POWER MANAGEMENT

Description

The SC604A is a very high efficiency charge pump white LED driver driver from the mAhXLife ${ }^{\text {TM }}$ family of products, optimized for Li-lon battery applications.

The four (4) LED outputs are current matched for consistent LED brightness. Extremely low battery current is achieved by automatically reconfiguring the charge pump to match circuit conditions. Using four LEDs, each at 20 mA for a total $\mathrm{I}_{\text {out }}=80 \mathrm{~mA}$, the SC604A can use less than 83 mA from the supply for most of the battery life.

Patented low noise mode switching circuitry and constant output current allow the use of extremely small input and output capacitors.

Features

- Very high efficiency over 90% of battery life
- Peak efficiency over 92%
- Current regulation for up to 4 LEDs
- Digital 3 bit output control logic
- Current matching tolerance of $\pm 3 \%$ typical
- Wide current range per LED [0.5mA - 30mA]
- High available total LED current $=4 \cdot I_{\text {LED }}=120 \mathrm{~mA}$
- Low Shutdown Current: $1 \mu \mathrm{~A}$ typical
- Soft start / In-rush current limiting

Short circuit protection
MLP-16 [4x4] Package
Fixed frequency 250 kHz
$1 \mathrm{x}, 1.5 \mathrm{x}$ and 2 x charge pump modes of operation

Applications

Cellular phones			
\bullet	LED backlighting		
PDA power supplies		\quad	Electronic books
:---			
Wireless web appliances			
LCD Modules			

Patent Pending

Typical Application Circuit

POWER MANAGEMENT

Absolute Maximum Ratings

Exceeding the specifications below may result in permanent damage to the device, or device malfunction. Operation outside of the parameters specified in the Electrical Characteristics section is not implied.

Parameter	Symbol	Maximum	Units
Supply Voltage	VIN	-0.3 to +7.0	V
Output Voltage	$\mathrm{V}_{\text {OUT }}$	-0.3 to +7.0	V
$\mathrm{~V}_{\text {out }}$ Short Circuit Duration	SC	Indefinite	s
Thermal Resistance, Junction to Ambient ${ }^{(1)}$	$\theta_{\text {JA }}$	V^{\prime}	
Operating Ambient	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature Range	T_{J}	-40 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {STG }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
IR Reflow Temperature SC604AIMLTR	$\mathrm{T}_{\text {LEAD }}$	240	${ }^{\circ} \mathrm{C}$
IR Reflow Temperature SC604AIMLTRT	$\mathrm{T}_{\text {LEAD }}$	260	${ }^{\circ} \mathrm{C}$

Note: (1) By JESD51 standards

Electrical Characteristics

Unless specified: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{IN}}=2.85 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1.0 \mu \mathrm{~F}(\mathrm{ESR}=0.03 \Omega)$. Typical values $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, LED $\mathrm{V}_{\mathrm{F}}=3.4 \mathrm{~V}$. This device is ESD sensitive. Use of standard ESD handling precautions is required.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Input Supply Voltage	VIN		2.5		6.5	V
Current into LEDs 1, 2, 3 and 4	$I_{\text {LED }}$	$\mathrm{R}_{\text {SET }}=24.0 \mathrm{k} \Omega$		20		mA
		$\mathrm{R}_{\text {SET }}=94.0 \mathrm{k} \Omega$		5.0		mA
		$2.7 \mathrm{~V}<\mathrm{VIN}<5.5 \mathrm{~V}$	0.5		20	mA
		$3.1 \mathrm{~V}<\mathrm{VIN}<5.5 \mathrm{~V}$	0.5		30	mA
Quiescent Current	I_{Q}	$\mathrm{I}_{\text {OUT }}=5 \mathrm{~mA}$		1500	2000	$\mu \mathrm{A}$
		Enable $=0 \mathrm{~V}$		1	7	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Led }}$ Accuracy	$\mathrm{I}_{\text {LED-ERR }}$	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {LED }} \leq 30 \mathrm{~mA}$		± 5		\%
Current Matching	$\mathrm{I}_{\text {LED-LED-ERR }}$	$0.5 \mathrm{~mA} \leq \mathrm{I}_{\text {LED }} \leq 30 \mathrm{~mA}$		± 3		\%
1x mode to $1.5 x$ mode transition voltage (V_{IN} falling)	$\mathrm{V}_{\text {TRANS1X }}$	$V_{\text {LED }}=3.6 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=80 \mathrm{~mA}, \mathrm{I}_{\text {LED }}=20 \mathrm{~mA}$		3.796		V
$1.5 x$ mode to $2 x$ mode transition voltage (V_{IN} falling)	$\mathrm{V}_{\text {TRANS1.5x }}$	$\mathrm{V}_{\text {LED }}=3.6 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=80 \mathrm{~mA}, \mathrm{I}_{\text {LED }}=20 \mathrm{~mA}$		3.320		V
Oscillator Frequency	$\mathrm{f}_{\text {osc }}$		212.5	250	287.5	kHz
Output Over Voltage Protection (1)	$\mathrm{V}_{\text {ovp }}$	Open circuit at any LED that is programmed to be in the On state	5.0			V

POWER MANAGEMENT

Electrical Characteristics (Cont.)
Unless specified: $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, $\mathrm{V}_{\text {IN }}=2.85 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{C} 1=\mathrm{C} 2=1.0 \mu \mathrm{~F}(\mathrm{ESR}=0.03 \Omega)$. Typical values $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, LED $\mathrm{V}_{\mathrm{F}}=3.4 \mathrm{~V}$.

Parameter	Symbol	Conditions	Min	Typ	Max
Units					
Input Current Limit	ILIMIT	Short circuit applied from VOUT to GND		220	850
Input High Threshold	V_{IH}	Input high logic threshold			
Input Low Threshold	V_{IL}	Input low logic threshold	1.3		
Input High Current	I_{IH}	$\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IN}}$		V	
Input Low current	I_{IL}	$\mathrm{V}_{\mathrm{IL}}=\mathrm{GND}$	0.4	V	

Notes:
(1) Guaranteed by design

POWER MANAGEMENT

Definitions

$I_{\text {Led }}$ Accuracy

The LED current is determined by the $\mathrm{R}_{\text {SET }}$ resistor ($\mathrm{I}_{\text {LED }}$ vs. $R_{\text {SET }}$ data is found on pages 9 and 10). This term does not include the tolerance of the resistor $R_{\text {SET }}$. If maximum accuracy is required, a precision resistor is needed. To calculate the error $\mathrm{I}_{\text {Led.ERR }}[\%]$, use the formula

$$
I_{\text {LED-ERR }}[\%]= \pm \frac{\left(1_{\text {LED }}\right)_{\text {MEASURED }}^{-1} \text { LED }^{I_{\text {LED }}} \cdot 100 \% ~}{\text { (}}
$$

Current Matching

Current Matching refers to the difference in current from one LED to the next. The Δl between any two LEDs will meet this requirement. To calculate the error $\mathrm{I}_{\text {Led-LED-ERR }}$, first identify the highest and lowest value of the 4 LED currents, and use the formula:

$$
\begin{aligned}
& I_{\text {LED-LED-ERR }}[\%]=\left[\frac{I_{\text {max }}}{\frac{I_{\text {max }}+I_{\operatorname{MIN}}}{2}}-1\right] \cdot 100 \% \\
& \text { Or } \\
& {\left[\frac{I_{\text {min }}}{\frac{I_{\operatorname{MAX}}+\operatorname{IMIN}}{2}}-1\right] \cdot 100 \%}
\end{aligned}
$$

which reduces to $\pm\left[\frac{I_{\text {max }}-I_{\text {min }}}{I_{\text {max }}+I_{\text {min }}}\right] \cdot 100 \%$

1x Mode, 1.5x Mode and 2x Mode

1x Mode, 1.5x Mode and $2 x$ Mode all refer to the charge pump configuration. These modes boost the battery input voltage and ensure there is enough voltage at $\mathrm{V}_{\text {out }}$ so that the regulated current will flow through the LEDs and return via the $\mathrm{I}_{\text {LED }}$ pins.

Input Current

The total input current of the SC604A is a function of the sum of the LED currents, the charge pump mode and the quiescent current. The quiescent current trend is charted on page 12 and used to calculate I_{IN} in the following examples.

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{N}}=\mathrm{I}_{\mathrm{OUT}} \cdot \text { Mode }+\mathrm{I}_{\mathrm{Q}}= \\
& \left(\mathrm{I}_{\text {LED1 } 1}+\mathrm{I}_{\text {LED } 2}+\mathrm{I}_{\text {LED } 3}+\mathrm{I}_{\text {LED } 4}\right) \cdot \text { Mode }+\mathrm{I}_{\mathrm{Q}}
\end{aligned}
$$

Example 1:

$$
\begin{aligned}
& \text { Mode }=1 \mathrm{x}, \mathrm{I}_{\mathrm{Q}}=2.4 \mathrm{~mA}, \\
& \mathrm{I}_{\mathrm{LED} 1}+\mathrm{I}_{\mathrm{LED} 2}+\mathrm{I}_{\mathrm{LED} 3}+\mathrm{I}_{\mathrm{LEDD} 4}=4 \cdot 15 \mathrm{~mA}=60 \mathrm{~mA}
\end{aligned}
$$

Answer 1:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{IN}}=\mathrm{I}_{\text {out }} \cdot \mathrm{Mode}+\mathrm{I}_{\mathrm{Q}}=60 \mathrm{~mA} \cdot 1+2.4 \mathrm{~mA}= \\
& 62.4 \mathrm{~mA}
\end{aligned}
$$

Example 2:

$$
\begin{aligned}
& \text { Mode }=1.5 \mathrm{x}, \mathrm{I}_{\mathrm{Q}}=2.4 \mathrm{~mA}, \\
& \mathrm{I}_{\text {LED } 1}+\mathrm{I}_{\mathrm{LED} 2}+\mathrm{I}_{\mathrm{LED} 3}+\mathrm{I}_{\mathrm{LED} 4}=4 \cdot 15 \mathrm{~mA}=60 \mathrm{~mA}
\end{aligned}
$$

Answer 2:

$$
\begin{aligned}
& I_{\mathbb{N}}=I_{\text {out }} \cdot \text { Mode }+I_{Q}=60 \mathrm{~mA} \cdot 1.5+2.4 \mathrm{~mA}= \\
& 92.4 \mathrm{~mA}
\end{aligned}
$$

Mode Transition Voltage

Mode transition voltage refers to the input voltage at the point just before the charge pump changes from a weaker mode to a stronger mode. $V_{\text {TRANS1X }}$ is the transition from 1 x to 1.5 x mode, and $\mathrm{V}_{\text {TRANS } 1.5 \mathrm{x}}$ is the transition from $1.5 x$ to $2 x$ mode. Equations for $\mathrm{V}_{\text {TRANS1X }}$ and $\mathrm{V}_{\text {TRANS1.5x }}$ are given on page 7.

POWER MANAGEMENT

Pin Configuration

Ordering Information

DEVICE	PACKAGE ${ }^{(1)}$
SC604AIMLTR	MLP-16
SC604AIMLTRT ${ }^{(2)}$	MLP-16
SC604EVB	Evaluation Board

Notes:
(1) Available in tape and reel only. A reel contains 3000 devices.
(2) Available in lead-free package only. This product is fully WEEE and RoHS compliant.

Pin Descriptions

Pin	Pin Name	Pin Function
1	EN	Active high enable
2	CTRLO	Output control bit 0 (see Table 1 on page 6)
3	CTRL1	Output control bit 1 (see Table 1 on page 6)
4	CTRL2	Output control bit 2 (see Table 1 on page 6)
5	ISET	LED current is set by the value of the resistor $\mathrm{R}_{\text {SET }}$ connected from the ISET pin to ground. Do not short the ISET pin. $\mathrm{V}_{\text {ISET }}$ is typically 1.22 V
6	Vout	Voltage output source for connection to the LED anodes
7	VIN	Voltage input
8	C1+	Positive terminal of bucket capacitor 1
9	C1-	Negative terminal of bucket capacitor 1
10	C2-	Negative terminal of bucket capacitor 2
11	C2+	Positive terminal of bucket capacitor 2
12	GND	Ground
13	ILED4	Current sink for LED 4 [If not in use, pin must be left open] ${ }^{(1)}$
14	ILED3	Current sink for LED 3 [If not in use, pin may be left open, grounded, or connected to $\left.\mathrm{V}_{\text {N1 }}\right]^{(1)}$
15	ILED2	Current sink for LED 2 [If not in use, pin may be left open, grounded, or connected to $\left.\mathrm{V}_{\mathbb{N}}\right]^{(1)}$
16	ILED1	Current sink for LED 1 [If not in use, pin may be left open, grounded, or connected to $\left.\mathrm{V}_{\mathbb{N}}\right]^{(1)}$
T	Thermal Pad	Pad for heatsinking purposes. Connect to ground plane using multiple vias. Not connected Internally

POWER MANAGEMENT

Block Diagram

Table 1- LED Enable Logic

Control Inputs ${ }^{(1)}$				Output Status		
CTRL2	CTRL1	CTRLO	LED4	LED3	LED2	LED1
0	0	0	OFF	OFF	OFF	ON
0	0	1	OFF	OFF	ON	OFF
0	1	0	OFF	ON	OFF	OFF
0	1	1	ON	OFF	OFF	OFF
1	0	0	OFF	OFF	ON	ON
1	1	0	OFF	ON	ON	ON
1	1	1	ON	ON	ON	ON
1	0	$0 F F$	OFF	OFF	OFF	

Notes:
(1) The sequencing of Enable and logic state $\operatorname{CTRL}\{2,1,0\}=[1,1,1]$ will affect quiescent state current. $I_{Q}=100 \mu \mathrm{~A}$ if Enable transitions high before $\operatorname{CTRL}\{2,1,0\}$ transitions to $[1,1,1] . I_{0}=400 \mu \mathrm{~A}$ if Enable transitions high after $\operatorname{CTRL}\{2,1,0\}$ transitions to [1, 1, 1]. If Enable $=$ high and $\operatorname{CTRL}\{2,1,0\}=[1,1$, 1] is to be used for an extended period of time, it is recommended that Enable $=$ High when change to the [1, 1, 1] state to achieve the lower I_{Q} level. www. DataSheet 4U.com \qquad

POWER MANAGEMENT

Applications Information

Detailed Description

The SC604A contains a fractional charge pump, mode selection circuit, output selection logic, current setting detection circuit, and four current sense circuits. All are depicted in the block diagram on page 6 .

The fractional charge pump multiplies the input voltage a multiple of $1,1.5$ or 2 times the input voltage. The charge pump switches at a fixed 250 kHz whenever the mode is $1.5 x$ or $2 x$. The charge pump does not switch during $1 x$ mode, saving power and improving efficiency.

The mode selection circuit automatically selects the mode as $1 \mathrm{x}, 1.5 \mathrm{x}$ or 2 x based on circuit conditions such as LED voltage, input voltage and load current. 1 x is the most efficient mode, followed by 1.5 x and 2 x modes. At lower voltages a stronger mode may be needed to maintain regulation, if so, the mode will change first to $1.5 x$ and then to $2 x$. $2 x$ mode usually operates for a much shorter run time compared to $1 x$ mode, and $2 x$ mode maintains the output until the battery is discharged to 2.85 V or less. The LED requiring the highest voltage drop will determine the output voltage needed to drive all outputs with adequate bias. Comparing all cathodes and regulating VOUT for the LED with the lowest cathode voltage ensures sufficient bias for all LEDs.

Output selection logic enables control over the LED outputs for on and off functions with eight (8) different output states. The states are defined in Table 1 on page 6.

The current set and detection circuit uses an external resistor and a 1.22 V reference to program the LED current.

Four (4) current regulating circuits sink matched currents from the LEDs. LEDs with matched forward voltage will produce the best possible matched currents. For best matching performance it is recommended that the $\Delta \mathrm{Vf}$ between LEDs be under 250 mV . (For more information on $\Delta \mathrm{Vf}$ considerations refer to Semtech application notes).

Designing for Lowest Possible Battery Current

The SC604A efficiency and battery current are shown in the plots that follow on page 8. For this example, 4 LEDs are matched at 15 mA each. The battery current remains Iow at 63 mA well into the Li-lon battery range as indicated in the plot by a boundary box. The SC604A uses $1 x$ mode $\left(I_{\text {IN }}=I_{\text {out }}+l_{Q}\right)$ for part of the input voltage range, conserving significant energy from the battery. A similar four (4) output device uses only $1.5 x$ mode $\left(I_{\mathbb{N}}=I_{\text {ouT }} \cdot 1.5+\mathrm{I}_{\mathrm{Q}}\right)$ over the input voltage range. This means that the SC604A will have about 25% higher efficiency than a $1.5 x$ only charge pump. Where the competition drops off at 3 V , the SC604A uses 2 x mode to extend the operating range down to a battery voltage of only 2.85 V .

The input voltages at which the mode transitions occur are dependent on the forward voltage V_{F} of the LED used and the LED current $\mathrm{I}_{\text {LED }}$. To keep the battery current low and in the $1 x$ mode for as long as possible, it is best to choose an LED with a lower V_{F}.

The mode transition voltages $\mathrm{V}_{\text {TRANS1X }}$ and $\mathrm{V}_{\text {TRANS1.5X }}$ can be estimated by the following equations:

$$
\mathrm{V}_{\text {TRANS1X }}=\mathrm{V}_{\mathrm{F}}+\mathrm{V}_{\text {ILED }}+\left[(\# \text { of LEDs used }) \cdot I_{\text {LED }} \cdot 1.2\right]
$$

$V_{\text {TRANS1.5X }}=\frac{V_{F}+V_{\text {ILED }}+\left[(\# \text { of LEDs used }) \cdot I_{\text {LED }} \cdot 16\right]}{1.5}$
where, V_{F} is the forward LED voltage measured from anode to cathode, $\mathrm{V}_{\text {ILED }}$ is the voltage at the ILED pin, typically $\mathrm{V}_{\text {ILED }}=100 \mathrm{mV}, \mathrm{I}_{\text {LED }}$ is the LED current.

Power efficiency can now be estimated for comparison with the intended battery voltage range.

Efficiency [\%] $=\frac{V_{\text {OUT }} \cdot \text { lout }^{V_{\text {IN }} \cdot\left(\text { lout } \cdot \text { Mode }+\mathrm{I}_{\mathrm{Q}}\right)}}{} \cdot 100 \%$

POWER MANAGEMENT

POWER MANAGEMENT

Methods for Setting LED Current

There are four methods for setting and adjusting the LED current outlined here. The methods are:

1) $R_{\text {SET }}$ only
2) Analog Reference $V_{A D J}$
3) NMOS switched parallel resistors
4) PWM Input

Method 1. The most basic means of setting the LED current is with a resistor connected from ISET to GND, as shown in the application circuit on Page 1. The resistor $\mathrm{R}_{\text {SEt }}$ establishes the reference current needed for a constant LED current. Values of $R_{\text {SET }}$ for a fixed LED current are given in Table 2 and also in the below graph, "Typical $\mathrm{R}_{\text {SET }}$ Resistance vs. LED Current". Methods 2 and 3 on page 10 are for setting the LED current allow for brightness control.

Table 2-Resistor Value Selection

$\mathrm{R}_{\text {SET }}$ Value			
ILED[mA]	$\mathrm{R}_{\text {SET }}[\mathrm{k} \Omega]$	Nearest $\mathrm{k} \Omega$ Standard Value	Standard Value \% Difference
0.5	931	931	0.0%
1	471	470	-0.2%
2	237	237	0.0%
3	155	154	-0.6%
5	94.0	93.1	-1.0%
10	47.5	47.5	0.0%
20	31.83	31.6	-0.7%
30	24.0	24.0	0.0%
16.5	16.5	0.0%	

Typical $R_{\text {SET }}$ Resistance vs. LED Current

POWER MANAGEMENT

Methods for Setting LED Current (Cont.)

Method 2. The example circuit in Figure 1 uses a $16.5 \mathrm{k} \Omega$ resistor and an analog input DC voltage, V_{AD}, which varies from 1.2 V to 0 V to control LED current from 1 mA to 30 mA . Table 3 shows the resulting output. If necessary, the analog $\mathrm{V}_{A D J}$ voltage can be sourced from a voltage higher than 1.2 V , but the source must be divided down so that the $\mathrm{V}_{\mathrm{ADJ}}$, mode will not exceed 1.2V. For lower current applications and for higher resolution, a larger resistor may be substituted in this circuit. PWM applications are also possible with this circuit by application of RC filtering. (Consult with Semtech for detailed application support).

Figure 1-Analog Voltage for LED Current Control

Table 3-Analog Voltage for LED Current Control

$\mathbf{V}_{\mathrm{AD} J}[\mathbf{V}]$	$\mathbf{I}_{\mathrm{LED}}[\mathrm{mA}]$	$\mathbf{V}_{\mathrm{ADJ}}[\mathbf{V}]$	$\mathbf{I}_{\mathrm{LED}}[\mathrm{mA}]$
0.000	30.2	0.600	14.8
0.100	27.7	0.700	12.3
0.200	25.1	0.800	9.7
0.300	22.5	0.900	7.1
0.400	20.0	1.000	2.1
0.500	17.3	1.150	1.0

Method 3. The circuit in Figure 2 uses open drain NMOS transistors to set an equivalent resistance for $\mathrm{R}_{\text {SET }}$. Parallel combinations are switched on and off for R1, R2 and R3. R4 is always connected, so that a minimum value of LED current can be maintained at 1.5 mA .

Figure 2-3 Bit LED Current Control with Open Drain

POWER MANAGEMENT

Methods for Setting LED Current (Cont.)

Method 4. LED current may also be controlled by applying a PWM signal to any of the CTRL2, CTRL1 and CTRLO inputs. The circuit in Figure 3 turns 4 LEDs on and off by applying a PWM signal to the CTRLO input. This circuit uses resistor $\mathrm{R}_{\text {SET }}$ to set the on state current and the average LED current is then proportional to the percentage of on-time when the CTRLO pin is a logic low. Average LED current is approximately equal to:

$$
I_{\text {AVG }}=\left(\mathrm{t}_{\mathrm{ON}} \cdot I_{\text {LED_ON }}\right) /\left(\mathrm{t}_{\mathrm{ON}}+\mathrm{t}_{\mathrm{OFF}}\right)
$$

The recommended PWM frequency is between 100 Hz and 500 Hz . Due to start up delay and ramp up time, frequency $>500 \mathrm{~Hz}$ will result in error in the average value of $\mathrm{I}_{\text {Led }}$. Frequency $<100 \mathrm{~Hz}$ can naturally cause the LEDs to blink visibly.

In PWM applications where ILED4 is not used, keep ILED4 pin 13 open. Connecting ILED4 to ground can result in the charge pump operating in open loop mode. Connecting ILED4 to V_{IN} will work but will cause shutdown current I_{Q} to increase to approximately $\mathrm{V}_{\mathrm{IN}} / 100 \mathrm{k}$.

Figure 3-PWM Example Circuit

Table 4-Summary of LED Current Control

LED Current Control Method		Figure of Reference	LED Current Range	Brightness Control
Method 1	$R_{\text {SET }}$ Only	Circuit on Page 1	$0.5 \mathrm{~mA}<\mathrm{I}_{\text {LED }}<30 \mathrm{~mA}$	Fixed Brightness
Method 2	Analog Reference $\mathrm{V}_{\text {ADJ }}$	Figure 1 on Page 10	$0.5 \mathrm{~mA}<\mathrm{L}_{\text {LED }}<30 \mathrm{~mA}$	Infinite
Method 3	NMOS Switched Parallel Resistors	Figure 2 on Page 10	$0.5 \mathrm{~mA}<\mathrm{I}_{\text {LED }}<30 \mathrm{~mA}$	2^{N} Stepped Current Levels
Method 4	PWM CTRLx Input(s)	Figure 3 on page 11	$0.5 \mathrm{~mA}<\mathrm{I}_{\text {LED }}<30 \mathrm{~mA}$	Infinite

Note: 1) " N " is the number of NMOS transistors used for brightness control.

POWER MANAGEMENT

Typical Characteristics

Startup with 4 LEDs at 20 mA

Efficiency vs. Load at High Battery

Mode Transition Voltage vs. LED Voltage

www.DataSheet4U.com

OVP Event with LED Open Circuit

Efficiency vs. Load at Low Battery

Quiescent Current Trend

POWER MANAGEMENT

Typical Characteristics with 4 LEDs

Battery Current for 4 LEDs at 10 mA

Battery Current for 4 LEDs at 0.5 mA

Efficiency for 4 LEDs at 20mA

Efficiency for 4 LEDs at 10mA

Efficiency for 4 LEDs at 0.5mA

POWER MANAGEMENT

Typical Characteristics with 4 LEDs
Ripple in 1x Mode for $\mathbf{4}$ LEDs at $\mathbf{2 0 m A}$ Each

Ripple in 1.5x Mode for 4 LEDs at 20mA Each

Ripple in 2x Mode for 4 LEDs at 20mA Each

POWER MANAGEMENT

Evaluation Board Schematic

POWER MANAGEMENT

Evaluation Board Bill of Materials

Reference

U1
C1,C2,C3,C4
C6
D1,D2,D3,D4
J1, J2, J3, J4
JP1,JP2,JP3,JP4
JP5
JP6
JP7
CTRLO,CTRL1,CTRL2

RSET

R4
RADJ
J5

Value

SC604A
$1.0 \mu \mathrm{~F}$
$10 \mu \mathrm{~F}$

- Add LEDs to meet the requirements of the application.
- Jumpers in series with each LED.
- Jumpers to bypass each 1Ω sense resistor and bypass J1, J2, J3 and J4.
- Jumper for bypassing the R4 input resistor.
- Enable jumper.

Connects RSET potentiometer. Remove this jumper when using a fixed value R1.
Jumpers provide High/Low settings for the control bits.
RSET resistor
Evaluation board has $1 \mathrm{M} \Omega$ potentiometer in place of R1.
Series input resistor for studying effects of input resistance.
Resistor for analog brightness control. Apply test signal of 0 to 1.2 V at VADJ test point. Banana jacks for power supply.

Evaluation Board Gerber Plots

Top View

Bottom View

POWER MANAGEMENT

Outline Drawing- MLP-16 [4×4]

Marking Information

yyww = Datecode (Example: 0452)

POWER MANAGEMENT

Land Pattern MLP-16pin [4×4]

DIMENSIONS		
DIM	INCHES	MILLIMETERS
C	$(.148)$	(3.75)
G	.106	2.70
H	.091	2.30
K	.091	2.30
P	.026	0.65
X	.016	0.40
Y	.041	1.05
Z	.189	4.80

NOTES:

1. THIS LAND PATTERN IS FOR REFERENCE PURPOSES ONLY. CONSULT YOUR MANUFACTURING GROUP TO ENSURE YOUR COMPANY'S MANUFACTURING GUIDELINES ARE MET.

Contact Information

Semtech Corporation

Power Management Products Division
200 Flynn Road, Camarillo, CA 93012
Phone: (805) 498-2111 FAX (805)498-3804

Visit us at: www.semtech.com

