NEC SX-8 Cluster Documentation

Holger Berger

January 18, 2008

Contents

[1.5 Filesystem Policy|
1.6 Support/Feedback|

2 Running Application|

2.1 Compiling for SX| e
2.2 Compiling for TX7(Asama,al)
2.3 Creating Batchjobs|
2.3.1 Single-nodejobs|
[2.3.2 Multi-nodejobs|.

2.4 Scheduling| e
[2.5 Monitoring the System|o

3 Program Development]

|4 porting hints|

4.1 porting to SX| L e e e e e e e
4.2 Porting to TAG4] L

|5 Performance Tuning|
[5.1 Usage of hardware information|
[5.2 Profiling on subroutine Basis| oo

[5.4 Hardware information on loop basis|
5.5 T/Ol. . e
[5.5.1 example timings of Fortran I/O[.

[5.6.1 guimode|

N 3NN NN i

10
10
11
12
12
12

15
15
15

17
17
18

CONTENTS

Chapter 1

Introduction

After HLRS offered access to SX-6 nodes for a year, the SX-8 system is now in operation. SX-8 and
SX-6 are sharing a lot of characteristics, so SX-6 users should feel comfortable with SX-8 from the
beginning. SX-8 offers with 72 nodes with 8 fast vector CPUs a so far unknown level of performance
and throughput to HLRS users.

1.1 Hardware and Architecture

The system consists of two scalar frontend system, and 72 SX-8 nodes. The scalar frontend systems
is a 32CPU Itanium?2 system called asama, with a very large memory of 240 GB and a scalar frontend
systems called al with 32CPU Itanium2 and 512GB of memory. Each CPU has a large 6MB L3
cache.

The frontend systems and the backend systems share fast filesystems. A total of two 9TB filesys-
tems is used for user homes. One 80TB filesystem contain workspace which can be used during
runtime of jobs. The workspace filesystem can sustain about 10GB/s in aggregate, for a single node
about 600MB/s are possible.

The backend systems are 72 SX-8 vector nodes, each having 8 CPUs of 16 Gflops peak (2Ghz).
Each node has 128 GB, about 124 GB are usable for applications.

The vector systems have a fast interconnect called IXS, which is a central crossbar switch. Each
node can send and receive with 16 GB/s in each direction. You can expect an MPI latency around 5
microseconds for small messages. Each SX-8 CPU can access the main memory with 64 GB/s.

Features:

e Cluster of 72 SX-8 nodes

Frontend is two times 32way NEC TX-7

Batchsystem: NQSII

Operating System: TX7: SUSE SLES9, SX8: SUPER-UX 15.1

1.2 Access

All former SX-6 users are registered for SX-8 and new frontend TX-7 al.hww.de. Password was
copied from crossi.hww.de. The al.hww.de is integrated in the HLRS LDAP concept, so if you
change the password on any other LDAP machine, it is reflected on al.hww.de as well.

5

6 CHAPTER 1. INTRODUCTION

The only way to access the SX-8 nodes is through the TX-7 frontend using sshto asama . hww. de
or al.hww.de (ssh) Information on how to set up ssh can be found on our webserver at http://www.hlrs.de/hw-
access/platforms/ssh.html.

1.3 Main differences for SX-6 users

e new home directory

e small changes to mandantory NQSII limits

1.4 Usage

Interactive usage is allowed only on two systems. Prefered usage is on al, where one can cross-
compile for SX-8 and submit and monitor batch jobs.
To test executables, one can login to v00 .hww.de from al using rsh. Thre are user limits in
place limiting memory and cpu usage, and only 4 CPUs are available for interactive parallel tests.
Prefered usage of the system is through the batch system.

1.4.1 HOME directories

Users homedirectories and the global scratch directories are located on two fileservers in a fail-over
configuration. Please note that the .profile in your home is for ksh as it is used on SX, and setup for
VI editing mode. You might want to create a .bash_profile containt set -o emacs in your home to get
normal bash command line editing on asama.

Default startup files (.profile,...) for your environmental settings can be found in:

/usr/local/skel

Only these startupfiles support the HWW cluster features like MPI, Compiler settings,...(see Pro-
gram Development chap. ?? and Environment Settings chap. ??).

Please also note that zcsh is not supported as a login shell.

1.4.2 SCRATCH directories

Different from SX-6 cluster, there is no default SCRDIR variable anymore.

You should still run your job in a working directory, but are now responsible to obtain it from the
system.

Therefore, a mechanism called workspaces is implemented, which allows you to keep data outside
your home not only during a run, but also after a run.

The idea is to allocate disk space for a number of days, and giving it a name, which allows you
identify a workspace, and to distinguish several workspaces.

To get a new workspace, use the following line in your batch script:

SCR=‘ws_allocate SimulatesomeThing 10

SCR will contain the name of a directory which exists for 10 days, is on one of the temporary
(faster) filesystems, and is owned by the caller.

The directory is not deleted after the job, but after 10 days of realworld time. In a second job, you
can just use the same line to get the same directory. Please not that the directory of the example will
be deleted 10 days after first usage, no matter how often it is used and what duration was specified in
the subsequent calls.

http://www.hlrs.de/hw-access/platforms/ssh.html
http://www.hlrs.de/hw-access/platforms/ssh.html
http://www.hlrs.de/hw-access/platforms/ssh.html

1.5. FILESYSTEM POLICY 7

If you want to monitor the progress of a batch job, you can find out the name of the workspace
on al.hww.de with the command ws_11 st, which lists all workspaces, their names and locations as
well as remaining live time.

1.5 Filesystem Policy

IMPORTANT! NO BACKUP!! There is NO backup done of any user data located on HWW sys-
tems. The only protection of your data is the redundant disk subsystem. This RAID system (Raid3)
is able to detect a failure of one component (e.g. a single disk or a controller). There is NO way to
recover inadvertently removed data. Users have to backup critical data on their local site!

The homedirectory of each user is available on all nodes. A workspace is also available on all
nodes and the frontend. To make most effective use of your workspace, try to do large, non-formatted
I/O. Prefered blocksizes are larger than 4 MB per I/O request. (background: the filesystems are striped
over 8 raid units each. To make best usage of the disk arrays, I/O has to be large)

1.6 Support/Feedback

Please report all problems to:

e System Administrators:

— Bernd Krischok
Phone: +49-711-685-87221
e-Mail: krischok@hlrs.de

— Thomas Beisel
Phone: +49-711-685-87220
e-Mail: beisel @hlrs.de

e Onsite NEC Support:

— Holger Berger
Phone: +49-711-685-87257
e-Mail: hberger@hpce.nec.com

— Danny Sternkopf
Phone: +49-711-685-87256
e-Mail: dsternkopf@hpce.nec.com

CHAPTER 1. INTRODUCTION

Chapter 2

Running Application

This chapter describes how to compile an application for SX-8 and the frontend system asama, al,
how to run an application, and how to create and monitor a batch job running on the vector system.

2.1 Compiling for SX

Remark for SX-6 users: SX-6 binaries will work on SX-8, but recompilation is recommanded anyhow
to get best performance. SX-8 binaries will not work on SX-6.

Prefered way to compile for SX is usage of the crosscompilers on al. The compilers running on
al are a lot faster, and do not vaste expensive vector CPU resources for a non-vectorizable task.

For Fortran77 and Fortran90 codes, use sxf90 command, for C and C++ codes, use sxcc and
sxc++ commands. If you create libraries, use the sxmake and sxar commands.

For MPI applications, use sxmpif90, sxmpicc and sxmpic++. Those commands alreday
link the right MPI library, no further path or library specification is necessary.

For detailed information about compilers, refer to the online manuals http://www.hlrs.de/hw-
access/platforms/sx8/doku/

Important note: The executables created by those compilers can not be executed on al. Please
login to v0O to test those executables, or submit a batch job.

To executa an MPI executable on SX, please use the mpirun command on the SX v00. Please
see section about batch processing how to use it in batch scripts.

2.2 Compiling for TX7(Asama,al)

Note: The TX7 are intented for usage like compilation for SX-8 (see previous section) and pre- and
postprocessing of data for SX nodes. It is not foremost intended as a computation plattform on its
own.

To create executables for TX7 Itanium CPU, use for Fortran77 and Fortran90 the e f ¢ command,
for C++ and C the ecc command.

For MPI, use mpi£90 and mpicc commands. To run a MPI programm, use mpirun command
on asama.

For detailed documentation about compilers, see on asama /opt /NECcomp/compiler90/docs/c_ug-lnx.pdf
for C users guide and /opt/NECcomp/compiler90/docs/for_ug_lnx.pdf for a Fortran
users guide. Please note that nice ftrace feature of SX is available on TX as well in slightly different
form.

http://www.hlrs.de/hw-access/platforms/sx8/doku/
http://www.hlrs.de/hw-access/platforms/sx8/doku/

10 CHAPTER 2. RUNNING APPLICATION

BLAS and Lapack can be found in /opt /MathKeisan/lib.

2.3 Creating Batch jobs

Asama, Al and SX run one instance of the batch system NQSII, which is the follow on to the NQS
which was used on SX-5.

Important note for SX-6 users: some new mandantory limits where introduced to garantuee
smooth operations for all users. Please check your old batch jobs!

The basic policy is: 68 nodes are used for MPI multinode jobs, using more than 8 CPUs. Prefered
are multiples of 8, like 16 or 32. Four nodes are used for other jobs. One node (v00) is used for
interactive testing plus batch jobs. The four nodes run small test jobs, serial jobs and the smaller
parallel MPI jobs and multithreaded jobs.

The batch system has two main entry points which do further sorting of the jobs. Use only those
two entry points.

For all non-multi-node jobs, use the queue dg, for multinode jobs use multi. Queue can be
specified on gsub command line using gsub -qg dqg or in the batch script. Please treat 8 CPU jobs
as multinode jobs, throughput and wallclock times will be much better when running on a dedicated
node.

2.3.1 Single-node jobs

Here is an example batch script for a normal single node job:

#!/usr/bin/ksh

#PBS —g dg # queue: dg for <8 CPUs

#PBS -1 cpunum_job=4 # cpus per Node <trrrrrrl NEW
#PBS -1 cpunum_prc=4 # cpus per Node <tirrrrrl NEW
#PBS -b 1 # number of nodes

#PBS -1 elapstim_reg=02:00:00 # max wallclock time <trrrrrnrl NEW

#PBS -1 cputim_job=02:00:00 # max accumulated cputime per job
#PBS -1 cputim_prc=01:55:00 # max accumulated cputime per process
#PBS -1 memsz_Jjob=10gb # max accumulated memory

#PBS —-A <account code> # Your Account code, see login message (without <>!)
#PBS —-3j o # Jjoin stdout/stderr

#PBS —-N MyJob # job name

#PBS -M jo@user # you should always specify your email address
SCR=‘ws_allocate Runl 2‘ # workspace for 2 days

cd $SCR

cp SHOME/code/mycode

export OMP_NUM_THREADS=2 # use 2 OpenMP threads per MPI process, only for mult
export MPIPROGINF=YES # give some performance information

export MPIMULTITASKMIX=YES # we are hybrid openmp + mpi

export MPISUSPEND=ON # be nice to others in shared mode, don’t busy wait
mpirun -np 2 ./mycode # start the code with 2 mpi processes

cp outfile \$HOME/code
please be so kind to clean your workspace if files are not needed any more!

2.3. CREATING BATCH JOBS 11

rm *.data # ... or whatever your files are called

This example shows a 4 CPU jobs, where two MPI processes spawn two threads each using
OpenMP. The total CPU time is below 2 hours, and the jobs does not use more than 10 GB of memory.
It is running on one node. The Jobname is for your convenience only, the account code should always
be specified (otherwise, your jobs can not start!). After 2 hours, the job will be stopped due to elapsed
time limit.

If you do not specify a CPU number, 1 CPU is assumed. Please note: The number of CPUs spec-
ified here has a meaning. It is used to find free resources by the batch system, and it is used to assign
CPUs to your processes during runtime. But you still have to specify F_RSVTASK, OMP_NUM_THREAD
or mpirun -np to really get this number of CPUs in the mix of processes and threads you want them
to have.

A serial job can use up to 64 GB, and parallel job up to 124 GB.

2.3.2 Multi-node jobs

#!/usr/bin/ksh

#PBS -g multi

#PBS -T mpisx

#PBS -1 cpunum_Jjob=8
#PBS -b 4 number of nodes

#PBS -1 elapstim_reg=02:00:00 # max wallclock time <trrrrrrl NEW
#PBS -1 cputim_job=08:00:00 # max accumulated cputime per NODE

#PBS -1 cputim_prc=07:55:00 # max accumulated cputime per process

queue: dgq for <=8 CPUs
Job type: mpisx for MPI
cpus per Node rrrrrrrrrrrrend

HH= = = H

#PBS -1 memsz_job=10gb # memory per node

#PBS —-A <account code> # Your Account code, see login message (without <>!)
#PBS -j o # Join stdout/stderr

#PBS —-N MyJob # job name

#PBS -M joQuser # you should always specify your email

SCR=‘ws_allocate Runl 2%
cd S$SCR

export OMP_NUM_THREADS=8
export MPIPROGINF=YES
export F_FILEINF=YES
export MPIMULTITASKMIX=YES
MPIEXPORT="OMP_NUM_THREADS F_FILEINEF"
export MPIEXPORT

mpirun -nn 4 -nnp 1 ./mycode

cp outfile S$HOME/code

=+

workspace for 2 days

please be so kind and clean up your workspace from files no longer needed

This is a multinode example. Please note the directive —T mpisx, which is mandantory for
multinode jobs!

This job used 4 nodes. It uses the first 4 nodes which are assigned by the batch system (-nn 4),
one mpi process per node (-nnp 1). Each of them creates 8 OpenMP threads. Please note the usage of

12 CHAPTER 2. RUNNING APPLICATION

MPIEXPORT to make sure that processes created on other nodes get the environment variables set by
mpirun (it does NOT export all variables by default).

2.3.3 Batch Jobs on Scalar Frontends

You can also execute batch-jobs on the scalar frontends asama and al. Those systems are scheduled
by basic scheduler (see next chapter) based upon memory usage only.

#!/usr/bin/ksh

#PBS -q tx7

#PBS -1 memsz_Jjob=10gb
#PBS -j o

#PBS -N MyJob

#PBS -M JjoQuser

queue: tx7 for frontends
memory usage

join stdout/stderr

job name

HH= = = =

you should always specify your email

2.4 Scheduling

There are three schedulers running, a simple batch scheduler, the so called extended resource sched-
uler ERS and the JobManipulator JMD.

The standard scheduler takes very small jobs (less than 10 GB, less than 600 seconds CPU time,
less or equal 4 CPUs) and starts them in a queue called test. This queue can execute on the first four
nodes, one job per node at a time. The jobs are served in the order they are submitted.

Jobs with less than 20 minutes walltime and small number of nodes (1 or 2) have good chances to
get a quick start at nodes v04 and v05.

Medium sized jobs in the seriall and small-parallel queues (less than 8 CPUs) are scheduled by
the ERS on the first 4 nodes, all other jobs (one node and more) are scheduled by JMD on nodes 6 to
71. ERS and JMD are a fair-share scheduler. Each user of the system has the right for the same share
of the system. A user which is making heavy use of the system will get lower priority, to make sure
other users can use as many resources, if they want.

Jobs are judged according to past usage of the system of the owner and resource request of the
request. A smaller request is prefered, so it makes sense to make realistic resource allocations.

JMD is a backfilling scheduler, it tries to fill gaps created by larger jobs with smaller (shorter)
jobs. Jobs with 16 or more nodes get special treatment, they can not be overtaken by other jobs of
normal priority.

2.5 Monitoring the System

To monitor system usage, you can use gstat command of NQSII to see you requests, or you can use
gs script on al to see all running and pending requests.
gstat output looks like:

RequestID RegName UserName Queue Pri STT S Memory

For detailed description of all fields, please see the gstat manpage on al. Jobs shows the number of
nodes a job requested. Please note that CPU time is cpu time of current running process within the
job. If you want to see accumulated time of the whole request, use gstat -c 1.

2.5. MONITORING THE SYSTEM 13

To learn on which nodes your job is running, use gstat -J.
To see all jobs in the system, please use gs on al (not available on SX):

STAT REQ-ID OWNER NAME QUEUE NODES TIME TIME ESTIMATIONS

gs shows the requests on the order as they will be started by ERS or JMD. For privacy reasons,
you can not see all details of other users requests, but you can see all requests in the system, waiting
or running.

The times and memory numbers show is current consumption and requested limit. The ESTIMA-
TIONS colum gives the estimated time when the job will start, this estimations is based on a 72 hours
prediction.

To delete a job, use the gdel command. Please note: qdel of NQSII does send a SIGTERM first,
followed by a SIGKILL after 5 seconds. You can change the number of seconds using —g option. By
using —g -1, SIGKILL is send immediatly.

Please avoid to write large stdout, please redirect stdout and stderr of you application into a file
in your jobs directory. Writing large stdout requires spool space of unpredictable size, and always
causes problems when trying to store back those files into users home directories.

Tip: If you want to make sure a batch request is able to clean up if it hits a time limit, specify a
second limit. In addition to cputim_job you can specify a cput im_prc. Specify that limit a few
minutes shorter, and the process hiting the limit (probably your simulation) will be killed first, and
your batch job has some time to cleanup. Same applies to elapsed time limit.

14

CHAPTER 2. RUNNING APPLICATION

Chapter 3

Program Development

this chapter is work in progress.

3.1 Libraries
3.1.1 MathKeisan (BLAS/LAPACK)

Blas and Lapack are in the standard library search path. Just use ~1blas and —1lapack to use it.
See online manuals for other available tools in MathKeisan package.

15

16

CHAPTER 3. PROGRAM DEVELOPMENT

Chapter 4

porting hints

4.1 porting to SX
This is a collection of pitfalls people use to get trapped when porting to SX.

e Code dumps core after C malloc () is used. Make sure you include std1lib.h when using
malloc (), otherwise, return value is assumed to be int (C standard), and the SX calling
conventions strips significant bits from the address. Make sure outcome of malloc () is never
assigned to int, SX is LP64, not ILP64, a pointer does not fit into an int.

e Only 2GB of memory can be allocated with malloc (). For historical reasons, size_t is
32bit, as well as sizeof (xvoid) is 64bit. Use —size_t 64 for C or Fortran compilers to
get rid of that restriction.

e My C code seems to have a problem with integer divisions. SX uses 56bit precision division
for 64bit integer types per default. Use -xint switch to get full 64bit division (and loose some
performance).

o Code stops with Loop count is greater than that assumed by the compiler: loop-count=n Com-
piler has sometimes to make a guess about loop length, to be able to allocate some work vectors
(only for partially vectorized loops). This educated guess might be wrong. Help the compiler
by giving -W,-pvctl,noassume,loopcnt=n where n is the maximum loop count, or a larger value.

e How are Fortran function names in the calling convention? Simply write them lowercase and
append an underscore. Example:

PROGRAM TEST
CALL CFUNC (5)
END

void cfunc_ (int =xa) {

}

e What about parameters? Fortran is passing by reference, so use pointers in C for scalars. Char-
acter strings lead to an additional parameter of type long at the end of the parameter list, con-
taining the length of the string. See C compilers manual chapter 4 for details.

17

18

4.2

CHAPTER 4. PORTING HINTS

How to link when C and Fortran are mixed? Link with f90. He makes it right. When using C++
or using C++/SX as C compiler, use C++/SX as linker, using the option -f90lib.

Porting to IA64

where are the fortran functions etime, system, getarg on Asama? Use -Vaxlib
linker switch to link a compatibility library including those non-standard functions.

is there a BLAS/LAPACK library on asama? Use —L./opt /MathKeisan/1lib/ -1llapack
—-1blas to use optimized versions of the libraries.

where is documentation of the compilers? Search in /opt /NECcomp/compiler70/docs
for for ug_lnx.pdf and c_.ug_lnx.pdf.

How can I speed up fortran I/0? Set the F_SETBUF=4096 to make the fortran library using
large buffer size.

why can I not read binary files written on SX on asama? SX is big-endian byte order (like SUN,
IBM, SGI), Asama is little endian (like Linux x86 PCs). Fortran users can try to use endian
conversion of the runtime library, search for F_UFMTENDIAN in either SX or Asama compiler
manuals.

How can I measure performance? You can use unix profiling by linking with —p and using
gprof -b —no-graph to format the gmon . out file, or you can use —~ftrace compiler switch,
which will lead to some output after the program run. To redirect the output into a file, use
FTRACE OUTPUT=filename. Read the chapter about simple performace analysis of the
compiler manuals for more information.

Chapter 5

Performance Tuning

5.1 Usage of hardware information

To get simple information about your application, please set F_PROGINF for Fortran or C_ PROGINF
for C/C++ programms. Possible values are YES and DETATIL. If this environment variable is set dur-
ing runtime, an application prints out some timing information at programm end. Example F_PROGINF=YES:

**%xx%%x Program Information s#*xx%*x%

Real Time (sec) : 26.804331
User Time (sec) : 26.275639
Sys Time (sec) : 0.308973
Vector Time (sec) : 24.559803
Inst. Count : 2334758597.
V. Inst. Count : 1305590123.
V. Element Count : 271274447129.
FLOP Count : 129865319762.
MOPS : 10363.348892
MFLOPS : 4942 .422871
VLEN : 207.779181
V. Op. Ratio (%) : 99.622051
Memory Size (MB) : 48.031250
Start Time (date) : 2004/04/13 14:54:42
End Time (date) : 2004/04/13 14:55:09

Example F_PROGINF=DETAIL:

*%%%x%x Program Information sx*xxxx

Real Time (sec) : 26.768830
User Time (sec) : 26.289378
Sys Time (sec) : 0.309090
Vector Time (sec) : 24.571109
Inst. Count : 2334758675.
V. Inst. Count : 1305590123.
V. Element Count : 271274447129.
FLOP Count : 129865319762.

19

CHAPTER 5. PERFORMANCE TUNING

MOPS 10357.932794
MFLOPS 4939.839858
VLEN 207.779181
V. Op. Ratio (%) 99.622051
Memory Size (MB) 48.031250
MIPS : 88.809961
I-Cache (sec) : 0.041723
O—-Cache (sec) : 0.059745
Bank (sec) : 0.000690
Start Time (date) 2004/04/13 14:56:24
End Time (date) 2004/04/13 14:56:51

Using this variable does only cause constant overhead (reading counters at the beginning, reading
at end and computing and priunting of values).

General strategy for tuning is:

vector time should be as close at possible to user time. This means, V. Op. Ratio will be close
to 100. MFLOPS should be as high as possible (as long as the application is doing floating point
operations). A value between 2000 and 4500 is respectable. If it exceeds 9000, celebrate a miracle.

To achieve good performance, O-Cache (operand cache misses in seconds) should be close to 0.
Vectorized code can not cause o-cache misses! If V. Op. Ratio is 99, but performance in MFLOPS is
still bad, there are several possibilities:

e no floating point operations in the code
e short vector length VLEN
e high bank times

VLEM is the average vector length which is processed by vector pipes. So this is average of
(looplength)modulo256, and can therefor not exceed 256, no matter how long loops are. It should
be close to 256. The longer the loops are, the more efficient the CPU can work. Try to achieve loop
length in the order of thousands.

High bank times show a high number of bank conflicts. A bank conflict is caused when a memory
bank is accessed before the bank busy time from the last access is over. If this is high, search for
power of two leading dimensions in the code. Distances between memory accesses in the form of a
multiple of a large power of two should be avoided. Try to have odd or prime distances, best is stride 1
(in unit of words). When using lookup tables, high bank conflict times can arise as well if the lookup
always hits the same value (what might be a consequence of cache optimizations). Try to make copies
of the tables, and iterate over the tables.

5.2 Profiling on subroutine Basis

Simple Unix profiling by linking the code with —p option and calling prof <executable name>
processing the generated mon . out file does not cause large overhead. This gives you simple infor-
mation how much time was spent in which subroutine.

If yoy want to know the number of calls of the subroutine as well, the subroutines have to recom-
piled with —p as well. This causes more overhead.

5.3. HARDWARE INFORMATION ON SUBROUTINE BASIS 21

5.3 Hardware information on subroutine Basis

To get more detailled information about subroutines, use ft race feature of the compilers.

Compile all subroutines you want to examine, but at least the entry and the exit of your application
with —ftrace (Fortran and C/C++).

Run the application, and keep the generated ftrace.out files. Use the sxftrace/ftrace tool
to get the actual information out of the binary file.

Example output:

Execution : Tue Apr 13 15:33:11 2004
Total CPU : 0:00729"189

PROG.UNIT FREQUENCY EXCLUSIVE AVER.TIME MOPS MFLOPS V.OP AVER. VECTO

TIME [sec] (%) [msec] RATIO V.LEN TIME
chempo 1000 13.452(46.1) 13.452 8832.9 4631.5 99.54 217.1 11.18
kraft 1100 13.410(45.9) 12.191 11377.9 5013.2 99.81 201.0 13.2
zufall 4324320 2.181(7.5) 0.001 148.7 5.9 0.00 0.0 0.00
1352 1 0.059(0.2) 59.033 328.0 173.3 85.06 237.9 0.00
korekt 1100 0.041(0.1) 0.037 7792.8 3285.9 99.71 222.8 0.03
voraus 1100 0.035(0.1) 0.032 8537.4 3976.9 99.76 242.1 0.03
transt 1100 0.005(0.0) 0.005 11972.9 5976.8 99.84 216.0 0.0
skal 1100 0.004(0.0) 0.004 3554.4 1170.5 98.09 240.0 0.00
geschw 1 0.002(0.0) 1.726 161.4 30.3 12.72 230.0 0.00
gitter 1 0.000(0.0) 0.071 333.2 43.3 21.77 235.6 0.00
init 100 0.000(0.0) 0.000 249.3 0.1 43.79 235.6 0.00
psi22 4 0.000(0.0) 0.004 110.8 15.1 0.00 0.0 0.00
phi22 4 0.000(0.0) 0.002 112.9 15.3 0.00 0.0 0.00
cor22 2 0.000(0.0) 0.004 86.7 8.6 0.00 0.0 0.00
cutoff 1 0.000(0.0) 0.002 89.4 5.3 0.00 0.0 0.00
total 4330934 29.189(100.0) 0.007 9333.6 4449.1 99.57 207.8 24.55

5.4 Hardware information on loop basis

If you need to have more detailled information of the contents of a subroutine, regions within subrou-
tines can be defined to be used with ftrace.
Enclose the section to be examined by special ftrace function calls:

CALL FTRACE_REGION_BEGIN ("REGION_A")
DO I=1,10000

22 CHAPTER 5. PERFORMANCE TUNING

A(I)=I
ENDDO
CALL FTRACE_REGION_END ("REGION_A")

or in C/C++:

ftrace_region_begin("region_a");
/* region =/
ftrace_region_end("region_a");

The name is a name you can choose, it has to match in the begin and end call. This will be used
as the identifier in the ftrace printout.

5.5 1/O

Because underlaying GFS uses striping, large I/O should be done to make efficient use of the re-
sources.

Try to make I/O in multiple of 4MB blocks, if this is possible. For fortran, setting the units I/O
buffer to 4 MB improves I/O speed a lot. Use export F_SETBUF<unit>=4096 to set buffersize
for fortran unit <unit>.

To assist in tuning of fortran I/O, it is possible to generate statitics of the I/O (only fortran). Set
export F_FILEINF=YES orexport F_FILEINF=DETAIL to getinformation about I/O sizes,
achieved transfer bandwidth and settings of the fortran units.

In C, use setvbuf to increase the buffer size of buffered I/O calls fwrite and fread. Call
setvbuf after fopen but before first actual I/O.

In C++, use pubsetbuf like in this example:

#include <fstream>
using namespace std;

int main(int argc, char xxargv)

{
char buffer[4096+x4096];
fstream out_file("huhu",ios::applios::out);
out_file.rdbuf () -—>pubsetbuf (buffer,4096%x4096) ;
out_file << "Hallo" << endl;

5.5.1 example timings of Fortran I/O

The following timings on Asama and SX show, that formatted I/O is very slow, and any kind of
unformatted I/O is faster. Example shows the effect of setting F_SETBUF=4086 as well. Idea is to
write on a 2D array without the border. One can see that writing out the array with the border is the
fasted. Code is following little test:

program fio

include ’'mpif.h’

5.5. I/O

real*8 :: feld(5000,5000)
realx8 :: buffer(4998,4998)
real stimes (2)

real etimes (2)

real d

real*8 timel,time?2

call MPI Init (ierr)

open (10, file="test.dat’)

print «,’write(10,*) feld’

timel= MPI_wtime (ierr)

d= etime (stimes)

write (10, x) feld

time2= MPI_wtime (ierr)

d= etime (etimes)

print x,etimes(l)-stimes(l),etimes (2)-stimes (2),time2-timel
close (10)

open (10, file="test.dat’, form="unformatted’, status='"replace’)
print x,’write(10) feld’

timel= MPI_wtime (ierr)

d= etime (stimes)

write (10) feld

time2= MPI_wtime (ierr)

d= etime (etimes)

print x,etimes(l)-stimes(l),etimes(2)-stimes (2),time2-timel
close (10)

open (10, file="test.dat’, form="unformatted’, status='"replace’)
print x,’write(10) feld(2:4999,1i)’
timel= MPI wtime (ierr)
d= etime (stimes)
do 1=2,4999
write (10) feld(2:4999,1)
end do
time2= MPI_wtime (ierr)
d= etime (etimes)
print x,etimes(l)-stimes(l),etimes (2)-stimes (2),time2-timel
close (10)

open (10, file="test.dat’, form="unformatted’, status='"replace’)
print x,’write(10) buffer’

timel= MPI_wtime (ierr)

d= etime (stimes)

do 1i=2,4999

24 CHAPTER 5. PERFORMANCE TUNING

buffer(:,i-1)=feld(2:4999,1)
end do
write (10) buffer
time2= MPI_wtime (ierr)
d= etime (etimes)
print x,etimes(l)-stimes(l),etimes(2)-stimes (2),time2-timel
close (10)

call MPI Finalize(ierr)

end program fio

Printed timing is user time, system time and wallclock time.

asama, without F_SETBUF
write (10, x) feld

20.16895 2.594727 78.4661729335785
write (10) feld
3.906250E-02 0.8447266 15.8332600593567
write(10) feld(2:4999,1)
6.835937E-02 1.784180 36.0356490612030
write (10) buffer
0.2294922 0.9208984 17.2316899299622

asama, with F_SETBUF=4096
write (10, x) feld

20.55859 5.859375E-02 24.3654959201813
write (10) feld

0.2050781 1.171875E-02 1.03501415252686
write (10) feld(2:4999,1)

0.2031250 8.007813E-02 7.26763582229614
write (10) buffer

0.2695313 0.1474609 1.13990497589111

So by avoiding formatted I/O and setting the buffer size, it is possible to speed up I/O by a factor
of 70 on Asama.

SX-6, without F_SETBUF

write (10, x) feld

83.49000 39.87500 168.8392629427835

write (10) feld

0.000000E+00 4.499816E-02 0.5913347122259438
write (10) feld(2:4999,1)

0.1600037 7.735001 21.64797224197537

write (10) buffer

1.499939E-02 4.000091E-02 0.6230526024010032

SX-6, with F_SETBUF=4096

5.6. PSUITE 25

write (10, x) feld

81.13000 3.790000 99.40329434094019

write (10) feld

0.000000E+00 3.999996E-02 0.5728084549773484
write (10) feld(2:4999,1)

6.000518E-02 0.1949999 1.330135225551203
write (10) buffer

9.994506E-03 4.500007E-02 0.5996705272700638

On SX-6, a speedup of 280 can be achieved.
Copying data in one buffer and writing that buffer with one I/O call is faster on both machine than
using small I/O with array syntax.

5.6 Psuite

5.6.1 gui mode

Section to be written, please refer for the moment beeing to psuite manual of the online documetation.

5.6.2 command line interface

Here is a short starter guide how to use the command line interface of psuite.

e compile and link executable with —pspa option (not listed in compiler manuals), which will
allow further measurements, but causes some overhead (not for production use!)

e start pspfl <executable>
e select where to measure, e.g. (PSperf) select routine all

e choose what to be measured, e.g. (PSperf) collect cpu elapse instructions
iteration memory

e save the information into the executable: (PSperf) save executable
e run the executable on the SX

o get the .pdf file

o tell psuite the name of the pdf file: (PSperf) set pdf <pdfname>

e to get reports, do (PSperf) analyze

To select loops in a subroutine, give a select loop in <sub>. This selects all outermost loops
in the subroutine.

If you want all reports to be sorted according to CPU time usage, do aexport PSPERF_USEPARC=YES
before starting pspfl.

To store a report into a file, just use analyze ><filename>.

