Features

- High Voltage CMOS Technology
- Four Channel
- Positive Voltage Control
- CMOS device using TTL input levels
- Low Power Dissipation
- Low Cost Lead-Free SOIC-16 Plastic Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant and $260^{\circ} \mathrm{C}$ Reflow Compatible

Description

The MADR-009190-000100 is a four channel driver used to translate TTL control inputs into gate control voltages for GaAs FET microwave switches and attenuators. High speed analog CMOS technology is utilized to achieve low power dissipation at moderate to high speeds, encompassing most microwave switching applications. The output HIGH level is optionally 0 to +2.0 V (relative to GND) to optimize the intermodulation products of FET control devices at low frequencies. For driving PIN Diode circuits, the outputs are nominally switched between $+5 \mathrm{~V} \&-5 \mathrm{~V}$. The actual driver output voltages will be lower when driving large currents due to the resistance of the output devices.

Ordering Information ${ }^{1}$

Part Number	Package
MADR-009190-000100	Bulk Packaging
MADR-009190-000DIE	Die 2
MADR-009190-0001TR	1000 piece reel

1. Reference Application Note M513 for reel size information.
2. Die sales are available in waffle packs in increments of 100 pieces.

Functional Schematic

Pin Configuration ${ }^{3}$

Pin No.	Function	Pin No.	Function
1	$\mathrm{~V}_{\mathrm{EE}}$	9	Output A1
2	$\mathrm{~V}_{\mathrm{CC}}$	10	Output B1
3	C 4	11	Output A2
4	C 3	12	Output B2
5	C 2	13	Output A3
6	C 1	14	Output B3
7	$\mathrm{~V}_{\mathrm{OPT}}$	15	Output A4
8	Ground	16	Output B4

3. The bottom of the die should be isolated for part number MADR-009190-000DIE.
[^0]- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affliates reserve the right to make changes to the product(s) or information contained herein without notice.

Guaranteed Operating Ranges (for driving FET or PIN devices) ${ }^{\text {4,5,8 }}$

Symbol	Parameter	Unit	Min.	Typ.	Max.
V_{CC}	Positive DC Supply Voltage	V	4.5	5.0	5.5
$\mathrm{~V}_{\mathrm{EE}}$	Negative DC Supply Voltage	V	-10.5	-5.0	-4.5
$\mathrm{~V}_{\mathrm{OPT}}{ }^{6,7}$	Optional DC Output Supply Voltage	V	0	-	V_{CC}
$\mathrm{V}_{\mathrm{OPT}}-\mathrm{V}_{\mathrm{EE}}$	Negative Supply Voltage Range	V	4.5	Note 6,7	16.0
$\mathrm{~V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	Positive to negative Supply Range	V	9.0	10.0	16.0
$\mathrm{~T}_{\mathrm{OPER}}$	Operating Temperature	${ }^{\circ} \mathrm{C}$	-40	+25	+85
I_{OH}	DC Output Current - High	mA	-35	-	-
I_{OL}	DC Output Current - Low	mA	-	-	35
$\mathrm{~T}_{\text {rise }}, \mathrm{T}_{\text {fall }}$	Maximum Input Rise or Fall Time	ns	-	-	500

4. Unused logic inputs must be tied to either GND or V_{cc}.
5. All voltages are relative to GND.
6. $\mathrm{V}_{\mathrm{OPT}}$ is grounded in most cases when FETs are driven. To improve the intermodulation performance and the 1 dB compression point of GaAs control devices at low frequencies, $\mathrm{V}_{\text {opt }}$ can be increased to between 1.0 and 2.0 V . The nonlinear characteristics of the GaAs control devices will approximate performance at 500 MHz . It should be noted that the control current that is on the GaAs MMICs will increase when positive controls are applied.
7. When this driver is used to drive PIN diodes, $\mathrm{V}_{\mathrm{OPT}}$ is often set to +5.0 V , with V_{EE} set to -5.0 V .
8. 0.01 uF decoupling capacitors are required on the power supply lines.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Silicon Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these devices.

Truth Table

Input	Outputs	
Cn	An	Bn
Logic "0"	V_{EE}	$\mathrm{V}_{\mathrm{OPT}}$
Logic "1"	$\mathrm{V}_{\mathrm{OPT}}$	V_{EE}

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affliates reserve the right to make changes to the product(s) or information contained herein without notice.

DC Characteristics over Guaranteed Operating Range

Symbol	Parameter	Test Conditions	Units	Min.	Typ.	Max.
V_{IH}	Input High Voltage	Guaranteed High Input Voltage	V	2.0	-	-
VIL	Input Low Voltage	Guaranteed Low Input Voltage	V	-	-	0.8
V_{OH}	Output High Voltage	$\mathrm{I}_{\mathrm{OH}}=-0.5 \mathrm{~mA}$	V	$\mathrm{V}_{\text {OPT }}-0.1$	-	-
Vol	Output Low Voltage	$\mathrm{l}_{\mathrm{OL}}=0.5 \mathrm{~mA}$	V	-	-	$\mathrm{V}_{\mathrm{EE}}+0.1$
I_{N}	Input Leakage Current (per Input)	$\begin{aligned} & V_{I N}=V_{C C} \text { or } G N D, V_{E E}=\min , \\ & V_{C C}=\max , V_{O P T}=\text { min or max } \end{aligned}$	nA	-250	-	250
Іон	DC Output Current—High (per Output)	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{OPT}}=5.0 \mathrm{~V} \end{gathered}$	mA	-35	-	-
loL	DC Output Current—Low (per Output)	$\begin{gathered} V_{\mathrm{CC}}=5.0 \mathrm{~V}, \quad V_{\mathrm{EE}}=-5.0 \mathrm{~V}, \\ V_{\mathrm{OPT}}=5.0 \mathrm{~V} \end{gathered}$	mA	-	-	35
ІOH_SPIKE	Peak Spike Output Current (Rising Edge) (per Output)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{E E}=-5.0 \mathrm{~V}, \\ & V_{\mathrm{OPT}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$	mA	-	35	-
lol_SPIKE	Peak Spike Output Current (Falling Edge) (per Output)	$\begin{aligned} & V_{C C}=5.0 \mathrm{~V}, V_{\mathrm{EE}}=-5.0 \mathrm{~V}, \\ & V_{\mathrm{OPT}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF} \end{aligned}$	mA	-	50	-
Icc	Quiescent Supply Current	$\begin{gathered} \mathrm{V}_{I N}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{EE}}=-10.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=5.5 \mathrm{~V}, \\ \text { No Output Load } \end{gathered}$	$\mu \mathrm{A}$	-	-	20
$\Delta \mathrm{I}_{\mathrm{cc}}$	Additional Supply Current (per TTL Input pin)	$\mathrm{V}_{C C}=\max , \mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$	mA	-	-	1.0
$\mathrm{I}_{\text {EE }}$	Quiescent Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{EE}}=-10.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=5.5 \mathrm{~V}, \\ \text { No Output Load } \end{gathered}$	$\mu \mathrm{A}$	-	-	20
$\mathrm{I}_{\text {OPT }}$	Quiescent Supply Current	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND}, \mathrm{~V}_{\mathrm{EE}}=-10.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=5.5 \mathrm{~V}, \\ \text { No Output Load } \end{gathered}$	$\mu \mathrm{A}$	-	-	20
$\mathrm{R}_{\text {NFET }}$	Output Resistance NFET On (to V_{EE})	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{OPT}} & =5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=-4.9 \mathrm{~V} \\ & +25^{\circ} \mathrm{C}, \text { Note } 9 \end{aligned}$	Ω	-	40	-
$\mathrm{R}_{\text {PFET }}$	Output Resistance PFET On (to $V_{\text {Opt }}$)	$\begin{aligned} \mathrm{V}_{\mathrm{CC}} & =5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{OPT}} & =5.0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=4.9 \mathrm{~V} \\ & +25^{\circ} \mathrm{C}, \text { Note } 9 \end{aligned}$	Ω	-	45	-

9. See plot of $R_{\text {NFET }}$ and $R_{\text {PFET }}$ for variations over temperature for driving 4.99 k and 82 ohm resistive load. (Note that this corresponds to 1 mA and 33 mA currents at 25°).

AC Characteristics Over Guaranteed Operating Range ${ }^{10}$

		Typical performance			
Symbol	Parameter	$\mathbf{- 4 0 ^ { \circ }} \mathbf{C}$	$\mathbf{+ 2 5}^{\circ} \mathbf{C}$	$\mathbf{+ 8 5}^{\circ} \mathbf{C}$	Unit
$\mathrm{T}_{\text {PLH }}$	Propagation Delay	20	22	$\mathbf{2 5}$	ns
$\mathrm{~T}_{\text {PHL }}$	Propagation Delay	20	22	25	ns
$\mathrm{~T}_{\text {TLH }}$	Output Transition Time (Rising Edge)	5	6	8	ns
$\mathrm{~T}_{\text {THL }}$	Output Transition Time (Falling Edge)	5	6	8	ns
$\mathrm{~T}_{\text {skew }}$	Delay Skew	2	2	2	ns
$\mathrm{PRF}(\max)$	50\% Duty Cycle	DC	-	10	MHz
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5	5	5	pF
$\mathrm{C}_{\text {PDC }}$	Power Dissipation Capacitance ${ }^{11}$	50	50	50	pF
$\mathrm{C}_{\text {PDE }}$	Power Dissipation Capacitance ${ }^{11}$	100	100	100	pF

10. $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OPT}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=$ min or max, $\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, input LOGIC1 $=3 \mathrm{~V}$, LOGIC0 $=0 \mathrm{~V}$, Trise, Tfall $=6 \mathrm{~ns}$.
11. Total Power Dissipation is calculated by the following formula: $P D=V_{C C}{ }^{2} f C_{P D C}+V_{E E}{ }^{2} f C_{\text {PDE }}$

Switching Waveforms

Output Resistance vs. Temperature ${ }^{12}$

12. Output resistance were measured under the condition of $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=5.0 \mathrm{~V}$, and $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{~V}$, with load resistors from outputs to ground.

Absolute Maximum Ratings ${ }^{13}$

Symbol	Parameter	Min	Max	Unit
V_{cc}	Positive DC Supply Voltage	-0.5	7.0	V
Icc	Positive DC Supply Current ($-0.5 \mathrm{~V} \leq \mathrm{V}_{\mathbb{N}} \leq 0.8 \mathrm{~V} ; 2.0 \mathrm{~V} \leq$ $\left.\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{IN}} \leq 7.0 \mathrm{~V}\right)$	-	20	mA
$V_{\text {EE }}$	Negative DC Supply Voltage	-11.0	0.5	V
$\mathrm{I}_{\text {EE }}$	Negative DC Supply Current (per Output) ${ }^{14}$	-50	-	mA
$V_{\text {OPT }}$	Optional DC Output Supply Voltage	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Iopt	Optional DC Output Supply Current (per Output) ${ }^{14}$	-	50	V
$V_{\text {OPT }}-V_{\text {EE }}$	Output to Negative Supply Voltage Range	-0.5	18.0	V
$\mathrm{V}_{\text {CC }}$ - $\mathrm{V}_{\text {EE }}$	Positive to Negative Supply Voltage Range	-0.5	18.0	V
$V_{\text {IN }}$	DC Input Voltage	-0.5 Note 15	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Vo	DC Output Voltage	$\mathrm{V}_{\mathrm{EE}}-0.5$	$\mathrm{V}_{\mathrm{OPT}}+0.5$	V
$P_{\text {D }}{ }^{16}$	Power Dissipation in Still Air	-	500	mW
Toper	Operating Temperature	-55	125	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature	-65	150	${ }^{\circ} \mathrm{C}$
ESD	ESD Sensitivity	2.0	-	kV

13. All voltages are referenced to GND. All inputs and outputs incorporate latch-up protection structures.
14. The maximum $I_{E E}$ and $I_{\text {OPT }}$ are specified under the condition of $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{OPT}}=5.5 \mathrm{~V}$, and the total power dissipation is within 500 mW in still air.
15. If $\mathrm{V}_{\mathrm{CC}} \geq 6.5 \mathrm{~V}$, then the minimum for $\mathrm{V}_{\mathbb{I}}$ is $\mathrm{V}_{\mathrm{CC}}-7.0 \mathrm{~V}$.
16. Derate $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from $65^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Equivalent Output Circuit for An and Bn Outputs (33 mA load at 25º)

Typical Application for a SPDT Switch ${ }^{17,18}$

[^1]- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588

Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Quad Driver for GaAs FET or PIN Diode
Svitches and Attenuators

Description of Circuit

The MADR-009190-000100 provides four pairs of complementary outputs that are each capable of driving a maximum of $\pm 35 \mathrm{~mA}$ into a load. In addition, with proper capacitor selection (C3 \& C4) used in parallel with the current setting resistor (R1 \& R2), additional spiking current can be achieved.

To achieve the Non-Inverting and Inverting complementary voltages, each output is switched between two internal FETs. The FETs are connected to $\mathrm{V}_{\text {OPT }}$ for the positive output and V_{EE} for the negative output. $\mathrm{V}_{\text {OPT }}$ and V_{EE} are adjustable for various configurations and have the following limitations: V_{EE} can be no more negative than -10.5 volts; $V_{\text {OPT }}$ can be no more positive than +5.5 volts AND $V_{\text {OPT }}$ must always be less than or equal to V_{Cc}. Increasing $\mathrm{V}_{\mathrm{OPT}}$ beyond V_{CC} will prevent the device from switching states when commanded to by the logic input. The most common configuration is to drive V_{EE} at -5.0 volts with V_{CC} and $\mathrm{V}_{\mathrm{OPT}}$ tied together at +5.0 volts.

Lead-Free, SOIC-16 ${ }^{\dagger}$

${ }^{\dagger}$ Reference Application Note M538 for lead-free solder reflow recommendations.
Plating is 100% matte tin over copper.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400

India Tel: +91.80.43537383 - China Tel: +86.21.2407.1588
Visit www.macomtech.com for additional data sheets and product information.
M/A-COM Technology Solutions Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

Die Outline

Pad Configuration ${ }^{19,20}$
Die Size: $1325 \times 1735 \mu \mathrm{~m}$ (nominal)

Pad No.	$\underset{\text { nominal }}{X(\mu m)}$	$\begin{gathered} Y(\mu \mathrm{~m}) \\ \text { nominal } \end{gathered}$	$\begin{gathered} \text { Pad Size }(\mu \mathrm{m}) \\ \text { X x Y } \end{gathered}$
0	0	0	Lower left edge of die
1	482.95	1489	85×85
2	217.85	1534.6	85×85
3	200.45	1407.9	85×85
4	200.45	1114.2	85×85
5	200.45	820.45	85×85
6	200.45	526.8	85×85
7	200.45	229.35	85×85
8	395.6	157.95	85×85
9	777.55	181.5	132×94
10	1126.35	181.75	132×94
11	1126.35	436.85	132×94
12	1126.35	691.95	132×94
13	1126.35	947.05	132×94
14	1126.35	1202.15	132×94
15	1126.35	1457.3	132×94
16	767.9	1553.5	132×94
17	1325	1735	Upper right edge of die

19. All X, Y dimensions are at bond pad center.
20. Die thickness is 8.0 mils.

- North America Tel: 800.366.2266 • Europe Tel: +353.21.244.6400
- India Tel: +91.80 .43537383 - China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.

[^0]: * Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

[^1]: 17. Note that the description of the above circuit is on the following page.
 18. Only one section of MADR-009190-000100 is shown. The other three sections will have equivalent performance.
