RENESAS

HD74ALVCH162270

12-bit to 24-bit Registered Bus Exchanger with 3-state Outputs

REJ03D0051-0300Z (Previous ADE-205-178A(Z)) Rev.3.00 Oct.02.2003

Description

The HD74ALVCH162270 is used in applications where data must be transferred from a narrow high speed bus to a wide lower frequency bus. The device provides synchronous data exchange between the two ports. Data is stored in the internal registers on the low to high transition of the clock (CLK) input when the appropriate $\overline{\text{CLKEN}}$ inputs are low. The select ($\overline{\text{SEL}}$) line selects 1B or 2B data for the A outputs. For data transfer in the A to B direction, a two stage pipeline is provided in the A to 1B path, with a single storage register in the A to 2B path. Proper control of the $\overline{\text{CLKENA}}$ inputs allows two sequential 12-bit words to be presented synchronously as a 24-bit word on the B port. Data flow is controlled by the active low output enables ($\overline{\text{OEA}}$, $\overline{\text{OEB}}$). The control terminals are registered to synchronize the bus direction changes with CLK. Active bus hold circuitry is provided to hold unused or floating data inputs at a valid logic level. All outputs, which are designed to sink up to 12 mA, include 26 Ω resistors to reduce overshoot and undershoot.

Features

- $V_{CC} = 2.3 \text{ V to } 3.6 \text{ V}$
- Typical V_{OL} ground bounce < 0.8 V (@V_{CC} = 3.3 V, Ta = 25°C)
- Typical V_{OH} undershoot > 2.0 V (@V_{CC} = 3.3 V, Ta = 25°C)
- High output current $\pm 12 \text{ mA} (@V_{CC} = 3.0 \text{ V})$
- Bus hold on data inputs eliminates the need for external pullup / pulldown resistors
- All outputs have equivalent 26 Ω series resistors, so no external resistors are required.

Function Table

Inputs			Outputs	
CLK	OEA	OEB	Α	1B, 2B
\uparrow	Н	Н	Z	Z
\uparrow	Н	L	Z	Active
\uparrow	L	Н	Active	Z
\uparrow	L	L	Active	Active

Output enable

Inputs				Outputs	
CLKENA1	CLKENA2	CLK	Α	1B	2B
Х	Н	\uparrow	L	1B ₀ *1, 2	2B ₀ *1
Х	Н	\uparrow	н	1B ₀ *1, 2	2B ₀ ^{*1}
L	L	\uparrow	L	L*2	L
L	L	\uparrow	Н	H *2	Н
Н	L	\uparrow	L	1B ₀ *1	L
Н	L	↑	H	1B ₀ *1	Н
Н	Н	Х	Х	1B ₀ *1	2B ₀ ^{*1}
			Determine (OED	T)	

A- to-B storage ($\overline{OEB} = L$)

Note: This functional table describes the case of transferring the same data for A to 1B path. For the case of transferring different data, see logic diagrams.

Inputs						Output A
CLKEN1B	CLKEN2B	CLK	SEL	1B	2B	
Н	X	Х	Н	Х	Х	A ₀ *1
Х	Н	X	L	Х	Х	A ₀ *1
L	х		Н	L	Х	L
L	Х	\uparrow	Н	Н	Х	Н
Х	L	\uparrow	L	Х	L	L
Х	L	\uparrow	L	Х	Н	Н

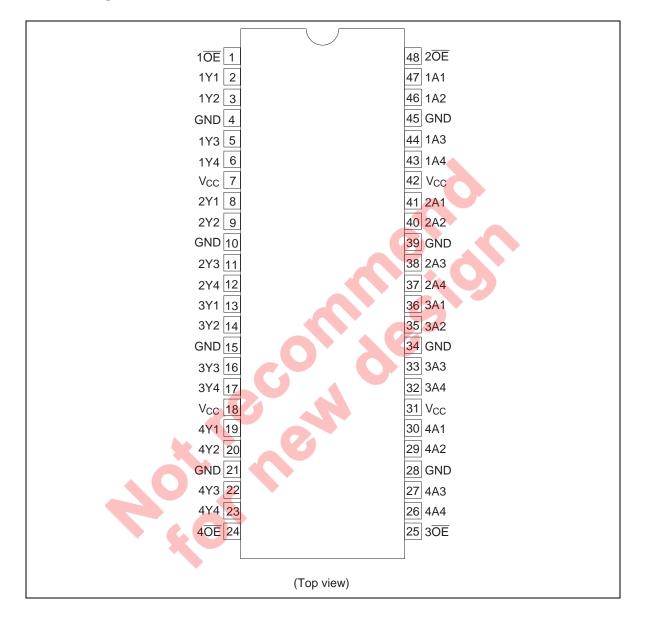
B-to-A storage $(\overline{OEA} = L)$

H : High level

L : Low level

X : Immaterial

Z : High impedance


 \uparrow : Low to high transition

Notes: 1. Output level before the indicated steady state input conditions were established.

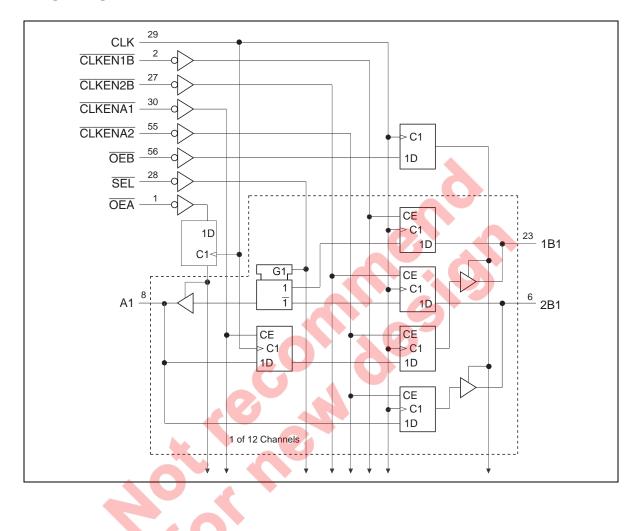
2. Two CLK edges are needed to propagate data.

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC}	–0.5 to 4.6	V	
Input voltage *1, 2	VI	–0.5 to 4.6	V	Except I/O ports
		–0.5 to V _{CC} +0.5		I/O ports
Output voltage *1, 2	Vo	–0.5 to V $_{\rm CC}$ +0.5	V	
Input clamp current	l _{iK}	-50	mA	V _I < 0
Output clamp current	I _{OK}	±50	mA	$V_{\rm O}$ < 0 or $V_{\rm O}$ > $V_{\rm CC}$
Continuous output current	lo	±50	mA	$V_{\rm O}$ = 0 to $V_{\rm CC}$
V _{CC} , GND current / pin	I _{CC} or I _{GND}	±100	mA	
Maximum power dissipation at Ta = 55° C (in still air) ^{*3}	P _T	1	W	TSSOP
Storage temperature	Tstg	–65 to 150	°C	

Notes: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.


- 1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. This value is limited to 4.6 V maximum.
- 3. The maximum package power dissipation is calculated using a junction temperature of 150°C and a board trace length of 750 mils.

Item	Symbol	Min	Max	Unit	Conditions
Supply voltage	Vcc	2.3	3.6	V	
Input voltage	VI	0	V _{CC}	V	
Output voltage	Vo	0	V _{CC}	V	
High level output current	I _{ОН}	_	-6	mA	V_{CC} = 2.3 V
		_	-8		V_{CC} = 2.7 V
		_	-12		V_{CC} = 3.0 V
_ow level output current	I _{OL}	_	6	mA	V_{CC} = 2.3 V
		_	8		V_{CC} = 2.7 V
		_	12		V_{CC} = 3.0 V
Input transition rise or fall rate	Δt / Δv	0	10	ns / V	
Operating temperature	Та	-40	85	°C	

Recommended Operating Conditions

Note: Unused control inputs must be held high or low to prevent them from floating.

Logic Diagram

Electrical Characteristics

$(Ta = -40 \text{ to } 85^{\circ}C)$

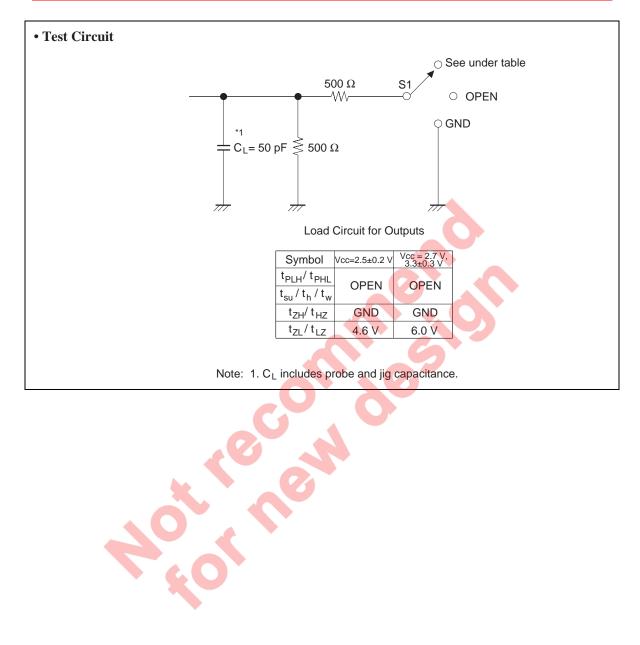
Item	Symbol	V _{cc} (V)	Min	Мах	Unit	Test Conditions
Input voltage	V _{IH}	2.3 to 2.7	1.7		V	
		2.7 to 3.6	2.0		-	
	VIL	2.3 to 2.7	_	0.7	_	
		2.7 to 3.6	_	0.8		
Output voltage	V _{OH}	2.3 to 3.6	V _{CC} -0.2	_	V	I _{OH} = –100 μA
		2.3	1.9	_	-	I _{OH} = –4 mA, V _{IH} = 1.7 V
		2.3	1.7	_	-	I _{OH} = –6 mA, V _{IH} = 1.7 V
		3.0	2.4	_		I _{OH} = –6 mA, V _{IH} = 2.0 V
		2.7	2.0	-		I _{он} = –8 mA, V _{IH} = 2.0 V
		3.0	2.0	-		I _{OH} = –12 mA, V _{IH} = 2.0 V
	V _{OL}	2.3 to 3.6		0.2		I _{OL} = 100 μA
		2.3	-	0.4		I _{OL} = 4 mA, V _{IL} = 0.7 V
		2.3		0.55		I _{oL} = 6 mA, V _{IL} = 0.7 V
		3.0		0.55	6	I_{OL} = 6 mA, V_{IL} = 0.8 V
		2.7		0.6		I _{OL} = 8 mA, V _{IL} = 0.8 V
		3.0	-	0.8	-	I _{OL} = 12 mA, V _{IL} = 0.8 V
Input current	I _{IN}	3.6	-	±5	μA	$V_{IN} = V_{CC}$ or GND
	IIN (hold)	2.3	45	_	_	V _{IN} = 0.7 V
		2.3	-45		-	V _{IN} = 1.7 V
		3.0	75		-	V _{IN} = 0.8 V
		3.0	-75	_	-	V _{IN} = 2.0 V
		3.6	_	±500		$V_{IN} = 0$ to 3.6 V ^{*1}
Off state output current	loz	3.6	_	±10	μA	V_{OUT} = V_{CC} or GND
Quiescent supply current	Icc	3.6		40	μA	$V_{IN} = V_{CC}$ or GND

Note: 1. This is the bus hold maximum dynamic current required to switch the input from one state to another.

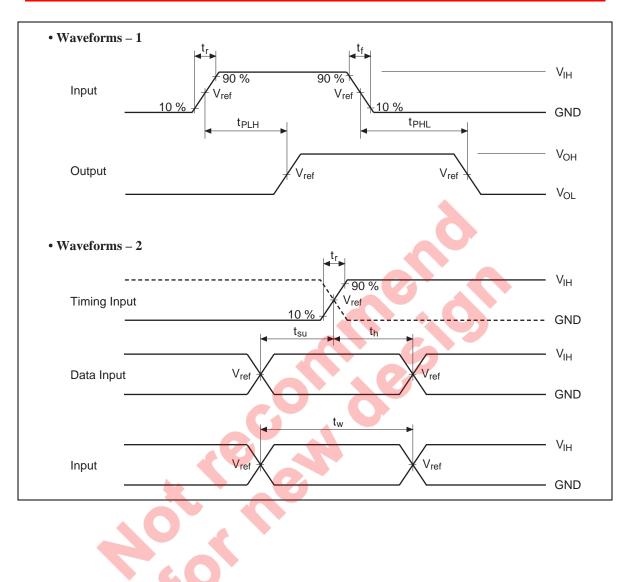
Switching Characteristics

$(Ta = 0 \text{ to } +70^{\circ}C)$

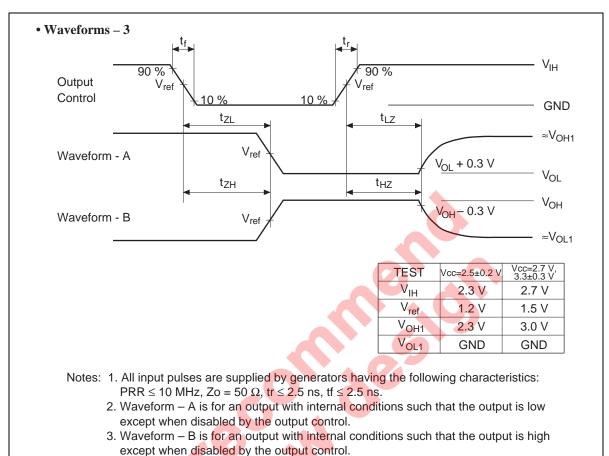
Item	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	FROM (Input)	TO (Output)
Maximum clock frequency	f _{max}	2.5±0.2	135	_	_	MHz		
		2.7	135					
		3.3±0.3	135					
Propagation delay time	t _{PLH}	2.5±0.2	2.5	_	6.9	ns	CLK	В
	t _{PHL}	2.7	_		6.4			
		3.3±0.3	1.7	_	5.6			
		2.5±0.2	2.2	_	6.4 🧹		CLK	А
		2.7	_	_	6.0			
		3.3±0.3	1.6	-	5.2			
		2.5±0.2	2.4	_	7.2		SEL	А
		2.7	—		7.0			
		3.3±0.3	1.6	—	6.0			
Output enable time	t _{zH}	2.5±0.2	2.1	<u> </u>	7.9	ns	CLK	A or B
	t _{ZL}	2.7	Ð		7.4			
		3.3±0.3	1.6	_	6.5			
Output disable time	t _{HZ}	2.5±0.2	3.0		7.8	ns	CLK	A or B
	t _{LZ}	2.7	-	5-	7.1			
		3.3±0.3	1.7	_	6.2			
Input capacitance	CIN	3.3	-	3.5	—	pF	Control inpu	ts
Output capacitance	C _{IN / O}	3.3	_	9.0	—	pF	A or B ports	
	0							

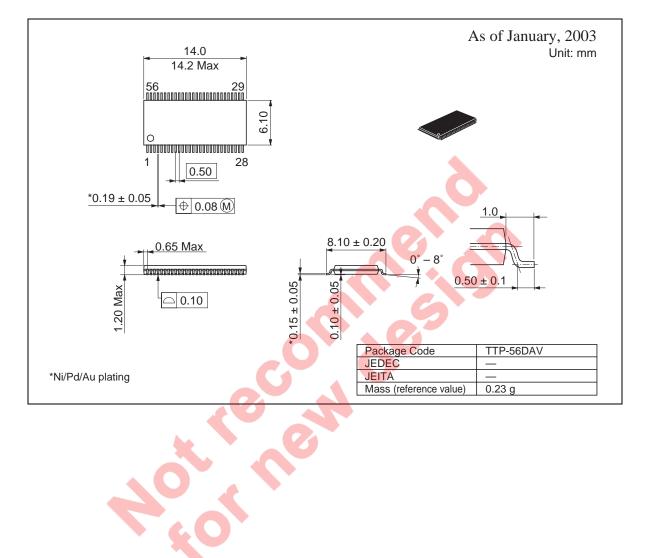


Switching Characteristics (cont.)


 $(Ta = -40 \text{ to } 85^{\circ}C)$

ltem	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	FROM (Input)
Setup time	t _{su}	2.5±0.2	4.1	_	_	ns	A data before CLK↑
		2.7	3.8	_	_	_	
		3.3±0.3	3.1	_	_	_	
		2.5±0.2	0.9	_	_	_	B data before CLK↑
		2.7	1.2	_	_	_	
		3.3±0.3	0.9	_	_	-	
		2.5±0.2	3.5	_	_		CLKENA1 or
		2.7	3.2	_	_		CLKENA2 before CLK↑
		3.3±0.3	2.7	_	- 0		
		2.5±0.2	3.4	_			CLKEN1B or
		2.7	3.0		\mathbf{A}	-	CLKEN2B before CLK1
		3.3±0.3	2.6	-	_		
		2.5±0.2	4.4	- A	-		OE before CLK↑
		2.7	3.9			Ţ	
		3.3±0.3	3.2	U	G		
Hold time	t _h	2.5±0.2	0	_		ns	A data after CLK↑
		2.7	0		_		
		3.3±0.3	0.2		_	_	
		2.5±0.2	1.4	3 -	_		B data after CLK↑
		2.7	1.0	-	_		
		3.3±0.3	1.7	_	_		
		2.5±0.2	0	_	_		CLKENA1 or
		2.7	0.1	_	_		CLKENA2 after CLK [↑]
		3.3±0.3	0.3	_	_	_	
		2.5±0.2	0	_		_	CLKEN1B or
		2.7	0	_	_	_	CLKEN2B after CLK [↑]
		3.3±0.3	0.6	_	_	_	
		2.5±0.2	0	_	_	_	OE after CLK↑
		2.7	0	_	_	_	
		3.3±0.3	0.1	_	_	_	
Pulse width	t _w	2.5±0.2	3.3	_	_	ns	CLK "H" or "L"
		2.7	3.3	_	_	_	
		3.3±0.3	3.3	_	_	_	





4. The output are measured one at a time with one transition per measurement.

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

- Regense to find in your circuit designs: 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.
 Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
 All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors. Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors. Please also pay attention to information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage for many damage for many damage for any autofuct or any autofuct or a data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or a authorized Renesas Tech

- use.
- use. 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials. 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited. 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Milboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany

Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001