RENESAS

M50224FP

1.5 Channel Motor Driver-with DC/DC Control

REJ03F0070-0100Z Rev.1.0 Sep.19.2003

Description

M50224FP is the semiconductor integrated circuit which builds in the Motor drive circuit and DC/DC circuit suitable for the camera etc.

1.5 H bridges, the DC/DC circuit of 5VDC/DC, and AE operation circuit were built in one tip by adoption of a detailed CMOS process.

The reduction in power consumption and the miniaturization are considered as the high composition of the flexibility realized with one chip.

Features

- Minute CMOS process acceptance.Low consumption
- 1.5 full swing voltage drive H Bridge circuit built-in (PWM drive correspondence)
- DC/DC circuit built-in of 5V
- One AE operation circuit built-in AE (A sensor corresponds to amorphous and SPD)
- Low voltage incorrect operation prevention circuit thermole shutdown circuit built-in
- A thermometer, with a power save function

Application

motor driver for cameras etc

Recommend Operating Condition

Supply voltage range...... VB:1.6V to 3.5V

Rated supply voltage VB:3.0V

Pin Configuration

Block Diagram

Absolute Maximum Ratings

			(Ta=25°C, unless otherwise noted)			
Parameter	Symbol	Ratings	Unit	Remark		
Supply voltage1	VB	3.5	V	Note1		
Supply voltage2	VDD	6.5	V	Note1		
Supply voltage3	VDDH	VB+4.5	V	Note1		
Voltage between BCIN and PGBC	VDSS	15	V	Note1 (VGS=0V)		
Power dissipation	Pd	1000	mW	Note2 (Ta=25°C)		
Thermal derating	Kθ	-8.0	mW/°C	Note2 (Ta≥25°C)		
Pin input Voltage	Vin	0 to VDD+0.3	V	Note3		
Operating temperature	Topr	-10 to 50	°C			
Storage temperature	Tstg	-40 to 150	°C			

note1: As a principle, do not provide reversely

note2: Glass epoxy circuit board:70mm ×70mm ×1.6mm 1layer circuit board Cu Share 10%

note3: As a principle, do not provide over supply voltage or under ground voltage

Thermal Derating (Maximum Rating)

I/O Circuit Diagram

Electrical Characteristics

			(Ta =25°C	C, VB=3.0V,	herwise	noted)		
	D	•	The second states of	Limits			Unit	Note
	Parameter	Symbol	lest condition	MIN	ТҮР	MAX		
	Voltage range of operation	VB		2.0	3.0	3.5	V	
Consumption current	Current at the time of standby	IB1	SEL1:L SEL2:L SEL3:L	-	0.1	5	μA	
	Usual consuming current 1	IDD1	Only a DC/DC circuit is turned ON. SEL1:H SEL2:L SEL3 :L	-			mA	
	Usual consuming current 2	IDD2	DC/DC+AE+MD circuit ON SEL1:H SEL2:L SEL3 :H	-			mA	
	Hi level input current	IIH	VIN=VDD=5.0V	25	50	100	μA	Note1
Input te	Lo level input current	IIL		-1.0	-	-	μA	-
	Input pull down resistance	RIND		50	100	200	KΩ	
mina	Hi level input voltage	VIH	VDD=4.5 to 5.5V	VDDx0.7	-	VDD	V	-
<u>a</u> .	Lo level input voltage	VIL	VDD=4.5 to 5.5V	0	-	VDD x0.3	V	
DC/DC Circuit	Oscillation frequency	fosc	VDD=5.0V	44	63	82	kHz	Note2
	DUTY	DUTY	VDD=5.0V		75		%	-
	Operating start Voltage	Vstart1	VB voltage	-	-	2.0	V	
	Operating stop Voltage	Vstop1	VB voltage	-	-	1.0	V	
	Output voltage	Vout	VDD voltage	4.7	5.0	5.3	V	-
	Input stability	Δ Vout1	VB=2.0V to 3.3V IDD=50mA	-	-	100	mV	-
	Load stability	Δ Vout2	VB=2.85V IDD=100mA	-	-	100	mV	-
	Maximum output current	lout	VB=2.85V VDD≥4.5V	100	-	-	mA	
Cha	Oscillation frequency	ncy fosc2 VDD=5.0V		150	227	320	kHz	Note3
arge	DUTY	DUTY2	VDD=5.0V		50		%	-
pump circuit	Operating start Voltage	Vstart2	VDD voltage	4.5	5.0	5.3	V	
	Output voltage	Vout2	VDDH voltage	VB+2.6	VB+3.3	VB+4.5	V	-
	Operating voltage	VBDCM	VB voltage	1.6	-	3.5	V	
	ON Resistance RVON 1	RVON 1	Io=0.5A, VB=3V, VDD=5V, VDDH=5.5V	-	0.75	1.1	Ω	Note4
Motor driver(Maximum output current	Iomax	T < ***S	1.8	-	-	А	
	Continual maximum output current	locont		500	-	-	mA	
, 2)	Turn on time	TvON	RM=5.0Ω	-	0.5	2	μs	
	Turn off time	TvOFF	Fig. 1	-	0.1	0.5	μs	
	Output rise time Tr	Tr	-	-	0.3	1.0	μs	
-	Output fall time Tf	Tvf	-	-	0.01	0.2	μs	

				Limit				
Parameter		Symbol	Test condition	MIN	TYP	MAX	Unit	Note
	Temperature output absolute value	VTE			2713	3392	mV	
AE circuit (Thermometer)	Temperature output power supply voltage change 1	dVTE1	VDD=5.5V	-45	-	45	mV	
	Temperature output power supply voltage change 2	dVTE2	VDD=4.5V	-45	-	45	mV	
	Temperature output voltage load change	dVTE3	lo=-0.2mA	-20	-	20	mV	
	The amount of temperature output change	dVTE4	The Amount of Change (-10 to 50°C)	-22.7	-22.0	-19.1	mV	
AE circuit (Light m	Input range	IA		50p	-	120u	А	
	Light measurement output absolute value	VAE	IA=10nA		1914		mV	
	The amount of change per two step	dEVA1	IA=10nA -> 40nA		-242		mV	
eas	Output linearity 1	DEVS1	IA=50pA to 1.6nA	-30	-	30	%	
urer	Output linearity 2	DEVS2	IA=1.6nA to 410nA	-23	-	23	%	
nen	Output linearity 3	DEVS3	IA=410nA to 13.1µA	-23	-	23	%	
t circuit)	Output linearity 4	DEVS4	IA=13.1μA to 120μA	-30	-	30	%	
	Power supply response	Trs	IA=50pA	-	-	50	ms	
T S D	thermole shutdown temperature	TTSD	Tip temperature in case H bridge output turns off		150		°C	Note5

(Ta =25°C, VB=3.0V, VDD=5.0V, unless otherwise noted)

Note1: Input terminal : 11 to15 PIN

Note2: L=47µH, C=100uF

Note3: Since it is a power supply only for the insides of IC, please do not connect a charge pump circuit to others.

Note4: The sum of upper and lower sides side ON resistance.

ON resistance is changed with VB, VDD, and VDDH voltage.

Note5: A shipment test is not performed although the TSD circuit characteristic presents reference data.

Fig 1 H bridge part switching characteristic waveform

SEL Truth value table

SEL1	SEL2	SEL3	The contents of control
L	L	L	Standby
Н	L	L	Only a DC/DC circuit is turned ON (*note)
Н	L	Н	DC/DC + AE circuit ON + motor1 contorol (AEOUT: right out)
Н	Н	Н	DC/DC + AE circuit ON + motor2 contorol(AEOUT: right out)
Н	Н	L	DC/DC + AE circuit ON + shutter contorol(AEOUT : temperature out)
L	L	Н	Only AE circuit ON (AEOUT: right out)
L	Н	Н	Only AE circuit ON (AEOUT: right out)
L	Н	L	Only AE circuit ON (AEOUT : temperature out)

*1. SEL1:DC/DC and Charge pump contorol (L=OFF, H=ON)

	INPUT								MOTOR Each output		
	SEL1	SEL2	SEL3	SML1	SML2	MOTOR1	MOTOR2	Shutter	OUT1	OUT2	OUT3
MOTOR1	Н	L	Н	L	L	Standby	Standby	Standby	OFF	OFF	OFF
Control	Н	L	Н	Н	L	Forward	Standby	Standby	L	Н	OFF
						Rotation					
	Н	L	Н	L	Н	Reverse	Standby	Standby	Н	L	OFF
	Н	L	Н	Н	Н	Brake	Standby	Standby	Н	Н	OFF
MOTOR2	Н	Н	Н	L	L	Standby	Standby	Standby	OFF	OFF	OFF
Control	Н	Н	Н	Н	L	Standby	Forward	Standby	OFF	Н	L
							Rotation				
	Н	Н	Н	L	Н	Standby	Reverse	Standby	OFF	L	Н
	Н	Н	Н	Н	Н	Standby	Brake	Standby	OFF	Н	Н
Shutter	Н	Н	L	L	L	Standby	Standby	Standby	OFF	OFF	OFF
Control	Н	Н	L	Н	L	Standby	Standby	Forward	OFF	OFF	L
								Rotation			
	Н	Н	L	L	Н	Standby	Standby	Reverse	OFF	OFF	Н
	Н	Н	L	Н	Н	Standby	Standby	Brake	OFF	OFF	Н

Motor control Truth value table

*: Please pass through the Brake or Stand-by mode by all means in case of moving from forward rotation to Reverse rotation or from

Reverse rotation to forward rotation by the motor control.

(ex.) Forward rotation -> Brake -> Reverse rotation, Reverse rotation -> Stand-by -> Forward rotation

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

- The party inst in your circuit designs:
 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
 Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product.
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to eva use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001