


Vishay Sfernice

Fully Sealed Container Cermet Potentiometer Military and Professional Grade

FEATURES

- High power rating (3 W at 70 °C)
- Low temperature coefficient (150 ppm/°C typical)
- Full sealing
- Use of faston 2.86 connections
- Tests according to CECC 41 000
- Wires and connectors available
- Custom design on request

Vishay Sfernice

Fully Sealed Container Cermet Potentiometer Military and Professional Grade

ELECTRICAL SPECIFICATIONS						
Resistive Element	Cermet					
Electrical Travel	270° ± 10 °					
Linear Law	22 Ω to 10 MΩ					
Resistance Range Logarithmic Laws	100 Ω to 2.2 MΩ					
Standard Series E3	1 - 2.2 - 4.7 and on request 1 - 2 - 5					
Standard	± 20 %					
Tolerance On Request	± 10 % to ± 5 %					
	Linear A					
Varation Law	CIRCUIT DIAGRAM $a \rightarrow cw$ (1) $b \rightarrow cw$ (2) $b \rightarrow cw$ (2) $b \rightarrow cw$ (3) $b \rightarrow cw$ (4) $b \rightarrow cw$ (5) $b \rightarrow cw$ (5) $b \rightarrow cw$ (6) $b \rightarrow cw$ (7) $b \rightarrow cw$ (7) $b \rightarrow cw$ (8) $b \rightarrow cw$ (9) $b \rightarrow cw$ (9) $b \rightarrow cw$ (1) $b \rightarrow cw$ (1) $b \rightarrow cw$ (2) $b \rightarrow cw$ (3) $b \rightarrow cw$ (4) $b \rightarrow cw$ (5) $b \rightarrow cw$ (5) $b \rightarrow cw$ (6) $b \rightarrow cw$ (7) $b \rightarrow cw$ (7) (7) (7) (7) (7) (7) (7) (7)					
Power Rating	Linear 3 W at 70 °C Logarithmic 1.5 W at 70 °C					
Temperature Coefficient (Typical)	± 150 ppm/°C					
Limiting Element Voltage	300 V					
Contact Resistance Variation	3 % Rn or 3 Ω					
End Resistance (Typical)	1 Ω					
Dielectric Strength (RMS)	2500 V					
Insulation Resistance (300 VDC)	10 ⁵ MΩ					
Independent Linearity (Typical)	± 5 %					

Fully Sealed Container Cermet Potentiometer Military and Professional Grade

Vishay Sfernice

STANDAR	STANDARD RESISTANCE ELEMENT DATA									
STANDARD		LINEAR LAW			TYPICAL					
RESISTANCE VALUES	MAX. POWER AT 70 °C	POWER WORKING		AX. CUR. MAX. HROUGH POWER WIPER AT 70 °C		MAX. CUR. THROUGH WIPER	TCR - 55 °C + 125 °C			
Ω	W	v	mA	W	v	mA	ppm/°C			
22	3	8.12	369							
47	3	11.87	252							
100	3	17.32	173							
220	3	25.69	116							
470	3	37.55	79							
1K	3 3 3 3 3 3 3 3 3 3 3 3	57.44	54	1.5	38.7	38.7				
2.2K	3	81.24	37	1.5	57.4	26.1				
4.7K	3	118.74	25	1.5	83.9	17.9				
10K	3	173.20	17	1.5	122	12.2	± 150			
22K	3	256.9	11	1.5	181.6	8.25	± 150			
47K	1.91	300	6.3	1.5	265	5.64				
100K	0.90	300	3	0.9	300	3				
220K	0.41	300	1.36	0.41	300	1.36				
470K	0.19	300	0.63	0.19	300	0.63				
1M	0.09	300	0.30	0.09	300	0.30				
2.2M	0.04	300	0.13							
4.7M	0.02	300	0.06							
10M	0.01	300	0.03							

MECHANICAL SPECIFICATIONS	5	
Mechanical Travel	30	0° ± 5°
Operating Torque (Typical)	3 Ncm max.	4.25 ozinch max.
End Stop Torque	120 Ncm max.	10.51 lb ozinch max.
Tightening Torque of Mounting Nut	250 Ncm max.	22 lb-inch max.
Unit Weight	23 to 32 g max.	0.8 to 1.13 oz.
Terminals	e3:	pure Sn

ENVIRONMENTAL SPECIFICATIONS					
Temperature Range	- 55 °C to 125 °C				
Climatic Category	55/125/56				
Sealing	Fully sealed - Container IP67				

OPTIONS	
Special Feature Command Shaft	Length is measured from the mounting surface to the free end of the shaft. The screwdriver slot is aligned with the wiper within \pm 10°. Special shafts are available, in accordance to drawings supplied by customers. We recommend that customers should not machine tool shafts, in order to avoid damage. Bending or torsion of terminals should also be avoided.
Panel Sealing (PE30M)	The panel sealing device consists of a ring located in a groove on the potentiometer face. Sealing is obtained by tightening the ring against the panel when mounting the potentiometer. Old code: PE30P

Vishay Sfernice

Fully Sealed Container Cermet Potentiometer Military and Professional Grade

OPTIONS						
Locating Peg (PE30LL)	Location is obtained by fitting a special washer on the mounting face of the potentiometer. Old code: LPRP					
Shaft Locking (PE30LD)	The shaft locking device consists of a tapered nut tightening a slotted notched washer against both bushing and shaft. DBAN tightening torque is 200 Ncm, shaft locking torque being 30 Ncm. DBAN is also available with all special types. This device is normally supplied in a separate bag. Can be pre-mounted on request. Assembling Method					

MARKING	
VISHAY trademark	
Model	

- Ohmic Value (in $\Omega,\, k\Omega$ or $M\Omega)$
- Tolerance (in %)
- Manufacturing date code
- Marking of terminals 3, and a, b, c

PERFORMANCE										
	CECC 41 301 - 002									
TESTS	CONDITIONS	$\frac{\Delta RT}{RT}$ (%) REQUIREMENTS $\frac{\Delta R1-2}{R1-2}$ (%)	$\frac{\Delta \mathbf{RT}}{\mathbf{RT}}$ (%) $\frac{\Delta \mathbf{R1-2}}{\mathbf{R1-2}}$ (%)							
Climatic Sequence	Phase A dry heat 125 °C Phase B damp heat Phase C cold - 55 °C Phase D damp heat 5 cycles	± 10 % ± 10 %	± 0.5 % ± 1 %							
Long Term Damp Heat	56 days 40 °C 93 % HR	\pm 10 % Insulation resistance: > 100 M Ω	$\pm 0.5 \%$ $\pm 1 \%$ Insulation resistance: > $10^4 M\Omega$							
Rotational Life	25 000 cycles	± 10 % Contact res. variation: < 7 % Rn	± 3 % Contact res. variation: < 2 % Rn							
Load Life	1000 h at rated power 90'/30' - ambient temp. 70 °C	± 10 % Contact res. variation: < 7 % Rn	± 1 % Contact res. variation: < 3 % Rn							
Rapid Temperature Change	5 cycles - 55 °C at + 125 °C	± 3 %	± 0.5 %							
Shock	50 g at 11 ms 3 successive shocks in 3 directions	± 2 %	± 0.1 % ± 0.2 %							
Vibration	10 to 55 Hz 0.75 mm or 10 g during 6 hours	± 2 %	± 0.1 % ± 0.2 %							

Fully Sealed Container Cermet Potentiometer Military and Professional Grade

Vishay Sfernice

PE30

SAP	SAP ORDERING INFORMATION (Part Number 18 digits)									
F										
MODEL	BUSHING	OPTION	SHAFT	OHMIC VALUE	TOLERANCE	LAW	PACKAGING	SPECIAL NUMBER		
	M = Panel sealed M10 x 0.75	0 = none For L Bushing D = DBAN L = LPRP B = DBAN and LPRP A = Peg and DBAN For M Bushing E = Peg	For L Bushing (= old codes:) FG 16 mm, slotted = AC FL 25 mm, slotted = AM FR 50 mm, plain = AL For M Bushing FD = 13 mm, slotted = AC FJ = 22 mm, slotted = AM FP = 47 mm, plain = AL	A law = from 22 Ω to 10 M Ω L and F laws = from 100 Ω to 2.2 M Ω	± 20 % on request ± 10 % ± 5 %	A = Linear L = Clockwise logarithmic F = Clockwise inverse logarithmic	B = Box of 10 pieces	(if applicable) Given by VISHAY for custom design		

PAR	PART NUMBER DESCRIPTION (for information only)											
PE30 LPRP AC 200K 20 % A DBAN BO10 e4												
MODEL	FEATURES	OPTION	SHAFT	VALUE	TOLERANCE	TAPER	OPTION	SPECIAL	PACKAGING	CUSTOM SHAFT	SPECIAL	LEAD (Pb)-FREE

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.