

Typical Applications

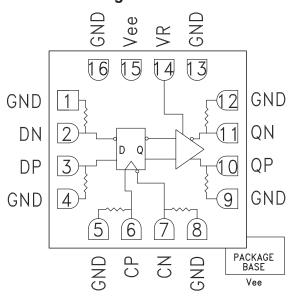
The HMC853LC3C is ideal for:

- RF ATE Applications
- Broadband Test & Measurement
- Serial Data Transmission up to 28 Gbps
- Digital Logic Systems up to 28 GHz

Features

Differential & Singe-Ended Operation Fast Rise and Fall Times: 15/14 ps

Low Power Consumption: 240 mW typ.


Programmable Differential

Output Voltage Swing: 700 - 1300 mV

Single Supply: -3.3V

16 Lead Ceramic 3x3mm SMT Package: 9mm²

Functional Diagram

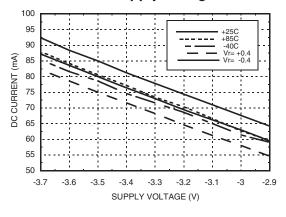
General Description

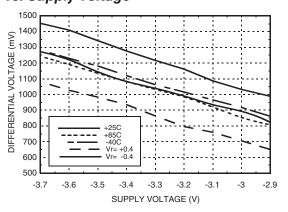
The HMC853LC3C is a D-type Flip Flop designed to support data transmission rates of up to 28 Gbps, and clock frequencies as high as 28 GHz. During normal operation, data is transferred to the outputs on the positive edge of the clock. Reversing the clock inputs allows for negative-edge triggered applications. The HMC853LC3C also features an output level control pin, VR, which allows for loss compensation or for signal level optimization.

All input signals to the HMC853LC3C are terminated with 50 Ohms to ground on-chip, and maybe either AC or DC coupled. The differential outputs of the HMC853LC3C may be either AC or DC coupled. Outputs can be connected directly to a 50 Ohm to ground terminated system, while DC blocking capacitors may be used if the terminating system is 50 Ohms to a non-ground DC voltage. The HMC853LC3C operates from a single -3.3V DC supply and is available in a ceramic RoHS compliant 3x3 mm SMT package.

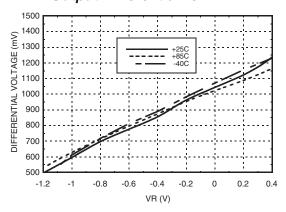
Electrical Specifications, $T_A = +25$ °C, Vee = -3.3V, VR = 0

Parameter	Conditions	Min.	Тур.	Max	Units
Power Supply Voltage		-3.6	-3.3	-3.0	٧
Power Supply Current			73		mA
Maximum Data Rate			28		Gbps
Maximum Clock Rate			28		GHz
Input Voltage Range		-1.0		+0.5	٧
Input Differential Voltage		0.1		2.0	V
Input Return Loss, Output Return Loss	Frequency <24 GHz		10		dB
Output Amplitude	Single-Ended, peak-to-peak		550		mVpp
	Differential, peak-to-peak		1100		mVpp
Output High Voltage			-10		mV



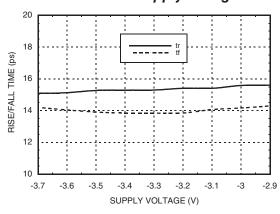

Electrical Specifications, (continued)

Parameter	Conditions	Min.	Тур.	Max	Units
Output Low Voltage			-570		mV
Output Rise / Fall Time	Differential, 20% - 80%		15 / 14		ps
Output Return Loss	Frequency <24 GHz		10		dB
Random Jitter Jr	rms			0.2	ps rms
Deterministic Jitter, Jd	peak-to-peak, 2 ¹⁵ -1 PRBS input ^[1]		2		ps, pp
Propagation Delay Clock to Data, td			101		ps
Clock Phase Margin	28 GHz		300		deg
Set Up Time, t _s			4		ps
Hold Time, t _h			3		ps

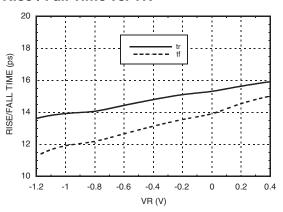

DC Current vs. Supply Voltage [1] [2]

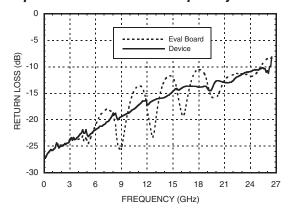
Output Differential vs. Supply Voltage [1] [2]

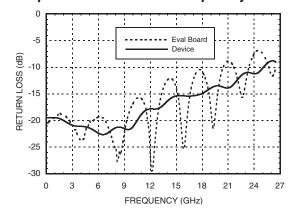
Output Differential vs. VR [2]


[1] VR = 0.0V

[2] Frequency = 13 GHz



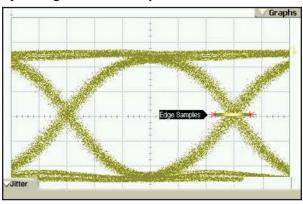

Rise / Fall Time vs. Supply Voltage [2]


Rise / Fall Time vs. VR [2]

Input Return Loss vs. Frequency [3]

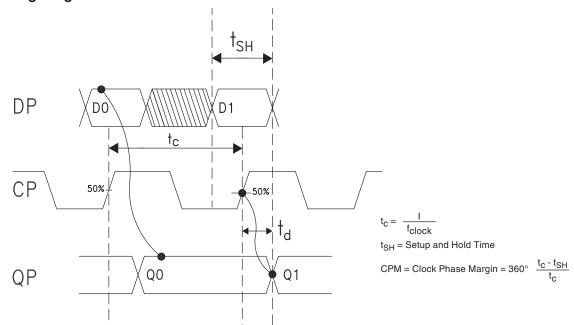
Output Return Loss vs. Frequency [3]

[1] VR = 0.0V


[2] Frequency = 13 GHz

[3] Device measured on evaluation board with single-ended time domain gating.

Eye Diagram @ 25 Gbps



Parameter	Conditions	
Bit Rate	24.9900 Gbps	
Pattern Length	127 Bits	
DJ (d-d)	2.0 ps	
Vertical Scale	100 mV / div	
Time Scale	6.7 ps / div	

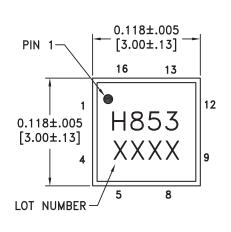
Test Conditions:

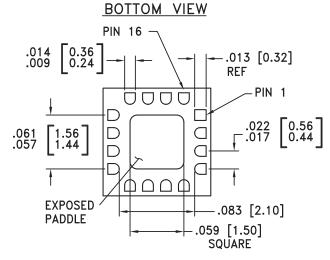
Pattern generated with a 2⁷-1 PN generator at 25 GHz. Measured using an Agilent 86100C 33 GHz DCA. Single ended 550 mV data and 400 mV clock inputs.

Timing Diagram

Truth Table

Input		Outputs
D	С	Q
L	L -> H	L
Н	L -> H	Н
Notes: D = DP - DN C = CP - CN Q = QP - QN	H - Positive Differer L - Negative Differe	•

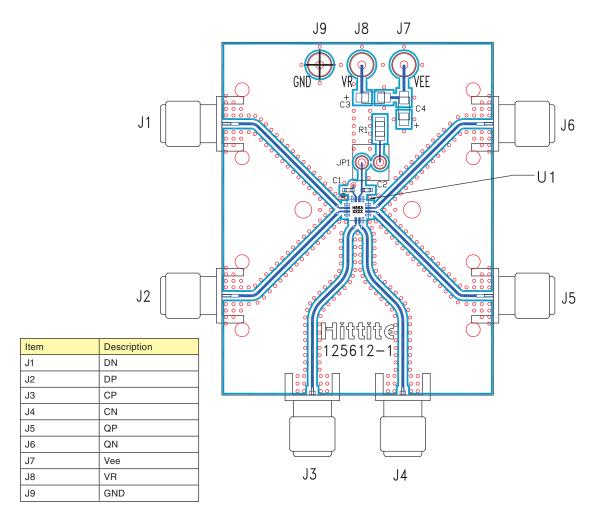



Absolute Maximum Ratings

Power Supply Voltage (Vee)	-3.75V to +0.5V	
Input Signals	-2V to +0.5V	
Output Signals	-1.5V to +1V	
Storage Temperature	-65°C to +150°C	
Operating Temperature	-40°C to +85°C	

Outline Drawing

- 1. PACKAGE BODY MATERIAL: ALUMINA
- 2. LEAD AND GROUND PADDLE PLATING:
- 30-80 MICROINCHES GOLD OVER 50 MICROINCHES MINIMUM NICKEL
- 3. DIMENSIONS ARE IN INCHES [MILLIMETERS].
- 4. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm DATUM -C-
- 6. ALL GROUND LEADS MUST BE SOLDERED TO PCB RF GROUND.
- 7. PADDLE MUST BE SOLDERED TO Vee.


Pin Descriptions

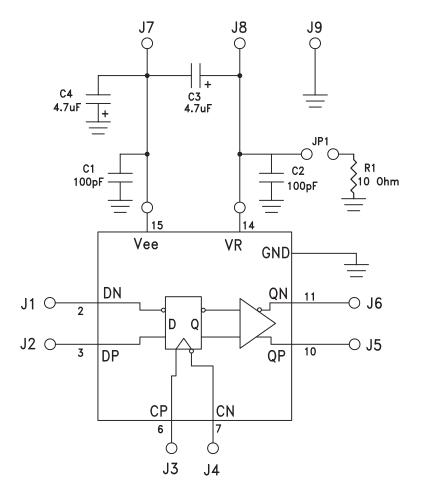
Pin Number	Function	Description	Interface Schematic
1, 4, 5, 8, 9, 12	GND	Signal Grounds	⊖ GND =
2, 3	DN, DP	Data Inputs	GND 500 DN, ODP
6, 7	CP, CN	Clock Inputs	GND 5000 CP,
10, 11	QP, QN	Data Outputs	GND 500 QP, QN
13, 16	GND	Supply Ground	GND =
14	VR	Output level control. Output level may be increased or decreased by applying a voltage to VR per "Output Differential vs. VR" plot.	VR O
15, Package Base	Vee	This pin and the exposed paddle must be connected to the negative voltage supply.	

Evaluation PCB

List of Materials for Evaluation PCB 125614 [1]

Item	Description
J1 - J6	PCB Mount K RF Connectors
J7 - J9	DC Pin
C1, C2	100 pF Capacitor, 0402 Pkg.
C3, C4	4.7 μF Capacitor, Tantalum
R1	10 Ohm Resistor, 0603 Pkg.
U1	HMC853LC3C High Speed Logic, D-Type Flip-Flop
PCB [2]	125612 Evaluation Board

^[1] Reference this number when ordering complete evaluation $\ensuremath{\mathsf{PCB}}$


The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads should be connected directly to the ground plane similar to that shown. The exposed metal package base must be connected to Vee. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Arlon 25FR

Application Circuit

