IN74HC367A

Hex 3-State Noninverting Buffer with Separate 2-Bit and 4-Bit Sections High-Performance Silicon-Gate CMOS

The IN74HC367A is identical in pinout to the LS/ALS367. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LS/ALSTTL outputs.

This device is arranged into 2-Bit and 4-Bit sections, each having its own active-low Output Enable. When either of the enables is high, the affected buffer outputs are placed into high-impedance states. The IN74HC367A has noninverting outputs.

- Outputs Directly Interface to CMOS, NMOS, and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: $1.0 \mu \mathrm{~A}$
- High Noise Immunity Characteristic of CMOS Devices

LOGIC DIAGRAM

PIN $16=V_{\text {CC }}$
PIN 8 = GND

PIN ASSIGNMENT

FUNCTION TABLE

Inputs		Output
Enable 1,Enable 2	A	Y
L	L	L
L	H	H
H	X	Z

$\mathrm{Z}=$ high impedance
$\mathrm{X}=$ don't care

MAXIMUM RATINGS*

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {CC }}$	DC Supply Voltage (Referenced to GND)	-0.5 to +7.0	V
$\mathrm{V}_{\text {IN }}$	DC Input Voltage (Referenced to GND)	-1.5 to $\mathrm{V}_{\mathrm{CC}}+1.5$	V
$\mathrm{V}_{\text {OUT }}$	DC Output Voltage (Referenced to GND)	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{I}_{\text {IN }}$	DC Input Current, per Pin	± 20	mA
$\mathrm{I}_{\text {Out }}$	DC Output Current, per Pin	± 35	mA
I_{CC}	DC Supply Current, V_{CC} and GND Pins	± 75	mA
P_{D}	Power Dissipation in Still Air, Plastic DIP+ SOIC Package+	$\begin{aligned} & \hline 750 \\ & 500 \\ & \hline \end{aligned}$	mW
Tstg	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds (Plastic DIP or SOIC Package)	260	${ }^{\circ} \mathrm{C}$

*Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.

+ Derating - Plastic DIP: - $10 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$
SOIC Package: :-7 mW/ ${ }^{\circ} \mathrm{C}$ from 65° to $125^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Max	Unit
V_{CC}	DC Supply Voltage (Referenced to GND)	2.0	6.0	V
$\mathrm{~V}_{\mathrm{IN}}, \mathrm{V}_{\text {OUT }}$	DC Input Voltage, Output Voltage (Referenced to GND)	0	$\mathrm{~V}_{\mathrm{CC}}$	V
T_{A}	Operating Temperature, All Package Types	-55	+125	${ }^{\circ} \mathrm{C}$
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Input Rise and Fall Time (Figure 1)	$\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$	0	1000
		$\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	0	500
		$\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$	0	400

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {IN }}$ and $\mathrm{V}_{\text {OUT }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

Symbol	Parameter	Test Conditions	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
				$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { to } \\ -55^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \leq 85 \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \leq 125 \\ { }^{\circ} \mathrm{C} \end{gathered}$	
V_{IH}	Minimum HighLevel Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {OuT }}=\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \\ & \mid \mathrm{I}_{\text {OUT }} \end{aligned} \leq 20 \mu \mathrm{~A}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	$\begin{gathered} 1.5 \\ 3.15 \\ 4.2 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Maximum Low Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \left\|\mathrm{I}_{\text {IUT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 0.3 \\ & 0.9 \\ & 1.2 \end{aligned}$	V
V_{OH}	Minimum HighLevel Output Voltage	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ \left\|\mathrm{I}_{\mathrm{OUT}}\right\| \leq 20 \mu \mathrm{~A} \end{array} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	$\begin{aligned} & 1.9 \\ & 4.4 \\ & 5.9 \end{aligned}$	V
		$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \\ & \left\|\mathrm{I}_{\text {IoUT }}\right\| \leq 6.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {IUTT }}\right\| \leq 7.8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 5.48 \end{aligned}$	$\begin{aligned} & 3.84 \\ & 5.34 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.2 \end{aligned}$	
$\mathrm{V}_{\text {OL }}$	Maximum LowLevel Output Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 20 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V
		$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 6.0 \mathrm{~mA} \\ & \left\|\mathrm{I}_{\text {OUT }}\right\| \leq 7.8 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.26 \end{aligned}$	$\begin{aligned} & 0.33 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	
$\mathrm{I}_{\text {IN }}$	Maximum Input Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.1	± 1.0	± 1.0	$\mu \mathrm{A}$
$\mathrm{I}_{\text {Oz }}$	Maximum ThreeState Leakage Current	Output in High-Impedance State $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH} $\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$ or GND	6.0	± 0.5	± 5.0	± 10	$\mu \mathrm{A}$
I_{CC}	Maximum Quiescent Supply Current (per Package)	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mu \mathrm{~A} \end{aligned}$	6.0	8.0	80	160	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$,Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=6.0 \mathrm{~ns}$)

Symbol	Parameter	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit			Unit
			$\begin{gathered} 25^{\circ} \mathrm{C} \\ \text { to } \\ -55^{\circ} \mathrm{C} \\ \hline \end{gathered}$	$\leq 85^{\circ} \mathrm{C}$	$\leq 125^{\circ} \mathrm{C}$	
$\mathrm{t}_{\text {PLH, }}, \mathrm{t}_{\text {PHL }}$	Maximum Propagation Delay, Input A to Output Y (Figures 1 and 3)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 120 \\ 24 \\ 20 \end{gathered}$	$\begin{gathered} 150 \\ 30 \\ 26 \end{gathered}$	$\begin{gathered} 180 \\ 36 \\ 31 \end{gathered}$	ns
$\mathrm{t}_{\text {PLZ }}, \mathrm{t}_{\text {PHZ }}$	Maximum Propagation Delay ,Output Enable to Output Y (Figures 2 and 4)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 175 \\ 35 \\ 30 \end{gathered}$	$\begin{gathered} 220 \\ 44 \\ 37 \end{gathered}$	$\begin{gathered} 265 \\ 53 \\ 46 \end{gathered}$	ns
$\mathrm{t}_{\text {PZL }}, \mathrm{t}_{\text {PZH }}$	Maximum Propagation Delay ,Output Enable to Output Y (Figures 2 and 4)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 190 \\ 38 \\ 32 \end{gathered}$	$\begin{gathered} 240 \\ 48 \\ 41 \end{gathered}$	$\begin{gathered} 285 \\ 57 \\ 48 \end{gathered}$	ns
$\mathrm{t}_{\text {TLH }}, \mathrm{t}_{\text {THL }}$	Maximum Output Transition Time, Any Output (Figures 1 and 3)	$\begin{aligned} & 2.0 \\ & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 60 \\ & 12 \\ & 10 \end{aligned}$	$\begin{aligned} & 75 \\ & 15 \\ & 13 \end{aligned}$	$\begin{aligned} & 90 \\ & 18 \\ & 15 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Maximum Input Capacitance	-	10	10	10	pF
Cout	Maximum Three-State Output Capacitance (Output in High-Impedance State)	-	15	15	15	pF

C_{PD}	Power Dissipation Capacitance (Per Buffer)	Typical @25 ${ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	
	Used to determine the no-load dynamic power consumption: $\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \mathrm{V}_{\mathrm{CC}}{ }^{2} \mathrm{f}+\mathrm{I}_{\mathrm{CC}} \mathrm{V}_{\mathrm{CC}}$	40	pF

Figure 1. Switching Waveforms

Figure 2. Switching Waveforms

EXPANDED LOGIC DIAGRAM
(1/6 of the Device)

N SUFFIX PLASTIC DIP
(MS - 001BB)

\section*{| $\Phi \mid 0.25(0.010)(M)$ | T |
| :--- | :--- |}

NOTES:

1. Dimensions "A", "B" do not include mold flash or protrusions. Maximum mold flash or protrusions $0.25 \mathrm{~mm}(0.010)$ per side.

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	18.67	19.69
\mathbf{B}	6.1	7.11
\mathbf{C}		5.33
\mathbf{D}	0.36	0.56
\mathbf{F}	1.14	1.78
\mathbf{G}	2.54	
\mathbf{H}	7.62	
\mathbf{J}	0°	10°
\mathbf{K}	2.92	3.81
\mathbf{L}	7.62	8.26
\mathbf{M}	0.2	0.36
\mathbf{N}	0.38	

D SUFFIX SOIC

(MS - 012AC)
16

	Dimension, mm	
Symbol	MIN	MAX
\mathbf{A}	9.8	10
\mathbf{B}	3.8	4
\mathbf{C}	1.35	1.75
\mathbf{D}	0.33	0.51
\mathbf{F}	0.4	1.27
\mathbf{G}	1.27	
\mathbf{H}	5.72	
\mathbf{J}	0°	8°
\mathbf{K}	0.1	0.25
\mathbf{M}	0.19	0.25
\mathbf{P}	5.8	6.2
\mathbf{R}	0.25	0.5

