mode
(key source signal output time 220 us).
When a key source signal is used, pins
POD3/ADCs to PODg/ADC> (pin
numbers 75 to 78) are used as the return
signal input pins. Consequently, a key
matrix of 16 key sources and 4 key
input (up to 64) can be structured.

A key source signal is output every 4 ms.
Qutput data of a key source signal is set
by the KSR register (address 42H) via a
data buffer. When the LCD controller/
driver is in Display Off mode (segment
signal output = Low level) and when
these pins are specified for a general
purpose output port, a key source signal

is not output.

25

NEC uPD17005 -

Input/ Output
Pin No. Pin symbol ‘ P Pin name Function
output mode

(3) When the pins are used for a general ‘
purpose output port
Each pin can be specified for an output
port as listed in the following table using
the LCDPORT register (address 11H) of
the register file,

Pin . Port |Number
Pin name X
number name bit
45 LCDog/POF3
I | 45 LCD2gPOF3 Port
48 LCDog/POFq l | op | 4bits
48 LCD2g POFg
49 LCD95/POE3 49 | LcopsPEg |,
o
I | oE | 4bits
52 LCD492/POEq LcD 52 LCDo/POEG
Output cmos segment
53 LCD21/POXg Push-Pull sgmen 53 | LCD21/POXs |
signal | ox | 6ot
58 LCD16/POXq 58 | LCD1g/POXg
LCD15/POY 15/
59 LCD15/POY 15/ 59 KS15
Port
KS15 03 16 bits
' LCDo/POY(/
74 LCDp/POY/KSg 74 KSo

Port OF, Port OE, Port 0X, and Port OY
can be specified as general purpose output
ports individually. Pins which are not
specified for a general purpose output
port can be used as LCD segment signal
output pins.

Output data of each output port is set as
listed below.

26

NEC

«PD17005

Pin No. Pin symbol Input/ Output Pin name Function
output mode
Port
Name Setting output data
o POF register
(Address 6DH of BANKO)
Port OF Used also for the LCDD13
register of the LCD dot
register
® POE register
(Address 6BH of BANKO)
Port OE Used also for the LCDD11
45 LCDog/POF3 register of the LCD dot
|) register
a8 LCD2g/POFg e POXH and POXL registers
{Addresses 69H and 68H
49 LCD25/POE3 of BANKO)
l | Used also for the LCDD9
52 LCD22/POEg LeD Port 0X and LCDDS registers of
Output CMOS sigment the LCD dot register
53 LCD21/P0Xg Push-Pull signal e Set by the POX group
| | register (OCH) via a data
58 LCD4g/P0Xg buffer
LCD15/POY 15/ [Set. by a POY group
59 Port QY register (42H) via a data
KS1s
| l buffer
74 LCDg/POY/KSg ' . :
. At Power On Reset or execution of Clock
Stop instruction, all of these pins are speci-
fied for segment signal output and set to a
Display Off mode.
Consequently a Low level is output from all
these pins,
At CE Reset, the statuses (segment signal out-
put, key source signal output, and general
purpose output port) which are set at that
time are retained.
Used for a 4-bit general purpose input port
and also LCD segment key source signal return
input, and also A/D converter input. The
ADCCH register (address 14H) of the register
file is used for switching the general purpose
75 POD3/ADCs port a'nd A/D converter.
76 POD,/ADC,, (PuII-Do.wn Tr‘\e pins PODg/Al?Cg, to PODg/ADC2 con-
Input Input with Port 0D tain pull-down resistance so that they can be
7 POD1/ADC3 resistance) used as key return signal input pins of a key
78 ‘PODg/ADC2

matrix.

(1) When the pins are used for general
purpose input ports
Input data is read via the POD register
(address 72H of BANKO) of the port
register.

27

NEC

#PD17005

Pin No.

Pin symbol

Input/
output

Output
mode

Pin name

Function

75
76
77
78

POD3/ADCs
POD,/ADC4
POD1/ADC3
PODo/ADC2

Input

(Pull-Down
Input with
resistance)

Port OD

When pins are used for a general input
port, the built-in pull down resistance is
always set to ON.

(2) When the pins are used for key source
signal return input of an LCD segment
When an LCD segment pin is used for
key source, the built-in pull down
resistance is set to ON only during out-
put of a key source signal (220 us) and
the resistance is set to OFF during out-
put of an LCD segment signal,

The signals which were input to these
pins during output of key source signals
are fetched as key input data. Conse- .
quently, these pins must be used when a
LCD segment signal output is used as the
key source signal.

(3) When pins are used as an A/D converter
By the ADCCH register (address 14H) of
the register file, the port can be used as
a 6-bit A/D converter. A consecutive
comparison method by a program is
used as the A/D converter conversion
method and the reference voltage is
created by dividing power supply voltage
Vpp using the R string method.

An A/D converter can be used by switch-
ing six channels, pins P1D1/ADC1{ and
P1Dg/ADCq (pin numbers 28 and 29} in
addition to pins from POD3/ADCg to
POD@/ADC37. The channel used is speci-
fied by the ADCCH register of the
register file,

The other five channels which are not
specified for the A/D converter can be
used as a general purpose input port,
For the built-in pull-down resistance,
only the pin which was set is set to OFF
when it is set to A/D converter input by
the ADCCH register.

At Power On Reset or execution of a Clock

Stop instruction, the pins are specified for a

general purpose input port.

At CE Reset, the status (general purpose

input port, LCD segment key source, return

input, and A/D converter) which are set at
that point are retained.

28

NEC «PD17005

1.2 NOTES ON USING A GENERAL PURPOSE PORT

1.2.1 Port Register Data Set

The port registers (registers POA to P2A) on data memory are used for reading input data or setting output data
of each of the ports, Port OA, Port 0B, Port OC, Port OD, Port 1A, Port 1B, Port 1C, Port 1D, and Port 2A.

In this case, the POA3 pin of Port OA corresponds to the highest bit of port register POA and the POAg pin
corresponds to the lowest bit.

These apply also to Port 0B, Port OC, Port OD, Port 1A, Port 1B, Port 1C, Port 1D, and Port 2A. Output data
of Port OE, Port OF, Port 0X, and Port QY is set by the LCD group register via the LCD dot register or a data buffer
on the data memory.

1.2.2 Input/output Ports (Port OA, Port 0B, Port OC, and Port 1A)

(1) When each port is specified as an input port

By executing an instruction (the address of the port register is specified for m of SKT m, #i, or ADD r, m) for
reading the contents of each port register in the data memory, the status of each port pin is used as the value of the
port register.

When an instruction (specified for r of MOV m, #i or ADD r, m) for writing data to each port register is exe-
cuted, the value is written to the output data latch circuit.

(2) When each port is specified as an output port

When an instruction for writing data to each port register is executed, the value is written to the output data latch
circuit and is output from each pin.

When an instruction for reading the contents of each port register is executed, the content of output data latch
are used as the value of the port register. However, for pins POA3/SDA and POA2/SCL, the pin status is read as it is
when the contents of the port register are read and the status may be different from the output data.

At Power On Reset, CE Reset, or execution of a Clock Stop instruction, all of these pins are set for input ports.

Since the contents of the output data latch circuit are undefined at Power On Reset, a Write instruction must be
executed for the port register before setting data to the output port. Otherwise, undefined data is output. At CE
Reset or execution of a Clock Stop instruction, the contents of the output data latch circuit do not change.

1.2.3 Output Ports (Port 1B, Port 1C, Port OF, Port OE, Port 0X, and Port 0Y)

An output port is used for writing the value of the port register to the output data latch circuit by executing an
instruction for writing data in a port register and outputting data from each pin.

When a Read instruction is executed for a port register value, the port register value is set as the status of the
output data latch circuit.

At Power On Reset, undefined data is output.

At CE Reset, the previous output data is kept at execution of a Clock Stop instruction. However, Port OE,
Port OF, Port 0X, and Port OY output a Low level automatically at Power On Reset and at execution of a Clock
Stop instruction.

29

NEC ~#PD17005

1.3 PIN EQUIVALENT CIRCUITS

1.3.1 POA (POA,/SCK7, POA(/SO4)
POB (POB3/Slq, POB,/SCK, POB1/SO,, POBg/SI)
POC (POC3, POC,, POC, POCq) (*1)
P1A (P1A3, P1A,, P1Aq, and P1Ag)

e

_I

(Input/output)

I__

|__
I__

1.3.2 POA (POA3/SDA and POA,/SCL) (Input/output)

*1: The RESET signal is not provided to POC.

VDD

_|
__I

?I—

(Output)

1.3.3 P1B (P1By/CGP)
P1C (P1C3, P1C,, P1C4, and P1Cg)
P2A (P2Ag)
LCD/POY/KSg to LCD2g/POF 3

VoD

30

~PD17005

 NEC

1.3.4 P1B (P1B3/PWM,, P1B,/PWM;, and P1B;/PWM) (Output)

o
I

1.3.5 POD (POD3/ADCg, POD,/ADC,4, POD1/ADC3, and PODg/ADC3) (Input)

VoD

A/D converter

_I
_l

| High on resistance

1.3.6 P1D (P1D4/ADC4 and P1Dg/ADCyp) (Input)

VDD
! A/D converter
o)

1.3.7 P1D (P1D3/FMIFC, and P1D5/AMIFC) (input)

General port

VDD Hngh on resistance
VDD

—4FT—I
. =

I O :I- Frequency counter
‘ EJ“E

31

NEC

~PD17005

1.3.8 CE

INTo

INT, (Schumit Trigger Input)

1.3.9 Xour (Output) and X (Input)

VoD _L High on

—— { ﬂ resistance VoD

—E3E |
_I

X1x © — Internal clock

High on
resistance _L
XouT O TJE
T

1.3.10 EO,4 (Output)
utpu
EOQp P
VDD

32

NEC «PD17005

1.3.11 LPF N (Input), LPFouT (Output), and VLPE

\ VLPF

l_

Hox | E\l ? LPFouT
1=
o /

1.3.12 COM,
coMm,

} (Output)

° | E
? b

1.3.13 VCOH
VCOL

|_

H|gh on resistance

ngh on resistance

T T | T 7T

} (Input)

VDD —L High on
— resistance

T
—EAF
O
1 —E=
@ -
High on
resistance b

33

NEC «PD17005

2. BLOCK DIAGRAM

[—‘ .
1/16 Swallow .
- EOQ
VCOH O——‘q gl 117 I Counter | —3 EOy
Programable N :
Phase ———O-COMg

vcoL O Divider ———Ocomy
Detector
ﬁ : ———O LCDg/POY/KSp
CPU Clock 12 4 : ——O LCD1/POY1/KSq
oe ————O LCD,/POY4/KS;
I Latch ' Lep [—° Lcba/Poya/Ksg
! :: Driver| | |
————O LCDy4/POEo
XN Divider Selector —=Timer —O LCDy5/POE3
16 ——O LCD4g/POFg
XouT O — O LCDy7/POF4
O LCD2g/POF,
j E LCD2g/POF3
_J—1
] Poa < >
RF 172 Jjog@r-——o P1D3/FMIFC
POAG/SO1 O- : <): IF —AMWA
POA{/SCK1 O RAM Counter
POAR/SCL O 432 x 4 bits OP1D2/AMIFC
POA3/SDA o Serial 1/0 <1:> »
POB/Sly 3 SYSREG |
POB1/S05
POB2/SCK3 < > P1D
POB3/Sl ' rl: \‘ [
—
L] i > ALU :> ‘ O P1Dg/ADCq
POB P1D1/ADC,
/ <:> A/D g POD@/ADCy
' POD1/ADC
Converter 1 3
- POD2/ADC4
Instruction O POD3/ADCs
POCo O— : Decoder
POCy O < >
POC2 O Poc 4T -
POC3O— <r_‘:> POD [
P1AQ/FCG O—] <’: ROM
P1A1O 7932 x 16 bit
P1Ay O P1A < > e

P1ag . <:> caP O P1Bg/CGP ‘
| | D/A —O P181/PWMg : ‘
< e— (— P S P16y /P
1 PIC < Program Counter Converter P1B3/PWM,

|

P1Cy O— ‘
P1C3 O—— ﬁ ‘
r—" <:> P18 |

P2Ag O—— P2A |

7 x 13 bits

VDD2O Interrupt I, INTO
Vpp1 O——1 Reset |—— Control [0 INT}

CEO—— || |
GND O VLpF
» O LPFouT

34 O LPF|N

-

NEC

«PD17005

3. PROGRAM MEMORY (ROM)

Program memory contains “‘programs’’ executed by CPU and “constant data’” which is predefined.

3.1 STRUCTURE OF PROGRAM MEMORY
Fig. 3-1 shows the structure of program memory.

As shown in Fig. 3-1, program memory consists of 7932 steps x 16 bits.

“Addresses’ are assigned to program memory in 16-bit units and addresses comprise those from 0000H to
1EFBH. The memory space is divided into three pages: page O is from 0000H to 07FFH, page 1 from 0800H to
OFFFH, page 2 from 1000H to 17FFH, and page 3 from 1800H to 1EFBH.

Fig. 3-1 Structure of program memory

Program memory (ROM)
Address .
b15|b14lb13|b12|b11|b10| bg [bg | b7 b6] b5| b4] st b2| by | bg
0000H 16 bits
Page O
07FFH
0800H [T
Page 1
OFFFH
j000H [T
Page 2
17FFH
1800H | T
Page 3
1EFBH

7932 steps

35

NEC ©wPD17005

3.2 PROGRAM MEMORY FUNCTIONS
The following two major functions are provided by program memory.

(1) Storing programs.
(2) Storing constant data.

A program is a collection of “instructions’” which operate CPU (Central Processing Unit: controls a micro con-

troller) and CPU executes processing sequentially according to the “instructions’” written in the program. That is,
‘ CPU reads "instructions’ sequentially from the program stored in the program memory and executes processing

according to each “‘instruction”’.

Since an “instruction” is a “one-word instruction’’ of 16-bit length, one instruction can be stored in each address
of the program memory.

Constant data is predefined data such as display pattern. Constant data in the program memory can be read into
a data buffer (DBF) of the data memory (RAM) by using the MOVT instruction, which is a dedicated instruction.
The reading of constant data in the program memory is called “‘table referencing’’.

sequently, the program memory and ROM (Read Only Memory) are used synonymously.

3.3 PROGRAM FLOW

A program stored in the program memory is executed in address units from address 0000H. To execute a dif-
ferent program step according to the condition, the program flow must be branched. In this case, a branch instruc-
tion (BR) is used.

When the same program is to be executed repeatedly, the efficiency of the program memory deteriorates if
many copies of the same program are used. In this case, by storing the program in one section and calling the pro-
gram using the CALL instruction, the program can be executed repeatedly.

Since the program memory is Read Only Memory, the contents cannot be rewritten by an “instruction’’. Con-

This program is called a “‘subroutine’””. Programs which are executed normally as opposed to subroutines are
called ““main routines”.

To execute a program when a condition is satisfied regardless of the program flow, an interrupt function is used.
When the condition is satisfied, the interrupt function can branch control to the predetermined address (called a
vector address) regardless of the current program flow.

The program flow which was described above is controlled by a program counter (PC) which specifies the
addresses of the program memory.

3.4 PROGRAM BRANCHING

A branch instruction (BR) is used for branching control to a program.

Fig. 3-2 shows the operation of a branch instruction.

Two types of branch instructions (BR) are available, direct branch instruction (BR addr) which directly branches
control to the specified program memory address (addr), and indirect branch instruction (BR @AR) which branches
control to the program memory address specified by the contents of the address register (AR).

See 4, “Program Counter (PC)"’ also.

3.4.1 Direct Branching

A direct branch instruction specifies a program memory address of the branching destination using 13 bits; the
two low-order bits of the operation code and 11 bits of the operation of the instruction. Consequently, the branch-
ing addresses of the direct branch instruction are all of the addresses of the program memory, 0000H to 1EFBH.

36

o

NEC uPD17005

3.4.2 Indirect Branching

An indirect branch instruction specifies the address of the branching destination according to the 13-bit data of
the address register. Consequently, the branching destination addresses of an indirect branch instruction are limited
to those from 0000H to 1EFBH.

See Section 9.3, ““Address Registers”’.

3.4.3 Notes on Debugging

As shown in Fig. 3.2, the operation code used for a direct branch instruction differs depending on the page:
page O {(addresses 0000H to 07FFH), page 1 (addresses 0800H to OFFFH), page 2 (address 1000H to 17FFH), and
page 3 (address 1800H to 1EFBH). .

The operation code for direct branch instruction to page 0 is “OCH’’ and the operation code to page 1 is “‘ODH".
The operation code for page 2 is “OEH’’ and the operation code for page 3 is “OFH".

This is because the two low-order bits of the operation code is used as the branching destination address as there
are only 11 bits of the operand “‘addr’’ of a direct branching instruction.

The operation code is converted automatically by referencing the jump destination specified by the label by the
Assembler if Assembler (AS17K) of 17K series is used at assembling.

When patch modification is performed at debugging, the programmer must determine the page number 0, 1, 2,
or 3 as the branch destination, and specify OCH, ODH, OEH, or OFH as the operation code corresponding to the
page number.

For instance, to perform patch modification of address 0900H of BBB to address 0910H in (1) of Fig. 3-2, enter
“0D110" as the machine code of the “BR BBB'’ instruction.

37

NEC

#PD17005

38

Address

0000H

0500H

0800H

0900H

OFFFH
1000H

1200H

17FFH
1800H

1B800H

1EFBH

Fig. 3-2 Operation of a branch instruction and machine codes

(a) Direct branching (BR addr)

Program memory

CCC:

BBB:

DDD:

Label: Instruction (Machine code)

BR AAA (0C500)
BR BBB (0D100)
BR CCC (0E200)
BR DDD (0F300)

Operation code

BR AAA (0C500)

BR BBB (0D100)

Page 3

{b) Indirect branching (BR @AR)

Address

0000H
0010H
0085H

0500H

0800H

OFFFH
1000H

17FFH

1800H

1EFBH

Program memory

MOV ARO, #5H
MOV AR1, #8H
MOV AR2, #0H
MOV AR3, #0H
BR @AR

MOV ARO, #0H
MOV AR1, #1H
MOV AR2, #0H
MOV AR3, #0H
BR @AR

Page 3

NEC | #PD17005

3.5 SUBROUTINE
A subroutine call instruction (CALL) and subroutine return instructions (RET and RETSK) which are dedicated
. instructions are used for subroutines.

Fig. 3.3 shows operation of subroutine call.

Subroutine call instructions include a direct subroutine call instruction (CALL addr) which calls the program
memory address (addr) specified by the operation of the instruction, and a direct subroutine call instruction (CALL
@AR) which calls the program memory address specified by the contents of the address register.

The RET instruction and RETSK instruction are used for return instructions from a subroutine. By executing the
RET or RETSK instruction, control can be passed to the program memory address following the address from which
the subroutine call instruction (CALL) was executed. In this case, the RETSK instruction executes the first instruc-
tion as a No Operation (NOP) instruction.

See also 4, “Program Counter (PC)"”.

3.5.1 Direct Subroutine Call
A direct subroutine call specifies a program memory address as the call destination using an instruction operand
of 11 bits. Consequently, when a direct subroutine call is used, the calling address, that is, the first address of the
‘ subroutine must be set within page 0 (addresses from 0000H to O7FFH). The subroutine whose first address is
stored in page 1, 2, or 3 cannot be called.
‘However, a subroutine return instruction (RET or RETSK) can be put in page 1, 2, or 3. The CALL instruction
can be stored in any page 0, 1, 2, or 3.

Example 1:

When a return instruction from a subroutine is stored in page 0.

As shown in Fig. 3.4, if the first address of the subroutine is in page 0, the return instruction can also be stored
| ‘ either in page O or page 1.

As long as the first address of the subroutine is in page 0, the CALL statement can be used without page con-

cept.

However, when the first address of the subroutine cannot be stored in page 0, the technique described in Example

2 is useful.

Example 2:
When the first address of the subroutine is stored in page 1.

| . As shown in Fig. 3.4, a branch instruction (BR) is set in page 0 and the actual subroutine (SUB1) is called via the
BR instruction.

3.5.2 Indirect Subroutine Call

An indirect subroutine call instruction (CALL @AR) specifies the address of the subroutine call destination from
the 13-bit data of the address register (AR). Consequently, program memory addresses from 0000H to 1EFBH can
be called by an indirect subroutine.

See Section 9.3, “‘Address Register (AR)"".

39

NEC uPD17005

Fig. 3-3 Operation of a subroutine call instruction

(a) Subroutine call (CALL addr) (b) Indirect subroutine call (CALL @AR) .
Address Program memory Address Program memory
0000H | Label: Instruction ‘ 0000H | Label: Instruction

CALL SUB1 0010H | ['g2:
0085H .
SUB3: RET

0500H || SUB1: MOV ARO, #0H
MOV AR1, #1H
MOV AR2, #0H

RET MOV AR3, #0H

CALL @AR

07FFH Page O 07FFH Page O

0800H 0800H

CALL SUB1 MOV ARO, #5H

MOV AR1,#8H
MOV AR2, #0H
MOV AR3, #0H
CALL @AR

OFFFH Page 1 : OFFFH " Page 1

1000H | 1000H

17FFH Page 2 17FFH Page 2

1800H 1800H

1EFBH Page 3 1EFBH Page 3

40

NEC

«PD17005

Fig. 3-4 Subroutine call instruction utilization examples

(a) When the subroutine return instruction
is stored in page 1

Address

0000H

0500H

07FFH

0800H

OFFFH

1000H

17FFH

1800H

1EFBH

Program memory

Labei: Instruction
CALL SuB1

SUB1:

CALL SUBt

Page 2

Page 3

(b) When the first address of the subroutine
is stored in page 1

Address Program memory
0000H | Label: Instruction

CALL suB1

SUB1: BR suB2

07FFH Page O
0800H
0890H SUB2:

RET

CALL SUB1
OFFFH Page 1
1000H
17FFH Page 2
1800H
1EFBH Page 3

41

NEC «PD17005

3.6 TABLE REFERENCING

Table referencing is used when constant data in program memory is referenced. When the MOVT DBF or @AR
instruction is executed, contents of the program memory address specified by the address register are stored in the
data buffer (DBF).

Since the contents of the program memory consist of 16 bits, the constant data stored in the data buffer by the
MOVT instruction consists of 16 bits (4 words). Since the address register consists of 13 bits, the program memory
addresses from 0000H to 1EFBH can be referenced by the MOVT instruction.

When table referencing is performed, one level of stack is used.

See Section 9.3 ““Address Register” and Section 11.3, “Data Buffer and Table Referencing”.

3.7 NOTES ON USING A BRANCHING INSTRUCTION AND A SUBROUTINE CALL INSTRUCTION

If a direct program memory address (address by a numeric value) is specified as the operand of a branch instruc-
tion (BR) or subroutine call (CALL), an error occurs when Assembler (AS17K) of 17K series is used as shown in
Example 1.

This is incorporated in Assembler to reduce the debugging necessary at program fix, etc.

Example 1:
When an error occurs

;@

BR 0005H . ; An error occurs at Assembler
E)

CALL OOFOH ;
Example 2:

When an error does not occur
LOOP1: ; Alabel is used in the program and the BR or CALL instruction is executed
BR LOOP1 ; using the label.

SUB1: H
CALL suB1 ;
; ®

LOOP2 LAB 0005H ; O0O005H is allocated to LOOP2 as the.label type.
BR LOOP2 ;
; ®

BR.LD. 0005H ; The numeric value of the operand is converted to the label type.
; This method is not recommended for reducing debugging factors.

Refer to the AS17K User’s Manual for details.

42

NEC

xwPD17005

4. PROGRAM COUNTER (PC)

A program counter specifies a program memory address.

4.1 STRUCTURE OF A PROGRAM COUNTER

A program counter consists of a binary counter of 13 bits as shown in Fig. 4-1.

Fig. 4-1 Structure of a program counter

MSB

LSB

PCq2 PCq1 PCi0 PCg

PCg PCy PCg

PCg

PCyq PC3 PCo

PCy | PCo

4.2 FUNCTIONS OF APROGRAM COUNTER

As shown in Fig. 4-2, a program counter specifies the address of the instruction which is to be executed, or
constant data which is to be used by a number of instructions, or constant data item written in the program

memory.

Normally, the value is incremented by one whenever an instruction is executed. When a branching instruction
(BR), a subroutine call instruction (CALL), a return instruction (RET, RETSK, or RETI), or a table referencing
instruction (MOVT) is executed or when interrupt is accepted, the specified value is stored and the instruction at

the address is executed.

Sections 4.2.1 to 4.2.6 describe the operation of a program counter when each statement is executed.

Fig. 4-2 Functions of a program counter

Program counter
(PC)

13 bits

Program memory

Address (ROM)
O00H Instruction
X Instruction or
constant data
1EFBH Instruction or

constant data

43

NEC «PD17005

4.2.1 Execution of a Branch Instruction

Branch instructions include a direct branch instrqction (BR addr), which directly specifies a branch destination,
and an indirect branch instruction (BR @AR), which specifies the destination according to the contents of the
address register (AR).

For a direct branch instruction {BR addr), the value specified by the operand (low-order 11 bits) of the instruc-
tion is stored as shown in Fig. 4-3. In this case, although there are only 11 bits for the operand of the instruction,
the entire program memory area (0000H to OEFBH) can be used for direct branching because the low-order 2 bits
of the operation code (high-order 5 bits) of the instruction correspond to bit 11 (bq1) and bit 12 (bq3) of the
program counter. The low-order 2 bits of the operation code of the instruction is determined by Assembler (AS17K)
automatically.

For an indirect branch instruction, the contents of the address register described later are stored as shown in Fig.
4-3. In this case, addresses 0000H to 1EFBH of the program memory can be used for indirect branching.

4.2.2 Execution of a Subroutine Call Statement (CALL) and a Subroutine Return Statement {RET or RETSK)

Subroutine call instructions include a direct subroutine call instruction (CALL addr), and an indirect subroutine
call instruction (CALL @AR), which specifies the call destination according to the content of the address register
(AR) and which is described later. .

At execution of a direct subroutine call instruction (CALL addr), the value specified by the operand of the
instruction is stored as shown in Fig. 4-3. Since the high-order 2 bits of the program counter is set to 0 in this case,
addresses 0000H to 07FFH of the program memory can be called by the direct subroutine call instruction.

As shown in Fig. 4-3, at execution of an indirect subroutine call instruction (CALL @AR), the content of the
address register which is described later is stored. In this case, addresses from 0000H to 1EFBH of the program
memory can be called by the indirect subroutine call instruction.

At execution of a subroutine return instruction (RET or RETSK), the content of the address stack register
(ASR) specified by the stack pointer (SP) is stored. That is, the return address from the subroutine is stored.

4.2.3 Execution of a Table Reference Instruction {MOVT)

As shown in Fig. 4-3, the contents of the address register are stored when a table reference instruction (MOVT
DBF, @AR) is executed. A table reference instruction calls the contents (16 bits) of the program memory in the
address specified by the address register to a data buffer. At this time, addresses 0000H to 1EFBH of the program
memory can be accessed for table reference.

A table reference instruction also stores the address following the table reference instruction execution address
in the program counter after calling the contents of the memory. By this operation, program control is passed to
the address following the table reference instruction. In this case, caution is necessary because one level of stack
is used. Two instruction cycles (8.89 us) are required for execution of one table reference instruction.

4.2.4 Acceptance of Interrupt and Execution of an Interrupt Return Instruction (RETI instruction)

When interrupt is accepted, the vector address specified by each interrupt is stored in the program counter as
shown in Fig. 4-3. Table 4-1 lists vector addresses for each interrupt.

When an interrupt return instruction (RETI) is executed, the contents of the address stack register specified by
the stack pointer which is described later are stored in the program counter. That is, the return address from inter-
rupt processing is stored.

See 12, “Interrupt’ also.

44

NEC | «PD17005

4.2.5 Execution of a Skip Instruction

At execution of a Skip instruction (SKT, SKF, or SKE instruction), the address following the Skip instruction
is stored in the program counter regardless of the contents of the skip condition. At execution of a subroutine return
skip instruction (RETSK) also, the contents of the address stack register (ASR) specified by the stack pointer are
stored in the program counter.

In this case, if the instruction which was executed is to be skipped according to the condition (and always in the
case of RETSK), the instruction following the skip instruction is executed as a No Operation (NOP) instruction.
Consequently, the same number of instructions are executed even if the following instruction is skipped when a
Skip instruction is executed. i

4.2.6 Resetting

At Power On Reset (Vpp = Low —> High) or CE Reset (CE = Low —> High), the contents of the program counter
are reset to 0000H. Consequently, the program is executed from address O in this case.

At execution of a Clock Stop instruction (STOPs instruction), the program stops at the address where the instruc-
tion was executed. Since the Clock Stop instruction is released when the CE pin is changed from Low to High, the
program is executed from address O after Clock Stop is released. A Clock Stop instruction is accepted only when
the CE pin is at a Low level, and when the CE pin is at a High level, a No Operation Instruction (NOP) is used.

See 15, ““Resetting’’ also.

Fig. 4-3 Specifying a program counter in each instruction

Program counter Contents of the program counter

Instruction bi2 | b11|b1o| bg | bg | b7 | bg | bs | bg | b3 | ba | b1 | bo

BR addr SRR AR SR Operand of the instruction (addr)

CALL addr 0 0 Operand of the instruction (addr)
BR @AR
CALL @AR Contents of the address register

MOVT DBF, @AR

RET Address stack register specified by the stack pointer (SP)

RETSK)

RETI {Return address)
When interrupt is accepted Vector address of each interrupt

Power On Reset or CE Reset 0 0 0 0 0 0 0 0 0] 0 0 0 0

45

NEC #PD17005

Table 4-1 Interrupt vector addresses

Sequence Interrupt factor Vector address
1 INTg pin 0005H
2 INT4 pin 0004H
3 Timer ~ 0003H
4 Serial interface 1 0002H
5 Frequency counter 0001H

46’

NEC | ' #PD17005

4.3 NOTES ON PROGRAM COUNTER OPERATION -
As described before, a program counter specifies a program memory address. Addresses 0000H to 1EFBH are
. available for program memory while addresses which can be specified by a program counter are 0000H to 1FFFH.

This is because a program counter consists of 13 bits.

In this case, if the last address (address 1EFBH) of the program memory is neither a branch instruction (BR)
nor a return instruction (RET, RETSK, or RETI), program memory does not exist in the following address (address
1EFCH) specified by the program counter.)

Since the contents of the addresses where program memory does not exist (addresses from 1EFCH to 1FFFH)
are ‘“undefined’’ as shown in Fig. 4-4, the instruction cannot be executed correctly.

Therefore, the following points must be noted.

(1) When the value of the program counter is 1EFBH, that is, when an instruction is written in 1EFBH, the
instruction must be a branch instruction (BR).

(2) An instruction which causes the program counter to reach a value between 1EFCH and 1FFFH, that is, an
instruction which branches control to an address between 1EFCH and 1FFFH, must not be used. However,
if an instruction which passes controls to an address between 1EFCH and 1FFFH is used, the Assembler

‘ (AS17K) causes an error.

Fig. 4-4 Notes on program counter operation (PC})

Program counter Program memory
(PC) Address (ROM)

‘ 13 bits FEREEREEEE b i = (0000H

1EFBH Instruction
: 1EFCH
If this address is specified, the bemmemmmeeeaes -
value becomes undefined because Undefined
program memory does not exist.
1FFFH

If the instruction is not a branch
instruction, the program count is
incremented by 1 and becomes 1EFCH.

47

NEC - «PD17005

5. STACK

Stack is a register for saving a program return address or the contents of a system register (which is described
later) when a subroutine is called or when interrupt is accepted.

5.1 STRUCTURE OF STACK

Fig. 5-1 shows the structure of Stack.

As shown in Fig. 5-1, Stack consists of a stack pointer, address stack registers and interrupt stack registers
(INTSK).

A stack pointer consists of a binary counter of four bits. The high-order bit is always set to “‘0’’ and the pointer
actually operates as a binary counter of 3 bits.

Although address stack registers comprise eight registers ASRO to ASR7 each of which contains 13 bits, ASR7
does not actually exist as a register, and in effect, there are seven stack registers ASRO to ASR6 of 13 bits.

Interrupt stack registers include four bank stack registers (BANKSK) each of which contains 4 bits and status
stack registers (PSWSK) each of which contains 4 bits. However, no meanings are attached to the values of the
high-order 2 bits of the bank stack register and the high-order 3 bits of the status stack register.

Fig. 5-1 Structure of a stack

Stack point
ack pointer Address stack register (ASR)
(SP)
, Bit Bit
Address
b3z | bz | by | bg B12|b19 b10| bg | bg | b7 [bg | bg | bg | b3 | b2 | by | bg
0 | SP2 | SP1]|SPO OH ASRO
————————— -—-—4.--——--——.--—--——-—----—---—-J——---—--—————»————-—--—--——-T
]
™ ASR1
I
ASR2
———————— L———T———- ———-’—-—-r-————’u—-— -————’—-—— s et ~———~]L—-—~ —
——

ST

T

48

Cannot
be used

F NEC- ©«PD17005

Interrupt stack register
(INTSK)
Bank stack Status stack
(BANKSK) (PSWSK)
Address
Bits
bg | b2 | by | bg [b3 | bz | by | bg
- — | BANKSKO - - - IXE
OH SKO
- - BANKSK1 — — - IXE
H SK1
- - BANKSK2 | — — — IXE
2H SK2
— — BANKSK3 | — - - IXE
3H SK3
|

5.2 FUNCTIONS OF A STACK

A stack saves an address returned from a subroutine or interrupt routine, or the contents of a system register
(SYSREG) when a subroutine is called, or when an interrupt is accepted.

When a subroutine call instruction (CALL addr or CALL @AR) is executed, the program memory address follow-
ing the subroutine call instruction execution address, that is, a return address, is saved in the address stack registers
(ASRO to ASR7). When a subroutine return instruction (RET or RETSK) is next executed, the return address which
was saved in the address stack register is set in the program counter.

In addition to the operation described above, the contents of the system registers (low-order 2 bits of the bank
register and Index Enable Flag; 3 bits in total) are saved in the interrupt stack register at interrupt acceptance.

At execution of a table reference instruction also (MOVT DBF, @AR), a stack is used.

A stack can be manipulated by a stack manipulation instruction (POP AR or PUSH AR).

Sections 5.3 to 5.5 describe the function of stack pointers, address stack registers, and interrupt stack registers.

49

NEC «PD17005

5.3 STACK POINTER (SP) _
A stack pointer is a 3-bit binary counter used for specifying which address stack register is to be used among
the eight address stack registers (ASRO to ASR7).

5.3.1 Structure of a Stack Pointer
The structure of a stack pointer is shown below. ‘
A stack pointer is stored in address 01H of a control register.
See 10, “‘Register File", for control registers.

CE

Flag symbol
Name Address |Read/Write
b3z | b2| b1 | bg .
) H : |
Stack pointer i $; S i S
0!PiPiP| O R/W
sP i2i1i0
L |
—| Specifies the address of the address stack register (ASR) ‘
10100 Addres0 (ASRO) |
; 0 i o] i 1 Address 1 (ASR1)
é 0 g 1 i 0 Address 2 (ASR2)
1011 11| Address 3 (ASR3) |
11100 Address4(ASRA)
{11001 | Address5 (ASRS)
EEE . 0| Address 6 (ASR6)
£ 10111 Address7 (ASR7)
Y= Setto "“0"
gPowerOn 051?1%1
% Clock Stop é 1 i 1 i 1
« EERE

5.3.2 Operation of a Stack Pointer

As listed in Table 5-1, a stack pointer is decremented by 1 at execution of a subroutine call instruction (CALL
addr or CALL @AR), the first instruction cycle of a reference instruction (MOVT DBF, @AR), or a stack manipula-
tion instruction (PUSH AR) or interrupt acceptance. The pointer is incremented by 1 at execution of a subroutine
return instruction (RET or RETSK), the second instruction cycle of a table reference instruction (MOVT D8F,
@AR), a stack manipulation instruction (POP AR), or an interrupt return instruction (RETI).

50

NEC «PD17005

Table 5-1 Operation of a stack pointer (SP)

Instruction Stack value pointer

CALL addr
CALL @AR
MOVT DBF, @AR SP—1
PUSH AR

At interrupt acceptance

RET
RETSK
MOVT DBF, @AR SP+1
POP AR
RETI

See Section 5.6, ““Stack Operation at Execution of Each Instruction’” for the actual operation performed at
execution of each instruction.

Since a stack pointer is a binary counter of 3 bits as described below, the value can be between OH and 7H.
However, since there are actually only seven address stack registers, ASRO to ASR6, caution is necessary when the
stack pointer value becomes 7H. See Section 5.7, ““Stack Nesting Level, PUSH Instruction, and POP Instruction”.

" Since a stack pointer is located in a register file, the value can be directly read or written using the PEEK instruc-
tion or POKE instruction. In this case, although the value of the stack pointer changes, it does not influence the
value of the address stack register. ,

At Power On Reset (Vpp = Low — High), execution of a Clock Stop, or CE Reset (CE = Low = High), the
value of the stack pointer is 7H.

5.4 ADDRESS STACK REGISTER (ASR)

An address stack register saves a return address of the program after execution of a subroutine, interrupt.process-
ing routine, or table reference. '

The register saves the program return address produced by incrementing the program counter value by 1 at execu-
tion of a subroutine call instruction (CALL addr or CALL @AR) or the first instruction cycle of a table reference
instruction (MOVT DBF, @AR), or interrupt acceptance.

At execution of the “PUSH AR" instruction, which is a stack manipulation instruction, the content of the
address register is saved in the address stack register.

The address stack register to which the return address is saved (which one of ASRO to ASR7 is to be used) is the
address stack register specified by the value created by decrementing the stack pointer value by 1 at execution of
the instruction.

The contents of the address stack register specified by stack pointer are returned to the program counter at
execution of a subroutine return instruction (RET or RETSK), interrupt return instruction (RETI), or second
instruction cycle of a table reference instruction (MOVT DBF, @AR). ‘

At execution of a stack manipulation instruction, ‘“POP AR"”, the value of the address stack register specified
by the stack pointer is returned to the address register.

See Section 5.6, ‘“Stack Operation at Execution of Each Statement” for the actual operation performed at
execution of each statement.

Although there are eight address stack registers, ASRO to ASR7, no register exists in ASR7. Therefore, caution
is necessary for a subroutine call or interrupt which exceeds seven levels. See Section 5.7, ’Stack Nesting Level,
PUSH Instruction, and POP Instruction” and Section 12.9, ““Multi-interrupt’’.

At Power On Reset (Vpp = Low — High), the contents of the address stack register become undefined. At CE
Reset (CE = Low —> High) or at execution of a Clock Stop Instruction, the previous contents are retained.

51

NEC #PD17005

5.5 INTERRUPT STACK REGISTER
When interrupt is accepted, an interrupt stack register saves the low-order 2 bits of the bank register (BANK) in
the system register and Index Enable flag (IXE) of 1 bit.

When an interrupt return instruction (RETI) is next executed, content of the interrupt stack register are returned
to the bank register and Index Enable flag.

There is no address specified by a stack pointer for an interrupt stack register as an address stack register. An
interrupt stack register saves data whenever an interrupt is accepted as shown in .Fig. 5-2 and returns data whenever
an interrupt return instruction (RET!) is executed. When an interrupt exceeding level 4 is accepted, the first data is
purged. Therefore, the data must be saved by a program.

At Power On Reset (Vpp = Low = High), the contents of the stack register are undefined.

At CE Reset (CE = Low — High) or execution of a Clock Stop instruction, the previous status is retained.

52

NEC

«PD17005

Fig. 5-2 Operation of an interrupt stack register)

(a) When the interrupt does not exceed level 4

Unde- Unde-
fined A B A fined
Unde- Unde- A Upde- Unde-
fined = fined - _,|fined |__| fined
Unde- Unde- Unde- Unde- Unde-
fined fined fined fined fined
Unde- Unde- Unde- Unde- Unde-
fined fined fined fined fined
T i 1 1 i
When Vpp Interrupt Interrupt RETI RETI
isentered A B

(b) When the interrupt exceeds level 4

A B C D E D C
Unde-
fined A B C D o B
Unde- Unde-
fined fined A B ¢ B B
Unde- Unde- Unde-
fined fined fined A B B B
1 1 i 1 1 1 1
Interrupt Interrupt Interrupt Interrupt Interrupt RETI RETI
A B C D E

5.6 STACK OPERATION AT EXECUTION OF EACH STATEMENT (SUBROUTINE, TABLE REFERENCE,

AND INTERRUPT)
Sections 5.6.1 to 5.6.3 describe stack operation at execution of each instruction.

5.6.1 Subroutine Call Instruction (CALL) and Return Instructions (RET and RETSK)

Table 5-2 indicates operation of a stack pointer, address stack register, and program counter when a subroutine

call instruction or return instruction is executed.

Table 5-2 Operation of a program counter when a subroutine is used

Instruction ~ Operation
@ The program counter value is incremented by 1
(@ The stack pointer value is decremented by 1
@ The program counter value is saved in the address stack register specified by the stack
CALL addr .
pointer
@ The value specified by the operand (addr) of the instruction is transferred to the
program counter
RET @ The value of the address stack register specified by the stack pointer is returned to
the program counter
RETSK . -
@ The stack pointer value is incremented by 1

53

NEC | | ~PD17005

At execution of the RETSK instruction, the first instruction after return is a No Operation instruction (NOP).

Fig. 5-3 shows the operation example. In Fig. 5-3, there is a CALL instruction in address 100H of the main
routine for calling a subroutine at address 30H and, in address 35H, a CALL instruction for calling a subroutine at
address 50H.

The subroutine which starts from address 30H is called a ““level 1" subroutine and the subroutine which starts
from address 50H is called a "’level 2'' subroutine. Arrows in the diagram indicate the program flow.

If 7H is assumed as the value of the stack pointer immediately preceding the execution of the instruction at
address 100H, the program counter is set to 101H by execution of the CALL statement at address 100H, and the
stack pointer value becomes 6H after being decremented by 1. '

As a result, 101H which is the return address from the level 1 subroutine is saved in address 6H (ASR6) of the
address stack register and 30H which is the operand of the CALL instruction is transferred to the program counter.

When the CALL instruction at address 35H is executed, the stack pointer value becomes 5H after being decre-
mented by 1, 36H which is a return address from the level 2 subroutine is saved in address 5H (ASR5) of the address
stack register, and 50H which is the operation of the CALL instruction is transferred to the 'program counter. When
the RET instruction is executed in the level 2 subroutine the contents of address 5H (ASR5) of the address stack
register are returned to the program counter and the stack pointer value becomes 6H after being incremented by 1.
When the RET instruction of the level 1 subroutine is executed, 101H ‘which is the return address of the main

routine is returned to the program counter and the value of the stack pointer becomes 7H after being incremented
by 1.

54

NEC

~PD17005

Fig. 5-3 Example of stack operation when a subroutine is called

Main routine

(100H): CALL SUB1

Operation of (1)
Stack pointer (SP)

6H

Operation of (O
5H

Operation of B
6H

Operation of @
7H

ri

;

Subroutine (level 1)

= SUB1 (30H):

-]

(36H): CALL SUB2

@

RET

Address stack register (ASR)

BH ASR5

ASR6

6H 101H

7H

5H 36H

5H 36H

6H 101H

5H 36H

6H 101H

5.6.2 Table Reference Instruction (MOVT DBF, @AR)
Table 5-3 lists operation performed at execution of the table reference instruction.

Subroutine (level 2)

SUB2 (50H):

‘_|© RET

Program counter (PC)

30H

50H

55

NEC

uPD17005

Table 5-3 Operation.performed at execution of the table reference instruction

Instruction Operation

@ The program counter value is incremented by 1
First @ The stack pointer value is decremented by 1
instruction @ The program counter value is saved in the address stack register
cycle specified by the stack register

@ The address register value is transferred to the program counter

MOVE DBF, @AR

@ The contents of the program memory specified by the program
Second counter are transferred to a data buffer
instruction @ The address stack register value specified by the stack pointer is
cycle returned to the program counter

@ The stack pointer value is incremented by 1

Fig. 5-4 shows the operation example.

In Fig. 5-4, a table reference instruction is stored in address 200H, the program memory address which stores

the constant data to be referenced is 20H, the value of the stack pointer immediately preceding execution of the
“MOVT DBF, @AR" instruction of address 200H is 7H.

When the “MOVT DBF, @AR" instruction at address 200H is executed, the stack pointer value becomes 6H
after being decremented by 1 at the first instruction cycle, 201H which is the address following the “MOVT DBF,
@AR" instruction is saved in address 6H of the address stack register, and the program memory address which

contains the constant data is transferred to the program counter.
The address 20H is specified by an address register.

Constant data of address 20H, which is the content of the program counter is transferred to the data buffer at
the second instruction cycle and 201H which is the content of the address stack register is returned to the program
counter. The stack pointer value becomes 7H after being incremented by 1.

Fig. 5-4 Example of stack operation at table reference

First instruction cycle

Stack pointer (SP)

Second instruction cycle

56

Program example
0020H: | Constant data 1
0200H: MOVT DBF. However, 20H is stored in the address register (AR)

Address stack register {ASR) Program counter (PC)
5H 20H
6H 201H

7H

5H 201H
6H 201H

NEC

#«PD17005

5.6.3 Interrupt Acceptance and Return Instruction (RETI Instruction)
Table 5-4 shows operation performed at interrupt acceptance and execution of a return instruction.

Table 54 Operation of program counter performed at interrupt operation

Instruction

Operation

At interrupt

@ The program counter {PC) value is incremented by 1

However, when the instruction at interrupt acceptance is a branch instruction (BR)
or subroutine call instruction (CALL), the branching address or address of the
program memory to be called is set. ‘

The stack pointer value is decremented by 1.

the program counter.

@
acceptance @ The program counter value of the address stack register specified by the stack
pointer is saved.
@ The values of the bank register (BANK) and Index Enable flag are saved in the
interrupt stack. '
@ The vector address is transferred to the program counter.
@ The interrupt stack value is returned to the bank register and Index Enable flag.
RETI @ The value of the address stack register specified by the stack pointer is returned to
©)

The value of the stack pointer is incremented by 1.

57

NEC \ «PD17005

Fig. 5-b shows the operation example. _

In Fig. 6-5, the stack pointer value is 7H and interrupt by the INTq pin is accepted during execution of an in-
struction at address 300H.

In this case, the stack pointer value becomes 6H after being decremented by 1 at execution of the instruction
at address 300H, 301H which was to be executed next is saved at address 6H (ASRG6) of the address stack register,
and the low order 2 bits of the bank register and 1 bit of Index Enable flag are saved in the stack register. Interrupt

vector address 0005H of the INTq pin is transferred to the program counter and an instruction at address 0005H is
executed.

When the return instruction (RETI) is executed in the interrupt processing routine, the contents of the interrupt
stack register are returned to the bank register and Index Enable flag. The content of the address stack register 301H
is returned to the program counter and the stack pointer value becomes 7H after being incremented by 1.

See 12, “Interrupt’” for interrupt operation.

Fig. 5-56 Example of stack operation performed at interrupt

Main routine Interrupt processing routine

0)

— 0005H:

0300H: Acceptance
of interrupt)

®

RETI

Operation of (D)
Stack pointer {SP)

6H LSH 5H
6H 301H

7H |

Address stack register (ASR) Program counter (PC)

Operation of 2

7H 301H

58

NEC uPD17005

5.7 STACK NESTING LEVEL, PUSH INSTRUCTION, AND POP INSTRUCTION .
A stack pointer operates as a 3-bit binary counter which is simply incremented or decremented by 1 by a sub-
. routine call instruction or return instruction.

Consequently, if the CALL instruction or MOVT instruction is executed or if interrupt is accepted when the
stack pointer value is OH, the stack pointer value becomes 7H after being decremented by 1. In this case, the return
address from the subroutine or interrupt processing routine or address register value is written in ASR7 which is
address 7H of the address stack register.

Since ASR7 which is address 7H of the address stack register does not actually exist, the return address and
address register value cannot be written.

Consequently, when a return instruction is executed and when the stack pointer value is 7H, the content of ASR7
which is address 7H of the address stack register is transferred to the program counter.

Since the content read from ASR7 which is address 7H of the address stack register is “undefined’’, program
control is not returned normally.)

This problem can be solved by saving the address stack register value using the PUSH instruction or POP instruc-
tion.

Table 5-5 shows operation of the PUSH instruction and POP instruction.

Table 5-5 Operation of the PUSH instruction and POP instruction

Instruction ' Operation

The address stack register value specified by the stack pointer is transferred to
POP AR '

. PUSH AR

the address register
The stack pointer value is incremented by 1

The stack pointer value is decremented by 1
The address register value is transferred to the address stack register specified by
the stack pointer

OO ©

Fig. 5-6 shows the operation example.

In Fig. 5-6, the CALL instruction which calls the level 7 subroutine starting from address 30H is stored at address
10H of the level 6 subroutine, and the CALL instruction which calls the level 8 subroutine starting from address 50H
is stored at address 36H.

‘ The arrows in the diagram indicate the program flow.

In this example, the value of the stack pointer immediately before execution of address 10H is 1H. By executing
the CALL instruction of address 10H, the stack pointer value becomes OH after being decremented by 1. Level 7
subroutine return address, 11H, is saved in the address OH of the address stack register. The CALL instruction
operand, 30H, is transferred to the program counter.)

When the POP instruction in the level 7 subroutine is executed, the stack pointer value becomes 1H after being
incremented by 1 and the content of the address OH of the address stack register, 11H, is transferred to the address
register. '

The stack pointer value becomes OH after being decremented by 1 when the CALL instruction of address 35H
is executed, address 36H which is the return address of the subroutine at level 8 is saved in address OH of the address
stack register. The operation of the CALL instruction, 50H, is transferred to the program counter.

When the RET instruction is executed in the level 8 subroutine, the content of address OH of the address stack
register, 36H, is returned to the program counter, and stack pointer value becomes 1H after being incremented by 1.

When the PUSH instruction of the level 7 subroutine is executed, the stack pointer becomes OH after being

. decremented by 1, address 11H which is the content of the address register, that is, the return address to the level 6
subroutine is transferred to address OH of the address stack register.

When the RET instruction in the level 7 subroutine is executed, the content of address OH of the address stack
register, which is 11H, is returned to the program counter and the stack pointer value becomes 1H after being
incremented by 1. ' 59

In the method described above, eight levels are defined as the stack nesting levels.

NEC

uPD17005

60

Fig. 5-6 Example of stack operation by the PUSH and POP instructions

Subroutine {level 6)

(10H):

Operation of ()
Stack pointer (SP)

OoH

Operation of @

1H

!

Operation of @

OH

W

Operation of @

1H .

:

Operation of (&)

OH

Operation of ®

TH

@

CALLSUB? _

®

Subroutine (level 7}
~= SUB7 (30H):
{35H) @ POP AR

Subroutine (level 8)

SUBS8 (50H):

@

(40H): CALL SUBS8

\ L RET

{48H) ® PUSH AR

Address stack register {(ASR)

OH

1H

OH

H

OH

1H

OoH

1H

OH

1H

OH
1H

{

RET

Program counter (PC)

11H 30H
el
41H 50H
41H 41H
11H 45H
11H E—— 11H

Address register (AR)

11H

11H

1MH

NEC #PD17005

6. DATA MEMORY (RAM)

Data memory is used for storing data such as operation and control. Data can be written or read using various
instructions.

6.1 STRUCTURE OF DATA MEMORY

Fig. 6-1 shows the structure of data memory.

As shown in Fig. 6-1, data memory is divided into four sections in the unit called “‘bank”. The four banks are
called BANKO, BANK1, BANK2, and BANKS3.

In each bank, addresses are assigned to data in 4-bit units. The high-order 3 bits are called “row address’* and the
low-order 4 bits are called “column address’. For instance, data memory whose row- address is 1TH and whose
column address is 0AH is called data memory of address 1AH. One address consists of memory of 4 bits and this is
called "1 nibble".

Data memory is classified into the blocks described in Sections 6.1.1 to 6.1.6 according to the function.

6.1.1 Structure of a System Register (SYSREG)

A system register consists of 12 nibbles allocated to addresses from 74H to 7FH of the data memory. A system
register is allocated regardless of the bank. That is, the same system register exists in addresses 74H to 7FH in any
bank.

Fig. 6-2 shows the structure.

6.1.2 Structure of a Data Buffer (DBF)
A data buffer consists of 4 nibbles allocated to address OCH to OFH of data memory BANKO.

Fig. 6-3 shows the structure.

6.1.3 Structure of a General Register (GR)
A general register consists of 16 nibbles which are specified by any row addresses of the data memory.
The row addresses are specified by the general register pointer (RP) in the system register (SYSREG).

Fig. 6-4 shows the structure.

6.1.4 Structure of an LCD Segment Dot Data Register (LCD Dot Register)
This register consists of 16 nibbles allocated to addresses from 60H to 6FH of data memory BANKO. Fig. 6-6

shows the structure.
As shown in Fig. 6-5, since no data is assigned to address 6FH, the register actually consists of 15 nibbles.

6.1.5 Structure of a Port Data Register (Port Register)
A port data register consists of 16 nibbles which are allocated to addresses from 70H to 73H of each data

memory bank.

Fig. 6-6 shows the structure.
As shown in Fig. 6-6, since no data is assigned to addresses from 71H to 73H of BANK2 and address from 70H to

73H of BANKS, the register actually consists of 9 nibbles.

61

NEC #PD17005

6.1.6 Structure of General Data Memory

General data memory consists of a section defined by excluding a system register, LCD dot register, and port

register from data memory. The memory consists of 432 nibbles in total; 96 nibbles of BANKO, and 112 nibbles
each of BANK1 and BANK2, BANK3.

6.1.7 Data Memory which is Not Installed

As shown in Figs. 6-6 and 6-6, no data is assigned to address 6FH of the LCD dot register, addresses from 71H to
73H of the BANK2 of the port register, and addresses from 70H to 73H of the BANKS3 of the port register.
See Section 6.3.2, ““Notes on the data memory which is not installed’’ for these addresses.

62

NEC #PD17005

Fig. 6-1 Structure of data memory

Column address

012345678 9ABCDEFTF

? Data memory
g 2
E
g s
T 6 BANKO
7 I BANK1
e | BANK2
O | BANK3
| : :LT-—I | System register]
|
o : Column address
:::: 0 1 2 3 4 56 7 89 A BC DE F
L—~|L—I——+—>o ; 1 k
[
: I 1)
| : | 2 Example
[§3 Address
[T . = 1AH of
[S 4 BANKO
| | —T T
LB, b3iba!bribo
L]« !
oy 6
[I ;
: P
[
|
vl 0 1 2 345 6 78 9 ABCDE F
Lo
[
|
g 2
12
| 3
R
B
| |l € 5
| : 6
|
po | 7| Portregister
i
|
| 0O 1 2 3 4 5 6 7 8 9 A B C D E F
[
L—t- 0
|
| 1
|
|y 2
[
| 53
I B4
[
| g 5
|
| 6
1
| 7 Port rggistgr
|
|
| o 1 2 3
L“’O
1
o 2
@
5 3
8 4
3
5 BANK3
6 [|
7 Pgrt rtlegisteler

The same system
register exists

63

NEC

#PD17005

Fig. 6-2 Structure of a system register

System register (SYSREG)

64

Address] 74H | 75H | 76H | 77H | 78H 79H | 7AH [7BH | 7CH [7DH [7EH [7FH
Window | Bank Index register (IX) : 'Program
Name Address register (AR) register | register Data memory G:ir;irarl(r;?)jencesmtus word|
(symbol) (WR) (BANK)| row address pointe (PSWORD)
pointer (MP)
Fig. 6-3 Structure of a data buffer
Data buffer (DBF)
Address| 0OCH ODH OEH OFH
Symbol| DBF3 DBF2 DBF1 | DBFO
‘Fig. 64 Structure of a general register (GR)
Column address General address
01 2 3 45 6 7 8 9 A B CDE F
0 T S <—‘ -
1 General registers
? 2 specification range
el -~
3 i Specified by the general
% 5 pointer (RP) of the
o« 6 BANKO system register
[S | SYSREG | -
0
1
2
3
4
5
6 BANK?1
7 I __________________________
L _____SysReG """~ a1
0
1
2
3
4
5
6 BANK2
7] [_________§7§RE5 —————————]__ Th? same s.ystem
———————————————————— - register exists.
0
1
2
3
4
5
6 BANK3
L .7 1

NEC #PD17005

Fig. 656 Structure of an LCD dot register

LCD dot register
Address | 60H | 61H | 62H | 63H | 64H | 65H | 66H

67H | 68H 69H | 6AH | 6BH | 6CH | 6DH | 6EH | 6FH

Symbol [LCDDO|LCDD1}]LCDD2(L.CDD3|LCDD4(LCDDS

LLCOD6|L.CDD7|L.CDD8|LCDDY|LCDD10|LCDD 11

LCDD12|1L.CDD13|LCDD14]’

No data is assigned.
This area cannot be
used as data memory
Fig. 66 Structure of a port register

Port register
Address 70H 71H 72H 73H

BANKO POA PoB PoC POD

BANK1 P1A P1B P1C P1D

Symbol

No data is assigned.
BANK2 P2A This area cannot be
used as data memory.
No data is assigned. .
BANK3 | This area cannot be used as

. data memory.-

6.2 FUNCTIONS OF DATA MEMORY .

Data memory can perform 4-bit operation, comparison, checking, and transfer with one instruction between

data in data memory and immediate data (any data) by executing a data memory manipulation instruction as listed
in Table 6-1.

By using a general register, 4-bit operation, comparison and transfer can be performed by one instruction.
Examples are shown below. See 7, *“General Register (GR)"" and 8, “ALU" for details.

65

NEC | «PD17005

Example 1: Operation of data memory
MOV 35H, #0001B ; Transfers (writes) immediate data 00018 to the data mémory of address
. . 3bH of the bank which is selected at that time.

ADD 76H, #0061 B ; Adds immediate data 0001B to the data memory of address 76H of the
; bank which is selected at that time, ’

For both @ and @ . the selected bank is specified by the bank register in the system register. See Chapter 9,
*’System Register (SYSREG)’’ for a bank register. -

@ is an addition instruction for the data memory of address 76H and address 76H is also a system register.
Since a system register exists regardless of the bank, this instruction adds 0001B to the system register 76H
regardless of the bank.

Example 2: Operation of data memory and a general register
When the general register (GR) is stored in row address 1H of BANKO

O]

ADD 7H, 36H ; Adds contents of the data memory at address 36H of the bank selected at
; that time to the contents of the general register whose column address is
; 7H, that is, address 17H of BANKO.
e
LD 7H,36H ; Transfers the contents of address 36H of the data memory to the general
; register whose column address is 7H. In this case, the general register is
; address 17H of BANKO.

A system register, data buffer, general register, LCD dot register, and port register can be manipulated by data
memory manipulation instructions as data memory.
Sections 6.2.1 to 6.25 describe the functions.

6.2.1 Function of a System Register (SYSREG)
A system register controls the CPU.
For instance, the bank register shown in Fig. 6-2 specifies a bank of the data memory and the general register
pointer {RP) specifies a row address of the general register.
See 9, ““System Register (SYSREG)” for details.

6.2.2 Function of a General Register (GR)

A general register is used for performed operation or data transfer with data memory.

A bank and row address of a general register are specified by the general register pointer on the system register.

For instance, if the general register pointer is set to 0, 16 nibbles of row address 0 of BANKO, that is, addresses
OO0H to OFH of BANKO are specified as a general register.

Note that a transfer instruction or operation instruction between a general register and immediate data is not
allowed when a general register is used. That is, when transfer or operation is performed between a general register
and immediate data, the general register must be handled as data memory.

For instance, when the general register is in row address OH of BANKO (register pointer is Q) and when the bank
which is currently selected is BANKO (bank register is 0}, the content of the address 00H of BANKO specified as
the general register is incremented by 1 at execution of “ADD 00H, #1". If this instruction is executed when the

bank currently selected is BANK1 (bank register is 1), the content of address 00H of BANK1 is incremented by 1.
See 7, ““General Register (GR)"* for details.

NEC | «PD17005

6.2.3 Data Buffer (DBF)

A data buffer is used for storing data to be transferred to peripheral circuits such as PLL division ratio, and data
sent from peripheral circuits such as input data of serial interface.

See 11, “Data Buffer’’, for details.

6.2.4 LCD Segment Dot Data Register (LCD Dot Register)

An LCD dot register is used for setting display data of LCD controller/driver. By setting data to an LCD dot
register, display ON/Off data can be set to each segment of the LCD controller/driver. Fig. 6-7 shows the relation-
ship between an LCD controller/driver and each segment.

See 23, “’LCD Controller/Driver” for details.

6.2.5 General Purpose Port Data Register (Port Register)

A port register sets output data of each general purpose input/output port or reads input data. By setting data
in the port register corresponding to the pins set as output port, output of each pin is set. By reading the port
register corresponding to the pins set as an input port, the input state of each pin can be detected. Fig. 6-8 shows
the relationship between a port register and each port (each pin).

See 17, ““General Purpose Port’’ for details.

Table 6-1 Data memory manipulation instructions

Function Instruction

Operation Addition ADD
ADDC

Subtraction 4 SuB
SuBC

Logical AND
OR
XOR

Comparison SKE

SKGE
SKLT
SKNE

Transfer ' MOV
LD
ST

Checking SKT
SKF

67

NEC «PD17005

Fig. 6-7 Relationship between bits of an LCD register and each segment of an LCD controller/driver

LCD register Relationship between segments and bits

- Common pin
Address Symbol @ COM, COM, Segment pin
(43) (44)
b, b,
—2 LCD,,/POF; (45)
b b, 29
6EH LCDD14 b, 5
B, | : be LCD,,/POF, (46)
by — b
o] : LCD,,/POF, - 7))
b b, 27 1
6DH LCDD13 bf B,
™ be LCD,,/POF, (48)
b, — b
. ° LCD,,/POE (49)
b. b, 25 3
6CH LCDDI12 b, o~
o Do be LCD,,/POE, (50)
e b LCD,,/ POE (51)
b, b, 23 1
6BH LCDDI11 b, 5,
b | b LCD,,/POE, (52)
by — b,
. LCD,,/P0X (53)
b, by 21 5
6AH LCDD10 b, | B,
bo bo LCD,,/P0X, (54)
b;—— b
2 N LCD,,/P0X (55)
b, b, 19 3
69H LCDDS . | 5 .
: b bo CD,,/P0X, (56)
by —— b
5.] : LCD,,/P0OX (57)
b, b, 17 1
68H LCDDs8 B, 5,
o] bo LCD,¢/P0X, (58)
b — b .
o] * LCD,;/ P0Y,s/KS (59)
b, b, 15 15
67H LCDD?7 b, B, 15
Bo bo LCD,,/P0Y,,/KS,, (60)
by —— b,
LCD,,/P0Y,;/KS (61).
b, b, 13 13 13
66H LCDDé6 b, ™
bo be LCDlz/ POle/KSm (62)
by (—— b,
: LCD,,/P0Y,,/KS (63)
b, b, 1/ ro
65H LCDD5 B, B, 11 u
™ b LCD,,/P0Y,,/KSyo (64)
bs —— b
. N LCD,/P0Y,/KS (65)
b, b, 9 9 9
64H LCDD4 by ™
[, | bo LCDy/P0Y,/KS, (66)
by —— b
== M LCD,/P0Y+/KS (67)
bs b, 7 7 7
63H LCDD3 b, B,
Do : be LCD,/P0Y¢/KSs (68)
by f—— b,
5,] b, LCD;/P0Ys/KS; (69)
62H LCDD2 b, o
by | bo LCD,/P0Y,/KS, (70)
bs —— b
. e LCD,/P0Y,/KS (1)
b, b, 3 3 3
61H LCDD1 by b,
be bo LCDZ/POYZ/KSZ (72)
by —— by
M LCD,/P0Y,/KS (73)
b, b, 1 1 1
60H LCDDO B, o
by | be LCD,/POY/KS, (74)

() : Pin number

68

NEC #PD17005

Fig. 6-8 Relationship between a port register and each point {pin)

General purpose port data register P Pin
ort
Bank Address | Symbol Bit symbol Number| Symbol Input/Output
3 TOA, —
--------------- t tput
70H POA Port0A [-d-fggai] T an
P BoA.] (bit 1/0)
7 POR, Taput/O
"""""""""""" t tput
71H POB Port 0B |---Seffiogt] TP
(bit 1/0)
BANKO 79 FoC, —
"""" I "pPoc, u utpu
72H | POC Port0C |--20-dfo{ : ‘;)
'''' 31U, (group /0)
73H POD Port 0D Input
14 | PIA,
T B7A, | Input/Output
70H - P1A Port 1A
° (bit 1/0)
71H P1B Port 1B Output
BANKI1
72H P1C Port 1C QOutput
73H P1D Port 1D Input
L No related pin
70H P2A Cannot be used for data memory either
‘ »Port 2A 42 [P2A, [Output
71H -———
BANK2 5 .
. No address is assigned
72H -——— = -
e Cannot be used for data memory either
| Ds |
BH | --— B ---
be
b,
WH | --— B -
be
b;
NH | --— R --- _
b' : No address is assigned
BANK3 - T . - .
b3 Cannot be used for data memory either
72H | --— 2 - '
bo
| D5 |
BH | —-- g —--
by

69

NEC #PD17005

6.3 NOTES ON USING DATA MEMORY

6.3.1 Data Memory Address Specification

When Assembler (AS17K) of 17K is used, and when a data memory address is coded directly using a numeric
value as the operand of the data memory manipulation instruction, an error occurs.

This is incorporated in the Assembler to reduce necessary debugging at program fix, etc.

Example 1:
When an error occurs

O
;@

MOV 2FH, #0001B ; Specifies address 2FH directly
MOV 0.2FH, #0001B ; Specifies address 2FH of BANKO directly

When an error does not occur
MO02F MEM 0.2FH . Defines a symbol in MO2F using address 2FH of BANKO as the
MOV MO2F #0001B . memory type.
MOV .MD .2FH, #0001B ; Converts address 2FH to a memory type using .MD.
: However, this method must be avoided to reduce necessary debugging.

Consequently, the data memory address symbol must be defined in advance using the MEM instruction (symbol
definition pseudo instruction) which is an Assembler pseudo instruction.

As shown in Example 2, a bank of the data memory muét also be defined for data memory symbol definition.
This is used for creating a data memory map automatically in Assembler.

If the data memory for which symbol definition is set in BANK2 is used in the range of BANK1 in the program
as shown in-Example 2, data memory of BANK1 is manipulated.

Example 2:
M1 MEM 0.15H;
M2 MEM 1.15H; Symbol definition pseudo instruction
M3 MEM 2.15H;
L
Bank Column address
Row address

BANK1 ;. Assembler built-in macro instruction

; BANK «1

MOV M1, #0000B ;7] Although symbol definition of M1 , M2, and M3 are set in another bank in 1,
MOV M2, #0000B ; |these three instructions write O in the data memory of address 15H of BANK1

MOV M3, #0000B ;_jbecause BANK1 is specified in the program.

70

NEC «PD17005

6.3.2 Notes on Data Memory which is Not Installed

As shown in Figs. 6-5 and 6-6, no address is assigned to address 6FH of an LCD dot register, addresses of 71H
to 73H of address BANK2 of a port register, and addrésses of 70H to 73H of BANKS3 of a port register.

In this case, if a data memory manipulation instruction is executed for these addresses, the following operation is

performed.

{1) Device operation
When a Read instruction is executed, ‘0" is read.
Even if a Write instruction is executed, no change is made.

(2) Assembler {AS17K) operation
Normally, data is assembled.
An error does not occur.

{3) Emulator (1E-17K) operation
When a Read instruction is executed, ‘0’ is read.
Even if a Write instruction is executed, no change is made.

An error does not occur.

71

NEC #PD17005

7. GENERAL REGISTER {(GR)

A general register is stored in data memory and is used for direct operation and for transfer performed with data
memory. : ' :

7.1 STRUCTURE OF A GENERAL REGISTER

Fig. 7-1 shows the structure of a general register.

As shown in Fig. 7-1, 16 nibbles {16 words x 4 bits} which are row addresses of the data memory can be used as a
general register.)

The row addresses which are used are set by a general register pointer of the system register.

Since 4 bits can be used as a general register pointer, row addresses from OH to 7H of BANKO and row addresses
from OH to 7H of BANK1 can be used as general registers.

See Section 9.7, “General Register Pointer (RP)”* also.

T2

NEC

«PD17005

Fig. 7-1 Structure of a general register

Address 70H 7EH
General register
Name pointer
(RP)
Symbol RPH RPL

Bit [bg|bz|bq|bpjb3|b2|b1|bo

Data

{m »)
o

Column address
012 3 4567 8 9 ABCDE|F

L—— By using a general register
pointer, row addresses OH
to 7H of BANKO and OH to
7H of BANK1 can be set.

0
1
g 2
g o
3 3
©
z 4
[e]
T 5 BANKO
6
7 ——lli System register
0
1
2
3
4
5 BANK1
6
7 r{‘ """" System register]
e o e e e e e o — —— — ————— 4
0
1
2
3
4
5 BANK2
6
4 I o System register T —
e ——————— — J
0
1
2
3
4
BANK3
5
6
e — b
7 ——IT System register e

General register
when RP=0000010B

The same system

register exists

73

NEC | | 4PD17005

7.2 FUNCTION OF A GENERAL REGISTER

By using a general register, operation and transfer can be performed by one instruction between data memory
and a general register.

Since a general register is stored in data memory, operation and transfer between one data memory and another
data memory can be performed by just one instruction. .

Since a general register is stored in data memory, the register can be controlled by data memory manipulation
instructions in the same way as other data memory.

Section 7.3 describes operation of data memory manipulation instructions.

~ 7.3 GENERAL REGISTER IN EACH INSTRUCTION AND DATA MEMORY ADDRESS GENERATION AND
OPERATION

Table 7-1 lists operation and transfer instructions used between general register and data memory.

Table 7-2 shows a general register and data memory address generation.

For example, address “R" of the general register Vspecified by the ADD r, m instruction is generated by the
content of the register pointer and the value specified by the operand r of the instruction as shown in Table 7-2.

Data memory address "M’ specified by this instruction is generated by the content of the bank register and
operand m.

Consequently, “R”, the content of the general register specified by the general register address R and *“(M)”", the
content of the data memory specified by the data memory address M are added and the result is stored in the
general register. '

Addresses of a general register are generated in the same way as shown in Table 7-1 for other instructions also.
Examples 1, 2, and 3 show the operation examples.

Table 7-1. Manipulation instructions between a general register and data memory

Instruction group Instruction Operation
ADDr, m (R) < (R) + (M)
Addition
ADDCr, m (R)« (R) + (M) + (CY)
SUBr, m (R) < (R) — (M)
Subtraction
SUBCr, m (R) < (R) — (M) — (CY)
AND r, m (R) < (R} AND (M)
Logical operation ORrm {R) < (R) OR (M)
XORr,m (R) < (R) XOR (M)
LDr, m (R) « (M)
ST
Transfer m ' M) < (R) -
MOV @r,m [MP, (R)] < (M) or [m, (R)] « (M)
MOV m, @r M< [MP, (R})] orM « [H, (R)]
Shift RORCr Right shift including (CY)

74

NEC ©«PD17005

Table 7-2 General register and data memory address generation

Address generated

Instruction Address contents Bank Row address Column address
Symbol
b3|b21b1lbo b2|b1]bo b3|b2Ib1lbo
Address of the general R (RP) r
register specified by r
ADDr,m
Address of the data M (BANK) m

memory specified by m

Example 1: Operation of data memory and a general register
{1) When the bank of the data memory and the bank of the general register are the same
The bank is BANKO and the general register is stored in row address OH of BANKO.

R0O04 MEM 0.04H ; Symbol definition
M056 MEM 0.56H ;
ADD RO004, M056 ; Addition of data memory and general register

If the above instruction is executed, the content of R0O04 (address 04H of BANKO) which is the general
register, and the content of data memory M056 (address 56H) are added and the result is stored in general
register RO04 (04H) as shown in Fig. 7-2.

Fig. 7-2 Example of operation of data memory and a general register

Column address

o 1 2 3 4 5 6 7 8 9 A B C D E F

Row address

System register RP

I
0000008

75

NEC - «PD17005

76

(2) When the bank of the data memory and the bank of the general register are different
BANKT1 is selected and the general register is stored in row address OH of BANKO.

RO04 MEM 0.04H ; Symbol definition

M156 MEM 1.66H ;

BANK1 . Assembler (AS17K) built-in macro instruction
ADD RO004, M156 ; Addition of data memory and a general register

When the above instruction is executed, the content of register RO04 (address 04H of BANKO) and the
content of data memory M156 (address 56H of BANK1) are added and the result is stored in general register
R0O04 (04H). That is, although BANKT1 is selected, data memory of BANK1 and data memory of BANKO
are added by using only one instruction because the general register is stored in BANKO.

Fig. 7-3 Operation example between data memory and a general register

Column address
0 12 3 4 5 6 7 8 9 A B C D E F

3 ADD R004, M156
4

Row address

6 BANKO

l [System register RP l |‘*

7 l e T —— - :
! System register .L RP 1 L Thesame system
—_

register exists

|

E NEC 4PD17005

Example 2: Transfer of data to general registers
BANKQO is selected and the general register is in row address OH of BANKO.
. RO01T MEM 0.01H ; Symbol definition

R0O02 MEM 0.02H ;

R003 MEM 0.03H ;

R004 MEM 0.04H ;

M045 MEM 0.45H ;

M046 MEM 0.46H ; -

M047 MEM 0.47H ;

M048 MEM 0.48H ;

LD RO01, M045

LD R002, M046

LD R003, M047

LD R004, M048

| . As shown in Fig. 7-4, the above program transfers the contents of data memory, M045, M046, M047, and M048
(address 45H, 46H, 47H, and 48H) to general registers, R0O01, R002, R003, and R004 (addresses 01H, 02H, 03H,
and 04H) respectively.

Fig. 7-4 Example of transfer to general registers

Column address

4 5 6 7 8 9 A B C D E F

General register ~— RP=0000000B
1
)
¢
T 3
©
2 a4
o
5
‘ 6 BANKO
7
System register RP

77

NEC «PD17005

Example 3: General register indirect transfer
BANKO is selected and the general register is row address OH of BANKO.

R0O04 MEM 0.04H ;

M052 MEM 0.52H ;

MOV RO004, #8 ; (RO0O4) <8

MOV @R004, M052 ; Transfer between general registers

When the above instruction is executed, the content of data memory M052 (address 52H) is transferred to data
memory (in this example, address 58H) of indirect transfer destination.

The MOV @r, m instruction is called general register indirect transfer and it transfers the content of the data
memory whose address is specified by m to the data memory whose address is specified by @r (called indirect
address).

In this case, the data memory address (indirect address) of the indirect transfer destination specified by @r is the
same row address (5H in the above example) as the address of the data memory specified by m. The content of
the general register specified by r (in the above example, 8, the content of address 04H) is used as the column
address of the data memory, that is, address 58H becomes the data memory address of the indirect transfer
destination.

See Section 9.6, “Index Register (1X) and Data Memory Row Address Pointer (MP: Memory Pointer)”, for
general register indirect transfer.

Fig. 7-5 Example of general register indirect transfer

Column address
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 . General register
1
1 ? [- Specifies the column
2 E | addresses according to
g MOV @ R004, M052 ! i the content (8) of RO04
3 3 ’ { X
© 1 1
R Indirect | L |
1
o«]
5 Same row address
as for M052
6
7
System register RP

78

NEC

u#PD17005

Example 4: Changing row address of general register BANKO is selected and the general register is stored in

row address OH of BANKO.

R0OO1
R002
RO03
RO04
RO05
R0O06
ROO7
R0O08
M045
M046
M047
M048
M049
MO4A
M04B
Mo4C
LD
LD
LD
LD

P @
MOV
Mov
LD
LD
LD
LD

MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
MEM
ROO1,
RO02,
RO03,
R004,

RPH,
RPL,

ROOS,
RO06,
R0O07,
R0OO08,

0.01H ;

0.02H
0.03H
0.04H
0.05H
0.06H
0.07H
0.08H
0.45H
0.46H
0.47H
0.48H
0.49H
0.4AH
0.4BH
0.4CH
Mo045

MO46

M047

M048

[

Symbol definition

#0001B : Transfers 0001011B to the general register pointer. That is, 0001011B is set in row
#0110B ; address 3H of BANK1.

Mo049
MO4A
MO04B
Mo4C

As sr]own in Fig. 7-6, the above instruction transfers 4 nibbles each of the contents of the data memory range
M045 to M0O4C which consists of 8 nibbles in BANKO to BANKO and BANK1. In this case, when the general
register is fixed and when only 0 exists in BANKO, an instruction for storing data in the data memory after trans-

ferring all the 8 nibbles to the general register is required in the program as shown below.

However, by changing the row address of the general register using a general register pointer as shown in the
above instruction, the operation can be terminated by the LD instruction c_JnIy. ‘

M135 MEM 1.35H ;
M136 MEM 1.36H
M137 MEM 1.37H
M138 MEM 1.38H
LD RO05, M049
LD R0O06, MO4A
LD R0O07, M04B
LD R0O08, M04C
BANK1

ST M135, RO0Ob
ST M136, RO06
ST M137, RO07
ST M138, RO0O8

Symbol definition

Assembler {AS17K) built-in macro instruction BANK <1

79

NEC «PD17005

Fig. 7-6 Example of changing row addresses of a general register

Column address
o 1 2 3 4 5 6 7 8 9 A B C D E F

0 «— RP=0000000B
1 by
{ |

. 2 T .
4 | bmmmmmm e T
ie] 3 Lo A | = |
° 1 1 L 1
: : i ! !
g 4 BB R
o I T - T T

5 BANKO | i : :

[|
| |
6 R
1 T T 1
7 1 1 Il L
System register RP l l——

0

1

2

3

4

5 BANK1

6

7 T T T e e T T e T 3 The same system

.' System register I RP I 1 € .V
e e e e ————— ———a register exists

7.4 NOTES ON USING A GENERAL REGISTER
Sections 7.4.1 to 7.4.4 describe notes on using a general register.

7.4.1 General Register Address Specification
As shown below, when general register address is specified directly to the operand of the instruction in Assembler
(AS17K) of 17K series, an error occurs. This error routine is incorporated for reducing debugging factors at program

fixing etc., in the same way as for data memory.

Case where an error occurs:
LD 04H, 32H ; A general register address and a data memory address are entered directly using
; numeric values.

Case where an error does not occur:
R004 MEM 0.04H ; Symbol of address 04H is defined in R0O04 as the memory type.
M032 MEM 0.32H ;
LD RO04, M032 ;

80

NEC

#PD17005

7.4.2 Row Addresses of a General Register
Since a row address of a general register is determined by a general register pointer, the bank of the address

’ specified by operand “r’’ of the instruction and the row address are ignored.

Example:

R004
R154
M032
MOV
MOV

;@
LD

)

LD

General register row address specification example

MEM 0.04H ;
MEM 1.54H ;
MEM 0.32H ;
RPH, #0001B ;
RPH, #01008 ; RP <« 0001010B

RO04, M032

R154, M032

32H of BANKO) to address 24H of BANK1 which is the general register.
That is, if a general register address is specified in instructions @ and @ , the banks of R004 and R154 and row
address are ignored and only address 4H of the column address becomes valid.

Fig. 7-7 General register row address specification example

Column address

1 2 3 4 5 6 7 8 9 A B C D E F
0 RO04
1
2
1]
g
5 3
B
g 4 LD R004, M032
T g LD R154, M032
. 6 BANKO
7
System register RP
0

RP=0001010B

! Thc:z same s?ystem
register exists

When the above instruction is executed, both @ and @ transfer the content of data memory M032 (address

81

NEC #PD17005

7.4.3 Operation of a General Register and Immediate Data) .

No operation instruction between a general register and immediate data is available when a general register is
used. That is, to execute an operation instruction between the data memory specified in the general register and
immediate data, the data memory must be handied as a general register instead of data memory.

Example: Operation example of a general register and immediate data
BANKQO is selected. ‘

R125 MEM 1.25H ;
M005 MEM 0.05H ;
MOV RPH, #0001B ; Sets the general register to row address 2H of BANK1.
MOV RPL, #01008 ;
ADD R125, #3 ;

ADD MOQO05, #3 :

In the above instructions, (2) adds immediate data @) to the data memory of address 26H of BANKO and ®
adds data memory 3 of address 05H of BANKO.

That is, the general register is set in row address 2H of BANK1 in @ , and R125 which is the operand of the
instruction @ is handled as data memory, not a general register. '

Consequently, to perform addition to address 25H of BANK1 which is a general register in instruction @ , the
program must be coded as follows:

BANK1 ; Assembler (AS17K) built-in macro instruction
ADD R125, #3

82

NEC

7.4.4 Operation to Data Memory which cannot Be Specified for a General Register

#PD17005

Since data memory BANKO and data memory BANK1 can be specified for a general register, the bank must be

switched for operation to data memory of BANK2 and data memory of BANK3 as shown in Example 1.

In this case, a window register in the system register can be used by specifying the system register and the general

register.

Example 2 shows this.

Example 1:

Add the content of address 33H of BANKO to the content of address 33H of BANK2.

ROOO
RO33
M233
MOV
MOV

MEM
MEM
MEM
RPH,
RPL,

BANK2

LD

ROOO,

BANKO
ADD RO00, RO33
BANK2
M233, RO0OO

ST

Example 2:

Example where a window register is used

RO0O
R033
M233

;@
MOV
MOV

)

LD

MEM
MEM
MEM

RPH,
RPL,

WR,

BANK2

;0 ®
ADD
ST

WR,

0.00H
0.33H
2.33H

#0000B ;
#0000B ;

M233

0.00H
0.33H
2.33H

#0000B

#11108 ;

RO33

M233

M233, WR

'

’

’

’
'

’

’

r

When program shown in Example @ are executed, row address 7H of BANKGO, that is, system register is speci-

fied for the general register in @ .

In instruction @ , the content of data memory RO33 (address 33H of BANKO) is transferred to the window

register.

In this case, since the window register of BANKO is a system register, the same content is also viewed from
address 78H of BANK2 as shown in Fig. 7-7. That is, the window register which is the data memory in BANK2

can also be a general register.

' Consequently, the result same as that of Example @ can be prodhced by executing an addition instruction in @

83

NEC

uPD17005

84

Row address

—_

A WN

o A W N

—

Fig. 7-8 Example of the operation performed using a window register

Column address
0 1 2 3 4 5 6 7 8 9 A

B

cC D

E

RO33

(®@ LDWR, RO33

S |

M233
ST M233,WR

1
|
|
1
|
!
1
1
|
i
1
|
i
1
|

—— General register

@ MOV RPH, #0000B
MOV RPL, #1110B

— The same system
register exists.

NEC

#PD17005

8. ALU (ARITHMETIC LOGIC UNIT) BLOCK

‘ ALU performs 4-bit data arithmetic operation, logical operation, bit checking, comparison checking, and rotation

processing.

8.1 STRUCTURE OF AN ALU BLOCK
Fig. 8-1 shows the structure of an ALU block. ,
As shown in Fig. 8-1, an ALU block consists of an ALU main unit which performs 4-bit data processing, tempo-
rary storage registers A and B which are the peripheral circuits of ALU, status flip/flop which controls the ALU
status, and decimal compensating circuit used when decimal operation is used.
The status flip/flop consists of zero flag FF, carry flag FF, compare flag FF, and BCD flag FF as shown in Fig.

8-2.

The status flip/flop corresponds to a zero flag (Z), carry flag (CY), compare flag (CMP), and BCD flag (BCD) of a

program status word (PSWORD: addresses 7EH and 7FH) in the system register on a one to one basis.

Fig. 8-1 Structure of an ALU block

//T—

LA

Data bus
Temporary storage Temporary-storage .
register A register B Status flip/flop

O

Bit checking

A

e Arithmetic operation
e Logical operation
o
L
.

Comparison checking
Rotation processing

—————

Decimal compen-
sating circuit

85

NEC : uPD17005

Fig. 8-2 Function of a program status word !

Address 7EH 7FH
Name Program status word o ‘
(PSWORD)
Signa! RPL PSW |
Bit b3 | by | by | bg | ba | b2 [by | bo | ‘
Flag BCD{CMP| CY | Z | IXE

Status flip/fiop

For | For | For | For
BCDjCMP| CY | <

flag | flag | flag | flag
FF |FF | FF | FF

Function outline

Indicates that the arithmetic

‘operation result is O

Indicates that carry or borrow at

arithmetic operation is stored

Specifies whether the arithmetic

operation is stored

Specifies whether arithmetic operation is
performed in binary mode or decimal mode

86

NEC | 4«PD17005

8.2 FUNCTION OF AN ALU BLOCK

An ALU block performs arithmetic operation, logical operation, bit checking, comparison checking, and rotation
processing according to the instruction specified by the program. .

Table 8-1 lists each of the operation, checking, and rotation processing instructions.

By executing each instruction listed in Table 8-1, operation, checking, or rotation processing of 4 bit units or
decimal arithmetic operation of one column can be executed by one instruction.

8.2.1 Function of ALU

Arithmetic operations include addition and subtraction.

Arithmetic operation between the content of a general register and the content of data memory or arithmetic
operation between the content of data memory and immediate data can be performed.

An operation of 4 bits in binary mode and operation of one bit in decimal mode are possible.

Logical operations include a logical product (Logical AND), logical sum (Logical OR), and logical exclusive sum
(Logical Exclusive OR).

Logical operation can bg performed between the content of a general register and data memory or between the
content of data memory and immediate data.

Bit checking checks bits ‘0" or ‘1’ in the 4-bit data of the data memory.

Comparison checking compares the content of data memory and immediate data and performs checking based
on “equal to”, “'not equal to”, ‘greater than", and ““less than”. ’
" Rotation processing shifts 4-bit data of the general register by 1 bit to the direction of low-order bits. (Rotate
clockwise) :

See Sections 8.3 to 8.6 for details.

8.2.2 Functions of Temporary Registers A and B

Temporary registers A and B are required for processing 4-bit data collectively and temporarily store data which
is to be processed and data which is used for processing data.

These registers are automatically used at execution of an instruction and cannot be controlled by a program.

8.2.3 Function of Status Flip/Fop

Status flip/flop stores the status of ALU operation control and data which was processed.

Since status flip/flop corresponds to each flag of a program status word (PSWORD) of a system register on a one
to one basis, status flip/flop can be operated concurrently by operating the system register.

Each flag of a program status word is described below.

(1) Zflag
The Z flag is set {1) wheh the result of the arithmetic operation is 0000B and reset (0) when the result is other
than 0000B. However, the condition in which the flag is set (1) varies depending on the CMP flag status as described
in (a) and (b).
(a) CMP flag=0
If the operation result is 0000B, the flag is set (1) and if the result is not 0000B, the flag is reset (0).
(b} CMP flag =1
If the operation result is 0000B, the previous status is retained and if the result is not 0000B, the flag is
reset {(0).

87

NEC | «PD17005

{2) CY flag

If Carry or Borrow occurs as a result of the arithmetic operation, the flag is set (1) and if Carry or Borrow does
not occur, the flag is reset (0).

When operation is performed together with Carry or Borrow, the content of the lowest bit is transferred to the
CY flag. When rotation processing (rotation clockwise) is performed, the content of the CY flag is transferred to the
highest bit (bz) of the data and the content of the lowest bit (bg) of the data is transferred to the CY flag.

The flag content remains unchanged in operations other than arithmetic operation and rotation processing.

(3) CMP flag

When the CMP flag is set (1), the result of the arithmetic operation executed is not stored in the general register
or data memory.

When a bit checking instruction is executed, the CMP flag is reset (0).
This flag does not influence comparison checking, logical operation, or rotation processing.

(4} BCD flag
When a BCD flag is set (1), all the arithmetic operations are performed in decimal mode.
When the flag is reset (0), arithmetic operations are performed in binary mode. .
This flag does not influence logical operation, bit checking, comparison checking, and rotation checking. The

values of these flags (Z, CY, CMP, and BCD) can be changed by operating the program status word (PSWORD)
directly.

In this case the status flip/flop which corresponds to the flag which was changed also changes accordingly.

8.2.4 Function of a Decimal Compensating Circuit

When the BCD flag is set (1) at arithmetic operation, the arithmetic operation result is converted to decimal
digits by a decimal compensating circuit.

See Section 8.3, “Arithmetic Operation (Addition and Subtraction of Binary and Decimal Data)”’ for decimal
operation and decimal compensating circuit.

88

NEC

~PD17005

Table 8-1 ALU processing instructions (1/3)

ALU function

Instruction

Operation

Explanation

Arithmetic
operation

Addition

ADDr,m

(R) < (R) + (M)

Adds the contents of general data and
data memory and stores the result to a
general register.

ADD m, #i

(M) « (M) +i

Adds the contents of data memory and
immediate data and stores the result in
data memory.

ADDCr,m

(R) «(R) + (M) + (CY)

Adds the contents of general register and
data memory together with CY flag and
stores the result in the general register.

ADDC m, #i

(M) < (M) +i +(CY)

Adds the.contents of data memory and
immediate data together with CY flag
and stores the result in data memory.

Subtraction

SUBr,m

(R) < (R) — (M)

Subtracts the content of data memory
from the content of a general register
and stores the result in the general
register.

SUB m, #i

(M) < (M) =i

- result in data memory.

Subtracts immediate data.from the
content of data memory and stores the

SUBCr, M

{R) «~ (R} — (M} — {CY)

Subtracts the content of data memory
and CY flag from the content of the
general register and stores the result in
the general register. ’

SUBC m, #i

(M} < (M) —i = {CY)

Subtracts immediate data and CY flag
from the content of data memory and
stores the result in data memory.

Logical

operation

Logical
sum

ORr,m

{R) < (R} OR (M}

Executes OR for the contents of the
general register and data memory and
stores the result in the general register.

OR m, #i

(M) « (M) OR i

Executes OR for the contents of the
data memory and immediate data and
stores the result in data memory.

Logical
product

ANDr,m

(R) < (R) AND (M)

Executes AND for the contents of
general register and data memory and
stores the result in the general register.

AND m, #i

(M) < (M) AND i

Executes AND for the contents of data
memory and immediate data and stores
the result in data memory,

Logical
exclusive
sum

XORr, m

(R) — (R) XOR (M)

Executes XOR for the eontents of the
general register and data memory and
stores the result in the general register.

XOR m, #i

(M) < (M) XOR i

Executes XOR for the contents of the
data memory and immediate data and’

stores the result in data memory.

89

NEC

«PD17005

Table 8-1 ALU processing instruction (2/3)

ALU function

Instruction

Operation

Explanation

True

Bit

SKT m, #n

SKIPif (M) 2 n

If all the bits specified by n are True (1)
among the contents of the data memory,
processing is skipped. The result is not
stored.

checking

False

SKF m, #n

SKIP if
(M) < (n XOR 1111B)

If all the bits specified by n are False (0)
among the contents of the data memory,
processing is skipped. The result is not
stored.

Equal to

SKIP if (M) =i

SIPT if (M) =i

Skips processing when the content of
the data memory is equal to the imme-
diate data. The result is not stored.

Not equal to

Comparison

SKNE m, #i

SKIP if (M) =i

Skips processing when the content of
the data memory is not equal to the im-
mediate data. The result is not stored.

checking

Greater than

SKGE m, #i

SKIPif (M) > i

Skips processing when the content of
the data memory is greater than the im-

" mediate data. The result is not stored.

Less than

SKLT m, #i

SKIP if (M)} < i

Skips processing when the content of
the data memory is less than the imme-
diate data. The result is not stored,

Clockwise
rotation

Rotation

RORCr

{cy)
l (R)]
b3 —+b2—+b1—b0

The content of the general register is
rotated clockwise together with the CY
flag and the result is stored in the
general register.

90

NEC

«PD17005

Table 8-1 ALU processing instruction (3/3)

Operation difference according to the program status word (PSWORD)
ALY Value Value Operation Qualifi-- Others
function of BCD of CMP Operation of CY Operation of Z flag cation by
flag flag flag IXE flag
! . i Set when the operation
! Binary operation It is 00008
result is .
0 v 0 The result is .
' Reset when the result is
| stored.
i not 0000B.
: The status is maintained
: Binary operaton when the operation .
o ! The result isnot | S OCCUTEd | gyt is 0000B.
: stored. in Carry or Reset when the result is
Borrow
Arithmetic ! i not COOOB.
" i Reset if Yes
operatian Set when the operation
: Decimal operation | Carry or i OOOOBp
result is .
1 , o The result is Borrow does .
: stored. not occur Reset when the result is
| not 0000B.
| The status is maintained
1' Decimal operation when the operation
1 | 1 The result is not result is 0000B.
I]
| stored. Reset when the result is
| i
1 not 0000B.
1
Any : Any .
- ' Previous 3
Logical value | value Previous status
i . | . Unchanged status L Yes
operation {main- I {main- . maintained
. . X maintained
* tained) I tained))
Any | ,
Previous i
Bit value : Previous status
. . Reset Unchanged status L Yes
checking {main- : L maintained
R | maintained
tained)
T
Any I Any K
i I Previous .
Comparison value | value Previous status
. . | . Unchanged status - Yes
checking {main- ;i {(main- . maintained
) v maintained
tained) ! tained)
1
An tAn
v X v Value of X
. value , value . Previous status
Rotation . | Unchanged general L No
{main- | {main-) maintained
, o register bp
tained) ! tained)

91

NEC 4PD17005

8.2.5 ALU Block Processing Procedure

If an arithmetic operation instruction, logical operation instruction, bit checking instruction, comparison check-
ing instruction, or rotation processing instruction is executed in a program, the data to be operated upon or checked
and data for processing or being processed are stored in temporary storage registers Aand B respectively.

The data to be processed is the content of the general register whose address is specified by the first operation
of each statement or content of the data memory. The data consists of 4 bits.

The data to be processed is the content of the general register or data memory whose address is specified by the
first operand of each instruction. ’

The data for processing data is the content of the data memory whose address is specified by the second 6pera-
tion of each instruction or immediate data which is directly specified by the second operand. The data consists of 4
bits.

For instance, in the following addition instruction, the data to be processed is the content of the general register
whose address is specified by the first operand r and the data used for processing is the content of the data memory
whose address is specified by the second operand m.

ADDr, m
- Second operand
First operand

In the following addition instfuction, the data to be processed is the content of the data memory whose address

is specified by m and the data used for processing is the immediate data specified by #i.
ADD m, #i

Rotation processing instruction, RORCr, requires only the data to be processed because the processing method is
predetermined and the data is the content of the general register whose address is specified by r.

The data stored in temporary storage registers A and B is used for execution, in ALU, by an arithmetic operation,
logical operation, bit checking, comparison checking, or rotation processing according to the instruction.

When the instruction which was executed is an arithmetic operation, logical operation, or rotation processing,
the data processed by ALU is stored in the general register or data memory specified by the first operand, and
processing is terminated according to the result of processihg in ALU.

When the executed instruction is for bit chécking or comparison checking, the following instruction in the
program is skipped (the next instruction is executed as a No Operation Instruction {NOP)) and operation is ter-
minated.

The following items (1) to (4) must be noted for the operation of an ALU block.

(1) An arithmetic operation is influenced by status flip/flop, that is, the CMP flag and BCD flag of the program
status word.

(2) A logical operation is not influenced by the CMP flag nor the BCD flag of the program status word. It does
not influence the Z flag and CY flag.

(3} Bit checking resets the CMP flag of the program status word.

(4) When the IXE flag of the program status word is set (1), an arithmetic operation, logical operation, bit check-
ing and comparison checking receive address qualification by the index register {1X).

See 9, “‘System Register (SYSREG)"” for address qualification by index registers.

92

NEC | «PD17005

8.3 ARITHMETIC OPERATION (ADDITION AND SUBTRACTION IN BINARY MODE OR DECIMAL MODE)

As listed in Table 8-1, arithmetic operation instruction includes an addition instruction, “ADD", and a subtrac-
tion instruction, “SUB".)

The “ADDC instruction’” which adds data together with Carry and the “SUBC instruction’’ which subtracts data
together with Borrow are also available.

Instructions, “ADD’’, “ADDC"”, “SUB"”, and ““SUBC" are classified into those for addition and subtraction
between a general register and data memory, and those for addition and subtraction between data memory and
immediate data. This is determined by the value coded in the operand of each instruction.

If the operand is “r, m’" the instruction is for addition or subtraction between a general register and data memory
and if the operand is “m, #i", the instruction is for addition or subtraction between data memory and immediate
data.

Arithmetic operation instructions are influenced by a program status word.

A binary operation or decimal operation is performed according to the BCD flag of the program status word and
the CMP flag can be used for indicating that the operation result is not to be stored.

When an Index Enable flag is set, the address is qualified by the index reglster See 9, “System Register
(SYSREG)" for address qualification by an index register.

Sections 8.3.1 to 8.3.4 describe each arithmetic operation instruction and program status word (PSWORD).
Section 8.3.5 provides notes on using arithmetic operations. '

8.3.1 Addition and Subtraction when CMP Flag=0 and BCD Flag=0
Binary addition or subtraction are performed.
The result is stored in a general register or data memory. .
The CY flag is set (1) when the operation result exceeds 1111B (Carry occurred) or the result isless than OOOOB
(Borrow occurred). In other cases, the flag is reset.
When the operation result is 0000B, the Z flag is set {1) regardless of the occurrence of Carry or Borrow and if
the result is not 0000B, the flag is reset (0). ' '

Example 1:
MOV R1, #1111B ; Transfers 11118 to general register R1
MOV M1, #0001B ; Transfers 0001B to data memory M1
ADD R1, M ; Adds R1 and M1

In this case, R1+M1 is calculated as follows.

1111B ... Contents of R1
+0001B ... Contents of M1
100008
Carry

The addition result, 0000B, is written to the content of R1 and the CY flag is set (1). The content of M1 remains
unchanged. Since the operation result is 00008, the Z flag is set (1). When the contents of R1 and M1 are added,

the CY flag is reset (0} unless Carry is output.

93

NEC 4PD17005 |

Example 2: .
MOV M1, #1010B ; Transfers 1010B to data memory M1 _
ADD M1, #0101B ; Addsimmediate data 0101B to M1

In this case, M1+0101B is calculated as follows.

1010B ... Contents of M1
+0101B ... Immediate data
011118
Carry

Consequently, 1111B is written to the content of M1 and the CY flag and Z flag are reset.

Example 3:
MOV R1, #1000B ; Writes 1000B to general register R1.
MOV M1, #111B ; Writes 1111B to data memory M1.

P @

ADD M1, #0001B ; Addsimmediate data 0001B to M1.
;@

ADDC R1, M1 ; Adds R1.and M1 together with Carry.

In (D the calculation is performed as follows.

1111B ... Content of M1
+0001B ... Immediate data
_1.0000B
Carry

Consequently, 0000B is written to M1 and the CY flag and Z flag are set (1).
In @ . the following calculation is performed.

1000B ... Content of R1
0000B ... Content of M1
+ 1 ... Contentof CY flag
010018
Carry .

That is, at execution of the ADDC instruction, addition is performed together with the content of the CY flag
and the CY flag is rewritten according to the Carry output performed as a result.

o4

[
NEC -#PD17005

Example 4:)
MOV R1, #0000B ; Writes 0000B to general register R1.
. MOV M1, #1000B ; Writes 1000B to data memory M1.
SUB R1, M : Subtract M1 from R1.

In this case, R1-M1 is calculated as follows.

0000B ... Content of R1

—1000B ... Content of M1
110008
Borrow

In this case, subtraction result 1000B is written to R1. Since Borrow occurred, the CY flag is éet (1).
Carry occurring by an addition instruction and Borrow occurring by a subtraction instruction are managed by
the same CY flag.

‘ Example 5:

MOV R1, #0000B ;
MOV M1, #0000B ;

2O
SuB M1, #0001B ;
;@
SUBC R1, M1 ;
. In this case, (1) and (2 are calculated as follows.
(@) 00008 ... Contentof M1
—0001B ... Immediate data
111118
Borrow

(2 0000B ... Content of R1

. 1111B ... Content of M1

— 1 ... Contentof CY flag
ILOOOOB
Borrow

Consequently, the oberation results are as follows;
R1=0000B, MI=11118B, CY flag=1, and Z flag=1.

95

NEC

#PD17005

8.3.2 Addition and Subtraction when CMP Flag=1 and BCD Flag=0
Binary addition or subtraction is performed.

However, since the CMP flag is set {1), the operation result is not stored in the general register or data memory,
When Carry or Borrow occurs because of the operation result, the CY flag is set {1) and if Carry or Borrow does
not occur, the CY flag is reset (0).

If the operation result is 0000B, the previous state of Z flag is maintained and if the result is not 00008B, the flag

MOV PSW, #10008B

#111B
#1118

M1

M1

MOV PSW, #10108

is reset (0).
Example 1:
MOV R1,
MOV M1,
@
~ADD Ri1,
e
SUB R1,
N E)
SUB Ri1,

M1

Sets the CMP flag {writes to the program status word).

Sets the CMP flag and Z flag.

In this case, the following calculation is performed in instruction @

1111B ... Content of R1
+11118 ... Content of M1

111108
Carry

However, since the CMP flag is set (1), the operation result is not stored in R1. Since Carry occurs, the CY flag
is set (1). Since the operation result is not 0000B, the Z flag is reset. In @ ,.since the content of R1 and M1 are
the same as for @ , the CY flag is reset (0). Since the operation result is 0000B, the previous status, 0, is main-
tained for the Z flag.

Operation of @ is the same as for @ However, status@is maintained for the Z flag because the Z flag has
been set (1) in advance.

When the CMP flag is set (1), the arithmetic operation result is not stored and as only the statuses of the CY flag
and Z flag change, the flag is useful for comparing data of 5 bits or more.

96

NEC ' #PD17005

Example 2: .
MOV PSw, #10108 : Sets (1) the CMP flag and Z flag.
;@
SUB M1, #0001B(1H);
)
SUBC M2, #0010B(2H);
NE)

SUBC M3, #0011B(3H);

Since the CMP flag has been set (1) in this case, the operation result is not stored. Covnsequently,v the contents of
M1, M2, and M3 do not change even if instructions D), @, and (® are executed.

Since the Z flag is set first (1), the Z flag is kept set (1) if all the operation results of @, @ ,and @ are 0000B
and the flag is reset (0) if at least one of the operation results is not 00008B.

The CY flag is set when the contents of 12 bits of M3, M2, and M1, are less than 0011001000018 (321H).
Consequently, 12-bit data of M3, M2 and M1 and 12-bit data of 321H can be compared by testing the Z flag and
CY flag at termination of instructions @ , @, and @

The results are shown below.

1fZ=1,CY=0, M3, M2, M1=321H

t
Always 0

If Z=0, CY=0, M3, M2, M1> 321H
If Z=0, CY=1, M3, M2, M1 <321H

In example 2, contents of the general register and contents of data memory can be compared by using the SUB
r, m and SUBC r, m instructions.

o7

NEC ' #PD17005

8.3.3 Addition and Subtraction when CMP Flag=0 and BCD Flag=1
Decimal arithmetic operation is performed.

The operation result is stored in the general register or data memory.

If the operation result exceeds 10018 (9D) or is less than 0000B (OD), the CY flag is set (1), and if the operation
result is between 0000B {0D) and 1001B (9D), the CY flag is reset (0).-

The Z flag is set (1) when the operation result is 0000B and reset {0) when the operation result is not 0000B
(0D).

The decimal operation is performed by converting the result of the operation performed in binary mode to
decimal data using a decimal compensating circuit. See Table 8-2 for the binary/decimal conversion.

To execution a decimal operation correctly, the following conditions must be satisfied.

(1) The result of addition is 0-19D.
(2) The result of subtraction is 0-9D or —10D to —1.

Value 0-19D is the value taking the CY flag into consideration and indicates 0, 0000B-1, 0011B in binary mode.
cY cY
Value—10D to —1 indicates,]’\, 01 108;1\, and 1111B in the same way.
CcY cYy
When decimal operation is performed outside of the conditions described above, the CY flag is set (1) and data
higher than 1010B (OAH) is output as the operation result.

98

NEC

xPD17005

Table 8-2 Decimal compensation data

Operation output data

Data output after decimal compensation

Addition * Subtraction
CY flag Data

CY flag Data CY flag Data
0 0000B 0 0000B 0 0000B
] 0001B 0 0001B 0 0001B
0 0010B 0 0010B 0 0010B
0 0011B 0 0011B 0 0011B
0 0100B 0 0100B 0 0100B
0 0101B 0 0101B 0 0101B
0 0110B 0 0110B 0 0110B
0 0111B 0 0111B 0 0111B
0 1000B 0 1000B 0 1000B
0 1001B 0 1001B 0 1001B
0 1010B 1 1 0000B | 1 1100B
0 1011B 1 0001B 1 1101B
0 1100B 1 0010B 1 1110B
0 1101B 1 0011B 1 1111B
0 1110B 1 0100B 1 1100B
0 1111B 1 0101B 1 1101B
1 0000B 1 0110B 1 1110B
1 0001B 1 0111B 1 1111B
1 0010B 1 1000B 1 1100B
1 0011B 1 1001B 1 1101B
1 0100B 1 1110B 1 1110B
1 0101B 1 1111B 1 1111B
1 0110B 1 1100B 1 0000B
1 0111B 1 1101B 1 0001B
1 1000B 1 1110B 1 0010B
1 1001B 1 1111B 1 0011B
1 1010B 1 1100B 1 0100B
1 1011B 1 1101B 1 0101B
1 1100B 1 1010B 1 0110B
1 1101B 1 1011B 1 OulB
1 1110B 1 1100B 1 1000B
1 1111B 1 1101B -1 1001B

99

NEC | | “ 4PD17005

Example 1:
MOV M1, #0111B(7) }
MOV RPL, #0001B -; Sets BCD flag (the BCD flag is allocated in bg of system RPLO).
MOV PSW, #0000B ; Resets the CMP flag, CY flag, and Z flag.
;@
ADD M1, #1001B(9) ; 7+9
;@

SUB M1, #0111B(7) ; 6—7
In this case, (1) is calculated as follows.

0111B ... Content of M1

+1001B ... Immediate data

10000B ... Binary addition result

Carry

"'T‘M Converts data based on the binary/decimal compensation shown in Table 8-2
10110B ... M1 storage data

Carry,

That is, the CY flag is set and 0110B (6) is stored in M1. If the CY flag is assumed to have a weighting of 10,
decimal operation of 7 + 9 = 16 is assumed.

In @, the foliowing calculation is carried out.

0110B ... Content of M1

—0111B ... Immediate data
11111B ... Binary subtraction result
Borrow '

- " Binary decimal compensation

11001B ... M1 storage data

That is, since 6 is stored in M1 in @ , operation of 6 — 7 was performed, producing 9 as the resuit and the CY
flag is set. ‘

100

: NEC xPD17005
Example 2:
MOV M1, #0101B (5) ;
. MOV M2, #01108B (6) ;
MOV M3, #0111B(7) ; v
MOV RPL, #0001B ; Sets (1) BCD flag.
MOV PSW, #00008B : Resets (0) the CMP flag, CY flag, and Z flag.
| ; @
| SUB M1, #0111B(7) ;
;@
| SUBC M2, #01108 (6) ;
f 5 ®

SUBC M3, #0101B(5) ;

In this case, 1), @, and 3 are calculated as follows.

. (D 0101B ... Content of M1
—0111B ... Immediate data
111108
Borrow

Binary/decimal compensation
11 000B (8) ... M1 storage data
Borrow,

‘ @ 01108 ... Content of M2

—01108B ... Immediate data
11n1B ... CYflag
Borrow
Binary/decimal compensation
11001B (9) ... M2 storage data
Borrow .

‘ @ 01118 ... Content of M3

—-01018 ... Immediate data
00001B ... CY flag

Borrow

Binary/decimal compensation
000018 (1) ; M3 storage data

That is, immediate data 567 is subtracted from 765 which is stored in M3, M2, and M1, producing 198 as the
result.

101

NEC ~PD17005

Example 3:

MOV M1, #1001B ;

MOV RPL, #0001B ; Sets (1) the BCD flag.

MOV PSW, #0000B ; Resets (0} the CMP flag, CY flag, and Z flag.
N OR

ADDC M1, #10108
;@

ADDC M1, #1010B ;

In this case, (D is calculated as follows.

1001B (9) ... Content of M1
+10108 (10) ... Immediate data
100118 CY flag

Carry
' Binary/decimal conversion
11001B Operation result

That is, operation 9 + 10 = 9 is performed. If the CY flag is taken into account, decimal operation 9+ 10 =19 is
assumed. However, in @ , the following calculation is carried out.

1001B (9) ... Content of M1

+1010B (10) ... Immediate data
101008 CY flag

Carry

Fattet 4

Binary decimal conversion

111108 Operation result

Carry

That is, since the CY flag has been set (1), the operation result exceeded 19 and correct decimal operation cannot
be performed.

102

NEC «PD17005

8.3.4 Addition and Subtraction when CMP Flag=1 and BCD Flag=1
A decimal arithmetic operation is performed.
. The operation result is not stored in the general register or data memory.
That is, operation when CMP flag = 1 and operation when BCD flag = 1 are performed concurrently.

Example:
MOV RPL, #0001B ; Sets (1) the BCD flag.
MOV PSW, #1010B ; Sets (1) the CMP flag and Z flag and resets (0) the CY flag.

;@

SUB M1, #0001B ;
)]

SUBC M2, #0010B ;
)

SUBC M3, #0011B ;

In this case, the contents of 12 bits in M3, M2, and M1 and immediate data 321 can be compared in decimal

‘ modein O, @ ,and @ .

103

NEC uPD17005

8.3.5 Notes on Using Arithmetic Operations .

Note that the result of an arithmetic operation is stored in the program status word when an arithmetic operation
is performed for a program status word. _ 7) ‘

That is, although the CY flag and Z flag in the program status word are normally reset by the arithmetic opera-
tion result, the arithmetic operation result is stored if an arithmetic operation is performed for the program status
word itself and thus, Carry, Borrow, or Zero cannot be checked.

However, when the CMP flag is set (1), the CY flag and Z flag are set or reset normally since no arithmetic opera-
tion result is stored.

The examples are shown below.

Example 1:
MOV PSW, #0110B
ADD PSW, #1010B

In this case, the results are calculated as follows.

0110B ... Content of PSW
+1010B ... Immediate Data
.1.00008B
.Carry

Although the CY flag and Z flag must be set as a result, the operation result 0000B is stored in PSW since the
CMP flag is “0".

Example 2:
MOV PSW, #1010B
ADD PSW, #10008

In this case, the results are calculated as follows.

1010B ... Content of PSW
- +1000B ... Immediate data
100108
Carry

Since the CMP flag is set (1), operation result 0010B is not stored in the PSW.
Consequently, the CY flag of PSW is set (1) and the Z flag is reset (0). That is, 1100B is stored in PSW.

104

[

NEC #PD17005

8.4 LOGICAL OPERATION
As shown in Table 8-1, logical sum {Logical OR), logical product (Logical AND), and logical exclusive sum
. {Logical Exclusive OR) are allowed for logical operations. Table 8-3 lists truth values of the logical sum, logical
product, and logical exclusive sum.

Logical operation instructions are classified into these three types and the “OR instruction”, *AND instruction”,
and “XOR instruction’’ are used respectively. .

The ““OR”, "AND", and “XOR’" instructions are classified into Iogicail operations between a general register and
data memory, and logical operations between data memory and immediate data. The type is determined by the value
“r,m"” or “m, #i"" entered in the operand of the instruction in the same way as for the arithmetic operation.

Logical operation is not influenced by the BCD flag or CMP flag of the program status word.

The CY flag and Z flag do not impose any influence on the logical operation.

When the Index Enable flag is set (1), address qualification is perfo'rmed from the index register. See 9, “System
Register (SYSREG)" for address qualification by an index register.

Sections 8.4.1 and 8.4.2 describe logical sum, logical product, and logical exclusive sum.

Table 8-3 Truth value of logical operation

‘ i . Logical exclusive
Logical sum Logical product
sum
AORB=C AANDB=C AXORB=C
i 1) - |
A B c A | B c A B c
o {0 o fo o] o o0
0 i 1 o i1 0 o 1 |1
. 1 : 0o | 1 100 | o |1 fo |1
100 1 1 1 1 1 ! 1 0

8.4.1 Logical Sum (Logical OR)} »
A logical sum instruction performs the OR operation of 4-bit data according to the truth values listed in

Tabie 8-3.

Example:
‘ MOV R1, #1010B ;
MOV M1, #0018 ;
O]
OR R1, M1 ;
)

OR M1, #1100B
In this case, operation of @ is performed as follows.
1010B ... Content of R1

OR 1001B ... Content of M1
10118 ... Operation result

Consequently, 1011B is stored in R1.
‘ Operation of (@) is performed as follows.

105

NEC #PD17005

1001B ... Content of M1
OR 11008 ... Immediate data
1101B ... Operation result
Consequently, 1101B is stored in M1.

Logical sum is useful for setting (1) the data memory contents in 1-bit, 2-bit, 3-bit, or 4-bit units.

8.4.2 Logical Product (Logical AND)

A logical product instruction performs an AND operation of 4-bit data according to the truth values listed in
Table 8-3.

Example:

MOV R1, #1010B ;

MOV M1, #1001B
O]

AND R1, M1
)]

AND M1, #1008 ;

’

In this case, operation of (1) is performed as foliows.
1010B ... Content of R1
AND 1001B ... Content of M1
10008

As a result, 10008 is stored in R1.
Operation of @ is performed as follows.

1001B Content of M1
AND 1100B ... Immediate data
10008

As a result, 10008 is stored in M1.

Logical product is useful for resetting the data memory contents in 1-bit, 2-bit, 3-bit, or 4-bit units.

106

[

NEC

#PD17005

8.4.3 Logical Exclusive Sum (Logical Exclusive OR)

A logical exclusive sum instruction performs XOR operation of 4-bit data according to the truth values listed in

Table 8-3.

Example: _
MOV R1, #1010B ;
MOV M1, #1001B ;

;@

XOR R1, M1 ;

;@

XOR M1, #1100B ;

In this case, operation of (1) is performed as follows.

10108 ... Content of R1
XOR 1001B ... Content of M1
0011B

As a result, 0011B is stored in R1.
Operation of (2) is performed as follows.

1001B ... Content of M1
XOR 1100B ... Immediate data
01018

As a result, 01018 is stored in M1.

. Logical exclusive sum is useful for inverting the data memory contents in 1-bit, 2-bit, 3-bit, or 4-bit units.

107

NEC . #PD17005

8.5 BIT CHECKING

As listed in Table 8-1, bit checking methods are classified into True bit checking (1) and False bit checking (0).

The “SKT instruction” and “SKF instruction” are used for True bit (1) checking and False bit (0) checking.

The “SKT" and “SKF" instructions can be used for data memory only.

Bit checking is not influenced by the BCD flag of a program status word. The CY flag and Z flag do not impose
any influence. However, the CMP flag is reset (0) if the “SKT" or ““SKF"’ instruction is executed.

When an Index Enable flag is set (1), address qualification is performed by the index register. See 9, ‘System
Register (SYSREG)" for address qualification by an index register.

Sections 8.5.1 and 8.5.2 describe True bit (1) checking and False bit (0) checking.

8.5.1 Checking a True (1) Bit

True bit (1) checking instruction “SKT m, #n" checks whether the bits specified by n among the four bits in the
data memory are “True (1)”. When all the bits specified by n are “True (1), the following instruction is skipped.

Example:
MOV M1, #0118 ;
O]
SKT M1, #10118 ;
BR A
BR B
)
SKT M1, #1101 ;
BR Cc
BR D

In this case, bits b3, by, and bg of M1 are checked in (D and control is branched to B because all the bits are
True (1).

In 2, bits b3, ba, and bg of M1 are checked in (2), control is branched to C because bit by of M1 is False (0).

8.5.2 Checking a False {0) Bit

False bit (0) checking instruction “SKF m, #n"' checks whether the bits specified by n among the four bits in the
data memory are False (0). When all the bits specified by n are “False (0)", the following instruction is skipped.

Example:
MOV M1, #1001B ;
;@
SKF M1, #0110B ;
BR A
BR B
;@
SKF M1, #1110B ;
BR C
BR D

In @ bits b3 and by of M1 are checked. Since all the bits are False {0), control is branched to B.
In @ , bits bz, ba, and by of M1 are checked. Since bit b3 of M1 is True (1), control is branched 1o C.

108

NEC xPD17005

8.6 COMPARISON CHECKING

As shown in Table 8-1, comparison checking involves the checking of “‘equal to
and “less than”. The conditions, “equal to’’, ’not equal to”, “greater than’, and “less than” are checked by the
“SKE instruction’’, “SKNE instruction”, *“SKGE instruction’, and “SKLT instruction”, respectively.

The “SKE”, “SKNE"”, “SKGE"”, and “SKLT" instructions can only perform comparison checking between data

ooaa 0 12

not equal to’’, “‘greater than'’,

memory and immediate data.
Consequently, when comparison checking is performed between a general register and data memory, a subtrac-
tion instruction is executed using the CMP flag and Z flag of a program status word {PSWORD). See Section 8.3,
“Arithmetic operation (addition and subtraction in binary mode and decimal mode)”.
Comparison checking is influenced by .the BCD flag and CMP flag of the program status word (PSWORD). The
CY flag and Z flag do not impose any influence.
When an Index Enable flag is set (1), address qualification is performed by the index register. See 9, “’System
Register (SYSREG)" for address qualification by an index register.
Sections 8.6.1 to 8.6.4 describe instructions for checking “‘equal to

"o "o

not equal to greater than’’, and “less

than”.

8.6.1 Checking “Equal to”

“Equal to’" checking instruction “SKE m, #l” checks whether the contents of data memory and immediate data
are “‘equal”’.
When the contents of the data memory and immediate data are ‘equal”’, the following instruction is skipped. .

Example:
MOV M1, #1010B ;
;@
SKE M1, #1010B ;
BR A
BR B
;@
SKE M1, #10008 ;
BR Cc
BR D

In this case, since the contents of M1 and immediate data 1010B are equal in @ , control is branched to B.
In), since the contents of M1 and 1000B of immediate data are not equal, control is branched to C.

109

NEC

#PD17005

8.6.2 Checking “Not Equal to”

’Not equal to”” checking instruction “SKNE m, #i” checks whether the contents of data memory and immediate
data are “not equal”’.

When contents of the data memory and immediate data are "“not equal”’, the following instruction is skipped.

Example:

;@

‘SKNE M1,
BR A
BR B

O

SKNE M1, #0108 ;
C

BR
BR

In (@, since the contents of M1 and immediate data 1000B are not equal, control is branched to B.
In @ , since the contents of M1 and immediate data 1010B are equal, control is branched to C.

8.6.3 Checking ‘“Greater Than"

D

MOV M1, #1010B ;

#1000B

"Greater than” checking instruction “SKGE m, #i" compares the contents of data memory and immediate data.
When the contents of the data memory is “greater than’’ or “’equal to’’ the immediate data, the following instruction

is skipped.
Example:
MOV M1,
;@
SKGE M1,
B8R A
BR B
)
SKGE M1,
BR (
BR D
N E)
SKGE M1,
BR E
BR F

#10008

#0111B

#10008B

#1001B

In this case, the content of M1 which is 1000B is ‘‘greater than’’ immediate data in ., “equal to”" immediate
data in (2, and “less than” the immediate data in ® . so that control is branched to B, D, and E respectively.

110

NEC

«PD17005

8.6.4 Checking “Less Than”

“Less than" checking instruction “SKLT m, #i" compares the contents of data memory and immediate data.

‘ When the content of the data memory is “less than” the immediate data, the following instruction is skipped.
Example:
MOV M1, #1000B
AN O) :
SKLT M1, #10018
BR A
BR B
; @
SKLT M1, #10008B
BR C
BR D
)
#01118B

SKLE M1,
® o €

BR. F

In this case, since the content of M1, which is 10008B, is determined as "less than", “equal to”, and “‘greater
than’ the immediate data in @ , @ , and @ respectively, control is passed to B, C, and E in each case:

NEC | | xPD17005

8.7 ROTATION PROCESSING

Rotation processing includes clockwise rotation processing and counterclockwise rotation processing.
The “RORC instruction” is used for clockwise rotation processing.
The “RORC instruction” can be used for general registers only.

Clockwise rotation processing by the “RORC instruction” is not influenced by the BCD flag and CMP flag of the
program status word. The Z flag does not impose any influence.

Address qualification by the index register (1X) is not performed for the “RORC instruction” even if an Index
Enable flag is set {1).

Although there is no special instruction for counterclockwise rotation processing, the processing can be per-
formed by the “ADDC instruction”, which is an addition instruction.

Sections 8.7.1 and 8.7.2 describe clockwise rotation processing and counterclockwise rotation processing.

8.7.1 Clockwise Rotation Processing

Clockwise rotation processing “RORC r” rotates the content of a general register by one bit in the direction of
the low-order bits.

In this case, the content of the CY flag is written to the highest-order bit bz of the general register and the
content of the lowest-order bit bg is written to the CY flag.

Example 1:
MOV PSW, #0100B ; Sets{1)the CY flag.

MOV R1, #1001B
RORC R1

In this case, the following processing is performed.

CY flag

bg bo by bg -+ Content of R1

1 =1 —=0—+=0
That is, the content is rotated clockwise as follows; CY flag = b3, bz = by, by = by, by = bg, bg = CY flag.

Example 2:

MOV PSW, #0000B ; Resets (0) the CY flag
MOV R1, #1000B ;

MOV R2, #01008B ;

MOV R3, #00108B ;

RORC R1

RORC R2

RORC R3

In this case, the above program rotates the 12-bit data of R1 . R2, and R3 clockwise.

NEC

«PD17005

8.7.2 Counterclockwise Rotation Processing

Counterclockwise rotation processing can be performed by using an addition instruction, “ADDC r, m".

Example:
MOV
MOV
MOV
MoV
ADDC
ADDC
ADDC

In this case, the above program rotates the 12-bit data of R1, R2, and ‘R3 counterclockwise.

RSW, #0000B ; Resets (0) the CY flag.

R1,
R2,
R3,
R3,
R2,
R1,

#10008B ;
#01008B ;
#00108B ;
R3
R2
R1

NEC uPD17005

9. SYSTEM REGISTER (SYSREG)

A system register is used for directly controlling the CPU and is stored in data memory.

9.1 STRUCTURE OF A SYSTEM REGISTER

Fig. 9-1 shows the location of a system register in data memory.

As shown in Fig. 9-1, a system register is stored in data memory addresses 74H to 7FH. The same system register
is stored in addresses 74H to 7FH in any bank.

Since a system register is stored in data memory, it can be manipulated by a data memory manipulation instruc-
tion.

A system register can be specified as a general register.

Fig. 9-2 shows the structure of a system register.)

As shown in Fig. 9-2, a system register consists of seven types Qf registers.

Address register (AR)

Window register (WR)

Bank register (BANK)

Index register (1X)

Data memory row address pointer (MP)
General register pointer (RP)

Program status word (PSWORD)

Fig. 9-1 Location of a system register in data memory

Column address
0 1 2 3 4 5 6 7 8 9 A B C D E F

0
1
2
g 4
3 Data memory
z 4
&
5
6 BANKO
7 | BANKT
7 | BANK2
7 BANK3

- System register

4 5 6 7 8 9 A B C D E F

114

»PD17005

NEC

Fig. 9-2 Structure of a system register

7FH

7EH

7DH

Program
status

waord
{PSWORD)

PSW

General
register
pointer (RP)

RPL

RPH

7CH

7BH

7AH

Index register (1X)

IXL

Data memory
row address
pointer (MP)

(MP)

IXM

MPL

[P RN [P

IXH

MPH

79H

System register

register
(BANK)

BANK

78H

Window | Bank
register
{WR)

WR

77H

76H

75H

74H

Address register (AR)

ARO

AR1

AR2

AR3

b3[bz|b1]ba]ba|b2| by |bo|b3|b2 b1 [bo |b3|b2|b1 [ba|b3|bz |b1 b |ba[b2{b1 [Bo|ba| b2 b1 |bg b3 [b2i b1 (b b3 | b2lb1 |bo| b3 b2 (b1 [bo[b3|b2 b1 |bD b3 b2 (b1 [bD

Address

Name

Symbol

Bit

115

NEC - _ #PD17005

9.2 FUNCTION OF A SYSTEM REGISTER

9.2.1 Function of Each Register
The function of each register of a system register is described below.
See Sections 9.3 to 9.8 for details of the function of each register.

(1) Address register (AR)
Specifies indirectly a program memory address.

{2) Window register (WR)
Used for data transfer with a register file.

{3) Bank register (BANK)
Specifies a data memory bank.

(4) Index register (1X)

Used for address qualification of data memory.

(5) Data memory row address pointer {MP)
Specifies a row address at general register indirect transfer.

(6) General register pointer {RP)
Specifies addresses of a bank and row of a general register.

{7) Program status word (PSWORD)
Sets operation and transfer instruction conditions.

9.2.2 System Register Manipulation Instructions

Since a system register is stored in data memory, it can be controlled by any data memory manipulation instruc-

tion. The following special instructions are made available for an address register and index register of the system
register.

INC AR: Increments the content of the address register by *1°".
Since the number of valid bits of an address register is 13, the value is incremented by ‘“1'" whenever
an instruction is executed and when the value reaches 1FFFH, 0000H is set as the next value.

INC IX: Increments the content of an index register by ‘1",
Since the number of valid bits of an index register is 9, the value is incremented by “1” whenever
an instruction is executed and when the value reaches 1FFH, 000H is set as the next value.

NEC #PD17005

9.3 ADDRESS REGISTER (AR)

9.3.1 Structure of an Address Register
Fig. 9-3 shows the structure of an address register.

Fig. 9-3 Structure of an address register

Address 74H 75H 76H 77H
Name ' Address register (AR)
Symbol AR3 AR2 AR1 ARO
Bit b3| bz b1 | bg|bz|b2|by|bp|bz|ba|by|bg|b3|bz]|bi]|bo
DN P PN
Y Y b oL
Von s Vv Vo -
Data 0:0.0. o oo N
N - o oo v, B
Vv Vo . oY
o - — — —
2| Power On 0 0 0 0
=)
2| CE 0 0 0 0
g
& | sTOP 0 0 0 0
Power ON : At Power On Reset
CE : At CE Reset

STOP : At execution of a Clock Stop instruction

As shown in Fig. 9-3, an address register consists of 16 bits of the system register address 74H to 77H (AR3 to
ARO). However, since the high-order 13 bits are always set to 0, the register actually functions as a 13-bit register.
At Power On Reset, CE Reset, or execution of a Clock Stop instruction, all the 16 bits are reset to 0.

9.3.2 Function of an Address Register

An address register specifies the program memory address at execution of an indirect branch instruction (BR
@AR), indirect subroutine call instruction (CALL @AR), table reference instruction (MOVT DBF, @AR), or stack
manipuiation instruction (PUSH AR, POP AR).

Sections 9.3.3 to 9.3.6 describe the operation at execution of each instruction.

A special instruction (INC AR) is provided to the address register for incrementing the value by 1 at a time. By
using this instruction, the data in the address register can be incremented in 13-bit units. When the content of the
address register is 1EFBH, the content of the register can be changed to 0000H by executing the “INC AR™ instruc-
tion.

However, data stored in addresses from 0000H to 1EFBH become valid.

9.3.3 Table Reference Instruction (MOVT DBF, @AR)

By executing the “MOVT DBF, @AR" instruction, constant data (16 bits}) of the program memory address
specified by the content of the address register can be read to the data buffer (DBF: addresses from QOCH to OFH
of BANKQ) of the data memory.

Constant data of the program memory stored in addresses from 0000H to 1EFBH can be read to a data buffer.

See also Section 11.2.4, ’Data Buffer and Table Reference".

NEC

©PD17005

Example:
Address Label
O0OFH DATA1:

16-bit constant datﬂ
MOV ARQO, #OFH ; Writes OFH in ARO.
MOV AR1, #0H ; Writes OH in AR1.
MOV AR2, #0H ; WritesOH in AR2.
MOV AR3, #0H ; WritesOH in AR3.
MOVT DBF, ®AR ; Reads constant data in address 000FH of program
; memory to a data buffer.

9.3.4 Stack Manipulation Instruction (PUSH AR, POP AR)
By executing the “PUSH AR"’ instruction, the stack pointer can be decremented by 1 and the content of the
address register (AR) can be stored in the address stack register indicated by the stack pointer.

By executing the “POP AR’' instruction, the content of the address stack register specified by the stack pointer
can be transferred to the address register and the stack pointer can be incremented by 1.

See 5, ““Stacking”.

9.3.5 Indirect Branch Instruction (BR @AR)

By executing the “BR @AR"" instruction, control can be branched to the program memory address specified by
the content of the address register.

Example
MOV ARO, #OFH ;
MOV ARt1, #0H
MOV AR2, #0H
MOV AR3, #0H ;
BR @AR ;

’

Writes OFH in ARO.

Writes OH in AR1.

Writes OH in AR2.

Writes OH in AR3.

The program passes control to 000FH.

Since high-order 3 bits of the address register are always set to zeros, the values are always zeros even if a Write

statement is executed.

118

NEC

#PD17005

9.3.6 Indirect Subroutine Call Instruction (CALL @AR)
By executing the ““CALL @AR’ instruction, the subroutine of the program memory address specified by the

content of the address register can be called.

Example 1:
Address Label
000FH 'SUB: Subroutine processing

| RET

MOV
MOV
MoV
MOV
CALL

ARO,
AR1,
ARZ2,
AR3,
@AR

#OFH ;

Writes OFH in ARO.

Writes OH in AR1.

Writes OH in AR2,

Writes OH in AR3.

Calls the subroutine in address 000FH.

In Example 1, the address used for indirect subroutine call is specified by the MOV’ statement.
This method deteriorates the program memory usage efficiency when subroutines are frequently called indirectly.
The use of the “POP” and “PUSH" instructions and table reference is recommended as shown in Example 2.

Example 2:
SUBENTRY:
DI
POP AR
MOVT DBF, @AR
INC AR
PUSH AR
El
PUT AR, DBF
BR @AR
SUB1
SUB2
MAIN :

CALL SUBENTRY
DW .DL. suUB1
CALL SUBENTRY
DW .DL. SUB2

NEC 4PD17005

9.3.7 Address Register and Data Buffer
Data in an address register can be manipulated directly using a data memory manipulation instruction, and the
data can also be transferred via a data buffer as a part of peripheral hardware. .
That is, data in an address register can be read and written via a data buffer using the “PUT" and “’GET" instruc-
tions in addition to data memory manipulation instructions.
The relationship between an address register and a data buffer is shown below.
See 11, ““Data Buffer’” for details of a data buffer.

Name Data buffer
Symbol DBF3 DBF2 DBF1 DBFO
Address OCH ODH GEH OFH

Bit big|b14[b13|b12|b11|b10| bg [bg | b7 [be | bs | ba [bz |ba | b1 |bg

‘ i ' ' '

EDat'a ta be tran'sfer'redg

Data : .)
GET allowed
16
PUT allowed
Peripheral register
Name [b15|b14|b13[p12{b11|b10[bg | bg [b7 | b [b5 | ba [b3 |b2 [0y [bo| Symbol Peripheral Peripheral
j | address hardware
Address R oo P R Address
. 0:0:0: :] i i Valid data! ; : A 40H .
register P e . . aj — A : register
| I
Setting and reading address register data
0 § 0 ; 0 : 0
Name Address register-
: Symbol AR3 | AR2 | AR1 | ARO
§ Address | 74H | 75H | 76H | 77H
X Data RERRRETSEREEEE
The high-order 3 bits of the address
register are always set to “0".
1 : F F § F

120

NEC 1PD17005

9.4 WINDOW REGISTER (WR)

9.4.1 Structure of a Window Register
Fig. 9-4 shows the structure of a window register.

Fig. 9-4 Structure of a window register

Address 78H
Name Window register (WR)
Symbol WR
Bit b3 | bz | by bg
~ ~
M L
g ! S
Data :
B : B
v o v
@ | Power On Undefined
g
3| CE Retaining the
% | stor previous status

As shown in Fig. 9-4, a window register consists of 4 bits of system register 78H.
At Power On Reset, the content is undefined and at CE Reset or execution of a Clock Stop instruction, the

previous status is retained.

9.4.2 Function of a Window Register
A window register is used for transfer of data to a register file (RF) which is described later.
Special instructions, “PEEK WR, rf" and “POKE rf, WR" are used for transfer of data to a register file.
Sections 9.4.3 and 9.4.4 describe operation performed when each instruction is executed.

- See 10, “Register File” also.

9.4.3 PEEK WR, rf Instruction
As shown in Fig. 9-5, by executing the PEEK WR, rf instruction (rf: register file address), the contents of the

register file whose address is specified by rf can be transferred to a window register.

121

NEC | «PD17005

9.4.4 POKE rf, WR Instruction
As shown in Fig. 9-5, by executing the POKE rf, WR instruction, the contents of the window register can be
transferred to the register file whose address is specified by rf. .

Fig. 9-5 Operation of PEEK and POKE instructions

Column address
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 Register file
1
w 2
g
3 3
©
2 4
=]
2=]
5 i PEEKWR, 41H
b 1 POKE 5FH, WR
6 T
7
l [System register

122

NEC | «PD17005

9.5 BANK REGISTER (BANK)

9.5.1 Structure of a Bank Register
Fig. 9-6 shows the structure of a bank register.

Fig. 9-6 Structure of a bank register

Address 79H
Name Bank register (BANK)
Symbol BANK
Bit bz [b2 | by bg
A ia
: P Mo L
0 0is s
Data i H H
- iB B
Lowv Vv
—
& | Power On 0
b+
2 CE 0
2
& | stop 0

As shown in Fig. 9-6, a bank register co_nsists of 4 bits of system register 79H (BANK). However, the high-order 2

bits are always set to 0.
At Power On Reset, CE Reset, or execution of a Clock Stop instruction, the register is reset to 0.

9.5.2 Function of a Bank Register

A bank register switches a bank of data memory.

Fig. 9-7 shows the bank register values and specification of a bank of data memory.

As shown in Fig. 9-7, a data memory is divided into four banks according to the bank register, and when a data
memory manipulation instruction is executed, the data memory specified by the bank register is manipulated.

Consequently, to manipulate data memory of BANK1 when BANKO is currently specified, the bank must be
changed to BANK1 by writing 0001H to the bank register..

In this case, there is no bank concept for the system registers located in addresses from 74H to 7FH of the data
memory and the same system register exist in addresses 74H to 7FH in all the banks. In this case, even if “MOV
BANK, #0" instruction is executed in BANK1 or “MOV BANK, #0'" instruction is executed in BANKZ2, as a result,
0 is written in the bank register (BANK: address 78H). That is, when a bank register is manipulated, the status of

the bank is not related.

123

NEC

«PD17005

Fig. 9-7 Data memory bank specification

l

Bank
register Bank of
(BANK) data Column address
b31b2b1b0 memory 01234567 89ABCDETF
0!0}0'0! BANKO 0
o 1
0l0i011| BANKI '32
: 5 = BANKO
0!01110| BANK2 }— gi
z
0!011!1] BANK3 I+ es
6
7 I | @NK system register [<T— The same register
0 always exists
1 in any bank
2
B
5 ANK1
4
5
6
A S [::—__"'§\Ts¥e'm_r—e§i§t'er_ ______ :--
0
1
2 BANK2
3
4
5
6
e S T A
0
1
2 .
3 BANK3
4
5
6
e S T

The “BANKn” instruction {0 < n < 3) is provided in the 17K series Assembler as an intrinsic macro instruction

for manipulating a bank.

An example of a bank and data memory operation is shown below.

Example:
MO000
M100
BANKO
MOV
BANKI1
MOV
MOV

124

MEM
MEM

MO000,

M100,
Moo0o0,

0.00H
1.00H

’

’

#0101B ;

#0101B ;
#0101B ;

Symbol definition

Equivalent to MOV BANK, #0000B

Writes 01018 in address 00H of BANKO

Equivalent to MOV BANK, #0001B

Writes 0101B in address OOH of BANK1

Writes 0101B in address 0OH of BANK1

In this case, although data memory MOOO is defined as BANKO at symbol
definition, it is used as the bank which is specified at that time at program

execution.

#PD17005

} ___NEC

9.6 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER (MP: MEMORY POINTER)

{memory pointer enable flag: MPE) which is the highest bit of 7AH (MPH).

9.6.1 Structure of an Index Register and a Data Memory Row Address Pointer
Fig. 9-8 shows the structure of an index register and data memory row address pointer.

Fig. 9-8 Structure of an index register and a data memory row address pointer -

Address 7AH 78H 7CH 7EH 7FH
Name oo Index register (1X) . Program status
: Memory pointer (MP) word (PSWORD)
I XH I XM .
Symbol [: IXL PSW
MPH MPL
Bit bg|bp| biibo]b3|b2|by|bpo|b3|b2|b ‘bg| b3 | b2| bi{bo|b3|bz2]|by|bg
Mi i M P L |
Pioiois s X
Ei | I8 i B | E
R X >
Data :
; : PN :
: PL :
é | s |
| B
. . . A4 ’
. i MP P :
o Power On 0 Q 0 0
(= +
E| CcE :
.8 0 0 0 ; 0
&8 ;
STOP 0 0 0 b0

As shown in Fig. 9-8, an index register consists of 11 bits comprising the low-order 3 bits (1XH) of system register
7AH, 7BH, and 7CH (1XM and IXL) and an Index Enable flag which is the lowest bit of 7FH (PSW). *
A data memory row address pointer {memory pointer} consists of an 8-bit data memory row address pointer
‘, comprising the low-order 3 bits of 7AH (MPH}, and 7BH (MPL), and a data memory row address pointer enable flag

That is, the high-order 7 bits of the index register and the data memory row address pointer are shared.
However, the high-order 2 bits of the index register and data memory row address pointer {bits by and by of

7 AH) are always set to ““0”".
At Power On Reset, CE Reset, or execution of a Clock Stop instruction, all the registers are reset to 0",

1256

NEC | ~ 4PD17005

9.6.2 Functions of an Index Register and Data Memory Row Address Pointer
The function of an index register and data memory row address pointer are described in sections {1) and (2).

(1) Index register

An index register qualifies the bank and address of the data memory specified by the instruction according to the
contents of the index register when a data memory manipulation instruction is executed.

However, address qualification becomes valid only when an Index Enable flag is set by the index register.

For address qualification, the bank and address of the data memory are manipulated by the contents of the index
register and OR operation, and the execution is performed for the data memory of the address (called an actual
address) specified by the operation result.

Address qualification by an index register is effective for all the data memory manipulation instructions.

An index register is not effective for the following instructions.

MOVT DBF,@AR BR addr INC AR El
PEEK WR,rf BR @AR INC IX DI
POKE rf, WR CALL addr RORC r

GET DBF,p CALL @AR STOP s

PUT p. DBF RET HALT h

PUSH AR RETSK NOP

POP AR RETI

(2) Data memory row address pointer

A data memory row address pointer qualifies the address of the indirect transfer destination with the content of
the data memory row address pointer when a general register indirect transfer instruction (MOV @r, mor MOV m,
@r) is executed. .

However, address qualification by a data memory row address pointer is effective only when a data memory row
address pointer enable flag (memory pointer enable flag) is set (1).

Address qualification is effective only for general register indirect transfer instructions.

Address qualification is performed by replacing the addresses of the bank and row of the indirect transfer destina-
tion with the content of data memory row address pointer.

Table 9-2 shows data memory address qualification and indirect transfer address qualification by an index register
and data memory row address pointer. ‘

Sections 9.6.3 to 9.6.6 describe each operation of address qualification of data memory by an index register data
and data memory row address pointer.

126

NEC

#PD17005

Table 9-2 Data memory address qualification by an index register and data memory row address pointer

General register address Data memory address Indirect transfer address
specified by r specified m specified by @r
R M @R
IXE | MPE Row Column ¢ Row Column Row Column
Bank ! address | address Bank | address | address Bank | address | address
b3|bz|bq|bp[b2ib1|bg|b3|ba|b1]|bo|b3|b2(b1]bp |b2|b1|bg|b3|ba|b1|bgib3|bz|b1|bg|ba|b1(bg (b31b2(b1 b
o| o (RP) ; r (BANK) ‘m (BANK) mH (R)
0 1 i As above | | As above | (MP) (R)
: : (BANK) | im (BANK) | mH
1 0 i As above i ‘Logical OR " Logical OR (R)
: ; ux) (IXH) (1XM)
1 1 As above As above ! {MP) (R)
Group of instructions whose addresses are qualified
ADD
S5 ADDC r m
3 R S T
gé SUB
SUBC m. #i
AND
=
2| or r m
= T U SO SRR
% .
5 XOR
(&)
m. #i
SKE
o| SKGE
[=2]
[=]
| skLT m. #i
SKNE
21 skt
=
[
6- SKF m. #n
LD
ST r m
E MOV
§ .
) T N AN NS
Indirect transfer
@r m address

127

NEC

«PD17005

(M)

mH
mL
BANK
(BANK)
I1X
(1X)
IXH
IXM
IXL
MP
(MP)

(R)

RP
(RP)

128

Data memory address

Data memory address contents

Data memory address excluding bank
Data memory row address

Data memory column address

Bank register

Bank register contents

Index register

Index register contents

Index register bits bqg-bg

Index register bits by-bg

Index register bits b3-bg

Data memory row address pointer
Data memory row address pointer contents
General register address

General register address contents
General register column address
General register pointer -

General régister pointer contents

e

NEC

«PD17005

9.6.3 When MPE=0 and IXE=0 (Without Data Memory Qualification)

As shown in Table 9-2, data memory addresses are not influenced by either an index register nor by a data

memory row address pointer.

(1) Data memory manipulation instruction

Example:

BANKAQO is specified and the register is in row address 0.
RO0O3 MEM 0.03H
M061 MEM- 0.61H
ADD RO003, MO061

When the above instruction is executed, the contents of general register R003 and data memory MOG61 are added,
and the result is stored in general register RO03 as shown in Fig. 9-9.

(2) General register indirect transfer

Example 1:
BANKO is specified and the general register is set in row address 0.
ROOS MEM 0.05H
M034 MEM 0.34H
MOV ROO5, #8 ; RO05 <8
MOV @R005, MO34 ; Register indirect transfer

When the above instruction is executed, the contents of data memory are transferred to address 38H of the data
memory as shown in Fig. 9-9.

That is, the “MOV @r, m" instruction transfers the contents of the data memory specified as m to the data
memory of the indirect address specified by @r. ')
The contents of the general register whose bank address and row address are the same as m (row address 3 of
BANKO in the above example) and whose column address is specified by r (8 in the above example) are used for
the indirect transfer address. That is, 38H is used in the above example. '

Example 2:
BANKO is specified and the general register is set in row address 0.
ROOB MEM 0.0BH
M034 MEM 0.34H
MOV RO0OB, #0EH ; ROOB < OEH
MOV M034, @ROOB ; Register indirect transfer

When the above instruction is executed, the contents of the data memory of address 3EH are transferred to data

memory M034.
That is, the “MOV m, @r” instruction transfers the contents of the data memory of the indirect address specified

by @r to the data memory specified by m.

The contents of the general register whose bank and row addresses are the same as m (row address 3 of BANKO)
and whose column address is specified by r (OEH in the above example) are used as the indirect transfer address
3EH.

This example shows the case where the data memory address source (transfer source) and destination (transfer

destination) are switched from those shown in Example 1.

129

NEC #PD17005

Fig. 9-9 Operation example when IXE=0 and MPE=0

Column address .

0 1 2 3 4 5 6 7 8 9 A B Cc D E F

0 General
1 ansfer destination | Transfer destination register
1 column address is specified | column address is specified
------------] R ittty |
2 2 Ex. 2 MOV @R005, M034 ! !
[}
3 3
; 4 Ex. 3 MOV M034, @R0O0B
o]
o«
5 Ex. 1 ADD R003, M061
6 BANKO
7
System register
Address generation of the example shown above
ADD R003, M061
Bank Row address Column address
Data memory address M 0000 110 0001
General register address R 0000 000 0011
Address generation of Example 1
MOV @R005, M034
Bank Row address Column address
Data memory address M 0000 011 0100
General register address R 0000 000 0101
0000 011 1000
Indirect transfer address @R
Same as M Contents of R

130

_NEC | #PD17005

-
e
9.6.4 When MPE=1 and IXE=0 (Diagonal Indirect Transfer)
As shown in Table 9-2, the bank and row address of the indirect transfer address specified by @r are used as the
‘ data. memory row address pointer value only when a general register indirect transfer instruction (MOV @r, m or
MOV m, @r) is executed.
Example 1:
BANKO is specified and the general register is set in row address 0.
RO0O5 MEM 0.05H
M034 MEM 0.34H
MOV MPL, #01108; MP <« 00110B
MOV MPH, #1000B; MPE «1
MOV R005, #8 ; RO05+«8
MOV @R005, M034 ; Register indirect transfer
When the above instruction is executed, the contents of data memory M034 are transferred to address 68H of
the data memory as shown in Fig. 9-10. ' '
. That is, if the “MOV @r, m’’ instruction is executed when MPE=1, the contents of the data memory specified

by ‘m are transferred to the data memory of the indirect address specified by @r.

In this case, the content of the general register whose bank and row address are the data memory row address

pointer value (BANKO and row address 6 in the above example), and whose column address specified by r (8

in the.above example), used as the indirect address specified by @r.

That is, in the above example, the address is 68H of BANKO.

In comparison with the Example 1, MPE=0 in Section 9.6.3, the difference is that the bank and row address of

the indirect address specified by @r are specified by the data memory row address pointer {in Example 1 in
. Section 9.6.3, the bank and row address of the indirect address are the same, which is m).

Consequently, by specifying MPE=1, general register indirect transfer can be performed in the diagonal direction.

Example 2:
BANKAO is specified and the general register is set in row address 0.
ROOB MEM 0.0BH
M034 MEM - 0.34H
MOV MPL, #0110B; MP<00110B
. MOV MPH, #1000B ; MPE <1
MOV RO0B, #0OEH ; ROOB < OEH
MOV M034, @RO0O0B

When the above statement is executed, the contents of the data memory of address 6EH are transferred to the
data memory M034 as shown in Fig. 9-10.

131

NEC

#PD17005

Fig. 9-10 Operation example when MPE=1 and IXE=1

6

Column address
7 8 9 A B C D E F

0 -« General register
imn:address:of the
1 transfer destination
1 _is specified
g > i |
5 s | |
© : Ex. 2 MOV M034. @R00B
X | |
o l‘ :
5 | Ex. 1 MOV @R005, M034 ! !
6 BANKO -~— Memory pointer = 00110B
7 ____]’
: System register
Address generation of Example 1
MOV R005, M034
Bank Row address Column address
Data memory address M 0000 011 0100
General register address R 0000 000 0101
0000 110 1000
Indirect transfer address @R
Same as MP Contents of R
!
Address generation of Example 2
MOV M034, @R00B
Bank Row address Column address
Data memory address M 0000 011 0100
General register address R 0000 000 1011
0000 110 1110
Indirect transfer address @R
Same as MP Contents of R

132

NEC | 4PD17005

9.6.5 When MPE=0 and I1XE=1 (Data Memory Address Index Qualification)

As shown in Table 9-2, addresses of the entire data memory and banks specified directly by operation “m’’ of
the instruction are qualified by the index register when a data memory manipulation instruction is executed.

When a general register indirect transfer instruction (MOV @r, m or MOV m, @r) is executed, the bank and row
address of the indirect transfer address specified by @r are also qualified by the index register.

For address qualification, the contents of the data memory address and index register are manipulated by OR
operation, and an instruction for the data memory address (called real address) specified by the operation result is
executed.

The example is shown below.

Example 1:
BANKAO is specified and the general register is set in row address 0.
RO03 MEM 0.03H
M061 MEM 0.61H
MOV IXL, #0010B; [X <+ 000100100108
MOV IXM, #10018B ;
MOV IXH, #0000B ;
OR PSW, #0001B; IXE <1
ADD R003, MO061

When the above instruction is executed, the contents of the data memory (real address) of address 73H of
BANK1 and the contents of general register RO03 {address 03H of BANKO) are added and the result is stored
in general register RO03. ‘

That is, when the “ADD r, m” instruction is executed, the data memory address {address 61H of BANKO in the
above example) specified by “m’’ is qualified by the index register.

For gualification, the content of address 61H of BANKO which is the address of data memory M061 (binary
00001100001B) and the index register value (00010010010B) are manipulated by OR operation, and the instruc-
tion is executed for the real address (address 73H of BANK1) using the result 000111100118 as the real address.
The address of the data memory directly specified by operand ““m’’ of the instruction is qualified {OR operation)
by the index register. Compare this case with that when IXE=0 (Example shown in Section 9.6.3).

133

NEC

uPD17005

Fig. 9-11 Operation example when 1XE=1 and MPE=0

Column address-

0 1 2 3 4 5 6 7 8 9 A B C D E F
: . General register
1
- 2 Ex. 1 ADD R003. M061
&
s 3
B
2 4
[=]
o
5 MO061
6 BANKO
7
System register I_._
0]
1
————+ Index qualification
2 M061 : 00001100001B
3 OR IX : 000100100108 [The same system
Real address 000111100118 register exists
4 WT""\"N‘"’V"WW"""“M"N“
5 . -
6 i' BANK1
7 M e e e e e e 1
i System register [I—
e o e o e — —— — — — —— —— —— ——— —— —— — o
Address generation of Example 1
ADD R003, M061
Bank Row address Column address
Data memory address M 0000 110 0001
General register address R 0000 000 0011
i 0000 110 0001
] MO061
! BANK m
) S S e Tttt
_— l 0001 001 0010
Index qualification A D¢
E IHX IXM IXL
e e
| Real address
! 0001 111 0011
i (OR operation)

134

An instruction is executed for this address

[

#~PD17005

Example 2:
General register indirect transfer
BANKQO is specified and the general register is set in row address 0.

RO0O5. MEM 0.05H

M034 MEM 0.34H

MOV IXL, #0001B ; IX<«000100000001B
MOV IXM, #10008 ;

MOV IXH, #00008 ;

OR PSW, #0001B; IXE <1

MOV RO05, #8 ; RO05+«8

MOV @R005, M034 ; Register indirect transfer

When the above instructions are executed, the contents of address 35H of data memory BANK1 are transferred
to address 38H of data memory BANK?1 as shown in Fig. 8-12.

That is, if the “MOV @r, m" instruction is executed when IXE=1, the data memory address (direct address)
specified by “m’’ is qualified by the contents of the index regiister, and the bank and row address of the indirect
address specified by “@r’" are also qualified by the index register.)

For address qualification, all the direct bank and row address and column addresses specified‘ by “m’ are
qualified, and the indirect bank and row addresses which are specified by @r are also qualified.

That is, in the above example, the direct address is 35H of BANK1 and indirect adc_lress is 38H of BANK1.
Consequently, the bank and row addresses of the direct address specified by ‘“m" and column address are quali-
fied by the index register, and general register indirect transfer is performed to the same row address as the data
memory address which was qualified (in Example 2 in Section 9.6.3; direct addresses are not qualified). Compare
this with Example 2 IXE=0 in Section 9.6.3. A

135

NEC

#PD17005

Row address

136

Fig. 9-12 General register indirect transfer operation example when MPE=0 and IXE=1

Column address

a »~» W N

N O

Column address of the transfer
destination is specified

BANKO

General register

System register

Index qualification

M034 : 000001101008

—_———ee e e

OR IX : 000100000018
Real address 00010110101
Ex. 2 MOV @R005, M034
Direct Indirect
address address
BANK1
T T T T e e e e e e m— e — - -
H System register
e e e e e e e - — — —— — J

| The same system
register exists

NEC

©«PD17005

Example 3:

Contents of the entire bank memory are cleared to 0.

M000
MoV
MoV
MOV
LOOP:
OR
MOV
INC
AND
SKT
BR
ADD
ADDC
SKT
SKF
BR

Example 4:

MEM
IXL, -

IXM,
IXH,

PSw,
MO000,
IX
PSW,
IXM,
LOOP
XM,
IXH,
IXM,
IXH,
LOOP

Array processing
As shown in Fig. 9-13, 8-bit data A is defined in one dimension as shown below.

DIM A(N) (0N 15)
In this case, the following instructions must be executed to perform the operation,

AN} =A(N)+4 (0<N<L15)

0.00H
#0
#0
#0

#0001B

#1110B

#01118 ;

#1
#0

#10008 ;

#0001B

’

’
’
’
,
’
’

v

{IX) <0

IXE <1

Sets the data memory specified (1X) to 0.

{(IX) < (IX) +1

IXE < 0: Since the address of 1XE is 7FH, the address is not qualified by (1X).
If row address 7 is detected

If the address is not 7, LOOP -

» Specify row address 0 of the next bank (row address 7 is not cleared)

Was data memory up to BANK3 cleared?

If not cleared, LOOP

BANKQO is specified and the general register is set in row addreés 7.

MO000
MOO01
MOV
MoV
MoV
ADD
ADDC
ADDC
OR
ADD
ADDC

MEM
MEM

“IXH,

IXM,
IXL,
XL,
IXM,
IXH,
PSW,
MO000,
Mo01,

0.00H
0.01H
#0
#0
#N
XL
IXM
IXH
#0001B
#4
#0

’

(IX} <N

(IX) < {IX) x 2

Since the array element is 8 bits, the data memory address qualified by the

index register is shifted.

IXE <1 »

Value 4 is added to data memory MOOO and data memory M001 whose addresses
are qualified by (I1X). That is, value 4 is added to the 8-bit array specified by

A(N).

To specify N of array A{(N), N must be specified for the index register as shown in the above example.

137

NEC

#PD17005

Fig. 9-13 Operation example when 1XE=1 and MPE=0 (array processing)

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F

of AlD i A [AR i A I A i A® i A6 i A7)
-------------- R R S ARttt LT LT L L TP POROEEP LR TEEPEt EEREEEEEPETEPRS SEEREPPRPRR
1] A i A § A(0 P AOD P AQ12) | A(13) | AQ14) | A(15)
SREEEEEPEERE] T leecintnasmmana L T Ly pup— lecmcmmmmmaa L L T L L R T TR T L .
L 2
¢ A (0)
s 3
- 0OH O1H
z 4 N S L D
< b3ibpibyibpib7ibgibs:bg
6 BANKO
7
System register

138

NEC uPD17005

9.6.6 When MPE=1 and IXE=1
As shown in Table 9-2, all the data memory addresses directly specified by operand “m’ of a data memory
. manipulation instruction are qualified by an index register.
By using a general register indirect transfer instruction, the direct address specified by *‘m” is qualified by an
index register and the indirect address specified by “@r" is specified by the data memory row address pointer. »

Example 1:
BANKO is specified and the general register is set in row address 0.

ROO5 MEM 0.05H

RO34 MEM 0.34H

MOV IXL, #0001B ; (1X)< 000100000018
MOV IXM, #1000B ; (MP)< 00010008
MOV IXH, #00008B ;

| MOV R005, #3 ; R0O05 <8
’ OR IXH, #1000B ; MPE <1
. OR PSW, #0001B; IXE<«1

MOV @R005, M034 ; Register indirect transfer

When the above instruction is executed, the contents of address 35H of BANK1 of the data memory are transfer-
red to address 08H of BANK1 of the data memory.

That is, if the “MOV @r, m” instruction is executed when MPE=1 and IXE=1, the data memory address (direct
address) specified by “m” is qualified by the contents of the index register, and the indirect address specified by
“@r" is qualified by the contents of the data memory row address pointer.

. For direct address qualification, all of the bank, row address, and column address of the data memory address
specified by “m’" are manipulated by OR operation with the contents of the index register, and for indirect
address specification, the bank and row address becomne the contents of the data memory row address pointer.
That is, in the above example, the direct address is 36H of BANK1 and the indirect address is address 08H of
BANK1. ,

In this case, the bank and row address of the indirect address specified by "@r" are specified by the contents of
the data memory row address pointer (in Example 2 in Section 9.6.5, an indirect address qualified by the index
region; compare this example with Example 2 when MPE=0 and IXE=1 in Section 9.6.5.)

139

NEC

#PD17005

Fig. 9-14 General register indirect transfer operation example when MPE=1 and IXE=1

Column address
0 1 2 3 4 5 6 7 8 9 A B C D E F

| System register

]
i Column address of the transfer
2 2 | destination is specified.
@ i
5 3 i
e I
© | |
g 4 i :
o i .
5 ! |
| 1
6 : BANKO
i z
! } ;
I
i
|

0 | Index qualification

MO034 : 000001101008
110OR IX : 000100000018
Real address 00010110101B

Indirect address

Ex.2 MOV @R005, M034

4

5

6 BANK1

7 [matietebeiete bt bttt b |
d System register
e e e e o — — —— — ———— —{

140

General register

L
~— MP = 0001000B
The bank and row address

of the indirect address
are specified

| The same system
register exists.

NEC _ «PD17005

9.7 GENERAL REGISTER POINTER (RP)

9.7.1 Structure of a General Register Pointer
Fig. 9-15 shows the structure of a general register pointer.

Fig. 9-15 Structure of a general register pointer

" Address 70H 7EH
Name General register pointer {RP)
Symbol RPH . RPL -
Bit b3 | by | by [bo | b3 [b2 | b1 | b0
1~ N
! ! | M : L8
Data o fo 10 |s ! s’ 1 c
! L B , 1B 1D
i ' - : ~ o
1 1 I 1 I !
Power On 0 0
At Resetting CE 0] 0
STOP s} 0

As shown in Fig. 9-15, a general register pointer consists .of 7 bits; 4 bits of address 7DH (RPH) of the system
register and the high-order 3 bits of address 7EH (RPL).

However, since the high-order 3 bits of address 7DH are always set to 0, the low order 4 bits {the lowest bit of
address 7DH and the high-order 3 bits of address 7EH) can be used.

At Power On Reset, CE Reset, or execution of a Clock Stop instruction, all the addresses are cleared to 0.

9.7.2 Function of a General Register Pointer

A general register pointer is used for specifying a general register in data memory.

Sixteen nibbles, which have the same row address as the data memory can be specified for a general register.

Consequently, the row address to be used is specified by the general register pointer as shown in Fig. 9-16.

Since the valid number of bits of a general register pointer are 4 bits, data memory row addresses OH to 7H of
HANKO and OH to 7H of BANK1 can be used for a general register. That is, the entire data memory except for
BANK2 can be specified as general registers.

When data memory is specified as a general register, the operation and transfer between the general register and

data memory can be performed.
For instance, when the following instruction is executed, addition or transfer can be performed between the

_ general register whose address is specified by operand “r’’ of the instruction, and data memory whose address is

specified by “m’’.
ADD r, m or
LD r,m .
See 7, “‘General Register (GR)” for details.

141

00000108
General register
setting range

#PD17005

General register
when RP

|

A B C D E

9

8
BANKO
BANKA1

7
System register

Column address

2 3 4 5 6

1

Fig. 9-16 Structure of a general register

[————— - —sm————————————————-n
System register
e e e e e e o e e e e e e e)

I=<—1— The same system
register exists

Sy U

"—

System register
e —— e e =)

System register

BANK3

BANK2
e

e m

r
|
r
|

-6
-7

bo

Bejy gog o1 peiedo||y

RPL

(RP)

bg | b3 | bz | by

General register pointer

RPH

bz | ba| by

NEC

N O T O O~ N m < v © ©~

142

NEC

xPD17005

9.8 PROGRAM STATUS WORD (PSWORD)

9.8.1 Structure of a Program Status Word
Fig. 9-17 shows the structure of a program status word

Fig. 9-17 Sturcture of a program status word
Address 7EH [7FH
Name (RP} I Program status word (PSWORD)
Symbol RPL RSW
Bit b3 1 bp l bq bp b3z ’ bo bq bo
| i B 1 C | c |z |
Data i | CCi M LY :
: . D | P ! i
1 I 1]
Power On 0 0
At Resetting’ CE 0 0
STOP 0 4]

As shown in Fig. 9-17, a program status word consists of 5 bits; the lowest bit of address 7EH (RPL) of the
system register and 4 bits of address 7FH (PSW).

Each bit of the program status word functions differently; they are a BCD flag (BCD), Compare flag (CMP),
Carry flag (CY), Zero flag (Z), and Index Enable flag (IXE).

At Power On Reset, CE Reset, or execution of a Clock Stop instruction, all the above bits are cleared to 0.

143

NEC xPD17005

9.8.2 Function of a Program Status Word-
A program status word is a register for setting the conditions of an operation and transfer instruction in ALU,
and for indjcating the operation result.

Table 9-3 outlines the function of each flag of a program status word.

Table 9-3 Function outline of each flag of a program status word |

(RP) Program status
word (PSWORD)

RPL PsSw

b3 |b2 (b1 [bg|b3|b2|b1|bg

1 Z

‘
'
i
.
v

mXx —

Flag name Function

Flag for qualifying the data memory address

_ Index Enable flag at execution of a data. memory manipulation
oor b (IXE) instruction
oo 0. : Not qualified

o 1 : Qualified

oo Flag for indicating that the arithmetic
operation result is 0.

Since the statuses of O and 1 are different
"""" - (2) depending on the contents of the Compare
flag, caution is necessary (see Table 9-4).

Zero flag

Flag which indicates

Carry or Borrow after execution of an addition
. =| Carry flag instruction or subtraction instruction.

(cy) Reset {0) when there is no Carry or Borrow.
Set (1) when there is Carry or Borrow.

This bit is also used as a shift bit of the "RORC
r’’ instruction.

Flag for not storing the arithmetic operation

Compare flag result to data memory or a general register.
(CMP) 0

: The result is stored
, 1 : Theresult is not stored

BCD flag Flag for performing arithmetic operation
R (BCD) in decimal mode
0 : Binary operation

1 : Decimal operation

144

NEC xwPD17005

9.8.3 Index Enable Flag (IXE)
An IXE flag is used for qualifying the address of data memory at execution of a data memory manipulation
.] instruction.
When an IXE flag is set (1), the contents of the data memory address and index register {1X) specified by the
instruction are manipulated by OR operation, and the instruction is executed for the data memory which uses the

OR operation result as the real address.
See Section 9.6, “Index Register (1X) and Data Memory Row Address Pointer (MP: Memory Pointer)’’.

9.8.4 Zero Flag (Z) and Compare Flag (CMP)

A Z flag indicates that the result of the arithmetic operation is 0, and a CMP flag is used for not storing the
arithmetic operation result to data memory or to a general register. ;

Table 9-4 shows the setting and resetting conditions of Z flag and CMP flag statuses.

Table 94 Statuses of a Compare flag (CMP) and conditions of setting and resetting of a Zero flag (Z)

Status of Z flag
. Condition - - -
When the CMP flag is 0, Whan the CMP flag is 1.
At Power On ‘Reset, 'CE Reset, or execution of Reset Set together with the
es : .
a Clock Stop instruction. CMP flag.
- When 0" is directly written to the Z flag by
. .. . Reset Reset
a data memory manipulation instruction.
When the result of the arithmetic operation Reset - Reset
is not “0"’. ese . ese
. When 1" is directIY writt.en t-o the Z‘flag by ' ‘ Set Set
a data memory manipulation instruction,
“When the result of the arithmetic operatioh is 0"’ , Set The previous status of
and neither Carry nor Borrow has occurred. the Z flag is retained.
When the result of the arithmetic operation is ‘0" . Set The previous status of
“and Carry or Borrow has occurred.) , . B the Z flag is retained.
. The Z flag and CMP flag are used for comparing the contents of a general register with the contents of data

memory. See 8, “ALU" for details.

9.8.5 Carry Flag (CY)

The CY flag is set (1) when Carry or Borrow occurs and reset {0) when neither Carry nor Borrow occurs.

When the “RORC r” instruction (the contents of the general register specified by r are shifted to the right by 1
bit) is executed, the value of the CY flag immediately before execution of the instruction is shifted to the highest
bit of the general register and the lowest bit is shifted to the CY flag.

The CY flag is useful for skipping the next instruction when Carry or Borrow occurs.

See 8, “ALU" for details. '

9.8.6 BCD Flag (BCD)
The BCD flag is used for performing arithmetic operation in decimal mode.
By setting (1)} the BCD flag, all the arithmetic operations are performed in decimal mode.
. See 8, “ALU" for details.

145

NEC «PD17005

9.8.7 Notes on Arithmetic Operation

When performing arithmetic operations (addition and subtraction) for a program status word (PSW), the follow-
ing points must be noted.

When arithmetic operation is performed for a program status word, the result of the operation is stored.
The example is shown below.

Example:
MOV PSW, #0001B
ADD PSW, #1111B

When the above instruction is executed, it is assumed that the CY flag which is bit by of PSW is set (1) since
Carry occurs. However, 0000B is stored in PSW because the result of the arithmetic operation is 0000B.

9.9 NOTES ON USING SYSTEM REGISTERS

9.9.1 Reserved Words of System Registers

Since a system register is stored in data memory, all the data memory manipulation instructions can be used. In
this case, since a direct data memory address can be-specified in an operation of an instruction, symbol definition

must be set for the data memory address in advance when Assembler (AS17K) of 17K series is used as shown in
Example 1.

Although the system register is also used as data memory, symbol definition is set for the register as a “‘reserved
word” in Assembler (AS17K) because it contains a specific function, unlike ordinary general purpose data memory.

A reserved word of a system register is assigned in addresses 74H to 7FH and is defined by the one of the symbols
(AR3, AR2, ... PSW) shown in Fig. 9-2, “‘Structure of a system register”. '

If a reserved word is used, symbol definition is not required as shown in Example 2.
See 26, “uPD17005 Reserved Words” also.

Example 1:

MOV 34H, #0101B; When data memory address 34H or 76H is specified in the operand, an error
MOV 76H, #1010B; occursin the Assembler.

M037 MEM 0.37H ; Forgeneral purpose data memory, symbol definition is required for the data
MOV MO037, #0101B; memory address using the MEM pseudo instruction.

Example 2:

MOV AR1, #1010B; If AR1 {address 6H), which is a reserved word is used, symbol definition is not
; required.

; Reserved word AR1 is defined as “/AR1 MEM 0.76H"".

When Assembler (AS17K) is used, the following macro instructions are incorporated in the Assembler internal
section as flag type symbol manipulation instructions.

SETn : Sets 1" in the flag.

CLRn : Resets “0” in the flag.

SKTn : Skips if all the flags are set to "“1".
SKFn : Skips if all the flags are set to *“0".

NOTn : Inverts the flag.
INITFLG: Initializes the flag.

146

NEC

«PD17005

Consequently, by using these built-in macro instructions, data memory can be used as a flag as shown in

Example 3.

Since the functions of a program status word are classified in bit units (flag units), a reserved word is defined
for each bit. The reserved words include MPE, BCD, CMP, CY, Z, and IXE.
By using these flag type reserved words, built-in macro instructions can be used directly as shown in Example 4.

Example 3:
FO003
SET1

Example 4:
SET1

CLR2

CLR2

FLG 0.00H.3; Flag type symbol definition
F0O003 ; Built-in macro
Macro expansion -
OR .MF.FO003 SHR 4, #.DF.F0003 AND 000FH
; Sets bit bz of address 00H of BANKO.

BCD ; Built-in macro
Macro expansion)
OR .MF.BCD SHR 4, #.DF.BCD AND 0COFH
, Sets the BCD flag
; BCD is defined by “BCD FLG 0.7EH.0".
2,CY ; Flag of the same address
Macro expansion
AND .MF.Z SHR 4, #.DF.(NOT(Z OR CY}AND 000FH)
Z,BCD ; Flag of different address
Macro expansion
AND .MF.Z SHR 4, #.DF. (NOT Z AND O00FH}
AND .MF.BCD SHR 4, #.DF. (NOT BCD AND 000FH)

9.9.2 Handling of System Registers which are Always Set to “0"
For data (see Fig. 9-2) which is always set to 0" among the system registers, cautions are necessary for Emulator

operation and Assembler operation. ‘
The cautions are described in Sections {1), (2), and (3).

{1} Device operation _
When the register is set to 0", no influence is imposed even if a Write instruction is executed for the data. When

a Read instruction is executed, 0"’ is set.

(2) When using a 17K series Emulator (IE-17K)
When an instruction for writing ‘’1'' to the data which is always set to “’0" is executed, an error occurs. That is,

when the following instructions are executed, the Emulator (1E-17K) generates an error.

Example 1:
MOV

Example 2:
MoV
MoV
MOV
ADD
ADDC
ADDC

BANK, #0100B ; Writes 1 in bit bz which is always set to ‘0"

IXL, #111B;
IXM, #1118 ;
IXH, #00018B;
IXL, # ;
IXM, #0 H
IXH, #0 H

147

NEC | ,PD17005

However, the Emulator (IE-17K)} does not generate an error even if the “INC AR’ or “INC IX" instruction is
executed when all the valid bits are set to “1" as shown in Example 2. This is because if the INC’’ instruction is
executed when all the valid bits of the address register and index register are set to “1”, all these bits are set to ‘0"’
by the instruction.

The Emulator (IE-17K) does not generate an error either even if *“1’’ is written to the data which is always set !
to “0”, as long as the register is an address register as shown in Examples 1 and 2.

(3) When using 17K series Assembler (AS17K)
An error is not output even if an instruction for writing *“1” in the data which is always set to 0"’ is executed.
That is, if the following instruction which is shown in Example 1 is executed, an Assembler error does not occur
and an Emuilator error occurs when the instruction is executed under the Emulator (1E-17K).

MOV BANK, #01008B

The error does not occur in Assembler (AS17K) because the data memory address used for the data memory
manipulation operation cannot be checked when register indirect transfer is performed.

} Consequently, an Assembler error occurs only when the following built-in macro instruction is used under
| Assembler (AS17K).

Value 4 or a higher value is used for “n”’ in the “BANKn’’ built-in macro instruction.
This is because the “BANKR" instruction is to be used for manipulating a bank register of a system register.
|

NEC | «PD17005

10. REGISTER FILE (RF)
A register file is used for setting conditions of peripheral hardware.
10.1 STRUCTURE OF A REGISTER FILE

10.1.1 Structure of a Register File

Fig. 10-1 shows the structure of a register file.

As shown in Fig. 10-1, the register file consists of 128 nibbles {128 words x 4 bits).

The addresses are assigned in 4-bit units for a register file in the same way as for data memory and 128 nibbles
in total are used; row addresses OH to 7H and column addresses O0H to OFH.

Addresses from O0H to 3FH are called a control register.

10.1.2 Register File and Data Memory

Fig. 10-2 shows the relationship between a register file and data memory.

As shown in Fig. 10-2, addresses from 40H to 7FH of a register file overlap those of data memory.

That is, the same memory as addresses from 40H to 7FH of the data memory bank which is selected at that time
exists in addresses from 40H to 7FH of the register file.

For instance, when the bank which is currently selected is BANKO addresses 40H to 7FH of the register file are
equal to addresées from 40H to 7FH of BANKO of data memory. When BANK1 is selected, addresses 40H to 7FH
of the register file are equal to addresses from 40H to 7FH of BANK1 of the data memory.

149

NEC

«PD17005

150

Fig. 10-1 Structure of a register file

Column address

0 1 2 34 5 6 7 8 9 ABCDE F

Control register

Row address
A w N

Fig. 10-2 Relationship between a register file and data mémory

Column address

01 23 4586 789 ABCDEF

-0
1) Data memory
2
2
5 3
gl — " — — —— — — —— —— — —— —— — —————— ————— — —— o, =}
JRPRIPE - VSN E—
3 4
<] I—
o
5
6 BANKO "
7 BANK1
BANK2
BANKS3
System register
0
1 : Control register
2
3
b ——————e— e - Register file — — = —=—————————————————

NEC

#PD17005

10.2 FUNCTION OF A REGISTER FILE

10.2.1 Function of a Register File

A register file is a control register mainly used for setting the condition of peripheral hardware.

This control register is located in a control register (addresses from 00H to 3FH) in a register file.

Since the remaining register file addresses (addresses from 40H to 7FH) overlap with data memory, the function
is the same as for the ordinary data memory except that it can be manipulated by register file manipulation instruc-
tions, ’PEEK" and “POKE" as described in Section 10.2.3.

10.2.2 Functionofa Cbntrol Register
Conditions of the following peripheral hardware are set by a control register.
See Section 10.3 for details of peripheral hardware and control register.

Stack
Timer

CE pin

Interrupt

General purpose port

PLL frequency synthesizer

A/D converter

D/A converter

Clock generator port
Serial interface -
Frequency counter
LCD controller/driver

10.2.3 Register File Manipulation Instructions
A window register (WR: address 78H) in a system register is used for writing data to and reading data from a

register file.

The following specific instructions are used for writing and reading data.

PEEK
POKE

WR, rf:
rf, WR:

Reads.into WR the data of the register file specified by rf.
Writes data of WR to the register file whose address is specified by rf.

The utilization example is shown below.

Example:
RFO0
RF1F
RF53
RF6D
BANKO

(D PEEK
(@ POKE"
®) PEEK
@ POKE
BANK1
(® PEEK
(6 POKE
(@ PEEK

POKE .

MEM
MEM
MEM
MEM

WR,
RF1F,
WR,
RF6D,

WR,
RF1F,
WR,
RF6D,

0.80H ;
0.9FH ;
0.53H ;
0.6DH ;

RFOO ;

WR

RF63 ;

WR

- RFOO ;

WR
RF53
WR -

’

’

I3

r

0

’

’

’

Symbol definition

For symbol definition, addresses of 00H-3FH of the register file must be defined

as addresses from 80H to BFH of BANKO.
See Section 10.4, ““Notes On Using a Register File” for details.

151

NEC uPD17005

Fig. 10-3 shows the operation example.
As shown in Fig. 10-3, when the “PEEK WR, rf"’ or “POKE rf, WR" instruction is executed for a control register
(addresses from O0OH to 3FH), the contents of the register file whose address is specified by “rf’ are written to or ‘
read for the window register only.
Since addresses from 40H to 7FH of the register file overlap those of the data memory, the instruction is
executed for data memory address “rf’’ of the bank which is currently set when the “PEEK WR, rf’’ or “POKE rf,
WR" instruction is executed. :
Addresses from 40H to 7FH of a register file can also be manipulated by an ordinary memory manipulation
instruction.

Fig. 10-3 Access to a register file by the PEEK or POKE instruction

Column address
0 1 2 3 45 67 8 9 A B CDE F

0
1 Data memory
2 2
g
3 3 BANK 0
[il S Sttty R |
: 2 4 (® PEEK WR, RF 53 |
! 5 @ POKE RF 6D, WR |
]
l 6 i
[|
| 7 :
|
| 3 |
| re———r s T T T T T T T T T T _“+___'|
I i
| |
o 5 b
| | [
| : 6 : I
| |
P! 7 ' I
I ! System register] | |
| P
! L
! : 0 c | I
} I : M ® PEEKWR, RF 04 | :
i]
I : ®® POKERF1F,WR : :
| 2
| : Control register : :
I | o [1
Lo Lo
‘——-Ir- —————————— Register file when BANKO is selected - — —— — — — = ———— 4 :
! [
, i
! I
|
bm———————— Register file when BANK1 is selected ——=——————————————- 4

152

NEC - | «PD17005

10.3 CONTROL REGISTER

10.3.1 Structure of a Control Register

Fig. 10-4 shows the structure of a control register.

As shown in Fig. 10-4, a control register consists of 64 nibbles {64 words x 4 bits), which are addresses OOH 1o
3FH of the register file.

However, only 33 nibbles are actually used. The remaining 31 nibbles are unused registers and Read and Write’
operations are inhibited. 4

Each control register has an attribute of one mbble Four types of attributes are available, Read/Write Enable
(R/W), Read Only (R}, Write Only (W), and Reset at Reading (R & Reset).

No change is made when Write operation is performed for a Read Only (R or R & Reset) register.

When a Write Only (W) register is read, an *‘undefined’ value is read.

Among the four-bit data in one nibble, the contents of the bits which are always set to ‘0’ are maintained at
0" when Read operation is performed and “0" is also maintained when Write operation is performed.

When the contents of the 31 nibbles, which are unused registers, are read, undefined values are read and when
Write operation is performed, no change is made.

Cautions on using Assembler (AS17K) are required when unused registers, Wr|te Only registers (W), and Read
Only registers {R) are manipulated. See Section 10.4, “’Notes on Using a Register File” for details.

10.3.2 Peripheral Hardware Control Function of a Control Register

See Table 10-1 for the outline of each peripheral hardware control function of a control register.
See 11 to 24 for the functions of control registers.

153

NEC

#PD17005

Fig. 10-4 Structure of a control register (1/2)

Column address

Row

address Item

1

2

4

5

6

7

“Name

Stack
pointer

SP

Serial
1/02 mode
selection
(S102MODE)

IF counter
gate

judgment
- IFCGIDG)

PLL
unlocking

FF judgment
(PLLULJDG)

A/D converter

Compare

judgment
(ADCIDG)

CE pin

level

judgment
(CEJDG)

0
(8)| Symbol

TETS

=D O —Ww
N=Td»O—Ww

(w v w)D
(oW
’ — R OO —=Ww

R

ORONO =W

QOO m—

| il ool ol wa iy =]

o

(=}

o
B

C
‘E

Read/
Write

R/W

R/W

R&Reset

Name

LCD mode

selection

(LCDMODE)

LCD port

selection

(LCDPORT)

1F. counter
mode
selection

(IFCMODE)

PWM mode

selection

(PWMMODE)

A/D converter
channel
control

(ADCCH)

PLL unlocking
FF delay
control

(PLULDLY)}

Key input
judgment

(KEYIDG)

Timer
carry FF
judgment
(TMCYJDG)

1
(9)| Symbol

s

0:0:N:

e

ZO~<ow
Zoxonm
Zomo
Zomo

g0
og 20T

I:1:

- OO -
Tomoom -
ZOoOmZE S
Zowz =

T eE s

P:P:P:C

Z0owa
WwWIT OO T >

Tezxooo»
= T OO0 >

oTmOOD»

wKEgr o

P

MO C T

o QO Ccer

Tl m =

EEEE

Read/
Write

R/W

R/W

R/W

R/W

R/W

R/W

R&Reset

R&Reset

Name

PLL mode

selection

(PLLMODE)

IF counter
control

(IFCCONT)

Port OC

group 1/0

- selection
(POCGPIO)

2
(A)| Symbol

W OB v
ECELEE
L=l ol -

o vErr

o

[=]
Sx"=_Srnam—
o mmam—

o—-o0aneow

Read/
Write

R/W

R/W

Name

PLL
reference
mode select
(PLRFMODE)

Port A
bit 1/0
selection
(P1ABIO)

Port OB
bit I/0

selection
(POBBIQ)

Port OA
bit I/0

selection
(POABIO)

3
(B)| Symbol

woDEZmmer- o
MO ZEEmR e

WO~ WP~
TN G w T
QI QN
oo W e

wQ—~Wmwe o

vmO -~ We ’U
oA mwme v
TS o - wwe

wQO =W P o
TR o~ w > e

-0 = > o
Tco~wmrow

IR
ocpDZEZmMmr- D

R/W

R/W

R/W

NEC

xPD17005

Fig. 10-4 Structure of a control register (2/2)

8

9

F

U0l mode | Timer. mode RRgits

selection judgment

(SIOIMODE) | (TMMODE) (INTJDG)

SiS!S!S|T/T!T:T : T
1iBi1!1|MIMIMiM .5 i ININ
0 0i0|MiMIMiM : é PiTHT
1} i1i1|DiDiDiD i : 0i0i1i0
Ci IMiT|3i2i1i0 é é I

Hi isiX SRR g : .

R/W R/W R
Serial 1/01 Interrupt
weight judgment
control selection

(SIOIWT) (INTEDGE)
sisisis| ' ! e P 1T
Bilinin| & i i | i bbb ' i - . {EIE
Ai0iOiO| i § ; I P i § P iGiG
cilitil ‘ . ' 0i0i1i0
KINiW!W i § P

‘WiR:iR i '

iTiQiQ i

L i1i0 ' e

R/W R/W
Serial 1/01 Interrupt Interrupt
status permission permission .
judgment 1 2 '
(SIOISTUS) (INTPM1) (INTPM2)
§:8:8:S : S B 10 SR O G
I1!1iBiB § i iP|PiPIPiP
0i0iSiB - : PoirlsiTitio
1i1iT!S : : i 0i0iQiF|IiMi !
sisiTiv| i i | i E i oiclo f
FiFi & | i f i i é R DA
8:9i : i = é a

R/W R/W R/W
Serial 1/01 | Serial Interrupt Interrupt
interrupt 1/01 clock request 1 request 2
mode selection

(SIOIINT) (SIOICLK) (INTREQ1) (INTREQ2)

SISiS|S|S(SiSis| | Co o ir[ririril
GREREE R SR R 4 i | iR{RiRIRIR
oioio0ioloi0ioiof i Pl oiQleiqiaiQ
1i1itirf1itininf i : 0i0{0:1|SiTi1:0
riririrfcicicic| i ‘_ Pl IR LiMy
MiIMIMIM[KiKiKiK| i § ' iCl|O}
DIDiDID[3i2i{1:0] i SRS
3izitiol i i i P P P P

R/W R/W R/W R/W

155

NEC #PD17005

Table 10-1 Outline of peripheral hardware control functions of control register {1/4)

Control register Peripheral hardware control function st " .
T . b3 5|8|¢
L $ | Read/|b2 Symbol .) 5o
;'E Name H Function outline Value set 3|p
N 3 | Write | bl &
b0
Stack (SP3) 0
5 | pointer (SP2)
s OIH | R/W |-omomescemees) 7|7(7
n (SPD) Stack pointer
SP (SP0)
Timer mode TMMD3 .) 0 0
------------- Setting timer interrupt time 100ms 250ms 5ms 1lms 2
selection TMMD2 0 1 1 &
09H | R/W oo] olo|=
TMMDI1 0 0 1]
IS R A N SELICEREERTTRSRS Setting timer carry FF time 100ms 250ms 5ms 1ms ~
g (TMMODE) TMMDO 0 1 1 1
& | Timer carry 0
FF judgment Read & | O
7] O I SRR —
Reset | O
(TMCYJDG) TMCY Timer carry FF detection 0:FF reset 1:FF set 0]1|1
Interrupt 0
edge 0
IFH | R/W |-rooeeeceeenes :
selection INT1 pin] Setting interrupt
N 0 : Upload 1: Download
(INTEDGE) _INTO pin) issuing edge ololo
Interrupt
permission 1
2EH
(INTPM1) IF counter
Interrupt Seri?l 1
2 m'ter aceé 1| Sets interrupt
2 | permission 2 Timer L. 0 : Prohibited 1 : Permitted 0|00
= 2FH permission
2 INT; pin
(INTPM2) INT, pin
Interrupt
request 1
3EH
(INTREQ1) IRQIFC IF counter
Serial
Interrupt2 ;2351;1 ______ f;terface 1| petects interrupt 0 Not requested
request . T imer : o|lo|o
3FH | R/W [----eereeeeaad request 1 - Requested
IRQ1 INT; pin Reset when interrupt
(INTREQ2) IRQO INT, pin is accepted
CE pin level 0
judgment 0
Judem O7TH | R |fooeeocecene]
0
= | (CEIDG) CE CE pin
=¥
‘Interrupt 0 |
pin level 0 Detects the stotus 0! Low level 1: High level =t bl
OFH R porrmmeeemmenes
judgment INT1 INT; pin
(INTJDG) INTO INT, pin

NEC

#PD17005

Table 10-1 Outline of peripheral hardware control functions of control register (2/4)

_ Control -register Peripheral hardware control function ﬁ:set
ki
E; " b3 & S|C
L5 2 | Read/ | b2 Symbol oIE
ET Name - Function outline Value set] g
2 2 | Write | bl S
A,
b0
PLL
locki
uniockmg 05H R E 'ﬂ:)
FF jubgment 0-: Lock 1 : Unlock . gl
{PLLULJDG) Detects the unlocking FF status | Read & Reset 0 é’ é’.
% | PLL unlocking 0
N
@ F 0
_E:, FF delay 15H -§
£ | control 0 0 1 1 5
w Sets unlocking FF set delay time 1us 2us 0545 Disable |of0|®
& (PLULDLY) PLULDLYO0 0 o1 0 1 =51
[~
% PLL mode PLLMD3 0
&k | selection PLLMD2Z 0
3 21H | RIW foooioiemoeeneed
- . PLLMDI , , 0 0 11
Al e Sets the PLL division méthod Disable MF ~ VHF HF olo
(PLLMODE) PLLMDO 1] 1 0 1
PLL reference PLLRFMD3 0:1.26 1:25 2:5 3:10
e -]
mode . 4:6.25 5:12.5 6:25 7 :50 E
) 31H Sets PLL reference frequency Setting F|&
selection - ’ 8:3 9:A:B: prohibited o
(PLRFMODE) c:1 D:9 E : 100 F : OFF
A/D convertar 0
channel
14H .
5 | selection Selects pin used as A/D 0:AD, 1:AD, 2:AD, 3:AD,
i~
$ | (apcCH) converter 4:AD, 5:AD; 6:7: Inputport |7|717
s A/D converter .
a C o
= | Compare o6H » E -§ -E
|judgment D A/D 3|'s|E
atects converter = o @
(ADC]DG) comparison result 0 Vege>Vapew 10 Vaer<Viapow [22| 05|&=
Port OC group
I/0 selection
27TH]
POC,
I i f -POC. . .
(POCGPIO) POCGIO | e (rom pine coneurrently). | 0 Input 1 Output ojofo
Port 1A bit P1ABIO3 Pl1A;pin
% [1/0 selection ’ PIABIO2 | P1A;pin
2 35H | R/W f-oomoooeooeoeees
@ PIABIOl | P1A,pin
3 I T St
g (P1ABIO) P1ABIOO P1Aj pin
— | Port OB bit POBBIO3 | POB;pin
E I/0 selection POBBIO2 POB;pin| Sets input/output _
T 36H | R/W f----mmenmmmmmee- 0 Input 1 : Qutput ojo|o0
© POBBIOL POB, pin| (each pin)
(POBBIOY -| POBBIOO POBy pin |-
Port OA bit POABIO3 POA; pin
1/0 selection POABIO2 POA; pin
3TH | R/W |-oomoooe -
POABIO1 | POA, pin
(POABIO) POABIOO POA¢pin
% | PWM mode PWM20N PWMgpin |
e N R et U7 Set as a D/A T
2 | selection PWMION PWM, pin 0 : General purpose output port K=
5 13H | RAW }pro-eemevmeoeoes converter 00| =
: PWMOON PWM;pin 1: D/A converter] K]
& | (PWMMODE) CGPON CGP pin is set as CGP 0 : General purpose output port

157

NEC

#PD17005

Table 10-1 Outline of peripheral hardware control functions of control register (3/4)

Control register Peripheral hardware control function ¢
Reset
= b3
R " els|cC
[} [e]
<5 8 | Read/|b2 Symbol R
Ik Name -5 Function outline Value set 2p
o8 3 Write | bl z
b0 a
Serial SI02TS Setsfthe ;tarting of serial 0 : No operation 1 : Start
-------------- interface
/02 mode | SIOZHIZ | Sets POB,/SOz pin 3 Sorar L arpose port ololo
selection SIO2CK1 Sets clock of serial oExternal 075 KH 1150 KH 1450 CH
---------------- h 2 z z
(SIO2MODE) SIO2CKO | interface 2 0 S 0 1
Serial SIOICH Sets 2-wire system or 3-wire 0 1 1
---------------- system SBI SB Sio1 ptim
101t e
/01 mode ol | R/W sB Sets 2-wire system |0 1o L ololo
selection SIOIMS Sets clock direction ? E,’::‘;:;‘:}lcf;‘:;ik
................ :
(SIOIMODE) SIOITX Sets input/output 0 : Input 1 : Output
Serial SBACK | Setem S B neknowiedgoment | Setting and detection of O and 1 |
I/01 wait . SIOINWT Sats and detects wait 0 : Permitted 1 : Release
Q lsH R/w permassion e mmmemmmesacceecccceaneaeeed 0 0 0
& | control SIOIWRQ1 | Sets wait timing of serial h(l) 0, 1, 1
- T Y D SETTTTEPTPRDRTRE o wait
2 | (stotwT) SIOIWRQO | interface 1 0 clocks g clocks 8 clocks
= | Serial SIOISF8 Detects clock counter of serial get b{ clock counter 8, reset by
Evl . Y e SRR or
cb:; I/Ol status SIOISF9 interface 1 ge:rbly clock counter 9, reset by
udgment 28H | R/W SBSTT """" ?etetcts 2-wire system clock "S;e-t.-;r;t.i-]“s-l-:-a-!:t-"(:-l;;l-tii-t-i-t;;l"éiil ------ ojojo
................ oun Cobeloek .
(SIOISTUS) SBBSY ‘]))fetze_cv:isrestg;;t:;d stop conditions s:ﬁtp \Ln:;ldiiit::t condition -
Serial 1/01 SIO1IMD3 0 0 0.
T N N Ottt 7th.clock 8th clock 3EE
interrupt BH | RAW SIO1IMD2 0 0 1 El g 2
................ 'E ""6
mode SIO1IMD1 Sets serial interface 1 1 7}:h clock after 1 Stop '§ é‘; ‘;:6'
""""""""""" : the start =]
(SIOIINT) SIO1IMDO interrupt condition 0 condition 1 condition
Serial 1/01 SIOICK3 0 -
................. g~
clock w1 | R/w SIOICK2 0 :E: 3 -?_:’
----------------- 3| 's|'s
selection SIOICK1 Sets internal clock of serial 075 kHz 0150 kHzl225 kH21450 KHz E AR
(SIOICLK) SIOICKO interface 1 0 1 0 1
IF counter 0
selection 0
04H | R fpoooeeeemeeeeeed
0
""""""""" D h. i d closi f
_ | arceype) IFCG froquency counter ate <28 °f1 01 Closed 1: Opened |-
2
€ [IF counter IFCMD1 0 0 1 1
- T D S Sets frequency counter mode CGP FMIF AMIF FCG o
mode IFCMDO 0 1 0 1]
L) . IZH | R/W proceeemeememennd e s 0|0}z
§ selection IFCCK1 ‘Sets frequency counter gate 0Olms 04ms 18ms 1 4 ;6'
................. ne
g (IFCMODE) IFCCKo0 time OlkHz 1100kHz 1%00kH: 1 P
L%
IF countar 0 .
control 23K W 0 E
IFCSTRT fs,gngjg count start of 0: NOP instruction 1:Start [°|° §
(IFCCONT) IFCRES Specifies data reset of frequency | 0 : NOP instruction 1: Reset

158

NEC ~ +PD17005

Table 10-1 Outline of peripheral hardware contro! functions of control registers (4/4)

Control register Peripheral hardware control function ﬁf:set
Fo b3
35 2 |3\
B3 @ | Read/ b2 Symbol . L0
BT Name 5 Function outline Value set glp
2 = Write | bl
o, 8 2 rite K
b0
LCD mode .
[
selection £
10H | R/W . 01018
Sets key source signal output ‘]? }%3 :gﬁ:z: 8517 n“:f)
-| (LCDMODE) Setting LCD display output 0 : Display OFF 1 : Display ON
b LCD port Pins P0Yo to P0Y15) Each pin is o
>
E | selection) Pins P0X, to POX; | Set as a 0 : LCD segment £
. 11H | R/W . general 0[0]s
8 Pins POE, to POE; purposs 1 : General purpose output port X
~ | (LCDPORT) Pins. POF; to POF3 | output port
Key input '
judgment Read &
16H
Sets K Reset
(KEIJDG) Detects LCD key source input | ¢ : Without latch 1: With latch |00 [0

159

NEC | 4PD17005

10.4 NOTES ON USING A REGISTER FILE

10.4.1 Notes on Control Register Manipulation (Write Only, Read Only, and Unused Registers)
Cautions are necessary on the use of the 17K series Assembler (AS17K) and Emulator (IE-17K) as described

below when a Write Only register (W), Read Only register (R), and unused control registers (addresses 00H to 3FH
of the register file) are utilized.

(1) Device operation
When a Write Only register is read, an ‘‘undefined value' is read.
No change is made even if Write operation is performed for a Read Only register.

When an unused register is read, an “undefined value” is read and no change is made even if Write operation is
performed.

{2) When using Assembler (AS17K)
An “‘error”” occurs in the instruction for reading the Write Only register.
An “error” occurs in the instruction for writing data to the Read Only register.

When data is written to or read from an unused register, an “error’’ occurs for the instruction used for reading or
writing data.

{3) When using an Emulator (1E-17K) (manipulated in batch processing, etc.)
When Read operation is performed for a Write Only register, an “‘undefined”’ value is read. No “error” oceurs.
When Write operation is performed for a Read Only register, no change is made. No “‘error’’ occurs.

When-Read operation is performed for an unused register, an “‘undefined value’’ is read, and no change is made
even if Write operation is performed. No “error” occurs.

10.4.2 Register File Symbol Definition and Reserved Word

An “‘error” occurs when 17K series Assembler (AS17K) is used and when a register file address is directly entered,
using a numeric value, to operand rf"” of the “PEEK WR, rf’’ or “POKE rf, WR" instruction.
Conseguently, the address of the register file must be defined as a symbol in advance as shown in Example 1.

Example 1:

When an error occurs
PEEK WR, 02H;
POKE 2H, WR ;

When an error does not occur
RF51 MEM 0.51H ; Symbol definition
"PEEK WR, RF51

I

The following points must be noted in this case.

When the symbol of the control register (addresses from O0H to 3FH) is defined as a data address type, it must
be defined as addresses from 80H to BFH of BANKO as shown in Example 2.

Since a control register in a register file can be manipulated via a window register, it is used for generating an
error’” in Assembler when it is manipulated by any instructions other than the “PEEK’’ and *POKE"’ instructions.

However, symbol definition is possible for register files {addresses from 40H to 7FH) which overlap the data
memory without any changes.

160

e

NEC wPD17005

Example 2:
RF51 MEM 1.51H ; Register file which overlaps the data memory
RF02 MEM 0.82H ; Control register

BANKO
PEEK WR, RF51 ; RFB1 is used as the data memory of “‘address 51H of BANKO". -
PEEK WR, RF02 ; RFO02is used as address 02H of the control register.

BANK1
PEEK WR, RFB1 ; RFB1is used as the data memory of ‘‘address 51H of BANK1"
PEEK WR, RF02 ;. RFO2 is used as address 02H of the control register.

When Assembler (AS17K) is used, the following macro instructions are incorporated in Assembler as flag type

symbol manipulation instructions.

SETn : Sets “1” in the flag.

CLRn : Resets the flag to 0"

SKTn : Skips when all the flags are set to /1.
SKFn : Skips when all the flags are set to 0",
NOTn : Inverts the flag.

INITFLG: Initializes the flag.

By using these built-in macro instructions, the contents of the register file can be manipulated in bit units.
Since many flags of a control register are manipulated in bit units, a “reserved word" is defined in advance as a

flag type symbol under Assembler {(AS17K).
However, no flag type reserved word is available for a stack pointer. The stack pointer reserved word is defined

by “SP’' as data memory.

10.4.3 Notes on Using Assembler (AS17K) Built-in Macro Instructions
The points described in Sections (1) and (2) must be noted when Assembler buiilt-in macro instructions are used

for control registers.

{1) Built-in macro instructions for a stack pointer
As described in Section 10.4.2, flag manipulation instructions cannot be used through a reserved word because

no flag type reserved word is defined for a stack pointer.

(2) Built-in macro instructions for a Write Only register

No flag built-in flag manipulation macro instructions can be used for a Write Only register.

If the “SETn"” built-in macro instruction is used for a Write Only register as shown in the example below, the
contents of the register file are read to a window register.

In this case, the value read in the window register becomes undefined (if Read operation is performed for a Read
Only register file, the value becomes undefined), and an undefined value is written to the bit which is not specified
by the “SETn" instruction. .

In this case, Assembler (AS17K) generates an error. The IF counter control register (IFCCONT: address 23H) is
available as a Write Only register; Assembler built-in macro instructions must not be used for the IF counter control

register (IFCRES flag and IFCSTRT flag).

161

NEC «PD17005

Example:

SET1 IFCRES; Sets (1) IFCRES (flag type symbol for indicating bit bg of the |F counter control
. register).

Macro expansion
;@

PEEK WR, 23H ; Reads the contents of address 23H of the control register into WR.
OR WR, #0001B ; Sets (1) bit by of WR.
POKE 23H, WR ; Writes the content of WR to address 23H of the control register.

When the above instructions are executed at point @, bit by (IFCSTRT flag) of WR becomes undefined and as
a result, bit by (IFCSTRT flag) of WR which is written by @ remains undefined also.
However, in Assembler (AS17K), an error occurs in @

162

NEC «PD17005

11. DATA BUFFER (DBF)
A data buffer is used for transferring data with peripheral hardware and reading table reference data.
11.1 STRUCTURE OF A DATA BUFFER
11.1.1 Location of a Data Buffer in Data Memory'
Fig. 11-1 shows the location of a data buffer in data memory.
As shown in Fig. 11-1, a data buffer (DBF) is allocated in the addresses from OCH to OFH of BANKO of data
memory and consists of 16 bits; 4 words x 4 bits.

Since data buffer is located in data memory, it can be manipulated by data memory manipulation instructions.

Fig. 11-1 Location of a data buffer

Column address

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 Data buffer —
1 (DBF)
2
g 3
e
B
z 4 Data memory
[e]
C 5
6 BANKO
7 l BANK1
7 BANK2
7 l BANK3

System register

163

NEC | 4«PD17005

11.1.2 Structure of a Data Buffer
Fig. 11-2 shows the structure of a data buffer.

As shown in Fig. 11-2, a data buffer consists of 16 bits using bit bg of data memory address OFH of the data as
LSB and bit b3 of data memory address as MSB.

Fig. 11-2 Structure of a data buffer

Address 0CH 0OH 0O EH 0 FH
Data memory

Bit b3|bz|b1 |bg|b3|b2|by (bg}|b3|b2|bq|bg|b3|ba|b1|bko

Bit Ib1gb1gibq3lb12ib11[b10] by | by b7 | be|bs | baibz| b2 | bi]bg

Symbol DBF3 | DBF2 | DBF1 | DBFO

Data buffer

Data

(m u Z)
(m »

Data

164

NEC

u«PD17005

11.2 Function of a Data Buffer
A data buffer has two functions as described in (1) and (2).

(1) Reads constant data in the program memory (table reference)
(2) Transfers data with peripheral hardware

Fig. 11-3 shows the relationship between data buffer, peripheral hardware, and table reference.
Sections 11.3 and 11.4 describe table reference, and the relationship with each peripheral hardware device,

respectively.

Data buffer
{DBF)

8

Peripheral

Internal bus

Program memory
(ROM}

Constant data

‘Table
reference

<

address

Fig. 11-3 Relationship between a data buffer, peripheral hardware, and table reference

Peripheral hardware

02H

A/D converter

Serial interface

i

D/A converter

08H — OFH

LCD controller/driver

OCH, 42H

- General purpose output

port

Clock generator port
{CGP)

il

Address register (AR)

PLL frequency

41H synthesizer

Key source
42H controliler/decoder
43H Frequency counter

165

NEC

#«PD17005

11.3 DATA BUFFER AND TABLE REFERENCE

11.3.1 Table Reference Operation

For table reference, constant data in program memory can be read into a data buffer by using the “MOVT DBF,

@AR" instruction.

Consequently, a complicated data conversion program is no longer required if constant data such as display data
and division value of PLL frequency synthesizer is written to program memory and the data in the table is refer-

enced whenever required.
The “MOVT" instruction is described below.
Section 11.3.2 shows the program example.

MOVT DBF, @AR;

Reads the contents of the program memory whose address is specified by the
contents of the address register into a data buffer as shown below.

Data buffer Program memory
DBF 3 DBF 2 DBF 1 DBF O (ROM)
b15[b14|b13ib12{b11[b10| b |bg | b7 | bE |bS | ba b3|b2|b1 lbo b15|b14|b13|b12|b11lb1o|bglba|b7lb6|bs lb4|b3|b2|b1 Ibo
- . o
! oo Vo o
b oy ro v
. N b Lot
16
MOVT DBF, @AR
0

Specify the address of
the program memory

At execution of a table reference instruction, one level of stack is used.

Since 13 bits of the address register (AR) are valid, 7932 steps of program memory addresses 0000H to 1EFBH

can be used for table reference.
See 5, “'Stack” and Section 9.3 “Address Register (AR)" also.

166

NEC

u«PD17005

11.3.2 Examples of Table Reference Programs

Examples 1, 2, and 3 show table reference program examples.

Example 1:
MO000
POA
POB
POC

START:
BR
DATA:
DW
bDw
DW
DwW
DW
DwW
DW
oW
DW
DW
DW
, DW
MAIN:
BANKO
SET4
SET4
SET1
MOV
MOV
MOV
LOOP:
MOV
MoV
MOV
MOV

; @

MOVT

LD

LD

LD
ADD
ADD
ADDC
ADDC
ADDC

MEM
MEM
MEM
MEM

MAIN -

0001H
0002H
0004H
0008H
0010H
0020H
0040H
0080H
0100H
0200H
0400H
0800H

0.00H ;
0.70H ;
0.71H ;
0.72H ;

. Program address 0000H

; Constant data

; Built-in macro

POABIO3, POABIO2, POABIO1, POABIOO
POBBIO3, POBB!02, POBBIO1, POBBIOO

POCGIO
MO000, #0
RPH, #000B ; Sets the general register in row
RPL, #1110B; address 7H of BANKOQ,
AR3, #(.DL.DATA SHR 12 AND OFH)
AR2, #{.DL.DATA SHR 8 AND OFH)
AR1, #(.DL.DATA SHR 4 AND OFH)
ARO, #(.DL.DATA SHR 0 AND OFH)
; Sets address register (AR) in 0001H.
DBF, @AR ; Transfers the ROM value specified by the content of AR to the data buffer.
POA, DBF2 ; Transfers the data buffer values to port data registers, PortOA (70H),
POB, DBF1 ; :
POC, DBFO ; PortOB (71H), and PortOC (72H).
M000, #1 : Increments the content of the address register by 1.
ARO, MO0OO
AR1, #0
AR2, #0
ARS3, #0

167

|]

NEC uwPD17005

SKNE MO000, #0CH ; Writes 0 in MOOO when the value of MOOO becomes OCH.
MOV M000, #0 ; . |
BR LOOP

When the above program is executed, constant data stored in program memory addresses from 0001H to 000CH
is read into data buffers sequentially in @ and output to Port 0A, Port 0B, and Port OC, in @ .

Since the values which are shifted to the left by 1 bit are stored as constant data, High level is output to each of
the pins of Port OA, Port 0B, and Port OC sequentially.

In Example 1, the starting address on the program memory which stores constant data is set in the address
register using the “MOV'’ instruction.

As a result, when the “MOV" instruction is used, the starting address of each constant data must be set in the
address register many times when a large amount of constant data is to be stored. .

Consequently, the program shown in Example 2 is useful when the number of steps may increase as a result of
many ““MOV"’ statements or when the program is to managed under a common routine.

Example 2:
M0O0O MEM 0.00H ;
START:
BR MAIN ;
DATAFETCH:
DI ;
POP AR : Reads the content of the address stack register to the address register.

ADD ARO, MOO0O ; In this case, the stack pointer indicates the MAIN routine return
ADDC AR1, #0 ; address.

ADDC AR2, #0
ADDC AR3, #0 ; Shifts by the constant data address specified by the content of M0OOO.
MOVT DBF, @®AR ; Reads constant data.

El

RET ; Returns to the MAIN routine.
DATA1:

CALL DATAFETCH Calls the common processing routine.

Dw 0123H : In this case, the address of DATA1+1 is saved in the address stack
Dw 4567H ; register.
Dw 89ABH ;

DATAZ2:

CALL DATAFETCH ; Calls the common processing routine.

DwW 1357H ; In this case, the address of DATA2+1 is saved in the address stack
DwW 2468H , register.

DW 9BDFH
MAIN .

BANKO ; Built-in macro

SET4 POABI0O3, POABIO2, POABIO1, POABIOO

SET4 P0OBBIO3, POBBIO2, POBBIO1, POBBIOO
SET1 POCGIO

MOV MO000, #0
MOV RPH, #0000B ; Sets the general register to row
MOV~ RPL, #1110B; address 7H of BANKO.

NEC

LOOP:
CALL
LD
LD
LD
CALL
LD
LD
LD
ADD
SKNE"
MoV
BR

~ POC,

DATA1
POA, DBF2
POB, DBF1
POC, DBFO
DATA2
POA, DBF2
POB, DBF1
DBFO
MO000, #1
M000, #0CH
M000, #0
LOOP

’

#PD17005

Reads the value of constant data DATA1 specified by the content of M0OO.
Transfers data buffer values to port registers, PortOA (70H), PortOB (71H), and
PortOC (72H).

Reads the value of constant data DATAZ2 specified by the content of MOOO.
Transfers the data buffer values to port data registers,

PortOA (70H), Port08 {71H}, and PortOC (72H).

Port0C (72H).

Writes 0 in MOOO when the content of MOOO
becomes OCH.

In Example 2, two levels of stacks are required for executing the “CALL" instruction twice, and the “’POP" and
“MOVT" instructions. .

As shown in Example 3, the “CALL" instruction has to be executed only once. In this case also, two levels of
stacks are required for the “MOVT" instruction.

Example 3:

DATAFETCH:
DI
POP AR

-MOVT DBF, ®AR
INC AR
PUSH AR
PUT AR, DBF
ADD ARO, MOOO
ADDC AR1, #0
ADDC AR2, #0
ADDC AR3, #0
MOVT DBF, @AR
El
RET

DATAT1:

DW 0123H

DATAZ2:

DW -1357H

MAIN:

LOOP: .
CALL DATAFETCH
DW .DL.DATA1
LD POA, DBF2
CALL DATA2
DW .DL.DATA2
LD POA, DBF2
" BR LOOP

Reads the content of the address stack register to the address register.
Transfers the constant data storage address to the data buffer.

Stores the MAIN routine return address.

Transfers the constant data storage address to the address register.
Shifts by the constant data address specified by the content of

MQ00. :

Reads the constant data.

Returns control to the MAIN routine.

Constant data.

Constant data.

169

NEC = \ #PD17005

11.4 BUFFER DATA AND PERIPHERAL HARDWARE

11.4.1 Peripheral Hardware Control Method
Peripheral hardware devices used for data transfer performed via data buffers are listed below.

A/D converter Clock generator port (CGP)

°
Serial interface ® PLL frequency synthesizer
D/A converter : @ Key source controller/decoder
LCD controller/driver o

o

Output port

Frequency counter
Address register (AR) l

Each peripheral hardware device is controlled by sending data to the device or reading data from the device via a
data buffer.

A data transfer register (called a peripheral register) is available for each peripheral hardware device and an
address (called a peripheral address) is assigned to each peripheral register.

By executing the specific instructions, “GET’* and “PUT" for a peripheral hardware register, data transfer
between a data buffer and each peripheral hardware device is enabled.

The “GET"” and “PUT" instructions are described below. Table 11-1 lists the functions of peripheral hardware ;
devices and data buffers. i

GET DBF, p: Reads data of the peripheral register addressed by p into a data buffer.
PUT p, DBF : Sets data of the data buffer to the peripheral register addressed by p.

Peripheral registers include a Read/Write register (PUT/GET), Write Only register (PUT), and Read Only register
(GET). :

In this case, if the “GET" and “PUT" instruction are executed for a Write Only (PUT only) and Read Only (GET
only} peripheral registers, the following results are produced in terms of the device.

® When a Read (GET) instruction is executed for a Write Only (PUT only) peripheral register, an undefined
value is read.

® When a Write (PUT) instruction is executed for a Read Only (GET only) peripheral register, no influence is
given.

However, cautions are necessary when the 17K series Assembler {AS17K) or Emulator (IE-17K) is used. See
Section 11.5, “Notes on Using a Data Buffer’ for details.
See 16 to 24 for details of peripheral registers.

11.4.2 Notes on Data Transfer with Peripheral Registers

Data transfer between a dqta buffer and each peripheral register is performed in 8-bit units or 16-bit units.

In this case, an execution time of only one instruction (4.44 us) is required for the “PUT" or “GET" instruction
even if the data unit is 16 bits.

When the effective data bit length of the peripheral register is 7 bits and when 8-bit data transfer is performed,
1 bit is handled as excess data.

This excess data becomes “‘any (any value)”’ data at Write operation and becomes an “‘undefined value’’ at Read
operation as shown in Exampies 1 and 2.

170

o

NEC

u«PD17005

Example 1:
At execution of the “PUT"” instruction (the effective bits of the peripheral register are 6 bits, bit by to bit bg)

Data buffer
DBF 3 DBF 2 DBF 1 DBF O
bys|b14|b13|b12|b11|b10| by [bg | b7 | b | b5 | ba | b3 [b2 | b1 |bo
Any value Any value :
T T
R ROt AR AIEEEE IEERE bbby AR Any value
Can be any value
PUT
Peripheral register
by | bg|bs{bg b3 |b2]|b1]|bg
Elffect'ive blit
T — T

0" or “undefined’’ value

When 16-bit data is written to a peripheral register, the high-order 8 bits of the data buffer (contents of DBF3

and DBF2) are handled as ““any value’ (can be any value).
Each bit which does not correspond to any of the effective bits of the peripheral register among the 8-bit data

of the data buffer is handled as “any value”.

Example 2:
At excecution of the “GET" instruction

Data buffer
DBF 3 DBF 2 DBF 1 DBF 0
b15|b14[b13|b12|b11[b10|bo b8 | b7 | b6 | b5 [ba | b3 | b2 | b1|bo
Any value Any value
T TgeT
SO RS M T “0*" or "‘undefined’
The value of the peripheral
register is read
Peripheral register
b7 | bg | bs|bg | b3]b2|b1|bo
E'ffectlive bit
) '
H ' : .
P IR 0" or ""undefined” value

When the 8-bit data of the peripheral register is read, the value of the high-order 8 bits of the data buffer (DBF3

and DBF2) remains unchanged.
Of the 8-bit data of the data buffer, each bit which is not an effective bit of the peripheral register is determined

to be “0" or “‘undefined”. The value, “0" or “undefined” is determined by the peripheral register in advance.
171

NEC | ©PD17005

11.4.3 Statuses when Peripheral Registers are reset
The effective bits of each peripheral register are set as follows at resetting.

Reset Status of the effect bit

Power On Undefined

Clock Stop The previous status is retained
CE The previous status is retained

172

NEC

uwPD17005

Table 11-1 Relationship between peripheral hardware and data buffer (1/2})

Peripheral register used for data transfer with data buffer

Peripheral hardware Peripheral | PUT/GET
Name Symbol X .
address instruction
A/D converter A/D converter register ADCR 02H PUT/GET
Serial interface 2 (5102) Presetable shift register 2 SIO2SFR 03H
Serial interface PUT/GET
Serial interface 1 (SB, SBI, SIO1} | Presetable shift register 1 SIO1SFR 04H
) PWMp pin PWM data register 0 PWMRO 05H
D/A converter PWM1 pi PWM dat ister 1 PWMR1 06H PUT/GET
n e
(PWM output} 1P 3o reglter
PWMa2 pin PWM data register 2 PWMR2 07H
LCD segment group 0 LCD segment group data register O LCDRO 08H
LCD segment group 1 LCD segment group data register 1 LCDR1 09H
LCD segment group 2 LCD segment group data register 2 LCDR2 OAH -~
LCD LCD segment‘group 3 LCD segment group data register 3 LCDR3 OBH
controller/ LCD segment group 4 LCD segment group data register 4 LCDR4 OCH PUT
driver LCD segment group 5 LCD segment group data register 5 LCDRS ODH
LCD segment group 6 LCD segment group data register 6 LCDR6 OEH
LCD segment group 7 LCD segment group data register 7 LCDR7 OFH
Port OX POX group data register POX OCH PUT
Output port
Port OY POY group data register POY 42H PUT/GET
Clock generator port (CGP) CGP data register CGPR 20H PUT/GET
Address register (AR) Address register AR 40H PUT/GET
PLL frequency synthesizer PLL data register PLLR 41H PUT/GET
Key source»controlIer/decoder Key source data register KSR 42H PUT/GET
Frequency counter IF counter data register IFC 43H GET

173

NEC

#PD17005

Table 11-1 Relationship between peripheral hardware and data buffer (2/2)

Function
Data buffer Effective
input/output Number of Outline
bit count bits
Sets the comparative voltage REF data of the A/D converter
8 6 x—05 :
VREF =——— x Vpp, 1 <x <63
8 8 Sets Serial Qut data and reads Serial In data.
Sets duty of the D/A converter output signal
x +0.25
8 8 Duty D = ———— x 100%, 0 < x <255
256
Frequency f =878.9 Hz
7 LCD segment group 0 —
4 LLCD segment group 1
7 LCD segment group 2
T -__—-7 ———————— LCD segment group 3 Sets display data of each group
8 | —— 0: Display ON
_______ 7] LCD segment group 4 1: Display OFF
3 LCD segment group 5
7 LCD segment group 6
7 LCD segment group 7 —
8 8 Sets output data of Port 0X
0: Low level 1: High level
16 16 Sets output data of Port 0Y
0: Low level 1: High level
Sets frequency of SG function
Frequency f 8 kHz and
requ = — n
22 xx)
8 7)
Sets duty of the VDP function
|
| x+2
Duty D = 7 ; 0<x<63
16 16 Data transfer with address register
16 16 Sets PLL division value (N value)
16 16 Sets output data of the key source signal
16 16 Reads the discrete value of the frequency counter
174

_NEC xPD17005

11.5 NOTES ON USING DATA BUFFERS

11.5.1 Notes on Data Buffer Manipulation of a Write Only Register, Read Only Register, and Unused Addresses
The following cautions are necessary for an unused peripheral address, a Write Only peripheral register (PUT

only), and Read Only peripheral register (GET only)} on the use of the 17K series Assembler (AS17K) and Emulator

(IE-17K) in terms of device operation when data transfer is performed with peripheral hardware via a data buffer.

(1) Device operation

When a Write Only register is read, an “undefined value” is read.

No change is made even if Write operation is performed for a Read Only register.

When an unused address is read, an “undefined value” is read and no change is made even if Write operation is
performed.

(2) When using Assembler (AS17K) ,
An ‘‘error’’ occurs in the instruction for reading the Write Only register.
An “‘error’’ occurs in the instruction for writing data to the Read Only register.
An “error” occurs in the instructions for reading and writing the unused address.

(3) When using an Emulator {IE-17K) (an instruction is executed in batch processing, etc.)
When a Write Only register is read, an *‘undefined value” is read.
No change is made even if Write operation is performed for a Read Only register.
When an unused address is read, an “undefined” value is read and no change is made even if a Write operation is

performed. No "‘error’’ occurs.

11.5.2 Addresses of Peripheral Registers and Reserved Words

As shown in Example 1, an “error” does not occur even if peripheral address "'p’* which is specified by the "PUT
p, DBF" instruction or “GET DBF, p" instruction is specified directly {using a numeric value) when 17K series
Assembler {AS17K) is used.

However, this method is not recommended for program debugging.

Consequently, a symbol must be defined for peripheral addresses using a symbol definition pseudo instruction,
which is an Assembler pseudo instruction as shown in Example 2.

“To simplify symbol definition, a peripheral address is defined in Assembler {AS17K) as a “reserved word"’.

By using the reserved word, a program can be written without symbol definition as shown in Example 3.

See the column “’Symbo!” in Table 11-1 for reserved words of peripheral registers.

See also 26, “uPD1 7005 Reservéd Words'’ for reserved words.

Example 1:
PUT 02H, DBF : Even if a peripheral address is specified directly by 02H or O3H, an error does
GET DBF, O03H : not occur in Assembler. However this may increase the likelihood of program
; bugs occurring.
Example 2:

PLLDATA DATA 41H : Assigns PLLDATA to 04H using a symbol definition pseudo
PUT PLLDATA, DBF ; instruction.

Example 3:
PUT PLLR, DBF : Symbol definition is not required if reserved word “PLLR" is used.

175

NEC xPD17005 1

12. INTERRUPT

An interrupt passes program control to a predetermined address (called a vector address) after stopping the
program which is currently being executed according to the request from peripheral hardware (INTp pin, INT4 pin,
timer, serial interface 1, or frequency counter).

12.1 STRUCTURE OF AN INTERRUPT BLOCK \

Fig. 12-1 shows the structure of an interrupt block.

As shown in Fig. 12-1, an interrupt block consists of the following: INTg pin, INT4 pin, timer, serial interface
1, each “interrupt request control block’* which controls an interrupt request output from each peripheral hardware
device of the frequency counter, ““Interrupt Enable flip/flop (INTE)"" which sets all the interrupt enable flags, and
"stack pointer”, “‘address stack register’”, “program counter”, and “interrupt counter’” which are controlled when
interrupt is accepted.

An “interrupt request processing block” of each peripheral hardware device consists of “flip/flop (IRQxxx)
which detects each interrupt request”, “flip/flop (IPxxx) which sets each Interrupt Enable”, and “‘vector address
generator (VAG)"” which specifies a vector address when interrupt is accepted.

IRQxxx flip/flop and IPxxx flip/flop correspond to each flag of interrupt request 1, interrupt request 2, interrupt
permission 1, and interrupt permission 2 on a one to one basis.

176

NEC

#PD17005

Fig. 12-1 Structure of an interrupt block

Control register
Interrupt Interrupg Interrupt Interrupt Stack
Name request 1 request 2 permission 1 | permission 2 pointer
(INTREQ 1) | {INTREQ2) | {INTPM 1) . | (INTPM 2) sP
Address 3EH 3FH 2EH 2FH 01H
Bit__|b3[ba[by[bg B3] b2[B1]00[B3]Ba[B1[Bp]b3[ba]b1]bg b3]ba1b11bg
Lyrfrprgfd L]l Al Al a
RIR(R|RBIR PiP|R|[P]|P S|S|S
Flag o|jojo|QjQ|alalalojo|lo|lL}s|T|1}0 O(P|P|P
. l1S|T]1]60 FIi|M 21110
signal FIT|m clo [IRV)
clo 11
1
e — o= 1
| | wPiFc | T %t:i%l;er Address stack register =—
|)
y [—-—— ASRO
Frequency
counter [tRQIFC ASRI1
| ™ _ASRHB
|
u <
L =
| <:> Program counter | e—¢
) | | 1PS101 |
el L1 rasior |
|1nterface : U System register |-t
I > Address 79H 7FH
Symbal! BANK PSW
! Bit b3 ba[b1[bg[b3[ba[b]bg
Flag 0l0 cicleir
signal 'E,A Y é
Timer ;
4:> nterrupt
stack
INT,
pin
—>
|
|
- INTg : i
pin | |
I [VAS osn = | —>
| f—|J l 7 —
| X N %

Interrupt Enable FF I__I_LJi
INTE

DI and El instructions

177

NEC ‘ «PD17005

12.2 INTERRUPT FUNCTION .
The interrupt function can be used by the INTq pin, INT4 pin, timer, serial interface 1, and frequency counter.

The interrupt function is used for executing a specific program by interrupting a program which is currently being
executed when these peripheral hardware devices satisfy a specified condition {for instance, a download signal is
added to the INTq pin).

In this case, the interrupt signal from the peripheral hardware is called an "interrupt request’” and the outputting

of the interrupt signal is referred to as “issuing of an interrupt request’. A specific interrupt processing program
is called an “interrupt processing” routine.

When an interrupt is accepted, control is branched to a program memory address (vector address) predetermined
for each interrupt factor. Consequently, each interrupt processing can be started from this vector address.

The interrupt function is classified into the processing up to acceptance of the interrupt and processing after
acceptance of the interrupt. That is, the function is classified into the function up to acceptance of the interrupt
request issued from each hardware device, and the function for branching control to the vector address after accept-
ance of the interrupt, and returning control to the program which was being executed before the interrupt was
issued.

Sections 12.2.1 to 12.2.5 describe the function of each block which was shown in Fig. 12-1.

12.2.1 Peripheral Hardware

Peripheral hardware devices which have the interrupt function are the INTg pin, INT4. pin, timer, serial interface
1 and frequency counter.

A condition of issuing an interrupt request can be set for each peripheral hardware.

For instance, for the INTy pin, the selection condition can be made as to whether a request is issued by the
rising edge of the signal added to the INTq pin or by the falling edge of the signal added to the INTq pin.

See Sections 12.3 to 12.7 for details of each peripheral hardware interrupt request issuing condition.

12.2.2 Interrupt Request Processing Block

An interrupt request processing block is set in each peripheral hardware device and the block generates a vector
address at the presence or absence of interrupt request, interrupt permission, or interrupt acceptance.

Sections 12.2.3 and 12.2.4 describe each flag of an interrupt request processing block.

178

NEC o 4PD17005

12.2.3 Interrupt Request Flag (IROXXX)
Since the IRQXXX flag corresponds to each flag of the interrupt request 1 register and interrupt request 2
register of the control register on a one to one basis, Read and Write operations are allowed via a window register.
-Sections (1) and (2) show the structure and functions.

(1) Structure and functions of an interrupt request 1 register and interrupt request 2 register

Flag signal -
Name Address |Read/Write
b3 | b2 [b1 | bo
P
Interrupt . H ' R
H . ' Q
request 1 0!0:0! 3EH AW
register ! ! v
(INTREQ 1) A Fiag signal
bt ic |bg|bg|by |0
[I |
Interrupt RIR' R'R
request 2 Q:a'a'Q
, ' ' 3FH R
register S : Ti1:.0 w
(INTREQ 2) oMo
oy o
I ‘ '
Detection of interrupt request issuing status of each
interrupt
L INTQ pin
- INTq pin
— Timer
t—— Serial interface 1
Frequency counter
E 0 E E E E Without interrupt request
E 1 : ' E ', With interrupt request
Always set to ‘0" J
a| Power On 0:0:0:0:0!0:0:0
| Clock Stop ‘] iltotoiotoo
22 R B S A E
CE) , V00,000

(2) Interrupt request flag function
Each interrupt request flag (1RQxxx) is set (1) when an interrupt request is issued from each peripheral hardware

device and is reset (0) when the interrupt is accepted.
By detecting these ‘interrupt request flags (IRQxxx) when interrupt is not permitted, each interrupt request

issuing status can be detected.
When “1" is written via window register, the same processing as for the case where an interface request is issued

is performed.

179

NEC uwPD17005

Once this flag is set, the flag is not reset until a corresponding interrupt is accepted or “0" is written via a window
register.

Even if a number of interrupt requests are issued simultaneously, an interrupt request flag. is not reset for the
interrupt which is not accepted.

12.2.4 Interrupt Permission Flag (IPxxx)

Since the IPxxx flag corresponds to each flag of the interrupt permission 1 register and interrupt permission 2
register of the control register, Read and Write operations can be performed via a window register.

The structure and functions are described in items (1) and (2).

(1) Structure and functions of the interrupt permission 1 register and interrupt permission 2 register
The structure and functions are described below.

Flag symbol
Name Address |Read/Write
b3 | bz | b1 |bg
) H v
Interrupt ' , . P
ermission 1 , ; :
pert 0:0:0! 2EH R/W
register ! : ‘
(INTPM1) r 2 F 1 Fiagsignal
H N , C
H , . b3 bz bq|bg
L RN
Interrupt P : P E P E P
.o S T»1 .0
erm 2 1) !
ol r' Ission I : M : ' 2FH R/W
register 0! ' '
(INTPM2) | : : .
Sets permission of each interrupt
Lot INTq pin
B — INTq pin
- Timer
- Serial interface 1
Frequency counter
ro Prohibited
N) H . Permitted
Always set to 0",
| Power 0:!0:0:0:0:0:0'0
§| Clock Stop t1i]i0ioioioio
b i T T T Y Y v
CE Vi lio0r0'0:0 ©
180

NEC #PD17005

{2) Function of an interrupt permission flag

Each interrupt flag sets the interrupt permission of each peripheral hardware device.

To accept an interrupt, the interrupt must be permitted by each permission flag, a ‘corresponding interrupt
request must be issued, and the “'EI"* statement (permission for all the interrupts) must be executed.

12.2.6 Vector Address Generator {VAG)

When interrupt of each peripheral hardware device is accepted, the branch address {vector address) of the pro-
gram memory for the interrupt factor which was accepted is generated.

Table 12-1 lists the vector-address for each interrupt factor. '

Table 12-1 Vector addresses for interrupt factors

Interrupt factor Vector address
INTg pin 05H
INTq pin 04H
Timer 03H
Serial interface 1 02H
Frequency counter 01H

12.2.6 Interrupt Enable Flip/Flop (INTE)

Interrupt Enable flip/flop sets all the five types of interrupts.

When this flip/flop is set (1) and when “1" is output from each interrupt request processing block, 1" is output
from this flip/flop and the interrupt is accepted.

Interrupt is not accepted even if “1” is output from each interrupt request processing block when this flip/flop
is reset (0).

The specific “EI” instruction (set) and “D1” instruction (reset} are used for setting and resetting flip/flop.

When the “EI” instruction is executed, this flip/flopis set at completion of the instruction which was executed
following the “EI" instruction, and when the “DI” instruction is executed, the flip/flop is reset during the "’'DI”"
instruction execution cycle.

When the interrupt is accepted in the state (E| state) where the Interrupt Enable flip/flop is set, this flip/flop is
reset (DI state) when the interrupt is accepted.

Even if the “DI" instruction is executed "in the DI state” or even if the “EI" instruction is executed “in the El
state’’, no influence is imposed.

At Power On Reset, Clock Stop, or CE Reset, this flag is reset (D1 state).

12.2.7 Stack Pointer, Address Stack Register, and Program Counter

An address stack register saves an address returned from the interrupt processing routine.

An address pointer specifies the address stack register to be used among the seven registers (ASRO to ASR6).

That is, if interrupt is accepted, the value of the stack pointer is decremented by 1 and the value of the program
counter is saved in the address stack register specified by the stack pointer. When the “RET!" instruction, which is
a specific return instruction, is executed after execution of the interrupt processing routine, the content of the
address stack register specified by the stack pointer is returned to the program counter and the stack pointer value
is incremented by 1.

See 4, “‘Stack”’ also.

181

NEC | wPD17005

1.2.2.8 Interrupt Stack

An interrupt stack saves the contents of the bank register and index enable flag at acceptance of interrupt.

When interrupt is accepted and the bank register and Index Enable flag are saved, the bank register and Index
Enable flag in the system register are reset (0).

An interrupt stack can save up to four levels of the contents of bank register and Index Enable flags.

Consequently, multiple interrupts of up to four levels can be performed such as in the case in which another
interrupt is accepted in an interrupt processing routine.

The content of the interrupt stack is returned to the bank register and Index Enable flag of the system register

by executing the “RETI" instruction which is a specific return instruction used for an interrupt processing routine.
See also 4, "'Stack”.

182

NEC #PD17005

12.3 INTERRUPT ACCEPTANCE OPERATION

12.3.1 Interrupt Accept Operation and Priority
Operation up to acceptance of interrupt is described below.

(1) If the interrupt condition is satisfied (for jnstance, the falling signal is input in the INTg pin), each peripheral
hardware device outputs an interrupt request signal to each interrupt request blcok.

(2) When an interrupt request signal is accepted from each peripheral hardware device, the corresponding
1RQxxx flag (for instance IRQO flag if the device is INTg pin) is set {1) to each interrupt request blcok.

(3) If an interrupt permission flag (IPxxx) corresponding to each IRQxxx flag, for instance IPO flag if the flag is
IRQO flag, is set (1) when each interrupt request flag (IRQxxx) is set, “1” is output from each interrupt
request block.

(4) The signal output from each interrupt request block is input to an Interrupt Enable flip/flop via an OR
circuit. This Interrupt Enable flip/flop is set (1) by the *’El”" instruction and reset by the “’DI" instruction.
If 1" is output from each interrupt request block when an Interrupt Enable flip/flop is set, 1" is output
from the Interrupt Enable flip/flop and the interrupt is accepted.

When interrupt is accepted, output of the Interrupt Enable flip/flop is input to each interrupt request block
via the AND circuit as shown in FiQ. 12-1.

An interrupt request flag (IRQxxx) is set by the signal input to each interrupt request block and the vector
address for each interrupt is output.

In this case, since the interrupt acceptance signal is not conveyed to the next stage if ““1” is output from the
interrupt request block, interrupts are accepted in the following priority sequence when a number of interrupt
requests are issued simultaneously. '

INTg pin > INT¢ pin > timer > serial interface 1 > frequency counter

This priority sequence is called ““hardware priority sequence’’.

Fig. 12-2 shows the flow chart of the interrupt acceptance operation.

Since processing @ shown in Fig. 12-2 is always executed concurrently, each interrupt request flag (1IRQxxx) .
is set concurrently when a number of interrupt requests are issued concurrently.

However, processing @ is executed according to the priority sequence by each interrupt permission flag.

That is, interrupt for the interrupt factor is not accepted unless the interrupt permission flag (I1Pxxx) is set. Since
an interrupt permission flag (IPxxx) can be set or reset, interrupt of high hardware priority can be prohibited by
resetting the interrupt permission flag.

Interrupt by an interrupt permission flag is called “maskable interrupt”. Since the interrupt of high hardware
priority can be prohibited by a program, maskable interrupt is also called “software priority sequence”’.

183

NEC

4PD17005

(' sTaRT)

Fig. 12-2 Flow chart of interrupt acceptance operation

l

l

INTg pin

INT4 pin

Timer

Serial
interface 1

Frequency
counter

Interrupt
request

Interrupt
request

Interrupt
request

Interrupt
request

Interrupt
request

@
Set IRQO Set IRQ1 Set IRQTM Set IRQSIO1 Set IRQIFC
|
No No No No No
‘Yes Yes Yes Yes Yes
@
IRQIFC =
IPIFC =12~ =,
No* cannot
L Yes happen
Reset IRQO Reset IRQ1 Reset IRQTM Reset IRQSIO1 - Reset IRQIFC
Accept
interrupt

184

NEC #PD17005

12.3.2 Timing Chart when Interrupt is Accepted

Fig. 12-3 shows a timing chart when interrupt is accepted.

The timing chart shown in (1) of Fig. 12-3 is a timing chart by interrupt of one type.

(a) of (1) shows the timing chart when an interrupt request flag (IRQxxx) is set (1) at the end, and (b) of (1)
shows the timing chart when an interrupt permission flag {1Pxxx) is set {1} at the end.

In either case, interrupt is accepted when all of the interrupt request flag (IRQxxx), interrupt enable flip flop,
and interrupt permission flag (IPxxx) are set.

When the flag or flip/flop which was set last satisfies the first instruction cycle of “MOVT DBF, @AR" instruc-
tion or skipping condition, interrupt is accepted after execution of the second instruction cycle of the “MOVT DBF,
@AR" instruction or the instruction which was skipped {(NOP) is executed. ‘

Interrupt Enable flip/flop is set by the instruction cycle following execution of the “’EI’" instruction.

{(2) in Fig. 12-3 shows the timing chart when a number of intemjpts are used.

When a number of interrupts are used and all the interrupt permission flags {(IPxxx) are set, the interrupt which is
given priority by the hardware is accepted first. However, the hardware priority can be changed by manipulating the
interrupt permission flag using a program. -

The “interrupt cycle”” shown in Fig. 12-3 is a special cycle for resetting the interrupt request flag, specifying a
vector address, and saving a program counter after the interrupt is accepted and requires execution time of one
instruction (4.44 us). See Section 12.4, “Operation After Interrupt Is Accepted” for details.,

Since an interrupt request flag is set (1) by the peripheral hardware interrupt request regardless of the El instruc-
tion, and interrupt permission flag, the presence or absence of an interrupt request can be detected by detecting the

interrupt request flag (IRQxxx) by a program.

185

NEC

«PD17005

Fig. 12-3 Interrupt acceptance timing chart (1/2)

{1) When one type of interrupt
(example: rising of the INTq pin) is used

{a) When there is no inierrup‘t mask time by an interrupt permission flag (IPxxx)

@ Ordinary instruction which is not the “MOVT"" instruction of which does not satisfy the skip condition

when interrupt is accepted

{
- MOV POKE 7 Ordinary | Interrupt
Instruction Bl |wr=-ooo1B|INTPMiWR| | . instruction| cycle
I 1 I L) J 'l L I I
T T — r
INTE | ¢ I i i L [!
| | | | | | |
INTq pin ! | | L P\ ! ! '
T I T l ¥ v I
' | \ ' | Rr—‘—\ ' I
IRQO flag | 1 | L | | 1
| | | N] | |
IPO flag ! | ! | ! ! |
| I ! I ! } |
| One instruction cycle ' | Interrupt | | Interrupt
4.44 us |__Permission period | L Processing routine
' ' ! Interrupt
acceptance

@ “MOVT" instruction or “instruction which satisfies the skip condition” when interrupt is accepted

T
!
|

(
; MOV POKE) MOVT DBF @AR Interrupt
Instruction El |wr=oomliNTPMIwR| | Skipping | cycle
1 T ™) 7 l|nstructic>n ' | |
INTE —¢ : i | L] | |
' | [| I I
INTg pin ! ! ! A ! :
| I i | l i i
IRQO flag I I [| | I |
T T T T I I
IPO flag I : { ; i : }
[| | | | |
t]]] I [

{b) When there is an interrupt hold period by an interrupt permission flag

Interrupt
acceptance

Fig. 12-3 Interrupt acceptance timing chart (2/2)

| Interrupt

L processing routine

[(
J
. MOV POKE Interrupt
Instruction El (___|WR=00018|INTPM1WR| cycle
| —_— — | |
INTE ¢ | l | Lol | |
| | 1 | | | !
i | | | |
INTgy pin_ | : 5 : ! ! |r !
L 1 | 1 1 I |
|RQO flag | \)] 1 i i
I : [| I] T
] | | +
IPO flag ! ! l L ¥ T i
I ! |]] I |
| ' ! I | Interrupt processing
L Interrupt hold period N | routine
1

186

I
tlnterrupt acceptance

NEC | «PD17005

Fig. 12-3 Interrupt acceptance timing chart (2/2)

(2) When a number of interrupts are used
- {example: two types; INTg pin and INT pin)

(a) Hardware priority

{ ¢ .
.) 7
Instructior [W2%o0118|inTemiwal E! i P El Interrupt
))
INTE | | ST | T
T T T]
: : | A
INTg pin_ ! I i i ! [! | o
t ' 4 : | I l [i
IRQO flag | | [| L I]]) |
- [' ' I | ' ! I |
INT4 pin_| | | | | | | | i 1
{ | |] ! | | { i
IRQq flag_ , T T | 5 T |]
- i | I | t | | i
IPO flag | w } : | i TI : I |
P ey ' : L ; : : L
IP1 flag L9, | | | | ! | :
' | | . ' | | | |
T e y — T — - -
ﬁTg pin interrupt hold period| 75_|NTO pin interrupt processing | | INT{ pin interrupt
L | INT4 pin interrupt hold period | _|__Processing
! ’ Acceptance of INTq pin interrupt *INT1 pin Iinterrupt
acceptance
(b) Software priority
- i |
Instruction %%Y#oona PoroM 1.WR El I melgum Mvs00108 |TAM 1.WR El cycs !
INTE | ' \ﬁ\.f'rj | | S
t t } | t ¢ I t | +
. | | | | |] |
INTg pin }f\ 'l]] ; ! {] | | I
% E 1 I ; ; L L ; ; i
tRQO flag | | I | I | | I | L_A_
. [I I | | l I | | |
INTq pin_| | I { | L ! I |) |
] | !] - [I I | | |
| | | |] l‘ v | |
IPO flag [! ! ' | R ! |
| \ . J] . . l] :
T T I T T
IP1 flag | P | | | ! | | | l |
' | | ! | ! | 1 ‘ :
T v ' | INTq pin interrupt hold period i j |
1 INT 4 pin interrupt hold periodi i INT4 pin interrupt acceptance | _i INTQ pin interrupt
) * I + . | processing
INT4 pin interrupt processing INTg pin interrupt acceptance

187

NEC

#PD17005

124 OPERATION AFTER ACCEPTANCE OF INTERRUPT
When interrupt is accepted, the following processing units are executed automatically and sequentially.

(M

(2)

(3)

(4)

(8)

Set interrupt enable flip/flop and the interrupt request flag (|RQxxx) corresponding to the interrupt request
which was accepted.

That is an interrupt prohibited state is set.

Decrement the content of the stack pointer by 1.

Save the content of the program counter to the address stack register specified by the stack pointer. In this

case, the content of the program counter is the next program memory address when the interrupt is
accepted.)

For instance, if the instruction is a branch instruction, the address of the branch destination is used and if
the instruction is a subroutine call instruction, the address which was called is used. When the skip condition
is satisfied by the skip instruction, interrupt is accepted after the next instruction is executed as the “NOP’"
instruction. Consequently, the content of the program counter is the address which was skipped.

Back up the low-order 2 bits of the bank register (BANK: address 79H) and Index Enable flag (1XE: bit bg
of address 7FH) in the interrupt stack.

Transfer the content of the vector address generator corresponding to the interrupt which was accepted to
the program counter.

That is, control is branched to the interrupt processing routine.

Processing units described in (1) to (5) are executed during one special instruction cycle (4.44 us) which does
not involve execution of ordinary instructions. This instruction cycle is called an “interrupt cycle"’.

That is, the time of one instruction cycle is required from accept of interrupt to branching of control to the
corresponding vector address.

188

NEC #PD17005

12.5 RETURN PROCESSING FROM AN INTERRUPT PROCESSING ROUTINE

Use a specific instruction, “RETI", to return control from an interrupt processing routine to the processing which
is to be performed when the interrupt is accepted.

When the “RETI"” instruction is executed, the following processing units are executed automatically and sequen-

tially.
(1) Return the content of the address stack register specified by the stack pointer to the program counter.

(2) Return the content of the interrupt stack to the low-order 2 bits and Index Enable flag (IXE: bit O of address
7FH) of the bank register (BANK: address 79H). .

(3) Increment the content of the stack pointer by 1.
Processing units from (1) to (3) are processed within one instruction cycle where the “RETI" instruction is

executed. .
The “RETI" instruction and subroutine return instructions, “RET"” and “RETSK" are different only in the

return operations of the bank register described in (2) and index enable flag.

189

NEC «PD17005

12.6 INTERRUPT PROCESSING ROUTINE

Interrupt is accepted, regardless of the program which is being executed at that time, when the interrupt request
is issued, as long as interrupt is permitted in the program area.

Consequently, to return control to the program after execution of interrupt processing, the status must be reset
so that no execution of interrupt processing appears to have happened.

For instance, when an arithmetic operation is executed during interrupt processing, the content of the Carry flag
(CY)} may be changed from the value before the interrupt was accepted, so that the program makes an incorrect
decision after the return.

Consequently, backup and return operations at least are required in the interrupt processing routine for system
registers and control registers which may be manipulated within the interrupt processing routine.

See Section 12.9, “Multiple Interrupt” for the processing performed when another interrupt is permitted (multi-
ple interrupt) during interrupt processing.

12.6.1 Backup Processing ,]

This section describes an example of backup processing in interrupt routine.

Since only a bank register (BANK) and an Index Enable flag are backed up automatically by the hardware among
system registers, other system registers must be backed up by the program, if required.

As shown in the program example, the “POKE" instruction and “PEEK’’ instruction are useful for backing up of
system registers and performing return processing.

A transfer instruction (LD, r, m or ST m, r) can also be used instead of the “PEEK’" and “POKE" instruction.
However, if a transfer instruction is used for the backup method when the row addresses of the general registers are
not fixed at acceptance of interrupt, the data memory address cannot be specified easily.

If a transfer instruction is used for backing up the general register itself, the address which is backed up is not
fixed because the general register address is not fixed. Consequently, the general register must be fixed at least
during execution of the interrupt permission routine. .

However, since the addresses of register files which are controlled by the “PEEK” instruction or “POKE"" instruc-
tion are specified regardless of the contents of the general registers and the addresses of the register files, 40H to
7FH, overlap the data memory of the bank which is currently selected, each system register can be backed up by
specifying the bank only.

In the example, the general register is specified again in row address 07H of BANK1 after the window register and
register pointer (RPH, RPL) are backed up the “PEEK’ and "POKE" instructions, and then another system register
is backed up by the “ST* instruction.

Fig. 12-4 shows a backup operation example by the “PEEK' and “POKE" instructions.

12.6.2 Return Processing

This section describes an example of return processing.

Return processing is the reverse operation of the backup processing described in Section 12.6.1.

Since the state is an “interrupt permitted state’’ (El state) when interrupt is accepted, the ““El’’ instruction must
be executed before executing the “RETI* instruction.

The “EIl"” instruction sets (1) Interrupt Enable flip/flop after execution of the “RETI’’ instruction. Consequently,

the state is set to an “interrupt permitted state’’ after control is returned to the program which was being executed
before the interrupt was accepted.

190

NEC | ~ +PD17005

Example:
Method of backing up states in an interrupt processing routine

1
Main routine Interrupt processing ~ ° Program example
routine M144 MEM 1.44H

(Set to the DI state}
M145 MEM 1.45H

M146 MEM 1.46H
M147 MEM 1.47H
M148 MEM 1.48H
M14D MEM 1.4DH

Backing up BANK and M14E MEM 1.4EH
IXE by hardware . Mi5F MEM 1.5FH
[TMMD MEM 0.89H
Backs up necessary — _ BANK1 ; Sets the bank to 1.
:Z:::’r;\r;egisters by @ POKE M148, WR : Backs up the content of the window register to M148.
(2) PEEK WR,RPH ;
@ POKE M14DWR . Backs up the contents of the general
; register pointer to M14D and M14E.
(@) PEEK WR.RPL
R (&) POKE MI4EWR
@ MOV RPH, #1 ; Sets the general register to row address
; 7 of bank 1.
MOV RPL, #0EH
@ ST M144,AR3 ; Backs up necessary system registers.
ST MI145AR2 '
®sT M4BART
ST Mi47,AR0
. @ PEEK WR,TMMD H Back‘s up necessary control registers.
Interrupt accepted [;la?g?;:s?;g @ ST MIBEWR
I
o™ || BANKS ; Sets bank to 1.
\l’)v:?ciﬁre\dwue;;e MOV RPH,1 ; Sets the general register to row address
; 7 of bank 1.
MOV RPL,OEH ;
LD AR3,M144 ; 'Returns the systern registers which were backed up.
LD - AR2,M145
LD AR1,M146 ;
LD ARO.M147 ;
LD WR,M15F : Returns the control registers which were backed up.
POKE TMMDWR
PEEK WR,M14D ; Returns general register pointers.

POKE RPH.WR ;
PEEK WR,M14E :
POKE RPLWR ;
PEEK WR,M148 : Returns window registers which were backed up.

—] ; Interrupt is permitted by the El instruction
; (setting INTE) when the next “RETI"

; instruction is executed.

; Aeturns BANK and IXE by hardware.
191

NEC

#PD17005

Fig. 12-4 Backup operation of system registers and control registers performed using a window register

Column address

[HPH[RPL I«—@ Specified in the

_________ _r® lr@ g?neral register

0O 1 2 3 4 5 6 7 8 9 A B C D E F
.0
¢
%1 Data memory
® BANK 1
22
[o]
T3
e T T T TV T T Backuparea ["T"" _____
. aCKuUp area
T LT T,
|5 1@ 1® |© (@ |©rokemisswr 1@ 1®|,
! 6 I__1I 1_1 L Sy U _l__L_J@
L N ——
l AR 3]AR2IAR 1[ARO wa
f
] ®|| A
] I 1 I
' |l_ ____________ 4
| b
' L
! 0 " | TMMD
i
| 1
| Control register
| 2
|
| 3
|
|

12.6.3 Notes on Interrupt Processing Routine

The following points must be noted for an interrupt processing routine.

(1) Data which is backed up by hardware

Bank registers and Index Enable flags are reset to 0" after being backed up in an interrupt stack.

(2} Data which was saved by softwar'e

Data which was backed up by software is not reset after backup.
In particular, program status words including a BCD flag (BCD), compare flag (CMP)}, carry flag (CY), zero flag
{Z), and memory pointer enable flag (MPE) must be initialized as required, because the values which were set before

the interrupt was accepted, are retained.

192

NEC «PD17005

12.7 EXTERNAL (INTg PIN AND INT4 PIN) INTERRUPT
Two types of external interrupt pins are available, the INTg pin (pin number 12) and INT¢ pin (pin number 13).
An interrupt request is issued according to the rising edge or falling edge of the signal sent to these pins.

12.7.1 Structure of External Interrupt

Fig. 12-5 shows the structures of the INTg pin and INT4 pin.

As shown in Fig. 12-5, the signals input from the INTg and INT; pin are input to each edge detection circuit
after being input to the INTg latch and INT4 latch, respectively.

The edge detection circuit outputs an interrupt request signal .according to the signal input from each pin and
input of flip/flop of IEGO and |IEG1.

Flip/flop of IEGO and flip/flop of IEG1 correspond to flag IEGO and flag IEG1 of the low-order 2 bits of the
interrupt edge selection register (INTEDGE: address 1FH) of the control register on a one to one basis.

The INTg and INT4 latches correspond to the flags INTg and INT of the low-order 2 bits of the interrupt pin.
level judgment register (INTJDG: address OFH) of the control register on a one to one basis.

Since pins INTg and INT; operate incorrectly due to noise, Schmitt trigger input is applied and consequently,

pulse input less than 1 us is not accepted.

Fig. 12-5 Structures of the INTg pin and INT4 pin

Control register

Interrupt Interrupt
edge pin level
Name | celection judgment
(INTEDGE) (INT JDG)
Address 1 FH 0 FH
Bit b3 b2]b1[bg[b3[b2[b1[b0
11 [
Flag O|0|E|[E|O|O0O|N[N
signal G|G TI|T
110 1101}
e—— T 1
|l - =" 1
l : re . r- - Interrupt request block
Al "
: I | INTQ
: : | Latch
INT(pin — 1 [Edge IRQD |}
o EGo _r detection
Schmitt trigger } : Flip/flop
’ I b e o e o e - ——— — =
Lo e e e —— - I
! TNTT
I Latch
INT4 pin ' l Edge IRQ1 -
I EG'1 detection
Schmitt trigger Flip/flop

193

NEC «PD17005

12.7.2 External Interrupt Function .

The INTq pin and INT4 pin issue an interrupt request according to the rising or falling edge added to each pin.

The IEGO and IEG1 flag which are the low-order 2 bits of the interrupt edge selection register (INTEDGE:
address 1FH) of the control register are used for selecting a rising edge or falling edge.

For the signals input to the INTg pin and INTq pin, the signal interrupt levels which were input by the INTg
flag and INT flag of the interrupt pin level judgment register (address OFH) can be detected regardless of the
interrupt as shown in Fig. 12-5,

12.7.3 Structure and Function of Interrupt Edge Selection Register (INTEDGE)

An interrupt edge selection register sets an input signal edge (rising or falling edge) which issues interrupt requests
of INTg pin and INT, pin, which are external interrupts.

The structure and functions are described below.

Table 12-2 shows the relationship between the IEGO and 1EG1 flags and interrupt request issuing edges.

Flag signal
bz bz [b1|bg
R
Interrupt edge ! ! '
selection register ' 'E'E
(INTEDGE) 6.0, 1FH R/W
: i .G G
. 1.0

Sets input signal edge for issuing an interrupt request of each pin

Lel INTg pin (pin number 12)

INT{ pin (pin number 11)

Name Address |Read/Write
|
|
|

E 0 E Rising edge
E 1 E Falling edge
Always set to ‘0"’
5 | Power On 0:0:0:0
8 ; t ;
o | Clock Stop ' 100
b . 0 '
CE - 1010
194

NEC #PD17005

Table 12-2 1EGO and IEG1 flags and interrupt request issuing edge
Value of Interrupt request issuing
each flag edge of each pin
IEGO IEG1 INTQ@ pin INTq pin
1 1
Falling Falling
1 0 —
Falling Rising
0 1 —7
Rising Falling
— __
0. 0 i
Rising Rising

When the interrupt request issuing edge is switched by the IEGO flag and IEG1 flag, the interrupt request signal

may be issued as soon as the edge is switched.
For instance, assume that the 1EGO flag is set to ‘1" (falling edge) and a High level is mput from the INTg pin
as shown in Table 12-3. If the 1EGO flag is reset at this time, the edge detection circuit determines that an edge is
input and issues an interrupt request. Because of this, caution is necessary.
See Section 12.2, “Interrupt functions” for the operation performed after an interrupt is issued.

Table 12-3 Issuing of interrt:pt requests due to the change to the IEG flag

Change to the IEGO and State of the !NTO pin Issuing of an interrupt request Status of the IRQ flag
IEG1 flags and INT4 pin
1 - 0 Low level Not issued Status retained
{Falling) (Rising) High level Issued Set
0 - 1 Low level Issued Set
{Falling) (Rising) High level Not issued Status retained

195

NEC | | «PD17005

12.7.4 Structure and Functions of an Interrupt Pin Level Judgment Register

By reading interrupt pin level judgment register INTg and INT flag, the signal level input to the INTg pin and
" INT4 pin can be detected.

Since the INTg flag and INT4 flag are set and reset regardless of the interrupt, they can be used as a 2-bit general
purpose input port when an interrupt function is not used.

If interrupt is not permitted, the pins can be used as general purpose ports for detecting a rising or falling edge
by reading the interrupt request flags (IRQO, 1RQ1). ,

However, since the interrupt request flags (IRQO and IRQ1) are not reset automatically, they must be reset by
the program. .

The structure and function are shown below.

Flag signal
Name i Address |Read/Write
b3 | b2 | b1|bg

Interrupt pin level

judgment register
(INTJDG) 0

OFH R

- Z

-

Q

Detects the level input to each-pin

-1 INTQ pin

INTq pin

Low level is input

—_

High level is input

Always fixed to 0"

.. | PowerOn 0‘: OE—E—
2 : 0 y

« | Clock Stop N
< ce .

196

NEC 4PD17005

12.8 INTERNAL (TIMER, SERIAL INTERFACE 1, FREQUENCY COUNTER} INTERRUPT
Three types of internal interrupt are available; timer, serial interface 1, and frequency counter.

12.8.1 Timer Interrupt
Timer interrupt can issue an interrupt request at regular intervals.
Four times can be selected, 250 ms, 100 ms, 5 ms, and 1 ms.
See 13, “Timer Function” for details.

12.8.2 Interrupt of Serial Interface 1
Interrupt of serial interface 1 can issue an interrupt request at Serial Out or Serial In operation termination.
A serial clock is used for issuing the interrupt request.
See 21, “‘Serial Interface” for details.

12.8.3 Frequency Counter
Frequency counter interrupt can issue an interrupt request at termination of counting operation.
See 22, "*Frequency Counter (FC)" for details.

12.9 MULTIPLE INTERRUPT

Multiple interrupt is the method of interrupt in which interrupt processing of other interrupt factors C and D
are performed during interrupt processing of interrupt factors A and B as shown in Fig. 12-6.

The multiplicity of the interrupt is called an interrupt level.

When multiple interrupt is used, the following points must be noted.

(1) Priority of interrupt factors

(2) Limit of the interrupt level by the interrupt stack

(3} Limit of the interrupt level by the address stack register (ASR)
(4) Backing up of system registers and control registers

Sections 12.9.1 to 12.9.4 describe the items {1) to (4} described above.

Fig. 12-6 Example of multiple interrupt

Interrupt Interrupt) Interrupt interrupt '
level 1 level 2 level 3 ’ level 4 -

] 21— [

Main routine

197

NEC ._ 4PD17005

12.9.1 Priority of Interrupt Factors
When multiple interrupt is used, the priority of interrupt factors must be determined.
For instance, the priority of interrupt factors, A, B, C,and Dcanbe A=B=C=DorA<B<C<D.

However, when the priority is A = B = C = D, interrupts of A, B, C, and D are always accepted in the main
routine,

Since interrupts of A, B, and D are prohibited in this case, if interrupt of C is accepted, then the meaning of
multiple interrupt is lost. .

. When the priority is A <B < C < D, interrupt of C must be processed first even if interrupt of A or B is being
processed, and interrupt of D must be processed first even if interrupt of C is being processed.

The priority set by the hardware which is described by Section 12.3, “Interrupt Acceptance Operation” or
priority set by software using the interrupt permission flag (IPxxx) can be used for the priority described above.

-The priority must be determined in multiple interrupt for the following reason. Considering interrupt factors A
and B, factor A issues a request every 10 ms and the interrupt processing requires 4 ms and factor B issues a request
every 2 ms and the processing requires 1 ms.

Assume that no priority is set for A and B. If interrupt processing of A is executed according to the interrupt
request A during interrupt processing of B, interrupt processing of B is not performed for a number of times.

In general, since interrupt is used for urgent processing, in the case described above, a program is required to
prohibit interrupt processing of A during interrupt processing of B by setting priority of A < B, and accepting
interrupt of B during processing of interrupt A.

When multiple interrupt is used without any urgency, priority is not always required. However, when the number
of interrupt factors exceeds the limit of the multiple interrupt levels as described in Sections 12.9.2 and 12.9.3, the
priority should be set so as not to exceed the limit.

12.9.2 Limit of the Interrupt Levels by an Interrupt Stack

Contents of a bank register of the system register and Index Enable flag are automatically backed up in the inter-
rupt stack.

Fig. 12-7 (a) shows operation of an interrupt stack.

As soon as being backed up in an‘interrupt stack, the bank register and Index Enable flag are reset.
~ Since four level of interrupt stacks area available, the bank register and Index Enable flag cannot be returned
normally if the number of muitiple interrupt levels exceeds 4 as shown in (b) of Fig. 12-7.)

That is, multiple interrupt exceeding 4 levels cannot be used.

However, when the bank register and Index Enable flag are fixed in the main routine for which interrupt is

permitted, and when the priority is clearly defined, multiple interrupt of more than four levels is enabled by using
a subroutine return instruction, “RET" instruction.

In multiple interrupt exceeding 4 levels, caution is necessary because the device and Emulator operate differently
as shown in Figs. 12-8 and 12-9.

That is, the device operation of the interrupt stack is of a “one-off type’’ and the Emulator (IE-17K) operation is
of “rotation type”.
Consequently, the “RET” instruction must be used for the last return instruction when multiple interrupt

exceeding 4 levels is used. The “RETI" instruction and “RET’ instruction perform identical processing other than
stack for turn processing.

198

NEC «PD17005

Fig. 12-7 Interrupt stack operation at multiple interrupt -

‘ (a) Level 3 multiple interrupt
Inter- {Undefined e MAIN e A r- B
rupt | Undefined : Undefined| ! MAIN [A
tack Undefined | Undefined : Undefined : MAIN
$Tacx [Undefined i Undefined | Undefined | Undefined
Main l ‘ !
routine : Interrupt A : InterruptB | Interrupt C
|
MAIN % g | B | & c
RETI | RETI RETI
- L L_ . L_
inter- | Undefined MAIN A B
rupt Undefined Undefined MAN A
. Undefined Undefined Undefined MAIN
stack [Undefined] Undefined Undefined | Undefined

(b) Level 5 multiple interrupt

Undefined r— MAIN re A e B re C re D
Undefined| | ‘Undefined | MAIN | A | B | C
Undefined] | S[Uncefinea] | “-[Undefinea| ! MAIN ' A ' B
Undefined : Undefined : Undefined : Undefined : MAIN : A
. | | | | |
i Main routine | Interrupt A | Interrupt B : Interrupt C | Interrupt D : Interrupt E

| | | ‘
! MAM] Mﬁ f '
m RETI ?N RETI . RETI

A A
A A

The BANK and IXE of interrupt A are returned
if control is returned to the main routine at

this point, and the operation of the main

;

>im|O|o

> > > >

P P> >
> PiP| >

routine is not performed normally.

199

NEC | «PD17005

Fig. 12-8 Example of using multiple interrupt of level 3 or more

Undefined c D

C
Undefined Undefined B
Undefined A

Main routine Interrupt A Interrupt B Interrupt C Interrupt D Interrupt E

| |
| !
I |
! |
| I
! |
I |

- MAIN
Undefined : é Undefined
|
|
|
|
|
|

re A re B r e C r
: MAIN A B Il
| Undefined MAIN A |
Undefined 1 Undefined Undefined MAIN |
| ’ |
| |
| |
! |

waN] C s 1 '/ ¢c 1 /[o]
l'__I__1
[BANKG
CLR1 IxE!

[Al

RET'I ‘RET1 : RET1 { RET1 : RET1
A A S A b B ™ I - D
A A A A B C
A A A A A B
A A A A A A

If the priority of A is set lower than B, C, and D and if the bank register and Index Enable flag of the main
routine which allows interrupt A are fixed (in this example BANKO, IXE=0), multiple interrupt of 5 levels is enabled
by using the “RET" instruction after specifying the bank register and Index Enable flag of the main routine at ter-
mination of interrupt processing of A,

When the bank register and Index Enable flag of interrupt A are the same as those of the main routine, the
RETI" instruction can be used. However, debugging cannot be performed by the “RETI" instruction because the
operation in the Emulator of 17K series is different as shown in Fig. 12-9,

Fig. 12-9 Interrupt stack operation when 17K series Emulator (IE-17K) is used

Undefined == MAIN . MAIN : MAIN MAIN r D
Undefined : Undefined - A A A | A
Undefined| | [Undefined| | [Undefined| .~{ 8 B : B
Undefined] | {Undefined ; Undefined| | [Undefined] [¢ | C
l | l | |
"Main routine : Interrupt A { Interrupt B : Interrupt C : Interrupt D : Interrupt E

LMAWQ/FMMW]

’_NHAETN RET! RETI RETI RET!
|

|
|

| Sp—

|
|
I
L

o|mi>»|o
0Ol >0

|
I
I
|
!
L

O|m|>»|o

Ol®|>|0

>IP|> (>
[eldpdlw)

If the “RETI" instruction is used by the Emulator {1E-17K), the contents of the bank register (BANK) and Index
Enable flag (IXE) of interrupt D are returned.

200

NEC xPD17005

12.9.3 Limit of Interrupt Levels by an Address Stack Register

An address returned from interrupt processing is saved in the address stack register automatically. Seven levels
of address stack registers, ASRO to ASR6, can be used as described in 5, “’Stack”. Since five interrupt factors, INTq
pin, INTy pin, timer, serial interface, and frequency counter, are available, there is no limit for multiple interrupt
levels when an address stack register is used.

However, since an address stack register is also used for backing-up a return address at subroutine call, the levels
of the multiple interrupt are limited to the number of levels of the address stack registers.

For instance, when 4 levels are used in a subroutine call as shown in Fig. 12-10, only up to 3 levels can be used

" for multiple interrupt. ’)

How_ever, when the numbers of levels of the subroutine call and multiple interrupt exceeds 7, the program can be
written using stack manipulation instructions, “PUSH’’ and “POP"". ' ‘

The example shows how address stack registers are backed up using the “PUSH"" and ““POP*’ instructions.

See also Section 5.7, ““Stack Nesting Levels and PUSH Instruction and POP Instruction”’.

The following points must be noted when the content of an address stack register is backed up and returned using
the “PUSH’ instruction and ""POP” instruction.

An address stack register must be backed up when the number of nesting levels exceeds 7.
Normally, backup processing is performed during interrupt processing at low priority.

201

NEC #PD17005

Fig. 12-10 Operation of address stack registers (ASR)

Level O Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
Address stack '
register
ASRO |Undefined Undefined| Undefined Undefined Undefined Undefined Undefined '? BBRB BBB
ASR1 |Undefined Undefined Undefined| Undefined Undefined Undefined| '; SUB4 | .| suB4 SUB 4 i
ASR2 [Undefined] [Undefined] [Undefined] |Undefined| [Undefined TLAAA L[AAA 1T AAA AAA |
ASR3 |undefined Undefined Undefined Undefined '? SUB 3 | SUB3} 1] SUB3. : SUB 3 SUB 3 ‘
ASR4 [Undefined Undefined Undefined '? SUB2 + | SuB2 | suB2 | | SUB 2 | SUB 2 SUB 2
Stack T"ASRG |undefined| [undefined) <7 [SUB1 | [[SUB1 | | [SUB1 | | [Tsus1] ' [suB1], [Sus1 SUB 1
pointer '"ASR6 |Undefined| = [T MAIN | LMAIN | | [MAIN : MAIN | | [MAIN : MAIN | | [MAIN MAIN
SP= ASR7 | xxx x rxxxx|XXXX:xxxx|xxxx|xxxx|xxxX|xXxx-?xxx.x
| (IS
l : ! | ! | I ‘
Main routine | Subroutine | Subroutine ll Subroutine | Interrupt : Subroutine | Interrupt : Interrupt l Interrupt
: 1 :2 |3 : A |4 : B | C | D
I | ! } I) |

MAIN:

- r= [ra r= r
t \\SUB 2:1 \._SUB3: | \\AAA: I \\SUB 4: | \\ BBB: | N_ccc: |
U BN N R N B N N N
| | \ | \ | \ |
Jd Jd J

~—J ~—J N ~ ~ = -

Since the content of the address stack register (ASR7) is always
“undefined”” when the stack pointer (SP) is 7, the address
returned by the “RETI" instruction becomes undefined.

BBB
SUB 4
AAA.
SUB 3
SUB 2
SUB 1

MAIN
X X X X

202

NEC

Example:

Saving address stack registers using the PUSH and POP instructions
The operation flow chart is shown below.

«PD17005

The program of subroutine 4 {stack level 5) shown in Fig. 12-10 is executed, interrupt factors B, C, and D are
permitted, and the priority sequence is D >C > B.
Normally, if multiple interrupts are accepted in the sequence of 8 > C — D as shown in Fig. 12-10, overflow

occurs in the address stack register when interrupt D is accepted.

Consequently, the contents of the address stack registers are backed up in processing of interrupt B as shown

below.

The stack level is b
Subroutine 4

T
[Specify bank |
1

Back up window
register and
address register

®

Back up address
stack register

|
I Prohibit interrupts
AsndB

—

I
El

]

[interruptB J| ~ POKE

—

rPermit interrupt B l
I

@ Return address PUSH @ AR

stack register PEEK WR. M5

I ,
Return address (22;5 Q’;f KAV4R
register and POKE ARé e
window register PEEK WR . M3
l POKE AR1, WR
L El J1 PEEK wR, M2
POKE ARO, WR
L RETI POKR R0, wi

L ,

Stack
pointer
0
SP—1
2

Address stack
register (ASR)

Interrupt B return address

Subroutine level 5

Address register

Interrupt B return address

Subroutine level 5

Interrupt C return address

Subroutine level 5

Tnterrupt D return address

Interrupt C return address

Subroutine level 5

Interrupt D return address

Interrupt C return address

Subroutine level 5

Interrupt D return address

— | Interrupt B return address |

Address register

Interrupt A return address

—— [TInterrupt B return address |

Subroutine level b

In this example, since the return address of interrupt B is backed up in the address register using the “POP*
instruction of @ , there are two remaining interrupt levels.
That is, the level of the address stack register for interrupt C and interrupt D are allocated.

Since the return address of interrupt B sent from the address register is returned to the address stack register by
the “PUSH’ instruction of @ , the “RETI" instruction from interrupt B is validated.

203

NEC - | ~ 4PD17005

12.9.4 Backing Up System Registers and Control Registers

When multiple interrupt is used, the contents of the system register and control register which change during
interrupt processing must be backed up in advance. ‘

The backup area for the contents must be the location for each interrupt factor.

In addition, interrupts with priority equal to or lower than that of the interrupt currently accepted must be
prohibited and interrupts with higher priority must be permitted.

Since interrupt with higher priority indicates higher urgency, interrupts with the highest priority must be per-
mitted.

Consequently, the backing up of contents of system registers and control registers should be performed follow-
ing the ““processing which permits an interrupt of higher priority”.

The example below shows processing of *‘permission of interrupt with higher priority’” and ‘’saving contents of
system registers and control registers’ in an interrupt processing routine.

Example:

Permission of interrupt and backup processing in multiple interrupt

The INTq pin, INT4 pin, and timer interrupt are used in the following priority {software priority).
INT4 pin > timer > INTq pin

Timer interrupt is accepted at level 1. The program example and flow chart are shown below.

Flow chart Program example
" Main routine II
| 3
f’ﬁ[rmisls’i\% of g MOV WR. #0111B ; Interrupt byttimer, INTq pin, and INT pin are
, an .) - .
time1r inter?upt ' POKE INTPM 1. WR ; permitted by the interrupt permission 1 register

El " Timer interrupt " The contents of the bank register (BANK}, Index Enable flag

I 4 (IXE), and program counter {PC) are backed up automatically.
O gpecity bank BANK: 1 ; Specify BANK1 as the bank of the memory
: (Built-in macro) ; used for backing up data.
@ Save window POKE M 1. WR ; The window register is saved.
register (WR)
]
® Save interrupt PEEK WR. INTPM 1 ;. The interrupt permission 1 register is
permissn?n flag POKE M2. WR ; saved in M2 of the data memory.
@[Permit interrupt MOV WR. #0010B ; Interrupt of INT pin is permitted by
of high FI’”O”W POKE INTPM 1. WR ; theinterrupt permission 1 register.
e |
®[Backup system PEEK WR. RPH ; System control registers and control registers
register POKE M 3. WR ; other than the window register {WR) and interrupt
. : ; permission 1 register are backed up,
Interrupt
processing
] :
®[Return system PEEK WR, M3 . System registers and control registers other
registers, etc. POKE INTPM 1, WR ; than the window register (WR) and interrupt
T ;
DI -, permission 1 register are returned.
1 .
Return interrupt PEEK WR, M2 . Interrupt permission 1 register is returned.
permission flag POKE INTPM 1, WR ;
r N .
Return window PEEK WR, M1 ; Window register is returned.
register (WR)

204

NEC

©PD17005

In @ , specify the contents of the bank of the data memory used for backing up system registers, etc.

Since BANKO is determined as. the bank if interrupt is accepted, this instruction is not required if the memory
used for backing up data is BANKO.

In (@, back up the content of the window register in M1 of the data memory.

Since the “POKE" instruction is used in this case, the address of data memory M1 must be 40H or higher. Since
the window register is used as a work area for backing up subsequent data, it must be backed up first.

In @ , save the interrupt permission flags (IPQ, IP1, IPTM flags} used when interrupt is accepted.

For this backup, for instance, when control is returned to the main routine in this case, all the interrupts by the
INTg pin, INT¢ pin, and timer must be permitted. In this case, the interrupt by the INTg pin must be prohibited
and control must be returned when a timer interrupt is accepted during INTg pin interrupt processing because
the priority of timer interrupt is higher than that of INTq pin interrupt.

In @ permit interrupt of the INTy pin with higher priority than that of the timer interrupt and subsequently,
permit all the interrupts using the “E1" instruction.

In M, @, ®,and @, save and return system registers and control registers. In this case, an interrupt by the
INT; pin with the highest priority can be permitted.

System registers and control registers are backed up and returned by @ and (). In this case, interrupts with
higher priority can be permitted.

By performing the same backup processing when an interrupt of the INT¢ pin with higher priority is accepted,
the contents of the system registers and control registers can be maintained unchanged when control is returned '
from the INT4 pin interrupt processing.

In @ and return the interrupt permission flag and window register.

In this case, all the interrupts must have been permitted.

If the instruction in @ which permits an’interrupt is executed in the *‘El"’ state and if a timer interrupt request
has been issued, the window register is saved in @ without returning the window register in and as a result,
the content of the window register cannot be returned.

205

NEC «PD17005

12.10 NOTES ON USING INTERRUPT .

An error occurs in assembler AS17K when a POKE command is used for the interrupt request flag. Therefore, an
error also accurs when assembler built-in macrocommands SETn, CLRn, NOTn, and INITFLG are used to prevent
that other interrupt request are canceled when a POKE command is used for the interrupt request flag.

An example is described below. (In this case, assume that no assemble error occurs when a POKE command is
used.)

Example 1:
Polling is performed for the INT4 pin and serial interface 1 using the timer interrupt.
SET1 IPTM
El
MAIN:
SKF1 RO
BR NEXT
INT1:
| Processing of INT; pin |
CLR1 IRQ1
NEXT:
SKF1 IRQSIO1
BR MAIN
SIO1:

| Processing of SIO1 |
CLR1 IRQSI01
BR MAIN

Instructions of the above program @ are expanded as follows. »
PEEK WR, .MF.IRQ1 SHR 4
;@
AND WR, #DF. (NOT IRQ1) AND OFH
;@

POKE .MF.IRQ1 SHR 4, WR

If a timer interrupt occurs during execution of instruction in ® and an interrupt request of serial interface 1 is
issued (IRQSIO1 is set) during timer interrupt processing as shown below, the instruction of (3) is executed when
control is returned from the timer interrupt and as a result the IRQSIO1 flag is reset.

In particular, an interrupt request of serial interface 1 sets serial communication to a wait state once it is issued
and the interrupt request is not issued any more.

PPEK : / Timer interrupt processing

AND ;
@ IRQSIO1 is set during this process

POKE

RETI
206

NEC

uPD17005

The POKE command for each interrupt request flag is thus inhibited using an assembler.
To poll the interrupt request flag assuming that other interrupt requests are canceled, follow example 2 below.

Example 2:
Setting one interrupt request flag

SETIRQ1 MAC IRQFLG
PEEK WR,.MF.IRQFLG SHR 4
OR WR,#DF.IRQFLG AND OFH
DW (00111B SHL 11) OR (.DF.(IRQFLG AND OFO0CH)) OR
(00108 SHL 4) OR (.DF.(IRQFLG SHR 4) AND OFH
; Defines the POKE command using a DW command.
ENDM

The macrocommands described above are added to a device file (AS17005) as an “IRQ, MAC" file. The macro-
commands that are supplied using the “IRQ, MAC" file are as follows:

.SETIRQn (Corresponds to internal macrocommand SETn.)
.CLRIRQn (Corresponds to internal macrocommand CLRn.)
.NOTIRQn(Corresponds to internal macrocommand NOTn.)
.INITIRQ (Corresponds to internal macrocommand INITFLG.)

The above macrocommands can be directly used when the “IRQ, MAC" file is included in a source module.
For how‘to use the “IRQ, MAC" file, see the device file (AS17005) user manual.

207

NEC : uwPD17005

13. TIMER FUNCTION
The timer function is used for time management during the program creation.

13.1 CONFIGURATION
Fig. 13-1 shows the timer configuration.

The timer consists of a timer carry flip-flop (timer carry FF) block and timer interfupt block as shown in Fig.
13-1.

The clock generator circuit that sets the timer carry flip-flop and timer interrupt times consists of a 4.5 MHz

frequency divider, selector A, selector B, and timer mode select register (TMMD, address 09H) in the control
register.

13.1.1 Timer Cérry Flip-Flop Block Configuration
The timer carry flip-flop block consists of a selector A, timer carry flip-flop, and timer carry flip-flop judge
register (TMCYJDG, address 17H) in the control register as shown in Fig. 13-1.

13.1.2 Timer Interrupt Block Configuration

The timer interrupt block consists of a selector B, interrupt control block, and interrupt permission 2 register

(INTPM 2, address 2FH) and interrupt request 2 register (INTREQ 2, address 3FH) in the control register as shown
in Fig. 13-1.

208

NEC «PD17005

Fig. 13-1 Timer configuration

Control register

Timer mode Interrupt Interrupt Time carry
Name permission 2 | request 2 FF judge
select (TMMD)| "1NTPM2) | (INTREQ 2) | (TMCYJDG)
Address 09 H 2 FH 3 FH 17 H
Bit __[b3[b2]b1[bg[b3[b2[b1]bg [b3[bp [b1[bo |b3 [b2]b1 [bg
: P R P
TETiT:T| bt [rivinin ‘T
Fag [MIMIMIM|P Pl iplqininiRlg oo w
mbor [MIMIMiMIsiTiilo|siataial 0T ic
DiDiDiD|limi | |¢iTitio by
sizititfoi i | |oimi | !
BENEEEEE
i — -
YT T T T Ty T e— i
! Selector Interrupt : Int " N
B 4 control block | r\errup reques
| (I signal
= e - -IL— - Timer interrupt block — — — — — -
re-
4.5MHz «| quency |, '
. divider |7 _:
aHz" : RN .
10Hz | | I I |
200 Hz I'-) Selector | 4 Timer carry FF |
1 kHz | A I, |
| . [|
E——————— ——+—— Timer carry FF block — — — —
L.[_J

Periods of 2560 ms {4 Hz}, 100 ms {10 Hz},
5 ms (200 Hz), or 1 ms {1 kHz) can be selected.

13.2 FUNCTIONS)

The timer has timer carry flip-flop detection and timer interrupt functions.

The time is managed during the timer carry flip-flop detection 4when the status of the timer carry flip-flop that
is set periodically is detected using a program. The time is managed during timer interrupt when an interrupt is made
periodically.

The timing at which the timer carry flip-flop is set (1) and the timer interrupt is issued is controlled using a timer
time setting pulse from selectors A and B. A timer-time setting pulse of 4 Hz (250 ms), 10 Hz (100 ms), 200 Hz
(5 ms), and 1 kHz (1 ms) can be selected when data is sent to the timer mode select register (TMMD, address 09H).
The timer time setting pulse can also be selected independently using a timer carry flip-flop and timer interrupt.

The configuration and functions of the timer mode select register are described in Section 13.2.1. Fig. 13-2 shows
the timer time setting pulse waveforms. The timer time set pulse is generated by dividing a device operating fre-
quency of 4.5 MHz, so it is also shifted proportionally when the 4.5 MHz frequency is shifted.

13.2.1 Timer Mode Select Register Configuration and Functions
The timer mode select register sets the time of an internal timer (timer carry flip-flop and timer interrupt). The

timer carry flip-flop and timer interrupt time intervals can be set independently. The configuration and functions are

shown below.

209

NEC | «PD17005

Flag symbol
Name Address |Read/Write
. b3z | bz | bq| bg
TITITIT
Timer mode select M E M : M g M
S T
D E D ' D : D
3i2i1io0
LJ
Sets the timer carry flip-flop time interval.
i 0 § 0 100 ms
0i1]| 250ms
§ 1 g 0 5ms
i 1 g 1 1 ms
Sets the timer interrupt time interval.
0 i 0 i 100 ms
01! 250 ms
1io] 5 ms
1 i 1 i Tms
Power on 050?0?0
% Clack stop 0;03020
* CE Fi:.orl\';rllé.r sta{e

Fig. 13-2 Timer time set pulse waveforms

- Uyt

0.33 ms 0.67 ms

1 ms
200 Hz—u_l_ﬂ_l-l_ - |
2ms ! 3ms
o ms
10 l-:l
L'_—50 ms—‘l‘—SO ms————»
100 ms
4 Hz I
100 ms + 150 ms.
250 ms
210

NEC #«PD17005

13.3 TIMER CARRY FLIP-FLOP

The timer carry flip-flop is set at the leading edge of a timer carry flip-flop setting pulse that is set (1) using the
low-order two bits (TMMD1 and TMMDO flags) of a timer mode select register (TMMD, address 09H).

The timer carry flip-flop information corresponds to the least significant bit (TMCY flag) of a timer carry flip-
flop judge register {TMCYJDG, address 17H) at a ratio of 1 to 1. When the timer carry flip-flop is set (1), the TMCY
flag is set (1) at the same time. ‘

The TMCY flag is reset (0) when information is read in the window register using a PEEK command (Read &
Reset). When the TMCY flag is reset (0), the timer carry flip-flop is also reset (0). A timer of the time set using the
timer mode select register can be created by reading the TMCY flag using a program. Pay attention to the following
when using the timer carry flip-flop:

The timer carry flip-flop is in set inhibit mode when the supply voltage is turned on (during Vpp reset) and
cannot be set until the TMCY flag information is read using a PEEK command.

A logical “0"” is always read when the TMCY flag is read after power on reset. After that, data is set (1) cor-
responding to the time set using the timer mode select register.

The timer carry flip-flop also controls the timing of the reset {CE reset) employing a CE pin. When the CE pin is
changed from low to high, the CE pulse is reset in synchronization with the timing when the timer carry flip-flop
is set. Therefore, a power failure can be detected when the TMCY flag information is read during system reset
{power on reset and CE reset). For more information, see Section 13.4, “’Cautions when Using Timer Carry Flip-
Flop” and Section 15, “Reset”.

The TMCY flag is a read oniy flag, so it is not influenced during the POKE command write operation. However,
an error occurs when an assembler (AS17K) of the 17K series is used. For more details, see Section 10.4, “’Cautions

when Using Register File”.

211

NEC ~ uPD17005

13.3.1 Timer Carry Flip-Flop Judge Register Configuration and Functions

The timer carry flip-flop judge register detects the timer carry flip-flop status of an internal timer. The configura-
tion and functions are shown below:

- Flag symbol
Name Address |Read/Write
b3 | bz b1 | bg
. booroT
Timer carry ! ! :
flip-flop . H M
judge register 0'0'o0" c 17H R & Reset
(TMCYJDG) Coo
H : 'Y
' ' :
Detects the timer carry flip-flop status.
v 0 | The timer carry flip-flop is not set.
| The timer carry flip-flop is set.
Fixed at “0"".
Power on 0,0,0:0
8 | Clock stop N I
o« . T T
CE) ' V1

The TMCY flag is set corresponding to the time set using a timer mode select register (TMMODE). This flag is
detected through the window register using a PEEK command. The value when the TMCY flag is set at that time
is transferred to the window register. The TMCY flag is then reset (Read & Reset).

The TMCY flag is set to “0” during the power on reset and is set to 1" during the CE reset and the CE reset
after clock stop command execution. This flag can thus be used as a power failure detection flag.

The TMCY flag is not reset until the PEEK command is executed after Vpp voltage is turned on. When the PEEK
command is executed, the flag is set corresponding to the time set using the timer mode select register.

212

NEC

«PD17005

13.3.2 Timer Using TMCY Flag

A program example is shown below.

Example: INITFLG NOT TMMD3, NOT TMMD2, NOT TMMD1, TMMDO

’

’

LOOP:
SKT1 TMCY ;
BR NEXT
ADD M1, #01008 ;
SKT1 CY ;
BR NEXT ;
;
NEXT:
:
BE LOOP

Built-in macroinstruction

The timer carry flip-flop set time is set to 250 ms.

Built-in macroinstruction
The TMCY flag is tested. The flag branches into NEXT when it is “‘0”".

Numerical value 4 is added to data memory M1.

Built-in macroinstruction

The CY flag is tested.

The CY flag branches into NEXT when it is “'0"’.

The CY flag branches into process A it is “1"".

The CY flag branches into LOOP after process B is executed.

Process A in the above program is executed every second. Pay attention to the following during the program crea-

tion:

(1) The TMCY flag detection time must be shorter than the time for which the timer carry flip-flop is set (1)
because the timer carry flip-flop setting status is lost when the time of process B exceeds 250 ms as shown

in Fig. 13-3.

Fig. 13-3 TMCY flag detection and timer carry flip-flop

Timer carry H
flip-flop setting L

4

pulise

1
TMCY flag

@ Q]

-

@\

0

is lost.

SKT 1 SKT 1

TMCY TMCY

9|

SKT 1
TMCY

Process Procas4.|

B B’
The timer of process B’ is long after the TMCY flag that is set at edge
(2) is detected, so the status of the TMCY flag that is set at edge (3}

NEC «PD17005

13.3.3 Timer Error Using TMCY Flag
Two errors can occur when using a TMCY flag, a TMCY flag detection time error and an error when the timer
carry flip-flop setting time is altered.

The two errors are described below.

(1) TMCY flag detection time error

The TMCY flag detection time must be shorter than the time for which the timer carry flip-flop is set (1) as
described in Section 13.3.1.

Assume that the interval of the time at which the TMCY flag is detected is tcyeck and that the interval (260 ms,
100 ms, 5 ms, or 1 ms) of the time at which the timer carry flip-flop is set is tggT. The relation shown below is
required.

tcHECK <tSET
The timer error when the TMCY flag is detected as shown in Fig. 13-4 is as follows:

0 <error < tcHeCK

Fig. 13-4 TMCY flag detection time error !

Timer carry H
fIi;|>—rop setting) d h
pulse tSET) N 9
1
TMCY flag [
0 -—
ICHECK 1 JICHECK 2] tCHECK 3
SKT 1 SKT1 SKT 1 SKT 1
TMCY TMCY TMCY TMCY
0] @ ®@ ®

The TMCY flag is set to ““1”" when it is detected at edge () as shown in Fig. 13-4. The timer is thus updated.
The TMCY flag is set to 0" when it is detected at edge () .

Therefore, the timer is not updated until the flag is detected again at edge @ . The time set in the timer is thus
extended by tcHecks.-

(2) Error when timer carry flip-flop setting time is altered
The timer carry flip-flop setting time is set using the TMMD1 and TMMDO flags of a timer mode select register.
Four timer time setting pulses (1 kHz, 200 Hz, 10 Hz, and 4 Hz) can be selected as shown in Figs. 13-1 and 13-2.

The four pulses are activated independently. When the timer time setting pulses are selected using the TMMD1 and
TMMDO flags, errors occur as shown below.

NEC #PD17005

Example:
; @
INITFLG NOT TMMD3, NOT TMMD2, TMMD1, NOT TMMDO
; Built-in macroinstruction
; The timer carry flip-flop setting pulse is set to 200 Hz (5 ms).

;@

SET1T TMMDO ; Built-in macroinstruction

; The timer carry flip-flop setting pulse is set to 1 kHz (1 ms).
; ®
CLR1 TMMDO ; Built-in macroinstruction
; The timer carry flip-flop setting pulse is set to 200 Hz {5 ms).

The timer carry flip-flop setting pulse at that time is selected as shown below.

200 Hz H —“I
internal pulse L

mewe L L LWL
poen M U U U UU

ti L
setting pulse @ @SET 1 TMMD 0 QCLR1 TMMD 0
1
TMCY flag -_I : I-l
o | | |
_ | f U |
SKT 1 TMCY '

The TMCY flag holds the former status (see @ in the figure) when a selected pulse falls by selecting the timer
carry flip-flop setting time as shown in the figure above. The TMCY flag is set (1) when a selected pulse rises (see

@ in the figure).

The 4 Hz (250 ms) and 10 Hz (100 ms) pulses are selected as in the 200 Hz {6 ms) and 1 kHz (1 ms) pulses shown
in the example above. The error which occurs when the timer carry flip-flop setting time is selected before the first’

TMCY flag is set as shown in Fig. 13-5 is as follows:

—tSET <error< tCHECK

where,
tSET . Selected timer carry flip-flop setting time
tcHECk @ TMCY flag detection time

The 4 Hz, 10 Hz, 200 Hz, and 1 kHz internal pulses have the corresponding phase difference. This phase dif-

ference is less than the selected pulse time, so it is contained in the error above. »
For more information on the pulse phase difference, see Section 13.6, #Cautions during Timer Interrupt”.

215

NEC #PD17005

Fig. 13-5 Errors when timer carry flip-flop setting time is altered from A to B

@ —tsET error @tcHeCk error
Internal H=
pulse A L
Internal H= I I l— | [I L I J
pulse B | —

tSET : ISET

Timer carry H :1)__ L’“ :

sfgg:\]g Fz)ulse L 2 ‘ ———)

TMCY flag ! Jl _] B _l
0

k tCHECK
SKT 1 =~Q = |-
TMCY
Original timer time AN Actual timer time
% ‘Actual timer time AN Qriginal timer time
Time selection Time selection
The TMCY flag is set to 1" when it is The TMCY flag is reset when the timer
detected after the timer time is selected. time is selected after it is detected.
A —tggT error thus occurs. A tCHECK error thus occurs.

134 CAUTIONS WHEN USING TIMER CARRY FLIP-FLOP

The timer carry flip-flop is used for a reset sync signal during reset employing a CE pin (CE reset) as well as a
timer function. The CE pulse is reset when the next timer carry flip-flop setting pulse rises after the CE pin is
changed from low to high. Pay attention to the following:

(1) The sum of the timer updating time and TMCY flag detection time interval must be less than the timer carry
flip-flop setting time.
(2) A timer must be corrected for every CE reset when a program for which the timer operates at all times is

created after supply voltage is turned on (power on reset) irrespective of CE resetting.

{3) The TMCY flag detection has priority over a reset sync signa!l during the CE reset. If they fall on the same
time, the CE reset is delayed one operation.

For more details of Steps (1), {2), and (3), see Section 13.4.1 through 13.4.3.

216

NEC uPD17005

13.4.1 Timer Updating Time and TMCY Flag Detection Time Interval
As described in 13.3.1, the TMCY flag detection time interval tggT must be less than the time set in the timer
. carry flip-flop. The timer may not operate normally during the CE reset when the timer updating time is long even
if the TMCY flag detection time interval is shorter.
Therefore, the conditions below must be satisfied.

tcHECK * tTIMER < tSET

where,
tcHeek © TMCY flag detection time interval
tTiMer : Timer updating time
tSET ¢ Timer carry flip-flop setting time

An example is shown below.

Example:
Timer updating and TMCY flag detection time interval
| . START: ; Program address 0000H

INITELG NOT TMMD3, NOT TMMD2, NOT TMMD1, NOT TMMDO
; Built-in macroinstruction
The timer carry flip-flop setting time is set to 100 ms.

’

TIMER:
O
SKT1 TMCY ; Built-in macroinstruction
;. The TMCY flag is tested.
. BR AAA ; The TMCY flag branches into AAA when it is ‘0",
[Timer updatin91
BR TIMER
AAA:
BR TIMER

The timing chart for the above program is shown below.

H :
CE pin I . I
Timer carry H
flip-flop L —

setting pulse

1 -
| TMCY flag .
0 TMCY detection Timer updating
interval .
t tTIMER
I CHECK T‘——— When this processing time is
) long, a CE pulse is reset
SKT 1 SKT 1 ong : P
T™MCY TMCY during the process.

CE reset

217

NEC | «PD17005

13.4.2 Timer Carry Flip-Flop Correction During CE Reset
- A timer correction example during the CE reset is described below.

Assume that the timer carry flip-flop is used for power failure detection and a clock timer when the timer correc-
tion is required during the CE reset.

The timer carry flip-flop is reset (0} when the supply voltage is turned on {power on reset) and is in set inhibit
mode until the TMCY flag is read using a PEEK command.

When the CE pin is changed from low to high, the CE pulse is reset in synrhonization with the leading edge of a
timer carry flip-flop setting pulse. The TMCY flag is then set (1), starting.

When the TMCY flag status is detected during the system reset {power on reset and CE reset), a power on reset
occurred if the TMCY flag is ““0”. A CE reset occurred if it is ‘1" (Power failure detection).

The clock timer operation at that time must be continued during the CE reset. However, the TMCY flag is reset
(0) when it is read to detect the power failure. The status in which the TMCY flag is set is thus skipped. Consequent-
ly, the clock timer must be updated when the TMCY flag status is determined to be a CE reset owing to power
failure detection. The timer updating example is shown below.

For more information on the power failure detection, see Section 15.6, “Power Failure Detection".

Example: Timer correction during CE reset

When the timer carry flip-flop detects power failure and updates a timer

START: . Address 0000H
; @
SKT1 TMCY . Built-in macroinstruction
; The TMCY flag is tested.
BR INITIAL ; The TMCY flag branches into INITIAL when it is ‘0" (power failure
; detection). ’
BACKUP:
;@
100 ms timer . The timer is corrected owing to backup
updating ; (CE reset).

LOOP:
HE)
; Process B is executed.

SKF1 TMCY ; The TMCY flag is tested, and the timer is updated.
BR BACKUP
BR LOOP

INITIAL:

INITFLG NOT TMMD3, NOT TMMD2, NOT TMMD1, NOT TMMDO
; Built-in macroinstruction

; The timer carry flip-flop setting time is set to 100 ms to execute process C
;. owing to power failure (power on reset).

BR LOOP

The timing chart for the above program is shown in Fig. 13-6.

NEC #PD17005

Fig. 13-6 Timing chart

5V =
VoD oV I .

CE

H
L
Toe el eIt eI r
H
L

Timer carry -—
flip-flop L I uJ7LJ —J L
setting pulse
=
TMCY fla
s 0 i :
Program C B B B B |B B B| {B|8]| B A BiB| B
processing 1
Program @ @ @ 0 @ @6 @O | @0 O @0
Instruction [} } } } |
Timer Timer count up Timer Timer count up Timer
Supp|y vo]tage on 0 address start count up '| countup 0 address count up
' during power start during
on reset CE reset
. ’ . A TMCY flag is
TMCY flag detection detected and set
(1), so the timer
. is updated.
|
|Paint A} [point8] [Point CJ[Point D] [Point]

When supply voltage Vpp is first applied, a program is started‘from address 0000H during 10 Hz internal pulse
rise as shown,in Fig. 1_3-6. The TMCY flag is reset (0) during the power on sequence when it is detected at point A.
The TMCY flag status at that time is determined to be power failure (power on reset). Therefore, process C is
execuited, and the timer carry flip-flop setting pulse is set to 100 ms. '

The TMCY flag information is read once at point A, so the TMCY flag is set (1) every 100 ms after that.

The program counts up the timer while executing process B, unless a clock stop command is executed, even if
the CE pin goes low at point B and goes high at point C. When the CE pin rises from low to high at point C, the CE
pulse is reset at the leading edge (point D) of the next timer carry flip-flop setting pulse and the program is started
from address 0000H. When the TMCY flag is detected at point E, the TMCY flag status is determined to be a backup
{CE reset) because the TMCY flag is set {1).

If the timer is not incremented 100 ms at point E, it is delayed 100 ms every time a CE pulse is reset. The TMCY
flag setting is skipped twice if process A execution exceeds 100 ms when power failure is detected at point E.
Process A must thus be executed in less than 100 ms.

Timer carry flip-flop setting pulses of 2560 ms, b ms, and 1 ms are also selected in the same manner-as the above.

The TMCY flag must be less than the timer carry flip-flop setting time owing to the power failure detection after
the program is started from address 0000H.

219

NEC «PD17005

13.4.3 When TMCY Flag Detection and CE Reset Overlap

As described in Section 13.4.2, a CE pulse is reset simultaneously when the TMCY flag is set (1). If the TMCY
flag read instruction and CE reset overlap, the TMCY flag read instruction has priority.

If the next TMCY flag setting (timer carry flip-flop setting pulse rising) overlaps with the TMCY flag read instruc-

tion when the CE pin is changed from low to high, the CE pulse is reset at the timing at which the next TMCY flag |
but one is set. \

This operation is shown in Fig. 13-7.

Fig. 13-7 CE reset and TMCY flag read overlap

CE pin t’_ l |

Timer carry H [
flip-flop NI s L 1" L4 19
setting pulse T — T :
TMCY flag 5 M] [1 T
Ly !
SKT1 SKT1 CE reset
TMCY TMC'Y
_______________ J b e e e e e
r Timer carry Ho=— 1 o

: flip-flop L | I !
| setting pulse 7 — :
| TMCY flag 0 I !
|
|
|
1

~ A CE pulse is delayed and reset when

. Y

Instruction (Spl,(ETgKT (): (SKT...)
| P
| t t Built-in macroinstruction
] | | PEEK WR,. MF. TMCY SHR 4
] 444 s | | SKT WR, #. DF. TMCY AND Q00FH
- 1
' t - 'ithe TMCY flag is read during this period.

A program is started from address 0000H at this point,
but the program start overlaps with the TMCY flag read
program. The CE pulse is thus not reset.

220

NEC #PD17005

The CE pulse may never be reset when the system is programed so that the TMCY flag is detected periodically

and the TMCY flag detection time interval coincides with the TMCY flag setting time. Therefore, note to the follow-
ing. .
One instruction cycle is 4.44 us (1/2256 kHz). For example, the program for which a TMCY fiag is detected every
225 instructions reads the TMCY flag every 1 ms {4.44 us x 225). The CE pulse is never reset when the TMCY flag
is set and detected at the same time even if a timer time setting pulse of 1 ms, 5 ms, 100 ms, or 250 ms is selected. .

Do not write periodic programs that satisfy the conditions below.

iSET x 225
X
where,
tgeT : TMCY flag setting time
X : Periodic X-step of TMCY flag read instruction

= n {n: Natural number)

In this case, do not write an X-step program in which natural number n exists.

A program example that satisfies the conditions is shown below. Never create such a program.

Example:

Process A :

INITFLG NOT TMMD3, NOT TMMDZ2, TMMD1, TMMDO
Built-in macroinstruction
The timer carry flip-flop setting pulse is set to 1 ms.

LOOP:
;@
SKT1 TMCY ; Built-in macroinstruction
BR BBB

BR LOOP

221 Steps

B8R LOOP

AAA:

BBB:

In this example, TMCY flag read instruction @ is repeated every 225 instructions. Therefore, the CE pulse
cannot be reset when a TMCY flag is set at the timing of instruction @ .

221

NEC | xPD17005

135 TIMER INTERRUPT

An interrupt request is issued at the trailing edge of a timer interrupt pulse that is set using the high-order two
bits (TMMD3 and TMMD2 flags) of a timer mode select register (TMMD, address 09H) during timer interrupt.

The timer interrupt request corresponds to the IRQTM flag of an interrupt request 2 register (INTREQZ2, address
3FH) at a ratio of 1 to 1. When the timer interrupt request is issued, an IRQTM flag is set (1). When the timer inter-
rupt pulse falls, the IRQTM flag is set (1).

As described in Section 12, “Interrupt”, an El command indicating all interrupt permission instructions must
be executed and the timer interrupt permission must be set and the interrupt request issued during the timer
interrupt.

The timer interrupt is permitted by setting (1) the IPTM flag of an interrupt permission 2 register (INTPM2,
address 2FH). Consequently, the El command is executed during the timer interrupt. The timer interrupt is accepted
if the IRQTM flag is set (1) when the IPTM flag is set (1}). When the timer interrupt is accepted, the program flow
changes to program memory address 0003H. The IRQTM flag is reset (0) when the timer interrupt is accepted.

Fig. 13-8 shows the relation between the timer interrupt pulse and IRQTM flag.

Fig. 13-8 Relation between timer interrupt pulse and IRQTM flag

K-y NN e W e U ey S ey S

pulse | —

IRQTM 0 — L

PTM 1=

! 0

INTE El =

FF DI

@

Timer interrupt
accepted

The IRQTM flag isset The IPTM flag is not set even The timer interrupt is accepted
when a timer interrupt if an E) command is executed. when an IPTM flag is set.

pulse falls. No interrupt is thus accepted.
Interrupt L .
holding period | Interrupt permission period

Notice that the timer interrupt can be accepted during the ET command execution and IPTM flag setting if the
IRQTM flag is set when the timer interrupt is inhibited using a DI command or IPTM flag as shown at point (1) of
Fig. 13-8.

In this case, the interrupt request can be canceled by writing 0" in the IRQTM flag. Writing ““1** in the IRQTM
flag causes the same result as if the interrupt request is issued. When the timer interrupt is accepted, a stack of one

level is used. The bank register (BANK, address 79H) and index enable flag (IXE, bit bg of address 7FH) information
are saved automatically at that time.

A dedicated RET1 command is used for the return from an interrupt procéssing routine.
For more details, see Section 5, “/Stack,” and Section 12, “Interrupt’’.
A timer interrupt example and error are described in Sections 13.5.1 and 13.5.2. For more information on the

relation between the timer interrupt and other interrupts (INTq pin, INT pin, serial interface 1, and frequency
counter), see Section 12, “Interrupt”.

222

NEC | | 4PD17005

13.5.1 Timer Using Timer Interrupt
A timer interrupt example is shown below.

Example:

BR AAA ; The program branches into AAA.
TIMER: ; The program address 0003H

ADD M1, #0001B; 1 isadded to M1.

SKT1 CY : The CY flag is tested.

BR BBB : Returned if no carry appears.
BBB:

El

RETI
AAA:

INITFLG TMMD3, NOT TMMD2, NOT TMMD1, NOT TMMDO
; Built-in macroinstruction
: The timer interrupt pulse is set to 5 ms.
MOV M1, #0000B; The M1 information is cleared to "0".

SET1 IPTM ; The timer interrupt is permitted.

El : All interrupts are permitted.
LOOP:

BR LOOP

In the above program, process A is executed every 80 ms.

Notice that the system automatically enters the DI state when an interrupt is accepted and that the IRQTM flag
is set (1) even if the system is in DI state.

When process A exceeds 5 ms, an interrupt is immediately accepted even if the system is returned using an RETI
command. At that time, process B cannot be executed. ‘

13.5.2 Timer Interrupt Error
As described in Section 13.5, the interrupt is accepted every time a timer interrupt pulse falls if the timer inter-

rupt is permitted.
Therefore, the timer interrupt error occurs in the following cases:

(1) The first interrupt is accepted while timer interrupt is permitted.
(2) The first interrupt is accepted while timer interrupt pulse time is being altered.

(3) Data is written in the IRQTM flag.

Possible operating errors are shown in Fig. 13-9.

223

NEC - 4PD17005

Fig. 13-9 Timer interrupt error {1/2)

(a) Timer interrupt is permitted.
Timer interrupt H l l
ulse -—
p L 4 tSET -
IRQTM 1= ' |
[V —
IPTM 1=
0
INTE E| =—
FF ol El El
Interrupt held El
O] ®
} } }
SET 1 IPTM Interrupt accepted Interrupt accepted

:Interrupt accepted

When the IPTM flag is set and the timer interrupt is permitted at point @ . an interrupt is accepted immediately.
A possible error at that time is —tgeT. '

An interrupt is established at the trailing edge of a timer interrupt pulse at point @ when it is permitted at point !
@ using an El command. A possible error at that time is as follows:
—tgeT <error<0 ‘

(b) Timer interrupt pulse is selected

Internal H _L l I
pulse A L =—

|
mees o L LT L LT L Ly
Timer H l
.interrupt L — L_'

J —
LML L

pulse § - [
IRQTM
IPTM !
0 =

INTE El [[
FF Di=— ._’ _‘_

g) @ Timerinterrupt El £l @ Timer interrupt El

ulse altered Ise altered
Interrupt accepted P @ Interrupt accepted pulse altere Interrupt accepted

The timer interrupt pulse does not fall even if it is altered to B at point @ , 50 the interrupt is accepted at next
point D).

The timer interrupt pulse falls when it is altered to A at point @ , 80 the interrupt is accepted immediately.

224

NEC #PD17005

Fig. 13-9 Timer interrupt error (2/2)

. fc) I1RQTM flag is activated.

Ti interrupt H.
pUEZ” erru L—ﬁ r J} f $—

IRQTM 1=
0
IPTM !
0 anma—
INTE El ‘ =
FF Dl = \—-, L—-‘
El Eil El
Interrupt accepted @ SET1IRQTM @ CLR1IRQTM Interrupt accepted
Interrupt accepted Interrupt not accepted

An interrupt is accepted immediately when the IRQTM flag is set at point @ .
. An interrupt is not accepted when the IRQTM flag reset overlaps with the fall of the timer interrupt pulse.

225

NEC | 4PD17005

13.6 CAUTIONS DURING TIMER INTERRUPT
The timer interrupt must be processed within a fixed time when a program (e.qg., timer program) for which the

timer operates at all times is created after the supply voltage is supplied (power on reset) during the timer interrupt. .
A timer interrupt example is shown below.

Example:
BR AAA ; The program branches into AAA after reset.
TIMER: ; The program address 0003H
ADD M1, #0100B; 0100B is added to the M1 information.
SKT1 CY ; The timer is processed if a carry appears.
BR EI_RETI

;@
[Timer processing
EI_RETI:
El
RETI

AAA:

INITFLG NOT TMMD3, NOT TMMD2, NOT TMMD1, NOT TMMDO
; Built-in macroinstruction
; The timer interrupt time is set to 250 ms, and the timer carry flip-flop
; setting time to 100 ms.

SET1 IPTM ; Built-in macroinstruction

; The timer interrupt is permitted.
El
BR AAA

In the example above, timer processing @ is executed every second while executing process A.
When the CE pin is changed from low to high as shown in Fig. 13-10 (a), a CE pulse is reset in synchronization
with the rising of a timer carry flip-flop setting pulse. If the timer interrupt request issue overlaps with the timer

carry flip-flop setting, the CE reset has priority. The timer ihterrupt request {IRQTM flag) is reset when the CE
pulse is reset. Therefore, one timer cycle is skipped.

To prevent the timer interrupt from being skipped, a delay is provided at the trailing edges of timer carry flip-flop
setting and timer interrupt pulses as shown in Fig. 13-10 (b). As a result, no timer interrupt is sklpped when a CE
pulse is reset by executing the timer processing within 10 ms.

Timer carry flip-flop and timer interrupt time setting pulses of 4 Hz (250 ms), 10 Hz {100 ms), 200 Hz (5 ms),
and 1 kHz (1 ms) can be set independently. This enables the time difference shown in Fig. 13-11 and Table 13-1 to

be set. The timer interrupt must be processed within the delay time of a pulse shown in Fig. 13-11 when it is
required during the CE reset.

226

NEC

uPD17005

{a)

CE pin

Timer carry
flip-flop

setting pulse
Timer interrupt
pulse

(b)

CE pin

Timer carry
flip-flop

setting pulse
Timer interrupt
pulse

Fig. 13-10 Timing chart

~ I I I
LILII

U

D

Timer interrupt

The timer carry flip-flop setting pulse rises
at this edge, so a CE pulse is reset and one
timer interrupt is skipped.

H

L-—
H—
L—4
H

L

—

-

]

J 1

Timer interrupt

=== Delay time (10 ms)

f

Timer interrupt

CE reset
A 10 ms delay occurs between the trailing edge of

a timer interrupt pulse and the Iegding edge of a
timer carry flip-flop setting pulse. The timer

can thus be processed normally during the CE reset
if the timer interrupt is processed within 10 ms.

227

NEC | «PD17005

Fig. 13-11 Time difference between timer carry flip-flop setting pulse and timer interrupt pulse

1ms

we WU U U ryuyL
1ms al

s nininininipipinininininipininininininigint
5ms 1ms
TMCY

5ms
INT

sy “URTINMAAAANARARRARARAAAAL

10 ms

100 ms
TMCY

100 ms
INT

250 ms . '
TMCY

T

250 ms I
INT

228

NEC

#PD17005

Table 13-1 Time difference between trailing edge of timer carry flip-flop pulse and

leading edge of timer interrupt pulse

Internal pulse

Minimum time difference (See the figure below.)

Timer carry Timer interrupt t1 12
1ms 1ms 666 us 333 us
1ms 5ms 333 us 666 us
1ms 100 ms 333 us 666 us
1ms 250 ms 333 us 666 us
5 ms 1 ms 333 us 666 us
5ms 5ms 3ms 2ms
5 ms 100 ms 2ms 3ms
5ms 250 ms o 2ms Ims

100 ms 1ms 333 us 666 us
100 ms 5ms 1ms 4 ms
100 ms 100 ms 50 ms 50 ms
100 ms 250 ms 10 ms 40 ms
250 ms 1ms 333 us 666 us
250 ms 5 ms 1ms 4 ms
250 ms 100 ms 40 ms 10 ms
250 ms 250 ms 100 ms 160 ms
o S R R E I

setting pulse

Timer interrupt
pulse

I

t1

12

229

NEC | | #PD17005

14. STANDBY

The standby function is used to reduce the power consumption of a backup device. .

14.1 STANDBY BLOCK CONFIGURATION !
Fig. 14-1 shows the standby block configuration. As shown in Fig. 14-1, the standby block consists of a halt |
control block and clock stop control block.
The halt control block consists of a halt control circuit, an interrupt control block, a timer carry flip-flop, and
key input pins (PODg/ADC3 pin (pin 78} to POD3/ADCs pin (pin 75)), controlling the operation of the CPU
{consisting of program counter, instruction decoder, and ALU block).

The clock stop control block controls a 4.5 MHz crystal oscillator, CPU, system register, and control register
using a clock stop control circuit.

Fig. 14-1 Sfandby block configuration

[=—=—=- -—————— Halt control block — = e e e e e |
| interrupt !
: block :
| Timer carry | Halt control]
! flip-flop circuit HALT h] CcPU 1
I - | !
| POD3/ADCg pin O— | | Program counter !
1 POD2/ADCg pin O——— 55 I (PC)
| POD1/ADC3 pin O—— €5 I ———
: PODg/ADC3 pin O——— : decoder
e it e et ittt 4 L ALU)|
[————— = o= ee = = Clock stop control block. = = = == = = — —— I I Systom register I
: CE pin O Son) arcut : 1 Control regist]
pin control circui - ontrol register
: STOPs : —
| XouT pin O 1
| ’-—W 1
| |
| XN pin O Internal block |
I |
| |
| |
| i
| t
] | '
I |
L 1

14.2 STANDBY FUNCTIONS

The standby function reduces the power consumption of the device by stopping part or all of the device
operation,

The standby function is divided into halt and clock stop functions. The halt function reduces the power con-
sumption of the device by stopping the CPU operation using a dedicated HALT h command. The clock stop func-

tion reduces the power consumption of the device by stopping the 4.5 MHz oscillator using a dedicated STOP s
command.

In addition to the halt and clock stop functions, the device operating mode is also set using a CE pin. The CE pin
is used to control the PLL frequency synthesizer and to reset the device. This function is defined to be one of the
standby functions in controlling the PLL frequency synthesizer.

The device operating mode control using the CE pin is described in Section 14.3. The halt and clock stop func-
tions are described Sections 14.4 and 14.5.

NEC 4PD17005

14.3 DEVICE OPERATING MODE USING CE PIN.
The CE pin controls the functions below in the input level and at the leading edge of an external input signal.
. (1) PLL frequency synthesizer operation
(2) Clock stop command validity
(3} Device reset
Steps (1), (2), and (3) above are described below.

14.3.1 PLL Frequency Synthesizer Operation Control
. The PLL frequency synthesizer can be activated only when the CE pin is high. The PLL frequency synthesizer
automatically enters the PLL disable mode when the CE pin is low. In the PLL disable mode, VCOH and VCOL pins
are pulled down and EOg and EQq pins enter the floating state. An internal operational amplifier is also disabled in
the PLL disable mode. At that time, the LPFy pin is pulled up internally, and the LPFoyT pin (N-channel open
drain output) is turned off. The PLL frequency synthesizer can be disabled using a program even if the CE pin is
high.

14.3.2 Clock Stop Command Validity Control
. The clock stop command (i.e., STOP s command) is valid only when the CE pin is low. The STOP s command
executed when the CE pin is high is processed as a nonoperation command (NOP).

14.3.3 Device Reset

A device can be reset (CE reset) when the CE pin is changed from low to high. Power on reset when supply
voltage Vpp is supplied is possible in addition to the CE reset.

For more details, see Section 15, “Reset”.

. 14.3.4 Signal Input to CE Pin
The CE pin does not accept a low or high signal of less than 110 to 165 us to prevent malfunction due to noise.

The input level of a signal that is input to the CE pin can be detected using a CE flag (bit bg of address 07H) of the

control register.
Fig. 14-2 shows the relation between the input signal and CE flag.

Fig. 14-2 - Relation between input signal and CE flag

. CEpin M
L—
:

CE flag
Less than 110 100 — 165 us Less than 110 110 — 165 us
t0 165 ks to 165 4s CE reset
PLL enable PLL disable PLL disable
STOP command invalid (NOP) STOP command valid STOP command invalid {NOP)

A CE pulse is reset in
synchronization with
the next timer carry
flip-flop setting.

231

NEC

14.3.5 CE Pin Level Judge Register Configuration and Functions
The CE pin level judge register detects the input signal level at a CE pin.
The configuration and functions are shown below.

©PD17005

Flag symbol
Name Address |Read/Write
b3 | ba| by |bp
CE pin level , : E C
judge register 0:0:0. 07H R
(CEJDG) P G E
Detects the level of a signal that is input to the CE pin.
0 A low signal is input.
V1 A high signal is input.
Fixed at '0"'.
Power on 0:0,0 .-
- 0 y .
2 | Clock stop . , P =
o . T :
CE H . V=

The QE flag does not change when set to a low or high level for less than 110 to 165 us.

232

NEC | xPD17005

14.4 HALT FUNCTIONS

The halt function stops the CPU operating clock by executing a HALT h command. A program stops when the
HALT h corﬁmand is executed. The program remains stopped until the halt mode is canceled. Therefore, the power
consumption of a device that is in halt mode is reduced proportionally to the CPU operating current. The halt mode
is canceled by a timer carry flip-flop, interrupt, and key entry. The cancel conditions for the timer carry flip-flop,
interrupt, and key entry are specified by operand h of the HALT h command. The HALT h command is valid
irrespective of the input level at a CE pin.

The halt mode and halt cancel conditions are described in Sections 14.4.1 through 14.4.6.

14.4.1 Halt Mode
All CPU operations stop in halt mode. The. program execution is stopped using a HALT h command. However,

the peripheral hardware continues the operation that was set before HALT h command execution.
For more information on the peripheral hardware operation, see Section 14.6, “‘Device Operation during Halt

and Clock Stop”.

233

NEC

#PD17005

14.4.2 Halt Cancel Conditions
Fig. 14-3 shows the halt cancel conditions.

As shown in Fig. 14-3, the halt cancel conditions are set using four-bit data that is-specified by operand h of a
HALT h command. The halt mode is canceled when the conditions specified by “1" for operand h is satisfied.
When the halt mode is canceled, the command following the HALT h command is executed. When two or more
cancel conditions are set at that time, the halt mode is canceled if only one condition is satisfied.

When a device is reset {power on reset or CE reset), the halt mode is canceled to execute each reset.

No cancel conditions can be set when 0000B is set to halt cancel condition ““h*”’. When the device is reset (power
on reset or CE reset), the halt mode is canceled.

The halt cancel conditions of a timer carry flip-flop, interrupt, and key entry are described in Sections 14.4.3
through 14.4.5. An example when two or more cancel conditions are set is described in Section 14.4.6.

HALT h (4-bit)

Operand bit

b3§b2§b1§bo

Fig. 14-3 Halit cancel conditions

T

Sets the cancel conditions of the halt mode.

Canceled when a high signal is input to key input pins {POD3/ADCsg to PODg/ADCo].

Canceled when the timer carry flip-flop is set (1).

Undefined (fixed at "*0"').

Canceled when interrupts {INTq pin, INTq pin, timer, serial interface 1, and frequency counter)
are accepted.

Not canceled even if the conditions are satisfied.

Canceled when the conditions are satisfied.

234

NEC | «PD17005

14.4.3 Halt Cancel Using Key Entry
The halt cancel conditions entered using a key are set by a HALT 0001B command. When the halt cancel condi-
tions are set, the halt mode is canceled if a high signal is input to one of pins PODg/ADC3 through POD3/ADCs.
When the key source signal is used in common with an LCD segment signal and the key input pin is used as an
A/D converter, pay attention to Items (1) through (4) below.

(1) General-purpose output port used as key source signal

-t
POD3/ADC
°%) [l [
b g
1Jl'7_€ POD2/ADC4 % -
—t
>—OO—J
—{77] Popy/aDC3
>—O’O—j
Switch A
—{78] popo/aDC,
General-purpose
output port

A HALT 0001B command is executed after the general-purpose output port for a key source signal is set high.
When switch A (i.e., alternating switch) shown in the figure above is used at that time, a high signal is fed to the
PODg/ADC; pin at all times while switch A is closed. Therefore, the halt mode is canceled immediately. Pay atten-
tion when the alternating switch is used.

When the general-purpose ou.tput port is used as a key source signal, the KSEN flag (bit by of address 10H) of
a control register is set to “0"’. Pins PODg/ADC5 through POD3/ADCg are automatically pulled down at that time.

235

NEC #PD17005

(2) LCD segment signal output used in common with key source signal output

—r
POD3/ADC
1 s
—O o—l
[76] PoD,/ADC,
»—6"0—]
+—{77| popy/ADCS
4»—-0/0—1 =1
{78] PoDg/ADC,
LCD15/P0OY15/KS15
£l
b 4
A

LCD segment signal
LCD segment H

signal output l
waveform L

T

| T

Key source signal

A HALT 0001B command is executed after the key source signal output data is set. When the key source signal
output data is ‘‘0”, the halt mode is not canceled even if a high LCD segment signal is input.

When the LCD segment signal output is used in common with the key source signal output, the KSEN flag (bit
by of address 10H) of a register file is set (1).

The key source signal data (key source output pin) is set via the data buffer using a key source data register
(KSR).

An internal key latch circuit latches data when the LCD segment signal and key source signal outputs are used in
common while a key source signal is output. The latch circuit is also isolated from the external device while an
LCD segment signal is output.

The internal pull-down resistor is turned on only when a key source signal is output.

236

NEC uPD17005
{3) Pins PODg/ADC; through POD3/ADCs used as A/D converter
Do ~ A/Dinput -
POD3/ADC
APD input O — [Ep| So (e
+—O O—J. é
'— -
g 76| POD5/ADC .
| KA 2/ 4
—O —
77| POD4/ADC
. 177] 1/ADC3
[78] PODg/ADCo
General-purpose output port or
LCD segment signal output

B

When pins PODg/ADC, through POD3/ADCs are selected as an A/D converter, the selected pin {only one pin can
be selected at the same time) is isolated from the input latch and connected to the internal A/D converter input. The
latch circuit is held high if a high signal is input to the pin that was selected as the A/D converter.

When a HALT 0001B command is executed.while the latch circuit remains high, the halt mode is canceled im-

mediately because the input latch is high.
Do not execute a HALT 0001B command while the latch circuit remains high.

(4) Others

Output port

Microcomputer

]

— E POD3/ADCs =
._O_‘_: E POD/ADCy i

{77] Popy/ADC3
’—C/O_l E PODg/ADC3

General-purpose output port or
LCD segment signal output

=%

Pins PODg/ADC, through POD3/ADCs can also be used as a general-purpose input port with pull-down resistors.
The halt mode can also be canceled using other microcomputers as shown in the figure above.

237

NEC' - #PD17005

14.4.4 Halt Cancel Using Timer Carry Flip-Flop
The halt mode cancel using a timer carry flip-flop is set by a HALT 0010B command. When the halt cancel is set,
the halt mode is canceled every time the timer carry flip-flop is set {1). ‘
As described in Section 13, “Timer"”, the timer carry flip-flop corresponds to the TMCY flag (bit bg of address
17H) of a control register at a ratio of 1 to 1 and is set (1) for every fixed time (1 ms, 5 ms, 100 ms, and 250 ms).
Therefore, the halt mode can be canceled for every fixed time.

A halt cancel example is shown below.

Example:
HLTTMR DAT 0010B ; Symbol definition
INITFLG NOT TMMD3, NOT TMMD2, NOT TMMD1, NOT TMMDO
; Built-in macroinstruction
; The timer carry flip-flop setting time is set to 250 ms.
LOOP:
HALT HLTTMR ;A timer carry flip-flop is set as the halt cancel condition.
SKT1 TMCY ; Built-in macroinstruction
BR LOOP ; The program branches into LOOP if a TMCY flag is not set.
ADD M1, #0100B; 0100B is added to the M1 information.

SKT1 CcY ; Built-in macroinstruction

BR LOOP ; Process A is executed if a carry ocecurs.
L Process A —I

BR LOOP

In the above example, the halt mode is canceled every 250 ms and process A is executed every second.

238

NEC x«PD17005

14.4.5 Halt Cancel Using Interrupt

The halt mode cancel using an interrupt is set by a HALT 1000B command. When the halt mode -cancel is set,
the halt mode is canceled every time the interrupt is accepted.

As described in Section 12, “Interrupt”, the interrupt has five factors, INTg pin, INT4 pin, timer, serial interface
1, and frequency counter. '

The interrupt factor used to cancel the halt mode must be specified in advance using a program.’

An interrupt can be accepted when all interrupts (El command) and each interrupt (interrupt permission flag is
set) are permitted in addition to the interrupt request issued from each interrupt source. Consequently, an interrupt’
cannot be accepted when it is not permitted even if an interrupt request is issued. The halt mode is not canceled
at that time either. -

When the halt mode is canceled during the interrupt acceptance, the program flow changes to the vector address
of each interrupt. When an RETI command is executed after interrupt processing, the program flow is returned to
the command next to HALT.

A halt cancel example is shown on the next page.

Example:
HLTINT DAT 1000B ; Symbol definition
START: ; The program address 0000H
BR" MAIN H ’
NOP
NOP
INTTM: ; Timer interrupt vector address (0003H)
BR INTTIMER ; The program branches into timer interrupt INTTIMER.
NOP : :
INTO: ; INTg pin interrupt vector address. {0005H)
; INTg pin interrupt
El '
RETI
INTTIMER: .
, Timer interrupt
El
RETI
MAIN: .
SET2 IPTM, (PO ; Built-in macrainstruction
SET2 TMMD3, TMMD2 ; Built-in macroinstruction
LOOP: : The timer interrupt time interval is set to 1 ms.
; Main routine processing
El : ; All interrupts are permitted.

HALT HLTINT : The halt cancel is set using an interrupt.
Q) ‘

BR LOOP

In the above program, the halt mode is canceled when a timer interrupt is accepted. Process B is then executed.
Process A is executed when an INTq pin interrupt is accepted. .

Process C is executed every time the halt mode is canceled.

When the INTg pin and timer interrupt requests are issued at the same time in halt mode, process A of the INTq
pin with a higher hardware priority level is executed.

A program is returned to BR LOOP command @ when an RETI command is executed after process A is
executed. However, the BR LOOP command is not executed, and the timer interrupt is accepted. The BR LOOP
command is executed when an RETI command is executed after process B (i.e., timgr interrupt) execution.

239

NEC #PD17005

14.4.6 Several Cancel Conditions Set at the Same Time
When two or more halt cancel conditions are set at the same time, the halt. mode is canceled if only one require-
ment is satisfied. An example when several cance! conditions are satisfied at the same time is shown below.

Example 1:
HLTINT DAT 1000B
HLTTMR DAT 0010B
HLTKEY DAT 0001B

START:
BR START
NOP
NOP
NOP
NOP
INTO: ; INTg pin interrupt vector address (0005H)
; INTg pininterrupt
El
RETI
TMRUP: . Timer carry flip-flop processing
RET
KEYDEC: ; Key entry
RET
START:
MOVT DBF, ®@AR ; Key source output data (see the table) is set in the key source

; data register (KSR).
PUT KSR, DBF
SET2 KSEN, LCDEN ; Built-in macroinstruction
' ; LCD segment signal and key source signal outputs are used in common.
SET2 TMMD1, TMMDO ; Built-in macroinstruction
; The timer carry flip-flop setting time is set to 1 ms.

SET1 IPO ; Built-in macroinstruction

; An INTq pin interrupt is permitted.
El -

LOOP:
HALT HLTINT OR HLTTMR OR HLTKEY

i An interrupt, timer carry flip-flop, and key entry are set as halt
; cancel conditions.

SKF1 TMCY ; Built-in macroinstruction

; TMCY flag detection
CALL TMRUP i Timer carry flip-flop processing during setting (1)
SKT1 KEYJ ~; Built-in macroinstruction

; Key entry latch detection
CALL KEYDEC ; Key entry during latch

BR LOOP

240

NEC «PD17005

In example 1 above, three halt cancel conditions, an INTg pin interrupt, 1 ms timer carry fiip-flop, and key entry
are set. .

If the halt mode is canceled using an interrupt, a vector address is detected. If it is canceled using a timer carry
flip-flop, a TMCY flag is detected. If it is canceled using a key entry, a KEYJ flag is detected.

Pay attention to the following when using two or more cancel conditions:

(1) All cancel conditions that were set are detected when the halt mode is canceled.
(2) The cancel conditions are detected in accordance with the priority level.

For steps (1) and (2), pay attention when the START or later program in example 1 is as shown in.example 2

below.

Example 2:
START:
SET4 PIC3, PIC2, PIC1, PICO; The general-purpose output port is used as a key source signal.
SET2 TMMD1, TMMDO
SET1 IPO
El
LOOP:
HALT HLTINT OR HLTTMR OR HLTKEY
SKF4 POD3, POD2, POD1, PODO; The key entry is detected.
BR KEYDEC
SKF1 TMCY
"CALL TMRUP
BR LooP .)
KEYDEC: ; Key entry

BR LOOP

Assume that the timer carry flip-flop is set (1) immediately after the halt mode is canceled by entering the key
in the program of example 2 above. The program then executes a HALT command again after the key entry is
executed. The timer carry flip-flop remains set when the HALT command is executed, so the halt mode is canceled
immediately.

However, a high-level pulse of 100 ms is usually input during the key entry, so the program branches into the
key entry. The timer carry flip-flop thus cannot be detected precisely. Do not create the program shown in example
2 if the program has a high timer priority level and uses a timer carry flip-flop.

241

NEC uPD17005

145 CLOCK STOP FUNCTION .

The clock stop function stops the 4.5 MHz crystal oscillator by executing a STOP s command (‘clock stop state).
The device power consumption is therefore reduced to 15 uA {max). For more information on the power con-
sumption, see Section 14.7, “’Power Consumption in Halt and Clock Stop Modes’’.

**0000B™ is specified for operand s of a STOP s command. The STOP s command is valid when the CE pin
{pin 13} is low. The STOP s command cannot be executed (nonoperation command (NOP)) while the CE pin is high.
The STOP s command must be executed only when the CE pin is low.

The clock stop mode is canceled when the CE pin is changed from low to high (CE reset).

The clock stop mode, clock stop mode cancel, and cautions when using clock stop command are described in
Sections 14.5.1 through 14.5.3.

145.1 Clock Stop Mode

In clock stop mode, the crystal oscillator is stopped. Consequently, all CPU and peripheral hardware operations
also stop.

For more information on the CPU and peripheral hardware operation, see Section 14.6, “Device Operation in
Halt and Clock Stop Modes"”.
In clock stop mode, the power failure detector circuit does not operate even if supply voltage Vpp is decreased

to 2.2 V. Low-voltage data memory can thus be backed up. For more information on the power failure detector
circuit, see Section 15, “Reset”’.

14.5.2 Clock Stop Mode Cancel
The clock stop mode is canceled when the CE pin is changed from low to high (CE reset) or when supply voltage
Vpp is increased to 4.5 V after it is first decreased to 2.2 V {power on reset).

Figs. 14-4 and 14-5 show the clock stop cancellation during the CE reset and power on reset. The power failure
detector circuit operates when the clock stop mode is canceled during the power on reset.
For more information on the power on reset, see Section 15.4, ““Power On Reset”.

242

NEC

#PD17005

Fig. 144 Clock stop cancel during CE reset

@ »
ov

VDD
H
CE pin
L —
Crystal H
oscillator
(XoyT pin} L ADDIOX,
50 ms
STOP command Program address O start
(CE reset)
When no clock stop command is used
BV "
Voo
oV =—
H
CE pin
. Crystal
oscillator
{(XouT Pin .
0—1tsET
Program address O start
(CE start)
The CE pulse is reset in synchronization
with the setting of the next timer carry
flip-flop when the CE pin is set high.
. Fig. 14-5 Clock stop cancel during power on reset
5V L s |
VDD 22V —t—
ov—
' H
CE pin
L —
Crystal H
oscillator A
(x T pin) PProx.
ou 50 ms
' STOP command Program address O start
(Power on reset}
When no clock stop command is used
5V
35V
Vpp
ovV=—
H
CE pin
. L o—
Crystal H
oscillator
{(XoyT pin Approx.
50 ms
QOscillation Program address O start
stopped. (Power on reset)

243

NEC #PD17005 |

145.3 Cautions when Using Clock Stop Command
A clock stop command (STOP s command) is valid when the CE pin is low. Therefore, the processing when the

CE pin is high must be programmed in advance. .
A program example is shown below.

Example:

XTAL DAT 0000B ; Symbol definition for clock stop conditions
CEJDG:
SKF1 CE ; Built-in macroinstruction
; The input level at the CE pin is detected.
BR MAIN ; The program branches into the main processing when the CE pin is high.

; Processing for CE = Low

STOP XTA ; Clock stop

;@
€

BR $-1

MAIN:

l Main processing]
BR CEJDG

In the above example, the input level at the CE pin is detected in parameter @ If the CE pin is low, a STOP
XTAL clock stop command in item @ is executed after process A is executed. The STOP XTAL command is
executed as a nonoperation command (NOP) when the CE pin is set high during the STOP XTAL command execu-
tion in parameter @ as shown in the figure below.

If there is no BR $-1 branch command in parameter @ , the program branches into the main processing. This
may cause a malfunction. Consequently, a branch command must be inserted in the program as shown in parameter
@ or a program must be created in advance so that no malfunction occurs after the program branches into the
main processing.

When a branch command is used as shown in parameter @ , the CE pin remains high, but a CE pulse is reset in
synchronization with the setting of the next timer carry flip-flop.

5V
VpDp .
oV =—
H
CE pin
L —

? Main Process
processing | A

d) OO @ SITOP XTAL The program is started from

ng’gt:)?: The CE pin is high, so address 0 in synchronization
the STOP XTAL command with the setting of the timer
is executed as an NOP carry flip-flop (CE reset).
command.

244

NEC | «PD17005

14.6 DEVICE OPERATION IN HALT AND CLOCK STOP MODES .

Table 14-1 shows the CPU and peripheral hardware operation in halt and clock stop modes. "

In halt mode, the command execution stops, but all peripheral hardware operates normally as shown in Table
14-1. In clock stop mode, all peripheral hardware operations stop.

A control register that controls the peripheral hardware operation operates (is not initialized) as usual in halt
mode. The control register is initialized at a specified value in clock stop mode (during the STOP s command execu-
tion). In other words, the peripheral hardware continues the operation that is set in the control register in halt mode,
operating in accordance with the control register that is initialized at a specified value in clock stop mode.

For more information on the initialized control register value, see Section 10, “Register File (RF)".

An operation example is shown below.

Example:
The P0A3/SDA and POA2/SCL pins of port OA are set to the output port, and the POA, /SCKj and POAG/SO4
pins are used as a serial interface. ' l
HLTINT DAT 10008 ; Symbol definition
XTAL DAT 00008 ;
INITFLG POABIO3, POABIO2, POABIO1, POABIOO
, Built-in macroinstruction

SET2 POA3, POA2
INITFLG SI01CH, NOT SB, SIOIMS, SIO1TX

'

SET2 SI01CK1, SI01CKO

SET2 SI01IMD1, S101IMDO
" CLR1 IRQSIO1

SET1 IPSION

El

SET1 SIOTNWT

;@
; ®

HALT HLTINT
STOP XTAL

In the above example, a high signal is output from the POA3 and POA3 pins in parameter @ , the conditions of
serial interface 1 are set in parameter @ , and the serial communication is started in parameter @ .
When a HALT command in parameter (@) is executed, the serial communication is continued and the halt mode
» is canceled when a serial interface 1 interrrupt is accepted.
When a STOP command in parameter @ is executed instead of the HALT command, all flags of the control
registers that are set in parameters @ . @ , and @ are initialized.
The serial communication is thus interrupted, and all pins of port OA are set to the general-purpose input port.

245

NEC

«PD17005

Table 14-1 Device operation in halt and clock stop modes

Peripheral hardware

State

CE pin = high

CE pin = low

Halt ﬁ\ode

Clock stop mode

Halt mode

Clock stop mode

Program counter

Stops at the HALT
command address,

Systemn register Held,
Peripheral register Held,
Control register Held

Timer

Operates normally,

PLL frequency synthesizer

Operates normally.

A/D converter

Operates normally.

D/A converter

Operates normally.

Serial interface

Operates normally.

Frequency counter

Operates normally,

LCD controller/driver

Operates normally.

Key source controller/
decoder

Operates normally,

General-purpose input/
output port

Operates normally.

General-purpose input port

Operates normally.

General-purpose output port

Operates normally.

STOP command
is invalid (NOP),

Stops at the HALT
command address.

Initialized at

0000H and stops.

Initialized
Held.

(see Note).
Held. Heid.
Held Initialized

eld.

(see Note).
QOperates normally. Stops.
Disable {including
internal operational Stops.
amplifier)
Operates normally. Stops.
Operates normally, Stops.
Operates normally. Stops.
Operates normally. Stops.
Operates normally, Stops.
Operates normally, Stops.
Operates normally. input port
Operates normally. Input port
Operates normally, Held,

246

Note: For more details of the initialized value, see Section 9, “System Register” and Section 10, ““Register File"".

NEC , uPD17005

14.7 POWER CONSUMPTION IN HALT AND CLOCK STOP MODES

14.7.1 Power Consumption in Halt Mode

Fig. 14-6 shows power consumption Ipp in halt mode.

The power consumption in {1), (2), (3), and (4) shown in Fig. 14-6 employs the programs below. As shown in
Fig. 14-6, the less halt cancel count reduces the power consumptioﬁ.

(1) Program 1
No HALT command is used.

Example:
NOP
BR $41

(2) Program 2 ,
A 5 ms timer interrupt is set as the halt cancel condition. Twenty commands (about 90 us) are executed every
time the halt mode is canceled.

Example:
HALTINT DAT 1000B
BR LOOP
TMINT: ; Address 0003H
NOP
NOP
17 commands
NOP
El
RETI
LOOP:
SET1 TMMD3
CLR1 TMMD2
SET1 IPTM
El
HALT HLTINT
BR $-1

247

NEC «PD17005

(3} Program 3

A 100 ms timer interrupt is set as the halt cancel condition. Twenty commands are executed every time the halt
mode is canceled.

Example:
HALTINT DAT 1000B
BR LOOP
TMINT: ; Address 0003H
NOP
NOP

17 commands

NOP

LOOP:

El

RETI

CLR2 TMMD3, TMMD?2
SET1 IPTM

El

HALT HLTINT

BR $-1

(4) Program 4

Nothing is set as the halt cancel condition.

Example:
HLTNORLS DAT 0000B
HALT HLTNORLS

Power consumption |pp shown in Fig. 14-6 is measured under the conditions described below.

PLL disable (Low-pass filter amplifier disable)

Frequency counter disable

The sine wave with frequency iy of 4.5 MHz and input amplitude Vy of Vpp from a reference signal gen-
erator is input to the Xy pin.)

All pins that are set for output are open.

All pins that are setto the input port are pulled down using a 47 k& resistor (not including LPF |y and Xy
pins).

14.7.2 Power Consumption in Clock Stop Mode

Fig. 14-7 shows power consumption Ipp in clock stop mode. The power consumption shown in Fig. 14-7 is
measured under the conditions described below.

248

All pins that are set for output are open.

All pins that are set for input are pulled down using a 47 k2 resistor (not including LPFy and X,y pins).
A crystal oscillator is connected (the oscillation stops).

NEC | uPD17005

Fig. 14-6 Power consumption in halt mode (Reference)

(a) Ipp VS VDD (Ta=25 °c) {b) Ipp VS8 Ty (Vpp =5.5V)
1.5+ il) . 1.5F a
£ <
~ €
a =
= 1.0 0 10F
C -
0‘3 =
- @
=] c
o =
&) & o
(3) < . a *(3)
0 1 1 L f 1 0 i 1 1 1
35 4.0 4.5 5.0 55 —40 0 25 85
Supply voltage Vpp (V) Ambient temperature Ty (°C)
Fig. 14-7 Power consumption in clock stop mode (Reference)
(a) Ipp VS Vpp (Ta=25°C) (b) Ipp VS Ta (Vpp =5.5V)
3.0F __ 30}
- <
< -2
2 o) .
a) o
o 20r = 201
« 8
LEZ / 3
5 % o
(3] [7)
5 L 2 .ok
z 1.0 810
<3
a
0 ST L ' 1 L 1 T 0 L 1 1 |
2225 3.0 35 40 45 50 55 —40 0 25 85
Supply voltage Vpp (V) Ambient temperature T3 (°C)

14.7.3 Cautions During Pin Processing in Halt and Clock Stop Modes

The halt function is used to reduce the power consumption when only a timer operates, and the clock stop func-
tion to reduce the power consumption when only data memory is held.

The.power consumption must thus be reduced in halt and clock stop modes as much as possible.

Notice that the power consumption may significantly vary depending on the signal level at each pin as shown in
Table 14-2.

249

NEC

©PD17005

Table 14-2 Pin state in halt and clock stop modes

Pin state

Pin Symbol
Halt mode Clock stop mode
The mode preceding the halt is held. The pins at all ports are
POA3/SDA i . e
POAS/SCL {1) Portsare specnfned for cutput pins. specified for the general-
Port OA 2 —_ The power consumption increases purpose input port. All input
:321;:((;'(1 when the output pins are externally ports other than port 0C
0502 pulled down while a high signal is {POC3 through POCQ) do not
output or when they are externally increase the power consump-
POB3/SlH pulled up while a low signal is out- tion due to noise even if they
Port OB POB2/SCK3 put. are in the floating state. Port
P0B1/502 Note to the N-channel open drain 0C (POC3 through POCq)
General-purpose P0OBo/Si2 output (at POA3, POAg, and P1B3 must be pulled down or up
input/output through P1Bq pins). externally to prevent the
port POC3 (2) Ports are specified for input pins power consumption from in-
POCy (not including ports 1A and 1D). creasing owing to noise,
Port 0C POCH The power consumption increases Port OD {POD3/ADCg
POCg owing to noise when the ports are in through PODg/ADC3) is
the floating state, pulled down internally.
{3) Port OC (POD3/ADCsg through
P1A3/FCG 3/ATEs fhrous
P1A PODg/ADC))
Port 1A P1 A2‘ The power consumption increases
P1A1 when the pins are pulled up exter-
0 nally because a pull-down resistor is
incorporated. The pull-down resistor
POD3/ADCg at the pin that is set to an A/D
Port 0D POD2/ADCy converter is turned off.
POD1/ADC3 | (4) Port 1D (P1D3/FMIFC through
PODgp/ADCoy P1Dn/AD
General-purpose 0/ADCo)
input port Port 1A (P1A3/FCG through P1Ag}
P1D3/FMIFC When the P1D3/FMIFC and P1Dy/
P1D2/AMIFC AMIFC pins are used as an IF
Port 1D P1D1/ADCq counter, the internal amplifier
P1Dg/ADCgp operates and the power consump-
tion increases.
The IF counter is not aut ticall
P1B3/PWMy ¢ T countar s not automatically The pins are specified for
disabled even if the CE pin is set low.
P1Bo/PWM¢ L) the general-purpose output
Port 1B Therefore, initialize using a program .,
P1B4/PWMg red. Th i port. The output informa-
as required. The power consumption
P1Bg/CGP quire pows umet tion is held.
does not increase owing to noise even L
. i X The power consumption in-
General-purpose b1c if the pins at ports 1D and 1A are in creases when the pins are
output port 3 the floating state when they are pulled down externally
Port 1C P1Cy specified for the general-purpose) o
P1Cy input port while a high signal is output
P1Cy ’ or when they are pulled up
while a low signal is output,
Port 2A P2Ag
Interrupt INT4 The power consumption increases owing to noise when the port is in
INTg the floating state.

250

wPD17 005

Pin state
Pin Symbol
Halt mode Clock stap mode
LCD2g/POF3 Pay the same attention as in the above All pins are specified for the
| general-purpose ports when this pin is L.CD segment signal output,
LCD9g/POFg used as a general-purpose output port. outputting a low signal
LCD95/POE3 | The transistor switch is always on when (display off).
| a key source signal is output. The power
LCD22/POEg | consumption increases via port 0D {inter-
LCD segment LCD21/POXg | nal pull-down resistor) when logical /1"
| is output as key source data.
LCD1/POXg
LCD15/P0Y 15
/K818
LCDg/POY(
/KSg
The power consumption increases The PLL is disabled.
during the PLL operation. When-the PLL Each pin is as follows:
VCOL is disabled, each pin is as follows: VCOL, VCOH;
VCOH VCOL, VCOH; Pulled down internally.
LPFin Pulled down internally. LPF|N:
PLL frequency synthesizer LPFouT LPFIN: Pulled up internally.
' VLPF Pulled up internally. EOQg, EO1;
EQp EQq, EO4; Floating
EOq Floating '
The PLL is disabled automatically when
the CE pin is set low.
The power consumption varies depending The Xy pin is pulled down
on the oscillation waveform of a crystal internally, and the XqQuT
oscillator, pin outputs a high signal.
- i XIN A high oscillation amplitude decreases
Crystal oscillator .
XouT the power consumption.

The oscillation amplitude varies accord-
ing to a crystal oscillator or load
capacitor.

251

NEC - #PD17005

156. RESET

The reset function is used to initialize the device operation.

15.1 RESET BLOCK CONFIGURATION
Fig. 15:1 shows the reset block configuration.

The device reset is classified into a supply voltage Vpp on reset (power on reset or Vpp reset) and a CE pin reset
{CE reset).

The power on reset block consists of a voltage detector circuit that detects the voltage input from the Vpp pin,
a power failure detector circuit, and a reset control circuit. The CE reset block consists of a circuit that detects the
rise of an input signal at the CE pin and a reset control circuit.

Fig. 15-1 Reset block configuration

XouT 00—

=~ — — Power failure detection blocK « = == e == == = = = — —

T
——AN—4 : Timer FF block e |
I
XIN O—‘._M : - Freque Selector . :
i I TMCY flag read _* |
] - |
T
=——STOP command | g Q dlirsT;ErI: z’a:r'r:y |
| : Timer carry |
| LFF |
P T — e ———————
‘ Power on clear signal Reset signals
Voltage (POC) IRES _ Forcible halt using
Vpp o— gtiartcelj:ittor Reset timer carry FF
control RES Control register
Rising circuit SVStﬁm register
RESET Stac
CE O_b— g?}gfittor Program counter
STOP command

15.2 RESET FUNCTION

A power on reset occurs when supply voitage Vpp rises from less than a fixed voltage, and a CE reset occurs
when the CE pin rises from low to high.

The power on reset function is used to initialize a program counter, stack, system register, and control register
and to execute the program from address 0000H. The CE reset function is used to partially initialize a program
counter, stack, system register, and control register and to execute the prdgram from address O00H.

The difference between the power on and CE resets lies in the operations of an initialized control register and
power failure detector circuit {described in Section 15.6).

The power on reset and CE reset are controlled using reset signals TRES, RES, and RESET that are output from
the reset control circuit shown in Fig. 15-1.

Table 15-1 shows the relation between the IRES, RES, and RESET signals, and power on reset and CE reset.

The reset control circuit operates when a clock stop command (STOP s) described in Section 14, “Standby” is
executed. The CE reset and power on reset are described in Sections 15.3 and 15.4.

Section 15.5 describes the relation between the CE reset and power on reset.

252

NEC | 4PD17005

Table 15-1 Relation between internal reset signal and each reset

Internal Output signal
reset Power on Control information

signal CE reset reset Clock stop
—_— . Sets the device forcibly to halt mode. The halt mode i
TRES X o o ety To hatt modt. '

canceled when a timer carry flip-flop is set.
RES X o o) Partially initializes a control register.
e ’ Partially initializes a program co ter, stack, system
RESET o] (0] (¢] B Y . P _g un ¥
_register, and control register.

15.3 CE RESET

The CE reset occurs when the CE pin rises from low to high. When the CE pin rises, a RESET signa! is output in
synchronization with the leading edge of the next timer carry flip-flop setting pulse. The device is then reset.

When the CE reset occurs, a program counter, stack, system register, and control register are partially initialized
using the RESET signal and the program is executed from address 0000H. For more information on the initial value,
see each section.

The CE reset operation varies depending on whether a clock stop command is used or not {see Sections 15.3.1
and 15.3.2). Section 15.3.3 describes cautions during the CE reset.

15.3.1 CE Reset when Clock Stop (STOP) Command is Not Used

Fig. 15-2 shows the CE reset operation.

A timer mode select register in the control register is not initialized when no clock stop {STOP) command is used.
A RESET signal is output at the leading edge of a selected timer carry flip-flop setting pulse of 1 ms, 5 ms, 100 ms,
or 250 ms after the CE pin is set high. The device is then reset. '

Fig. 15-2 CE reset when clock stop command is not used

5V
VDD -
ov—
H
CE
L oo
H

Timer carry FF
setting pulse

L
H
L D)
H

., IRES

g L =

o ___ H

@ RES

2 L =

i H

RESET L ‘Normal LI

Normal operation operation

The CE reset occurs at the trailing edge
" of a timer carry flip-flop setting pulse.
When the selected timer carry flip-flop setting time is tggT, period
“t" becomes 0 < t < tgeT at the leading edge of a CE pulse. The
program operation is continued during this period.

253

NEC | xPD17005

15.3.2 CE Reset when Clock Stop {(STOP) Command is Used
Fig. 15-3 shows the CE reset operation.

IRES, RES, and RESET signals are output during STOP s command execution when a clock stop command is
used. At that time, a timer mode select register in the control register is initialized as 0000B using the RES signal.
A timer carry flip-flop setting signal is thus specified as 100 ms.

The TRES signal is output continuously while the CE pin is low, so the forcible cancel halt mode is entered using
a timer carry flip-flop. However, the clock is stopped, so the device is also stopped.

The clock stop mode is canceled when the CE pin rises from low to high. Oscillation is then started.

The timer carry flip-flop cancel halt mode is entered using the IRES signal at that time. Therefore, the halt mode
is canceled at the leading edge of a timer carry flip-flop setting pulse after the CE pin rises. The program is then

started from address 0. Since the timer carry flip-flop setting pulse is initialized as 100 ms, the CE reset occurs 50 ms
after the CE pin rises.

Fig. 15-3 CE reset when clock stop command is used

5V
VbD
0OV =—
H
CE
L —
" MWW WWWWWWWW
X
ouT L
H

Timer carry FF - | |
etting pulse)
setting p & b

L
H
IRES
- L —
|- H
“ RES
] L =
& H
RESET
L o
Normal operation Clock stop mode Halt mode
50 ms
STOP Clock stop canceled CE reset.
0000 B and oscillation The program is started
started from address 0.

15.3.3 Cautions During CE Reset

The CE reset occurs irrespective of execution commands, so pay attention to the following:

(1) Timer processing time
The timer program must be created within a fixed time using a timer carry flip-flop or timer interrupt.

For more details, see Section 13.4, ““Cautions when Using Timer Carry Flip-Flop”, and Section 13,6, “Cautions
during Timer Interrupt”.

(2) Program data and flag processing

The information of the data and flag (e.g., security code) that cannot be processed using one command must not
be changed during the CE reset. Note when rewriting the security code information.
A security code example is shown below.

254

NEC

«PD17005

Example 1:
START:

Key entry
R1 « Key A information
R2 « Key B information

SCCHK:
;@
SET2 CMP,Z
SUB R1, M1
SUB . R2, M2

SKT1 2

BR NOOPERATION
MAIN:

Key entry

R3 « Key C information

R4 < Key D information

;@
;@

ST M1, R3

ST M2, R4
BR MAIN

Security code key entry wait
The information of the pressed key is substituted for general
registers R1 and R2.

Security code check

The program does not operate if the security code differs.
Main processing

When the key for rewriting the security code is

pressed, the key information is substituted for
R3 and R4.

Security code rewriting

Assume that the security code is ““12H” in example 1 above. The information of data memory M1 and M2

becomes “1H” and “2H"".

When a CE pulse is reset, the key entry information and security code “12H" are compared in parameter @
If they are the same, the program is processed normally. When a security code is altered during main processing, the
altered code is rewritten into M1 and M2 in parameters @ and (3.

If the security code is altered into “34H"’, codes “'3H"" and "4H"’ are written into M1 and M2 in parameters @
and @ . The program is reset without executing parameter @ when the CE reset occurs during the parameter @
execution. The security code thus becomes “32H’" and causes a trouble. A program example that prevents this

trouble is shown below.

255

NEC

«PD17005

Example 2:
START:

Key entry
R1 < Key A information
R2 < Key B information

)

SKT1 FLG1

BR SCCHK

ST M1, R3

ST M2, R4

CLR1 FLG1

SCCHK:

;P @

SET2 CMP, 2Z

SUB R1, M1

SuB R2, M2

SKT1 2

BR NOOPERATION
MAIN:

Key entry

R3 « Key C information
R4 < Key D information

; ®

SET1 FLG1
;@

ST M1, R3
NE)

ST M2, R4
CLR1 FLG1
BR MAIN

Security code key entry wait
The information of the pressed key is substituted for general
registers R1 and R2,

If the FLG1 flag is 1",

Codes are rewritten in M1 and M2,

Security code check

The program does not operate if the security code differs.
Main processing

When the key for rewriting the security code is
pressed, the key information is substituted for
R1 and R2,

An FLG1 flag is set while the security code is rewritten.

Security code rewriting

In example 2 above, an FLG1 flag is set when the security code is rewritten in parameters @ and @ .Acodeis
rewritten in parameter @ even if the CE reset occurs in parameter @ .

256

NEC #PD17005

15.4 POWER ON RESET

The power on reset occurs when supply voltage Vpp rises from less than a fixed voltage (power on clear voltage).
A power on clear signal (POC) is output from the voltage detector circuit shown in Fig. 15-1 when supply voltage
Vpp does not exceed the power on clear voltage. When the power on clear signal is output, a crystal oscillator is
stopped and the device is stopped. TRES, RES, and RESET signals are also output while the power on clear signal
is output. The power on clear signal is turned off when supply voltage Vpp exceeds the power on clear voltage. The
TRES, RES, and RESET signals are also turned off when the crystal oscillator operates.

The timer carry flip-flop cancel halt mode is entered using the IRES signal. The power on reset therefore occurs
at the leading edge of the next timer carry flip-flop setting signal. The timer carry flip-flop setting signal is initialized
as 100 ms using the RESET signal. Consequently, the system is reset 50 ms after supply voltage Vpp exceeds the
power on clear voltage. The program is then started from address 0. The power on reset operation is shown in Fig.
54, ’

A program counter, stack, system register, and control register during power on reset are initialized when the
power on clear signal is output. For more information on the initial value, see each section.

The power on clear voltage is 3.5 V (specification) in normal operating mode, and 2.2 V (specification) in clock
stop mode. The power on reset in normal operating and clock stop modes is described in Sections 15.4.1 and 15.4.2.
The operation when supply voltage Vpp rises from 0 V is described in Section 15.4.3.

Fig. 15-4 Power on reset operation

5V
VoD Power on clear voltage
OV = .
H
CE
[I—
H
L
Timer carry FF H —
setting pulse L ' d
[p—
Power on clear
signal L
H
. |RES
§ L=
o H
,;_3 RES
8 L =
oc H
RESET
L Normal operation Operation stop Halt mode
50 ms
Power on clear cancel Power on reset
Oscillation start The program is started

from address O.

257

NEC | | «PD17005

15.4.1 Power On Reset in Normal Operating Mode

The power on reset in normal operating mode is shown in Fig. 15-5 (a).

As shown in Fig. 15-5 (a), a power on clear signal is output when supply voltage Vpp becomes less than 3.5 V
irrespective of the input level at the CE pin. The device is then stopped. The program is started from address 0000H
in halt mode 50 ms after supply voltage Vpp exceeds 3.5 V again.

In normal operating mode, no clock stop command is used. The normal operating mode also includes the halt
mode in which a halt command is executed.

15.4.2 Power on Reset in Clock Stop Mode
The power on reset in clock stop mode is shown in Fig. 15-5 (b).

As shown in Fig. 15-5 {b), a power on clear signal is output when supply voltage Vpp becomes less than 2.2 V.
The device is then stopped. However, the device operation does not change visually because the device is in clock
stop mode.

The program is started from address 0000H in halt mode 50 ms after supply voltage Vpp exceeds 3.5 V.

15.4.3 Power on Reset when Supply Voltage Vpp Rises from 0 V
The power on reset operation is shown in Fig. 15-5 (c).
As shown in Fig. 15-5 (c), a power on clear signal is output until supply voltage Vpp rises from 0V to 3.5 V.

A crystal oscillator operates when supply voltage Vpp exceeds the power on clear voltage. The program is started
from address 0000H in halt mode after 50 ms.

258

NEC

©«PD17005

Fig. 15-6 Power on reset and supply voltage Vpp

(a} Normal operating mode (including halt mode)

Power on clear voltage

5V
Vbp
oV—
H
CE
|_ -—
H
XouT
L
ho—

Power on clear

signal .
Normal operation

IV

QOperation stop

Halt mode

(b} Clock stop mode

Oscillation start

50 ms
Power on clear cancel

Power on reset .
T_he program is started
from address 0.

Power on clear voltage

o \/ —
35V
VDD 22V
ov—
H
CE
L
H
L
H —
Power on clear
signal
9 ,’,\'p%rg'ﬁl,n Clock stop mode Operation stop Halt mode
50 ms
STOP

0000 B

(c) Supply voltage Vpp rising from0 V

Power on clear cancel
Oscillation start

Power on reset

The program is started
from address 0.

5V=—)
. 35V Power on clear voltage
Voo
ov
H —
CE
L
H -
L
H -—
Power on clear
signal L
Operation stop Halt mode
50 ms

Power on clear cancel
Oscillation start

Power on reset

The program is started

from address 0.

259

NEC - «PD17005

155 RELATION BETWEEN CE RESET AND POWER ON RESET

The power on reset and CE reset may occur at the same time when supply voltage Vpp is turned on first. The
reset operation at that time is described in Sections 15.5.1 thrdugh 15.5.3. Cautions during the rise of supply voltage
Vpp are described in Section 15.5.4.

15.5.1 Vpp and CE Pins Rising at the Same Time
The operation when the Vpp and CE pins rise at the same time is shown in Fig. 15-6 (a).
The power on reset program is then started from address 0000H.

15.,5.2 CE Pin Rising in Power on Reset Halt Mode
The operation when the CE pin rises in halt mode is shown in Fig. 15-6 (b). _
The power on reset program is then started from address 0000H as in Section 15.5.1.

15.5.3 CE Pin Rising after Power on Reset _
The operation when the CE pin rises after power on reset is shown in Fig. 15-6 (c).

The power on reset program is then started from address O000H, then restarted from address 0000H at the
leading edge of the next timer carry flip-flop setting signal during the CE reset.

260

NEC «PD17005

Fig. 15-6 Relation between power on reset and CE reset

. {a) Vpp and CE pins rising at the same time
BV — /
35V Power on clear voltage
Vop ;
ov
H —
CE
L .
H @ —
Timer carry : - I -
flip-flop L |
i . Halt
setting pulse alsomn?sde Normal operation
Qperation
stop Power on reset
‘ Program start
{b) CE pin rising in halt mode
35V Power on clear voltage
VbD
ov
H —
CE
L -
Timer carry H oo
flip-flop : |
setting pulse L) Halt mode
50 ms Normal operation
Operation
stop Power on reset
Program start
(c) CE pin rising after power on reset
BV h é
35V Power on clear voltage
VDD ;
oV
H —
CE
L
Timer carry H —
flip-flop
setting pulse - Halt mode
50 ms Normal operation
Operation
. stop Power on reset CE reset
Program start Program start

261

NEC | 4PD17005

15.5.4 Cautions During Rise of Supply Voltage Vpp
Pay attention to the following when supply voltage Vpp rises.

(1) Supply voltage Vpp rising from less than power on clear voltage

Supply voltage Vpp must first exceed 3.5 V when it rises. The cautions during the rise of the supply voltage are
shown in Fig. 15-7.

As shown in Fig. 15-7, a power on clear signal is output if only a voltage of less than 3.5 V is applied when supply
voltage Vpp is turned on in the program for which the supply voltage is backed up at 2.2 V using a clock stop
command. The program then does not operate.

The device output port at that time may increase the power consumption because it outputs an undefined value.
The backup time significantly decreases during the battery backup.

Fig. 15-7 Cautions during rise of supply voltage Vpp

5V -
gg \\; Va I:g:/;/:;eon clear
VDD /
oV —
H =
CE
L
H ——
XouT
L t——
Timercary FE H =
setting pulse L
H —
Power on clear
signal L — N
. Halt mode Normal
Operation stop 50 ms operation Backup
: Opeération The signal is
The output port