FEATURES

RMS Noise: 7 nV @ 4.7 Hz (gain = 128)
16.5 noise free bits @ 2.4 kHz (gain = 128)

Up to 23 noise free bits (gain = 1)
Offset drift: $5 \mathrm{nV} /{ }^{\circ} \mathrm{C}$
Gain drift: 2 ppm $/{ }^{\circ} \mathrm{C}$
Specified drift over time
Programmable gain (1-128)
Update rate: 4.7 Hz to 4.8 kHz
Internal or external clock
Simultaneous $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection
Four general purpose digital outputs
Power supply: 3 V to 5.25 V
Current: 6 mA
Temperature range: $-\mathbf{4 0}{ }^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$

INTERFACE

3-wire serial
SPI ${ }^{\oplus}$, QSPI ${ }^{\text {m }}$, MICROWIRE ${ }^{\text {™ }}$, and DSP compatible
Schmitt trigger on SCLK

APPLICATIONS

Weigh scales

Strain gauge transducers
Pressure measurement
Temperature measurement
Chromatography

PLC/DCS Analog Input Modules

Data Acquisition
Medical and Scientific instrumentation

GENERAL DESCRIPTION

The AD7190 is a low noise, complete analog front end for high precision measurement applications. It contains a low noise, 24bit $\sum-\Delta \mathrm{ADC}$. The on-chip low noise gain stage means that signals of small amplitude can be interfaced directly to the ADC.
The device can be configured to have two differential inputs or four pseudo-differential inputs. The device can be operated with either the internal clock or an external clock. The output data rate from the part can be varied from 4.7 Hz to 4.8 kHz .
The device can be operated with a sinc^{3} or a sinc^{4} digital filter. At the lower update rates, the sinc^{3} is useful to optimize the settling time. The benefit of the sinc^{4} at low update rates is the superior $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection. At the higher update rates, the sinc^{4} filter gives best noise performance. For applications that require all conversions to be settled, the AD7190 includes a zero-latency feature.

The part operates with a power supply from 3 V to 5.25 V . It consumes a current of 6 mA . It is housed in a 24 -lead TSSOP package.

Figure 1.

SPECIFICATIONS

$\mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{DV} \mathrm{DD}^{2}=2.7 \mathrm{~V}$ to $5.25 \mathrm{~V} ; \mathrm{GND}=0 \mathrm{~V} ; \operatorname{REFIN} 1(+)=\mathrm{AV}_{\mathrm{DD}} ; \operatorname{REFIN} 1(-)=\mathrm{GND} ; \mathrm{MCLK}=4.9152 \mathrm{MHz} ;$ Sinc 4 filter selected; all specifications $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted.

Table 1.

Parameter ${ }^{1}$	AD7190B	Unit	Test Conditions/Comments
Output Update Rate	4.7 to 4800	Hz nom	Chop Disabled
	1.17 to 1200	Hz nom	Chop Enabled
No Missing Codes ${ }^{2}$	24	Bits min	FS >1
Resolution	See RMS Noise and Resolution Specifications		
RMS Noise and Update Rates	See RMS Noise and Resolution Specifications		
Integral Nonlinearity	± 15	ppm of FSR max	
Offset Error ${ }^{3}$	$\pm 100 /$ Gain	$\mu \mathrm{V}$ typ	Chop Disabled
	± 0.5	$\mu \mathrm{V}$ typ	Chop Enabled
Offset Error Drift vs. Temperature ${ }^{4}$	$\pm 150 /$ Gain	$n V /{ }^{\circ} \mathrm{C}$ typ	Gain $=1$ to 16. Chop Disabled
	± 10	$n V /{ }^{\circ} \mathrm{C}$ typ	Gain $=32$ to 128. Chop Disabled
	± 5	nV/ ${ }^{\circ} \mathrm{C}$ typ	Chop Enabled
Offset Error Drift vs. Time	25	nV/1000 Hours typ	
Full-Scale Error ${ }^{3,5}$	± 10	$\mu \mathrm{V}$ typ	
Gain Drift vs. Temperature ${ }^{4}$	± 1	ppm/ ${ }^{\circ} \mathrm{C}$ typ	
Gain Drift vs. Time	10	ppm/1000 Hours typ	
Power Supply Rejection	100	dB min	$\mathrm{V}_{\mathrm{IN}}=1 \mathrm{~V} / \mathrm{Gain} .120 \mathrm{~dB}$ typical.
ANALOG INPUTS			
Differential Input Voltage Ranges	$\begin{aligned} & \pm V_{\text {REF } / \text { gain }} \\ & \pm\left(A V_{D D}-1 V\right) / \text { gain } \end{aligned}$	V nom V min/max	$\mathrm{V}_{\text {REF }}=\operatorname{REFIN}(+)-\operatorname{REFIN}(-)$, gain $=1$ to 128 gain > 1
Absolute AIN Voltage Limits ${ }^{2}$			
Unbuffered Mode	GND - 50 mV	V min	
	$A V_{D D}+50 \mathrm{mV}$	V max	
Buffered Mode	GND + 200 mV	V min	
	$A V_{D D}-200 \mathrm{mV}$	V max	
Analog Input Current			
Buffered Mode			
Input Current ${ }^{2}$	± 1	nA max	Gain $=1$
	± 3	nA typ	Gain > 1
Input Current Drift	± 2	$\mathrm{pA} /{ }^{\circ} \mathrm{C}$ typ	
Unbuffered Mode			
Input Current	± 5	$\mu \mathrm{A} / \mathrm{V}$ typ	Gain $=1$. Input current varies with input voltage
	± 1	$\mu \mathrm{A} / \mathrm{V}$ typ	Gain >1.
Input Current Drift	± 50	$\mathrm{pA} / \mathrm{V} /{ }^{\circ} \mathrm{C}$ typ	
Normal Mode Rejection ${ }^{2}$			
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}$	98	$d B$ min	10 Hz Update Rate, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}$
	TBD	$d B$ min	50 Hz Update Rate, REJ60 ${ }^{6}=1,50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}$
@ 50 Hz	TBD	$d B$ min	50 Hz Update Rate, $50 \pm 1 \mathrm{~Hz}$
@ 60 Hz	TBD	$d B$ min	60 Hz Update Rate, $60 \pm 1 \mathrm{~Hz}$
Common-Mode Rejection			
@ DC	100	dB min	AIN $=1 \mathrm{~V} /$ gain
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	100	$d B$ min	10 Hz Update Rate, $50 \pm 1 \mathrm{~Hz}, 60 \pm 1 \mathrm{~Hz}$
@ $50 \mathrm{~Hz}, 60 \mathrm{~Hz}^{2}$	100	$d B$ min	$50 \pm 1 \mathrm{~Hz}$ (50 Hz Update Rate), $60 \pm 1 \mathrm{~Hz}$ (60 Hz Update Rate)
REFERENCE INPUT			
REFIN Voltage	AV ${ }_{\text {D }}$	V nom	REFIN $=$ REFIN (+) - REFIN(-)

Preliminary Technical Data

Parameter ${ }^{1}$	AD7190B	Unit	Test Conditions/Comments
Reference Voltage Range ${ }^{2}$ Absolute REFIN Voltage Limits ${ }^{2}$ Average Reference Input Current Average Reference Input Current Drift Normal Mode Rejection ${ }^{2}$ Common-Mode Rejection Reference Detect Levels	```1 \(A V_{D D}\) GND - 50 mV \(A V_{D D}+50 \mathrm{mV}\) 6 \(\pm 0.03\) Same as for analog inputs 100 0.3 0.5```	V min \checkmark max \vee min \checkmark max $\mu \mathrm{A} / \mathrm{V}$ typ nA/V/ ${ }^{\circ} \mathrm{C}$ typ dB typ V min V max	The differential input must be limited to $\pm\left(A V_{D D}-\right.$ 1V)/gain when gain > 1
TEMPERATURE SENSOR Accuracy Sensitivity	$\begin{aligned} & \pm 2 \\ & 2800 \end{aligned}$	${ }^{\circ} \mathrm{C}$ typ codes/ ${ }^{\circ} \mathrm{C}$ typ	Applies after user-calibration at one temperature
LOW SIDE POWER SWITCH Ron Allowable Current ${ }^{2}$	$\begin{aligned} & 7 \\ & 9 \\ & 30 \\ & \hline \end{aligned}$	Ω max mA max	$\begin{aligned} & \mathrm{A} \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{AV} \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V} \\ & \text { Continuous Current } \end{aligned}$
BURNOUT CURRENTS AIN Current	500	nA nom	
DIGITAL OUTPUTS (PO - P3) $\mathrm{V}_{\text {он, }}$ Output High Voltage ${ }^{2}$ Vol, Output Low Voltage ${ }^{2}$ V $_{\text {он, }}$ Output High Voltage ${ }^{2}$ Vol, Output Low Voltage ${ }^{2}$ Floating-State Leakage Current Floating-State Output Capacitance	$\begin{aligned} & \mathrm{A} \mathrm{~V}_{\mathrm{DD}}-0.6 \\ & 0.4 \\ & 4 \\ & 0.4 \\ & \pm 10 \\ & 10 \\ & \hline \end{aligned}$	V min V max V min V max $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}, \text { I IoURCE }=100 \mu \mathrm{~A} \\ & \mathrm{AV}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{I}_{\text {SIIK }}=100 \mu \mathrm{~A} \\ & \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, I_{\text {IOURCE }}=200 \mu \mathrm{~A} \\ & \mathrm{AV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=800 \mu \mathrm{~A} \end{aligned}$
INTERNAL/EXTERNAL CLOCK Internal Clock Frequency Duty Cycle External Clock/Crystal Frequency $\mathrm{V}_{\text {INL, }}$ Input Low Voltage V_{NH}, Input High Voltage Input Current	$\begin{aligned} & 4.92 \pm 4 \% \\ & 50: 50 \\ & \\ & 4.9152 \\ & 2.4576 / 5.12 \\ & 0.8 \\ & 0.4 \\ & 2.5 \\ & 3.5 \\ & \pm 10 \\ & \hline \end{aligned}$	MHz min/max \% typ MHz nom MHz min/max V max $V_{\text {max }}$ $V_{\text {min }}$ V min $\mu \mathrm{A}$ max	$\begin{aligned} & D V_{D D}=5 \mathrm{~V} \\ & D V_{D D}=3 \mathrm{~V} \\ & D V_{D D}=3 \mathrm{~V} \\ & D V_{D D}=5 \mathrm{~V} \\ & M C L K I N=D V_{D D} \text { or GND } \end{aligned}$
LOGIC INPUTS $\begin{aligned} & \mathrm{V}_{T}(+) \\ & \mathrm{V}_{T}(-) \\ & \mathrm{V}_{T}(+)-\mathrm{V}_{T}(-) \\ & \mathrm{V}_{T}(+) \\ & \mathrm{V}_{T}(-) \\ & \mathrm{V}_{T}(+)-\mathrm{V}_{\mathrm{T}}(-) \end{aligned}$ Input Currents	$\begin{aligned} & 1.4 / 2 \\ & 0.8 / 1.7 \\ & 0.1 / 0.17 \\ & 0.9 / 2 \\ & 0.4 / 1.35 \\ & 0.06 / 0.13 \\ & \pm 10 \end{aligned}$	\checkmark min/V max $V_{\min / V}$ max $V_{\min / V}$ max $V_{\min } / V_{\text {max }}$ $V_{\min } / V_{\text {max }}$ $V_{\text {min }} / V_{\text {max }}$ $\mu \mathrm{A}$ max	$\begin{aligned} & D V_{D D}=5 \mathrm{~V} \\ & D V_{D D}=5 \mathrm{~V} \\ & D V_{D D}=5 \mathrm{~V} \\ & D V_{D D}=3 \mathrm{~V} \\ & D V_{D D}=3 \mathrm{~V} \\ & D V_{D D}=3 \mathrm{~V} \\ & V_{I N}=D V_{D D} \text { or } G N D \end{aligned}$
LOGIC OUTPUT (DOUT/ $\overline{\text { RDY }})$ Vон, Output High Voltage 2 VoL, Output Low Voltage ${ }^{2}$ $\mathrm{V}_{\text {OH, }}$ Output High Voltage ${ }^{2}$	$\begin{aligned} & \mathrm{D} V_{D D}-0.6 \\ & 0.4 \\ & 4 \end{aligned}$	$\begin{aligned} & V_{\text {min }} \\ & V_{\text {max }} \\ & V_{\text {min }} \end{aligned}$	$\begin{aligned} & D V_{D D}=3 \mathrm{~V}, I_{\text {SOURCE }}=100 \mu \mathrm{~A} \\ & D V_{D D}=3 \mathrm{~V}, \mathrm{I}_{\text {SIK }}=100 \mu \mathrm{~A} \\ & D V_{D D}=5 \mathrm{~V}, I_{\text {SoURCE }}=200 \mu \mathrm{~A} \end{aligned}$

Parameter ${ }^{1}$	AD7190B	Unit	Test Conditions/Comments
Vol, Output Low Voltage ${ }^{2}$ Floating-State Leakage Current Floating-State Output Capacitance Data Output Coding	$\begin{aligned} & \hline 0.4 \\ & \pm 10 \\ & 10 \\ & \text { Offset binary } \\ & \hline \end{aligned}$	V max $\mu \mathrm{A}$ max pF typ	$\mathrm{DV}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=1.6 \mathrm{~mA}$
SYSTEM CALIBRATION ${ }^{2}$ Full-Scale Calibration Limit Zero-Scale Calibration Limit Input Span	$\begin{aligned} & 1.05 \times \text { FS } \\ & -1.05 \times \text { FS } \\ & 0.8 \times \text { FS } \\ & 2.1 \times \text { FS } \end{aligned}$	\vee max V min V min \checkmark max	
POWER REQUIREMENTS ${ }^{7}$ Power Supply Voltage $A V_{D D}-A G N D$ $D V_{D D}-D G N D$ Power Supply Currents AldD Current DIDD Current IdD (Power-Down Mode)	$\begin{aligned} & 3 / 5.25 \\ & 2.7 / 5.25 \\ & \text { TBD } \\ & 1 \\ & 1 \end{aligned}$	\checkmark min/max V min/max mA max $\mu \mathrm{A}$ max	$\begin{aligned} & \text { Gain }=1, \text { Buffer off } \\ & \text { Gain }=8, \text { Buffer off } \\ & \text { Gain }=8, \text { Buffer on } \\ & \text { Gain }=16-128, \text { Buffer off } \\ & \text { Gain }=16-128, \text { Buffer on } \\ & D V_{D D}=3 \mathrm{~V} \\ & D V_{D D}=5 \mathrm{~V} \end{aligned}$

[^0]
TIMING CHARACTERISTICS

$A V_{\mathrm{DD}}=3 \mathrm{~V}$ to 5.25 V ; $\mathrm{DV} \mathrm{DD}_{\mathrm{D}}=2.7 \mathrm{~V}$ to 5.25 V ; $\mathrm{GND}=0 \mathrm{~V}$, Input Logic $0=0 \mathrm{~V}$, Input Logic $1=\mathrm{DV} \mathrm{DD}_{\mathrm{D}}$, unless otherwise noted.
Table 2.

Parameter ${ }^{1,2}$	Limit at $\mathrm{T}_{\text {min, }} \mathrm{T}_{\text {max }}$ (B Version)	Unit	Conditions/Comments
t_{3}	100	ns min	SCLK high pulse width
t_{4}	100	ns min	SCLK low pulse width
Read Operation t_{1}			
	0	$n \mathrm{n}$ min	$\overline{\mathrm{CS}}$ falling edge to DOUT/ $\overline{\mathrm{RDY}}$ active time
	60	ns max	$\mathrm{DV}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$D V_{D D}=2.7 \mathrm{~V}$ to 3.6 V
$\mathrm{t}_{2}{ }^{3}$	0	$n \mathrm{n}$ min	SCLK active edge to data valid delay ${ }^{4}$
	60	ns max	DV $\mathrm{DD}=4.75 \mathrm{~V}$ to 5.25 V
	80	ns max	$D V_{D D}=2.7 \mathrm{~V}$ to 3.6 V
$t^{5}{ }^{5} 6$	10	ns min	Bus relinquish time after $\overline{\mathrm{CS}}$ inactive edge
	80	ns max	
t_{6}	0	ns min	SCLK inactive edge to $\overline{C S}$ inactive edge
t_{7}	10	$n \mathrm{n}$ min	SCLK inactive edge to DOUT/ $\overline{\text { RDY }}$ high
Write Operation			
t_{8}	0	ns min	$\overline{\text { CS }}$ falling edge to SCLK active edge setup time ${ }^{4}$
t_{9}	30	ns min	Data valid to SCLK edge setup time
t_{10}	25	ns min	Data valid to SCLK edge hold time
t_{11}	0	ns min	$\overline{C S}$ rising edge to SCLK edge hold time

[^1]

Figure 2. Load Circuit for Timing Characterization

TIMING DIAGRAMS

Figure 3. Read Cycle Timing Diagram

Figure 4. Write Cycle Timing Diagram

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 3.

Parameter	Rating
AV ${ }_{\text {DD }}$ to GND	-0.3 V to +6.5 V
DV ${ }_{\text {D }}$ to GND	-0.3 V to +6.5 V
Analog Input Voltage to GND	-0.3 V to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Reference Input Voltage to GND	-0.3 V to $\mathrm{AV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage to GND	-0.3 V to $\mathrm{DV}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Output Voltage to GND	-0.3 V to DV $\mathrm{DD}^{+0.3 \mathrm{~V}}$
AIN/Digital Input Current	10 mA
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Maximum Junction Temperature	$150^{\circ} \mathrm{C}$
TSSOP	
θ_{JA} Thermal Impedance	$97.9^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$ Thermal Impedance	$14^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$215^{\circ} \mathrm{C}$
Infrared (15 sec)	$220^{\circ} \mathrm{C}$

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 5. Pin Configuration
Table 4. Pin Function Descriptions

Pin No.	Mnemonic	Description
1	MCLK1	When the master clock for the device is provided externally by a crystal, the crystal is connected between MCLK1 and MCLK2.
2	MCLK2	Master Clock signal for the device. The AD7190 has an internal 4.92 MHz clock. This internal clock can be made available on the MCLK2 pin. The clock for the AD7190 can be provided externally also in the form of a crystal or external clock. A crystal can be tied across the MCLK1 and MCLK2 pins. Alternatively, the MCLK2 pin can be driven with a CMOScompatible clock and MCLK1 left unconnected.
3	SCLK	Serial Clock Input. This serial clock input is for data transfers to and from the ADC. The SCLK has a Schmitttriggered input, making the interface suitable for opto-isolated applications. The serial clock can be continuous with all data transmitted in a continuous train of pulses. Alternatively, it can be a noncontinuous clock with the information being transmitted to or from the ADC in smaller batches of data.
4	$\overline{C S}$	Chip Select Input. This is an active low logic input used to select the ADC. $\overline{C S}$ can be used to select the ADC in systems with more than one device on the serial bus or as a frame synchronization signal in communicating with the device. $\overline{\mathrm{CS}}$ can be hardwired low, allowing the ADC to operate in 3-wire mode with SCLK, DIN, and DOUT used to interface with the device.
5	P3	Digital Output Pin. This pin can function as a general purpose output bit referenced between AVDD and AGND.
6	P2	Digital Output Pin. This pin can function as a general purpose output bit referenced between $\mathrm{AV}_{D D}$ and AGND.
7	P1/REFIN2(+)	Digital Output Pin/Positive Reference Input. This pin functions as a general purpose output bit referenced between $A V_{D D}$ and $A G N D$. When REFSEL $=1$, this pin functions as REFIN2(+). An external reference can be applied between REFIN2(+) and REFIN2(-). REFIN2(+) can lie anywhere between $\mathrm{AV}_{\mathrm{DD}}$ and $G N D+1 \mathrm{~V}$. The nominal reference voltage, (REFIN2(+) - REFIN2(-)), is $A V_{D D}$, but the part functions with a reference from 1 V to $A V_{D D}$.
8	P0/REFIN2(-)	Digital Output Pin/Negative Reference Input. This pin functions as a general purpose output bit referenced between $A V_{D D}$ and $A G N D$. When REFSEL $=1$, this pin functions as REFIN2(-). This reference input can lie anywhere between GND and $A V_{D D}-1 \mathrm{~V}$.
9	NC	No Connect. This pin should be tied to AGND.
10	AINCOM	Analog inputs AIN1 to AIN4 are referenced to this input when configured for pseudo-differential operation.
11	AIN1	Analog Input. It can be configured as the positive input of a fully differential input pair when used with AIN2 or as a pseudo-differential input when used with AINCOM.
12	AIN2	Analog Input. It can be configured as the negative input of a fully differential input pair when used with AIN1 or as a pseudo-differential input when used with AINCOM.
13	AIN3	Analog Input. It can be configured as the positive input of a fully differential input pair when used with

AD7190

Pin No.	Mnemonic	Description
		AIN4 or as a pseudo-differential input when used with AINCOM.
14	AIN4	Analog Input. It can be configured as the negative input of a fully differential input pair when used with AIN3 or as a pseudo-differential input when used with AINCOM.
15	REFIN1 (+)	Positive Reference Input. An external reference can be applied between REFIN1(+) and REFIN1(-). REFIN1 (+) can lie anywhere between $\mathrm{AV}_{\mathrm{DD}}$ and GND + 1 V . The nominal reference voltage, (REFIN1(+) -REFIN1(-)), is $A V_{D D}$, but the part functions with a reference from 1 V to $\mathrm{AV}_{\mathrm{DD}}$.
16	REFIN1(-)	Negative Reference Input. This reference input can lie anywhere between GND and AVDD -1 V .
17	BPDSW	Low Side Power Switch to AGND.
18	AGND	Analog Ground Reference Point.
19	DGND	Digital Ground Reference Point.
20	$A V_{\text {D }}$	Analog Supply Voltage, 3 V to 5.25 V . $\mathrm{AV}_{D D}$ is independent of $\mathrm{DV} \mathrm{V}_{\mathrm{D}}$. Therefore $\mathrm{DV}_{D D}$ can be operated at 3 V with $\mathrm{A} \mathrm{V}_{\mathrm{DD}}$ at 5 V or vice versa.
21	DVDD	Digital Supply Voltage, 2.7 V to 5.25 V . $D V_{D D}$ is independent of $A V_{D D}$. Therefore $A V_{D D}$ can be operated at 3 V with $D V_{D D}$ at 5 V or vice versa.
22	$\overline{\text { SYNC }}$	Logic Input that allows for synchronization of the digital filters and analog modulators when using a number of AD7190 devices. While $\overline{\text { SYNC }}$ is low, the nodes of the digital filter, the filter control logic and the calibration control logic are reset and the analog modulator is also held in its reset state. $\overline{\text { SYNC }}$ does not affect the digital interface but does reset $\overline{\mathrm{RDY}}$ to a high state if it is low. $\overline{\mathrm{SYNC}}$ has a pull- up resistor internally to $\mathrm{DV}_{\mathrm{DD}}$.
23	DOUT/ $\overline{\text { RDY }}$	output pin to access the output shift register of the ADC. The output shift register can contain data from any of the on-chip data or control registers. In addition, DOUT/RDYoperates as a data ready pin, going low to indicate the completion of a conversion. If the data is not read after the conversion, the pin will go high before the next update occurs. The DOUT//RDY falling edge can be used as an interrupt to a processor, indicating that valid data is available. With an external serial clock, the data can be read using the DOUT/ $\overline{\operatorname{RDY}}$ pin. With $\overline{\mathrm{CS}}$ low, the data/control word information is placed on the DOUT/ $\overline{\operatorname{RDY}}$ pin on the SCLK falling edge and is valid on the SCLK rising edge.
24	DIN	Serial Data Input to the Input Shift Register on the ADC. Data in this shift register is transferred to the control registers within the ADC, the register selection bits of the communications register identifying the appropriate register.

RMS NOISE AND RESOLUTION SPECIFICATIONS

The AD7190 can be operated with chop enabled or chop disabled. With chop enabled, the settling time is two times the conversion time. The offset is continuously removed by the ADC leading to low offset and low offset drift. With chop disabled, higher update rates can be achieved from the ADC. The settling time is three times $\left(\sin c^{3}\right)$ or four times $\left(\operatorname{sinc}^{4}\right)$ the selected update rate. With chop disabled, the offset is not removed by the ADC. The offset and offset drift is comparable between chop enabled and chop disabled for gains of 32 or higher. For lower gains, however, periodic offset calibrations may be required to remove offset due to drift.

SINC ${ }^{4}$ FILTER

The sinc ${ }^{4}$ filter optimizes the $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection. At the higher update rates, it also gives better rms noise performance compared with the sinc^{3} filter.

CHOP DISABLED

Table 5 shows the rms noise of the AD7190 for some of the update rates and gain settings with chop disabled. The numbers given are for the bipolar input range with the external 5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V . Table 6 shows the effective resolution while the output peak-to-peak ($\mathrm{p}-\mathrm{p}$) resolution is listed in brackets. It is important to note that the effective resolution is calculated using the rms noise, while the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there will be no code flicker. These numbers are typical and are rounded to the nearest half-LSB.

Table 5. RMS Noise (nV) vs. Gain and Output Update Rate (continuous conversion mode) Using a 5 V Reference - Chop Disabled

Filter Word (Decimal)	Update Rate $(\mathbf{H z})$	Gain of $\mathbf{1}$	Gain of $\mathbf{8}$	Gain of $\mathbf{1 6}$	Gain of $\mathbf{3 2}$	Gain of $\mathbf{6 4}$	Gain of $\mathbf{1 2 8}$
$\mathbf{1 0 2 3}$	$\mathbf{4 . 7}$	174	24.71	12.65	10	8.3	7
$\mathbf{6 4 0}$	$\mathbf{7 . 5}$	196	30.28	14.52	12.28	10.37	9.5
$\mathbf{4 8 0}$	$\mathbf{1 0}$	246	38	19.33	14.14	12.00	10.26
$\mathbf{9 6}$	$\mathbf{5 0}$	558	87	44	35.66	27.78	25.3
$\mathbf{1 6}$	$\mathbf{3 0 0}$	1344	186	105	72.82	68.57	52.66
$\mathbf{2}$	$\mathbf{2 4 0 0}$	4254	582	322	232	200	167
$\mathbf{1}$	$\mathbf{4 8 0 0}$	13000	1776	900	678	497	376

Table 6. Typical Resolution (Bits) vs. Gain and Output Update Rate (continuous conversion mode) Using a 5 V Reference - Chop Disabled

Filter Word (Decimal)	Update Rate $\mathbf{(H z} \mathbf{)}$	Gain of $\mathbf{1}$	Gain of $\mathbf{8}$	Gain of $\mathbf{1 6}$	Gain of 32	Gain of 64	Gain of 128
$\mathbf{1 0 2 3}$	$\mathbf{4 . 7}$	$24(23)$	$24(23)$	$24(23)$	$24(22)$	$24(21.5)$	$23.5(21)$
$\mathbf{6 4 0}$	$\mathbf{7 . 5}$	$24(23)$	$24(22.5)$	$24(22.5)$	$24(22)$	$24(21.5)$	$23(20.5)$
$\mathbf{4 8 0}$	$\mathbf{1 0}$	$24(22.5)$	$24(22.5)$	$24(22)$	$24(21.5)$	$23.5(21)$	$23(20.5)$
$\mathbf{9 6}$	$\mathbf{5 0}$	$24(21.5)$	$24(21.5)$	$24(21.5)$	$23(20.5)$	$22.5(20)$	$21.5(19)$
$\mathbf{1 6}$	$\mathbf{3 0 0}$	$23(20.5)$	$22.5(20)$	$22.5(20)$	$22(19.5)$	$21(18.5)$	$20.5(18)$
$\mathbf{2}$	$\mathbf{2 4 0 0}$	$21(18.5)$	$21(18.5)$	$21(18.5)$	$20.5(18)$	$19.5(17)$	$19(16.5)$
$\mathbf{1}$	$\mathbf{4 8 0 0}$	$19.5(17)$	$19.5(17)$	$19.5(17)$	$19(16.5)$	$18(15.5)$	$17.5(15)$

CHOP ENABLED

Table 7 shows the AD7190's rms noise for some of the update rates and gain settings. The numbers given are for the bipolar input range with an external 5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V . Table 8 shows the effective resolution, while the output peak-topeak ($\mathrm{p}-\mathrm{p}$) resolution is listed in brackets. It is important to note
that the effective resolution is calculated using the rms noise, while the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there will be no code flicker. These numbers are typical and are rounded to the nearest half-LSB.

Table 7. RMS Noise (nV) vs. Gain and Output Update Rate (continuous conversion mode) Using a 5 V Reference - Chop Enabled

Filter Word (Decimal)	Update Rate $(\mathbf{H z})$	Gain of $\mathbf{1}$	Gain of $\mathbf{8}$	Gain of $\mathbf{1 6}$	Gain of $\mathbf{3 2}$	Gain of $\mathbf{6 4}$	Gain of $\mathbf{1 2 8}$
$\mathbf{1 0 2 3}$	$\mathbf{1 . 1 7 5}$	123	17.47	8.94	7.07	5.87	5
$\mathbf{6 4 0}$	$\mathbf{1 . 8 7 5}$	138	21.41	10.27	8.68	7.33	7.07
$\mathbf{4 8 0}$	$\mathbf{2 . 5}$	174	26.87	13.67	10	8.49	7.25
$\mathbf{9 6}$	$\mathbf{1 2 . 5}$	395	61.52	31.11	25.22	19.64	17.9
$\mathbf{1 6}$	$\mathbf{7 5}$	950	132	74.25	51.5	48.49	37.24
$\mathbf{2}$	$\mathbf{6 0 0}$	3008	412	228	164	141	118
$\mathbf{1}$	$\mathbf{1 2 0 0}$	9192	1255	636	479	351	266

Table 8. Typical Resolution (Bits) vs. Gain and Output Update Rate (continuous conversion mode) Using a 5 V Reference - Chop Enabled

Filter Word (Decimal)	Update Rate $(\mathbf{H z})$	Gain of $\mathbf{1}$	Gain of 8	Gain of $\mathbf{1 6}$	Gain of $\mathbf{3 2}$	Gain of $\mathbf{6 4}$	Gain of $\mathbf{1 2 8}$
$\mathbf{1 0 2 3}$	$\mathbf{1 . 1 7 5}$	$24(23.5)$	$24(23.5)$	$24(23.5)$	$24(22.5)$	$24(22)$	$24(21.5)$
$\mathbf{6 4 0}$	$\mathbf{1 . 8 7 5}$	$24(23.5)$	$24(23)$	$24(23)$	$24(22.5)$	$24(21.5)$	$23.5(21)$
$\mathbf{4 8 0}$	$\mathbf{2 . 5}$	$24(23)$	$24(22.5)$	$24(22.5)$	$24(22)$	$24(21.5)$	$23(20.5)$
$\mathbf{9 6}$	$\mathbf{1 2 . 5}$	$24(22)$	$24(21.5)$	$24(21.5)$	$23.5(21)$	$23(20.5)$	$22(19.5)$
$\mathbf{1 6}$	$\mathbf{7 5}$	$23.5(21)$	$23(20.5)$	$23(20.5)$	$22.5(20)$	$21.5(19)$	$21(18.5)$
$\mathbf{2}$	$\mathbf{6 0 0}$	$21.5(19)$	$21.5(19)$	$21.5(19)$	$21(18.5)$	$20(17.5)$	$19.5(17)$
$\mathbf{1}$	$\mathbf{1 2 0 0}$	$20(17.5)$	$20(17.5)$	$20(17.5)$	$19.5(17)$	$18.5(16)$	$18(15.5)$

SINC ${ }^{3}$ FILTER

For a given update rate, the sinc^{3} filter has lower settling time than the sinc^{3} filter. At low update rates, the rms noise is comparable between the $\operatorname{sinc}{ }^{3}$ filter and the sinc^{4} filter. So, the user can optimize the settling time without compromising the rms noise. At high update rates, the sinc ${ }^{4}$ filter is needed for optimum performance of the AD7190.

CHOP DISABLED

Table 9 shows the rms noise of the AD7190 for some of the update rates and gain settings with chop disabled. The
numbers given are for the bipolar input range with the external 5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V . Table 10 shows the effective resolution while the output peak-to-peak (p-p) resolution is listed in brackets. It is important to note that the effective resolution is calculated using the rms noise, while the p-p resolution is calculated based on peak-to-peak noise. The p-p resolution represents the resolution for which there will be no code flicker. These numbers are typical and are rounded to the nearest half-LSB.

Table 9. RMS Noise (nV) vs. Gain and Output Update Rate (continuous conversion mode) Using a 5 V Reference - Chop Disabled

Filter Word (Decimal)	Update Rate $\mathbf{(H z})$	Gain of $\mathbf{1}$	Gain of $\mathbf{8}$	Gain of $\mathbf{1 6}$	Gain of 32	Gain of 64	Gain of 128
$\mathbf{1 0 2 3}$	$\mathbf{4 . 7}$	177	26.5	13.22	10.52	8.7	7.68
$\mathbf{6 4 0}$	$\mathbf{7 . 5}$	200	31	16.12	13.13	10.97	10.02
$\mathbf{4 8 0}$	$\mathbf{1 0}$	276	41	20.48	15.42	12.82	10.74
$\mathbf{9 6}$	$\mathbf{5 0}$	606	93	48	36.92	29.68	25.66
$\mathbf{1 6}$	$\mathbf{3 0 0}$	1400	205	112	84	73.21	60
$\mathbf{2}$	$\mathbf{2 4 0 0}$	57510	7000	3570	1770	896	464
$\mathbf{1}$	$\mathbf{4 8 0 0}$	438100	54690	27340	14220	6890	3480

Table 10. Typical Resolution (Bits) vs. Gain and Output Update Rate (continuous conversion mode) Using a 5 V Reference - Chop Disabled

Filter Word (Decimal)	Update Rate (Hz)	Gain of $\mathbf{1}$	Gain of $\mathbf{8}$	Gain of $\mathbf{1 6}$	Gain of 32	Gain of $\mathbf{6 4}$	Gain of $\mathbf{1 2 8}$
$\mathbf{1 0 2 3}$	$\mathbf{4 . 7}$	$24(23)$	$24(23)$	$24(23)$	$24(22)$	$24(21.5)$	$23.5(21)$
$\mathbf{6 4 0}$	$\mathbf{7 . 5}$	$24(23)$	$24(22.5)$	$24(22.5)$	$24(22)$	$24(21.5)$	$23(20.5)$
$\mathbf{4 8 0}$	$\mathbf{1 0}$	$24(22.5)$	$24(22)$	$24(22)$	$24(21.5)$	$23.5(21)$	$23(20.5)$
$\mathbf{9 6}$	$\mathbf{5 0}$	$24(21.5)$	$23.5(21)$	$23.5(21)$	$23(20.5)$	$22.5(20)$	$21.5(19)$
$\mathbf{1 6}$	$\mathbf{3 0 0}$	$23(20.5)$	$22.5(20)$	$22.5(20)$	$22(19.5)$	$21(18.5)$	$20.5(18)$
$\mathbf{2}$	$\mathbf{2 4 0 0}$	$17.5(15)$	$17.5(15)$	$17.5(15)$	$17.5(15)$	$17.5(15)$	$17.5(15)$
$\mathbf{1}$	$\mathbf{4 8 0 0}$	$14.5(12)$	$14.5(12)$	$14.5(12)$	$14.5(12)$	$14.5(12)$	$14.5(12)$

CHOP ENABLED

Table 11 shows the AD7190's rms noise for some of the update rates and gain settings. The numbers given are for the bipolar input range with an external 5 V reference. These numbers are typical and are generated with a differential input voltage of 0 V . Table 12 shows the effective resolution, while the output peak-to-peak ($\mathrm{p}-\mathrm{p}$) resolution is listed in brackets. It is important to
note that the effective resolution is calculated using the rms noise, while the p-p resolution is calculated based on peak-topeak noise. The p-p resolution represents the resolution for which there will be no code flicker. These numbers are typical and are rounded to the nearest half-LSB.

Table 11. RMS Noise (nV) vs. Gain and Output Update Rate (continuous conversion mode) Using a 5 V Reference - Chop Enabled

Filter Word (Decimal)	Update Rate $\mathbf{(H z})$	Gain of $\mathbf{1}$	Gain of 8	Gain of $\mathbf{1 6}$	Gain of 32	Gain of $\mathbf{6 4}$	Gain of $\mathbf{1 2 8}$
$\mathbf{1 0 2 3}$	$\mathbf{1 . 5 6}$	125	18.74	9.35	7.44	6.15	5.43
$\mathbf{6 4 0}$	$\mathbf{2 . 5}$	173	21.92	11.4	9.28	7.76	7.09
$\mathbf{4 8 0}$	$\mathbf{3 . 3 3}$	195	29	14.48	10.90	9.06	7.59
$\mathbf{9 6}$	$\mathbf{1 6 . 6}$	429	66	34	26.11	20.99	18.14
$\mathbf{1 6}$	$\mathbf{1 0 0}$	990	145	79.2	59.4	51.77	44.62
$\mathbf{2}$	$\mathbf{8 0 0}$	40666	4950	2524	1252	634	328
$\mathbf{1}$	$\mathbf{1 6 0 0}$	309783	38672	19332	10055	4872	2461

Table 12. Typical Resolution (Bits) vs. Gain and Output Update Rate (continuous conversion mode) Using a 5 V Reference - Chop Enabled

Filter Word (Decimal)	Update Rate $(\mathbf{H z}$)	Gain of $\mathbf{1}$	Gain of $\mathbf{8}$	Gain of $\mathbf{1 6}$	Gain of 32	Gain of $\mathbf{6 4}$	Gain of $\mathbf{1 2 8}$
$\mathbf{1 0 2 3}$	$\mathbf{1 . 5 6}$	$24(23.5)$	$24(23.5)$	$24(23.5)$	$24(22.5)$	$24(22)$	$24(21.5)$
$\mathbf{6 4 0}$	$\mathbf{2 . 5}$	$24(23.5)$	$24(23)$	$24(23)$	$24(22.5)$	$24(21.5)$	$23.5(21)$
$\mathbf{4 8 0}$	$\mathbf{3 . 3 3}$	$24(23)$	$24(22.5)$	$24(22.5)$	$24(22)$	$24(21.5)$	$23(20.5)$
$\mathbf{9 6}$	$\mathbf{1 6 . 6}$	$24(22)$	$24(21.5)$	$24(21.5)$	$23.5(21)$	$23(20.5)$	$22(19.5)$
$\mathbf{1 6}$	$\mathbf{1 0 0}$	$23.5(21)$	$23(20.5)$	$23(20.5)$	$22.5(20)$	$21.5(19)$	$21(18.5)$
$\mathbf{2}$	$\mathbf{8 0 0}$	$18(15.5)$	$18(15.5)$	$18(15.5)$	$18(15.5)$	$18(15.5)$	$18(15.5)$
$\mathbf{1}$	$\mathbf{1 6 0 0}$	$15(12.5)$	$15(12.5)$	$15(12.5)$	$15(12.5)$	$15(12.5)$	$15(12.5)$

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 9.

ON-CHIP REGISTERS

The ADC is controlled and configured via a number of on-chip registers, which are described on the following pages. In the following descriptions, set implies a Logic 1 state and cleared implies a Logic 0 state, unless otherwise noted.

COMMUNICATIONS REGISTER

(RS2, RS1, RSO = 0, 0, 0)

The communications register is an 8-bit write-only register. All communications to the part must start with a write operation to the communications register. The data written to the communications register determines whether the next operation is a read or write operation, and to which register this operation takes place. For read or write operations, once the subsequent read or
write operation to the selected register is complete, the interface returns to where it expects a write operation to the communications register. This is the default state of the interface and, on power-up or after a reset, the ADC is in this default state waiting for a write operation to the communications register. In situations where the interface sequence is lost, a write operation of at least 40 serial clock cycles with DIN high returns the ADC to this default state by resetting the entire part. Table 13 outlines the bit designations for the communications register. CR0 through CR7 indicate the bit location, CR denoting the bits are in the communications register. CR7 denotes the first bit of the data stream. The number in brackets indicates the poweron/reset default status of that bit.

CR7	CR6	CR5	CR4	CR3	CR2	CR1	CR0
$\overline{\mathrm{WEN}}(0)$	$\mathrm{R} / \overline{\mathrm{W}}(0)$	RS2 (0)	RS1 (0)	$\operatorname{RS} 0(0)$	CREAD (0)	$0(0)$	$0(0)$

Table 13. Communications Register Bit Designations

Bit Location	Bit Name	Description
CR7	$\overline{\text { WEN }}$	Write Enable Bit. A 0 must be written to this bit so that the write to the communications register actually occurs. If a 1 is the first bit written, the part will not clock on to subsequent bits in the register. It will stay at this bit location until a 0 is written to this bit. Once a 0 is written to the $\overline{\text { WEN bit, the next seven bits will be }}$
CR6	R/W	loaded to the communications register. A 0 in this bit location indicates that the next operation will be a write to a specified register. A 1 in this position indicates that the next operation will be a read from the designated register.
CR5 to CR3	RS2 to RSO	Register Address Bits. These address bits are used to select which registers of the ADC are being selected during this serial interface communication. See Table 14.
CR2	CREAD	Continuous Read of the Data Register. When this bit is set to 1 (and the data register is selected), the serial interface is configured so that the data register can be continuously read, that is, the contents of the data register are automatically placed on the DOUT pin when the SCLK pulses are applied after the goes low to indicate that a conversion is complete. The communications register does not have to be
written to for subsequent data reads. To enable continuous read, the instruction 0101100 must be written		
to the communications register. To disable continuous read, the instruction 01011000 must be written to		
the communications register while the RDY pin is low. While continuous read is enabled, the ADC monitors		
activity on the DIN line so that it can receive the instruction to disable continuous read. Additionally, a		
reset will occur if 40 consecutive 1s are seen on DIN. Therefore, DIN should be held low until an instruction		
is to be written to the device.		
These bits must be programmed to Logic 0 for correct operation.		

Table 14. Register Selection

RS2	RS1	RS0	Register
0	0	0	Communications Register During a Write Operation
0	0	0	Status Register During a Read Operation
0	0	1	Mode Register
0	1	0	Configuration Register
0	1	1	Data Register / Data Register + Status Information
1	0	0	ID Register
1	0	1	GPOCON Register
1	1	0	Offset Register
1	1	1	Full-Scale Register

STATUS REGISTER

(RS2, RS1, RS0 = 0, 0, 0; Power-On/Reset $=0 \times 80$)

The status register is an 8 -bit read-only register. To access the ADC status register, the user must write to the communications register, select the next operation to be a read, and load Bit RS2, Bit RS1, and Bit RS0 with 0 . Table 15 outlines the bit designations for the status register. SR0 through SR7 indicate the bit locations, SR denoting the bits are in the status register. SR7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

SR7	SR6	SR5	SR4	SR3	SR2	SR1	SR0
$\overline{\operatorname{RDY}}(1)$	ERR(0)	NOREF(0)	PARITY(0)	CHD3(0)	CHD2(0)	CHD1(0)	CHD0(0)

Table 15. Status Register Bit Designations

Bit Location	Bit Name	Description
SR7	$\overline{\mathrm{RDY}}$	Ready Bit for ADC. Cleared when data is written to the ADC data register. The $\overline{\mathrm{RDY}}$ bit is set automatically after the ADC data register has been read or a period of time before the data register is updated with a new conversion result to indicate to the user not to read the conversion data. It is also set when the part is placed in power-down mode, idle mode or when $\overline{\text { SYNC }}$ is taken low. the status register for monitoring the ADC for conversion data.
SR6	ERR	ADC Error Bit. This bit is written to at the same time as the $\overline{\mathrm{RDY}}$ bit. Set to indicate that the result written to the ADC data register has been clamped to all 0 s or all 1 s . Error sources include overrange, underrange, or the absence of a reference voltage. Cleared by a write operation to start a conversion.
SR5	NOREF	No External Reference Bit. Set to indicate that the selected reference (REFIN1 or REFIN2) is at a voltage that is below a specified threshold. When set, conversion results are clamped to all ones. Cleared to indicate that a valid reference is applied to the selected reference pins. The NOXREF bit is enabled by setting the REF_DET bit in the configuration register to 1 . The ERR bit is also set if the voltage applied to the selected reference input is invalid.
SR4	PARITY	Parity Check of Data Register. If the ENPAR bit is set, the PARITY bit is set if there is an odd number of 1 s in the data register. It is cleared if there is an even number of 1 s in the data register. The DAT_STA bit should be set when the parity check is used. When the DAT_STA bit is set, the contents of the status register are transmitted along with the data for each data register read.
SR3 to SR0	$\begin{aligned} & \text { CHD3 to } \\ & \text { CHD0 } \end{aligned}$	These bits indicate which channel corresponds to the data register contents. They do not indicate which channel is presently being converted but indicate which channel was selected when the conversion contained in the data register was being generated.

MODE REGISTER

(RS2, RS1, RSO = 0, 0, 1; Power-On/Reset $=0 \times 080060$)

The mode register is a 24 -bit register from which data can be read or to which data can be written. This register is used to select the operating mode, the update rate, and the clock source. Table 16 outlines the bit designations for the mode register. MR0 through MR23 indicate the bit locations, MR denoting the bits are in the mode register. MR23 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit. Any write to the mode register resets the modulator and filter and sets the $\overline{\text { RDY }}$ bit.

MR23	MR22	MR21	MR20	MR19	MR18	MR17	MR16
MD2(0)	MD1(0)	MD0(0)	DAT_STA(0)	CLK1(1)	CLK0(0)	0	0
MR15	MR14	MR13	MR12	MR11	MR10	MR9	MR8
SINC3(0)	0	ENPAR(0)	0	SINGLE(0)	REJ60(0)	FS9(0)	FS8(0)
MR7	MR6	MR5	MR4	MR3	MR2	MR1	MR0
FS7(0)	FS6(1)	FS5(1)	FS4(0)	FS3(0)	FS2(0)	FS1(0)	FS0(0)

Table 16. Mode Register Bit Designations

Bit Location	Bit Name	Description
MR23 to MR21	MD2 to MD0	Mode Select Bits. These bits select the operational mode of the AD7190 (see Table 17).
MR20	DAT_STA	Transmit status register contents after each data register read. When DAT_STA is set, the contents of the status register are transmitted along with each data register

Bit Location	Bit Name	Description		
		read. This function is useful when several channels are selected as the status register identifies the channel to which the data register value corresponds.		
MR19 to MR18	CLK1 to CLK0	These bits are used to select the clock source for the AD7190. Either the on-chip 4.92 MHz clock can be used or an external clock can be used. The ability to use an external clock allows several AD7190 devices to be synchronized. Also, $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection is improved when an accurate external clock drives the AD7190.		
		CLK1	CLKO	ADC Clock Source
		0	0	External crystal used. The external crystal is connected from MCLK1 to MCLK2. External clock used. The external clock is applied to the MCLK2 pin. Internal 4.92 MHz clock. Pin MCLK2 is tri-stated. Internal 4.92 MHz clock. The internal clock is available on MCLK2.
MR17 to MR16	0	These bits must be programmed with a Logic 0 for correct operation. Sinc3 Filter Select pin. When this bit is cleared, the sinc ${ }^{4}$ filter is used (default value). When this bit is set, a sinc^{3} filter is used. The benefit of the $\sin ^{3}$ filter compared to the sinc ${ }^{4}$ filter is its lower settling time when chop is disabled. For a given update rate $f_{A D C}$, the $\sin ^{3}$ filter has a settling time of $f_{A D C} / 3$ while the sinc ${ }^{4}$ filter has a settling time of $f_{A D C} / 4$. The sinc ${ }^{4}$ filter, due to its deeper notches, gives better $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection. At low update rates, both filters give similar rms noise and similar no missing codes for a given update rate. At higher update rates (FS values less than 5), the sinc ${ }^{4}$ filter gives better performance than the $\sin ^{3}$ filter for $r m s$ noise and no missing codes.		
MR15	SINC3			
MR14	0	This bit must be programmed with a Logic 0 for correct operation.		
MR13	ENPAR	When ENPAR is set, parity checking on the data register is enabled. The DAT_STA bit should be set when the parity check is used. When the DAT_STA bit is set, the contents of the status register are transmitted along with the data for each data register read.		
MR12	0	This bit must be programmed with a Logic 0 for correct operation.		
MR11	SINGLE	When this bit is set, the AD7190 allows the complete settling time to perform each conversion. So, the device functions as a zero-latency ADC.		
MR10	REJ60	Enables a notch at 60 Hz when the update rate is equal to 50 Hz . When REJ60 is set, a filter notch is placed at 60 Hz when the update rate selected is 50 Hz . This allows simultaneous $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection.		
MR9 to MR0	FS9 to FS0	Changing the filter notch frequency, as well as the selected gain, impacts resolution. Tables 5 through 8 show the effect of the filter notch frequency and gain on the effective resolution of the AD7190. The output data rate (or effective conversion time) for the device is equal to the frequency selected for the first notch of the filter. For example, if the first notch of the filter is selected at 50 Hz then a new word is available at a 50 Hz rate or every 20 ms . If the first notch is at 1.2 kHz , a new word is available every 0.83 ms . The settling time of the filter to a full-scale step input change is worst case ($\mathrm{N}+1$)/(output data rate) where $N=3$ when the $\sin ^{3}$ filter is selected and $N=4$ when the sinc ${ }^{4}$ filter is selected. For example, with the first filter notch at 50 Hz , the settling time of the filter to a full-scale step input change is 100 ms max when $\mathrm{N}=4$. This settling time can be reduced to $\mathrm{N} /$ (output data rate) by synchronizing the step input change to a reset of the digital filter. In other words, if the step input takes place with the $\overline{S Y N C}$ input low, the settling time will be $\mathrm{N} /$ (output data rate) from when $\overline{\text { SYNC }}$ returns high. If a change of channel takes place, the settling time is $\mathrm{N} /($ output data rate) regardless of the $\overline{S Y N C}$ status as the part issues an internal reset command when requested to change channels. The -3 dB frequency is determined by the programmed first notch frequency according to the		

Bit Location	Bit Name	Description
		relationship: filter -3 dB frequency $=0.23 \times$ filter first notch frequency. When chop is enabled, the conversion time equals Conversion rate $=($ fmod $/ 64) /(\mathrm{NxFS})$
where FS is the decimal equivalent of the code in bits FSO to FS9 and is in the range 1 to 1023 and		
fmod is the modulator frequency which is equal to MCLK/16. With the nominal MCLK of 4.92 MHz, this		
results in a conversion rate from 4.69/N Hz to 4.8/N kHz where N is the order of the sinc filter. The first		
notch in the frequency response is placed at conversion rate/2. The settling time is equal to 2 x		
conversion time.		

Table 17. Operating Modes

MD2	MD1	MDO	Mode
0	0	0	Continuous Conversion Mode (Default). In continuous conversion mode, the ADC continuously performs conversions and places the result in the data register. $\overline{\mathrm{RDY}}$ goes low when a conversion is complete. The user can read these conversions by setting the CREAD bit in the communications register to ' 1 ' which enables continuous read. When continuous read is enabled, the conversions are automatically placed on the DOUT line when SCLK pulses are applied. Alternatively, the user can instruct the ADC to output each conversion by writing to the communications register. After power-on, a reset or a re-configuration of the ADC, the complete settling time of the filter is required to generate the first valid conversion. Subsequent conversions are available at the selected update rate which is dependent on filter choice.
0	0	1	Single Conversion Mode. When single conversion mode is selected, the ADC powers up and performs a single conversion on the selected channel. The oscillator requires 1 ms to power up and settle. The ADC then performs the conversion which requires the complete settling time of the filter. The conversion result is placed in the data register, $\overline{\mathrm{RDY}}$ goes low, and the ADC returns to power-down mode. The conversion remains in the data register and $\overline{\mathrm{RDY}}$ remains active (low) until the data is read or another conversion is performed.
0	1	0	Idle Mode. In idle mode, the ADC filter and modulator are held in a reset state although the modulator clocks are still provided.
0	1	1	Power-Down Mode. In power-down mode, all the AD7190 circuitry, except the power switch, is powered down. The power switch remains active as the user may need to power up the sensor prior to powering up the AD7190 for settling reasons. The external crystal, if present, is left active.
1	0	0	Internal Zero-Scale Calibration. An internal short is automatically connected to the input. $\overline{\text { RDY }}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	0	1	Internal Full-Scale Calibration. A full-scale input voltage is automatically connected to the input for this calibration. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. A full-scale calibration is required each time the gain of a channel is changed to minimize the full-scale error.
1	1	0	System Zero-Scale Calibration. User should connect the system zero-scale input to the channel input pins as selected by the CH 7 to CHO bits. $\overline{\text { RDY }}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured offset coefficient is placed in the offset register of the selected channel.
1	1	1	System Full-Scale Calibration. User should connect the system full-scale input to the channel input pins as selected by the CH7-CH0 bits. $\overline{\mathrm{RDY}}$ goes high when the calibration is initiated and returns low when the calibration is complete. The ADC is placed in idle mode following a calibration. The measured full-scale coefficient is placed in the full-scale register of the selected channel. A full-scale calibration is required each time the gain of a channel is changed.

CONFIGURATION REGISTER

(RS2, RS1, RSO = 0, 1, 0; Power-On/Reset $=0 \times 000117$)

The configuration register is a 24 -bit register from which data can be read or to which data can be written. This register is used to configure the ADC for unipolar or bipolar mode, enable or disable the buffer, enable or disable the burnout currents, select the gain, and select the analog input channel.

Table 18 outlines the bit designations for the filter register. CON0 through CON23 indicate the bit locations. CON denotes that the bits are in the configuration register. CON23 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

CON23	CON22	CON21	CON20	CON19	CON18	CON17	CON16
CHOP(0)	$0(0)$	$0(0)$	REFSEL(0)	$0(0)$	$0(0)$	$0(0)$	(0)
CON15	CON14	CON13	CON12	CON11	CON10	CON9	CON8
CH7(0)	CH6(0)	CH5(0)	CH4(0)	CH3(0)	CH2(0)	CH1 (0)	CH0(1)
CON7	CON6	CON5	CON4	CON3	CON2	CON1	CON0
BURN(0)	REFDET(0)	$0(0)$	BUF(1)	U/ $\bar{B}(0)$	GN2(1)	GN1(1)	GN0(1)

Table 18. Configuration Register Bit Designations

Bit Location	Bit Name	Description
CON23	CHOP	Chop Enable Bit. When CHOP is cleared, chop is disabled. When CHOP is set, chop is disabled. When chop is enabled, the offset and offset drift is continuously removed by the ADC. However, it increases the conversion time and settling time of the ADC. For example, when FS = 96 decimal and the sinc^{4} filter is selected, the conversion time with chop enabled equals 80 ms and the settling time equals 160 ms . With chop disabled, higher conversion rates are allowed. For an SF word of 96 decimal and the sinc^{4} filter selected, the conversion time is 20 ms and the settling time is 80 ms . However, at low gains, periodic calibrations may be required to remove the offset and offset drift.
$\begin{aligned} & \hline \text { CON22, } \\ & \text { CON21 } \end{aligned}$	0	These bits must be programmed with a Logic 0 for correct operation.
CON20	REFSEL	Reference Select Bits. The reference source for the ADC is selected using these bits.
		REFSEL \quad Reference Voltage
		0 External reference applied between REFIN1(+) and REFIN1(-) 1 External reference applied between the P1 and P0 pins.
CON19 to CON16	0	These bits must be programmed with a Logic 0 for correct operation.
CON15 to CON8	CH 7 to CH 0	Channel Select Bits. These bits are used to select which channels are enabled on the AD7190. See Table 19. Several channels can be selected and the AD7190 will automatically sequence between them. The conversion on each channel will require the complete settling time.
CON7	BURN	When this bit is set to 1 by the user, the 500 nA current sources in the signal path are enabled. When BURN $=0$, the burnout currents are disabled. The burnout currents can be enabled only when the buffer is active.
CON6	REFDET	Enables the Reference Detect Function. When set, the NOXREF bit in the status register indicates when the external reference being used by the ADC is open circuit or less than 0.5 V .
CON5	0	This bit must be programmed with a Logic 0 for correct operation.
CON4	BUF	Configures the ADC for buffered or unbuffered mode of operation. If cleared, the ADC operates in unbuffered mode, lowering the power consumption of the device. If set, the ADC operates in buffered mode, allowing the user to place source impedances on the front end without contributing gain errors to the system. With the buffer disabled, the voltage on the analog input pins can be from 50 mV below GND to 50 mV above $A V_{D D}$. When the buffer is enabled, it requires some headroom so the voltage on any input pin must be limited to 200 mV within the power supply rails.

Table 19. Channel Selection

CH7	CH6	CH5	CH4	CH3	CH2	CH1	CH0	Channel	CHD[3:0]	Calibration Pair
X	X	X	X	X	X	X	1	AIN1 - AIN2	0000	0
X	X	X	X	X	X	1	X	AIN3 - AIN4	0001	1
X	X	X	X	X	1	X	X	Temp Sensor	0010	0011
X	X	X	X	1	X	X	X	AIN2 - AIN2	0100	0
X	X	X	1	X	X	X	X	AIN1 - AINCOM	0	
X	X	1	X	X	X	X	X	AIN2 - AINCOM	1	
X	1	X	X	X	X	X	X	AIN3 - AINCOM	0101	2
1	X	X	X	X	X	X	X	AIN4 - AINCOM	0110	3

DATA REGISTER

(RS2, RS1, RSO = 0, 1, 1; Power-On/Reset $=0 \times 000000$)

The conversion result from the ADC is stored in this data register. This is a read-only register. On completion of a read operation from this register, the $\overline{\mathrm{RDY}}$ bit/pin is set. The AD7190 can be configured for 24 -bit transfers or 32-bit transfers. When 24 -bit transfers are selected, the 24 -bit data conversion is transmitted. When 32 -bit transfers are selected, the 24 -bit conversion is followed by the contents of the status register. When several channels are enabled, the ADC will automatically step between channels. So, 32-bit transmissions are required so that the user can identify the channel from which the conversions originated.

GPOCON REGISTER

(RS2, RS1, RSO = 1, 0, 1; Power-On/Reset = 0x00)

The GPOCON register is an 8-bit register from which data can be read or to which data can be written. This register is used to enable the general purpose digital outputs.

Table 20 outlines the bit designations for the GPOCON register. GP0 through GP7 indicate the bit locations. GP denotes that the bits are in the GPOCON register. GP7 denotes the first bit of the data stream. The number in brackets indicates the power-on/reset default status of that bit.

GP7	GP6	GP5	GP4	GP3	GP2	GP1	GP0
$0(0)$	$\operatorname{BPDSW}(0)$	GP32EN (0)	GP10EN (0)	$\operatorname{P3DAT}(0)$	P2DAT (0)	P1DAT (0)	PODAT (0)

Table 20. Register Bit Designations

Bit Location	Bit Name	Description
GP7	0	This bit must be programmed with a Logic 0 for correct operation.
GP 6	BPDSW	Power Switch Control Bit. Set by user to close the power switch BPDSW to AGND. The power switch can sink up to 30 mA . Cleared by user to open the power switch. When the ADC is placed in powerdown mode, the power switch remains active.
GP5	GP32EN	Digital Outputs P3 and P2 Enable. When GP32EN is set, the digital outputs P3 and P2 are active. When GP32EN is cleared, the pins P3 and P2 are tri-stated and bits P3DAT and P2DAT are ignored.
GP4	GP10EN	Digital Outputs P1 and P0 Enable. When GP10EN is set, the digital outputs P1 and P0 are active. When GP10EN is cleared, the P1 and P0 outputs are tri-stated and bits P1DAT and P0DAT are ignored. The pins P1 and P0 can be used as a reference input REFIN2 when bit REFSEL in the configuration register is set to 1 .
GP3	P3DAT	Digital Output P3. When GP32EN is set, the P3DAT bit sets the value of the general purpose output pin P3. When P3DAT is high, the output P3 is high. When P3DAT is low, the output P3 is low.
GP2	P2DAT	Digital Output P2. When GP32EN is set, the P2DAT bit sets the value of the general purpose output pin P2. When P2DAT is high, the output P2 is high. When P2DAT is low, the output P2 is low.
GP1	P1DAT	Digital Output P1. When GP10EN is set, the P1DAT bit sets the value of the general purpose output pin P1. When P1DAT is high, the output P1 is high. When P1DAT is low, the output P1 is low.
GP0	PODAT	Digital Output PO. When GP10EN is set, the PODAT bit sets the value of the general purpose output pin PO. When PODAT is high, the output P0 is high. When PODAT is low, the output PO is low.

OFFSET REGISTER

(RS2, RS1, RSO = 1, 1, 0; Power-On/Reset = 0x800000)

The offset register holds the offset calibration coefficient for the ADC . The power-on reset value of the offset register is 0x800000. The AD7190 has four offset registers so each channel has a dedicated offset register. Each of these registers is a 24 -bit $\mathrm{read} / \mathrm{write}$ register. This register is used in conjunction with its associated full-scale register to form a register pair. The poweron reset value is automatically overwritten if an internal or system zero-scale calibration is initiated by the user. The AD7190 must be placed in power-down mode or idle mode when writing to the offset register.

FULL-SCALE REGISTER

(RS2, RS1, RSO = 1, 1, 1; Power-On/Reset = 0x5XXXX0)
The full-scale register is a 24 -bit register that holds the full-scale calibration coefficient for the ADC. The AD7190 has 4 fullscale registers so each channel has a dedicated full-scale register. The full-scale registers are read/write registers. However, when writing to the full-scale registers, the ADC must be placed in power-down mode or idle mode. These registers are configured on power-on with factory-calibrated full-scale calibration coefficients, the calibration being performed at gain $=1$. Therefore, every device will have different default coefficients. The default value will be automatically overwritten if an internal or system full-scale calibration is initiated by the user or the full-scale register is written to.

[^0]: ${ }^{1}$ Temperature range: $-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$.
 ${ }^{2}$ Specification is not production tested but is supported by characterization data at initial product release.
 ${ }^{3}$ Following a calibration, this error will be in the order of the noise for the programmed gain and update rate selected.
 ${ }^{4}$ Recalibration at any temperature will remove these errors.
 ${ }^{5}$ Full-scale error applies to both positive and negative full-scale and applies at the factory calibration conditions (AV DD $=5 \mathrm{~V}$, gain $=1, \mathrm{~T}_{A}=25^{\circ} \mathrm{C}$).
 ${ }^{6}$ REJ60 is a bit in the Mode Register. When the update rate is set to 50 Hz , setting REJ 60 to ' 1 ' places a notch at 60 Hz , allowing simultaneous $50 \mathrm{~Hz} / 60 \mathrm{~Hz}$ rejection.
 ${ }^{7}$ Digital inputs equal to DV ${ }_{D D}$ or GND.

[^1]:
 ${ }^{2}$ See Figure 3 and Figure 4.
 ${ }^{3}$ These numbers are measured with the load circuit shown in Figure 2 and defined as the time required for the output to cross the V_{OL} or V_{OH} limits.
 ${ }^{4}$ SCLK active edge is falling edge of SCLK.
 ${ }^{5}$ These numbers are derived from the measured time taken by the data output to change 0.5 V when loaded with the circuit shown in Figure 2 . The measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the times quoted in the timing characteristics are the true bus relinquish times of the part and, as such, are independent of external bus loading capacitances.
 ${ }^{6} \overline{\mathrm{RDY}}$ returns high after a read of the ADC. In single conversion mode and continuous conversion mode, the same data can be read again, if required, while $\overline{\mathrm{RDY}}$ is high, although care should be taken to ensure that subsequent reads do not occur close to the next output update. In continuous read mode, the digital word can be read only once.

