3A, 12V, Synchronous-Rectified Buck Converter

Features

- Wide Input Voltage from 4.3 V to 14 V
- Output Current up to 3A
- Adjustable Output Voltage from 0.8 V to V_{IN} - $\pm 2 \%$ System Accuracy
- $55 \mathrm{~m} \Omega$ Integrated Power MOSFETs
- High Efficiency up to 95%
- Automatic Skip/PWM Mode Operation
- Current-Mode Operation
- Easy Feedback Compensation
- Stable with Low ESR Output Capacitors
- Fast Load/Line Transient Response
- Power-On-Reset Monitoring
- Fixed 500kHz Switching Frequency in PWM Mode
- Built-in Digital Soft-Start and Soft-Stop
- Current-Limit Protection with Frequency Foldback
- 118\% Over-Voltage Protection
- Hiccup-Mode 50\% Under-Voltage Protection
- Over-Temperature Protection
- $\quad<3 \mu \mathrm{~A}$ Quiescent Current in Shutdown Mode
- SOP-8P and Compact $4 m m x 4 m m$ DFN-8 (DFN4x4-8) Packages
- Lead Free and Green Devices Available (RoHS Compliant)

Applications

- OLPC, UMPC
- Notebook Computer
- Handheld Portable Device
- Step-Down Converters Requiring High Efficiency and 3A Output Current

General Description

The APW7145 is a 3A synchronous-rectified Buck converter with integrated $55 \mathrm{~m} \Omega$ power MOSFETs. The APW7145, designed with a current-mode control scheme, can convert wide input voltage of 4.3 V to 14 V to the output voltage adjustable from 0.8 V to VIN to provide excellent output voltage regulation.
For high efficiency over all load current range, the APW7145 is equipped with an automatic Skip/PWM mode operation. At light load, the IC operates in the Skip mode, which keeps a constant minimum inductor peak current, to reduce switching losses. At heavy load, the IC works in PWM mode, which inductor peak current is programmed by the COMP voltage, to provide high efficiency and excellent output voltage regulation.
The APW7145 is also equipped with power-on-reset, softstart, soft-stop, and whole protections (under-voltage, over-voltage, over-temperature, and current-limit) into a single package. In shutdown mode, the supply current drops below $3 \mu \mathrm{~A}$.
This device, available SOP-8P and DFN4×4-8 packages, provides a very compact system solution with minimal external components and PCB area.

[^0]
Pin Configuration

APW7145

DFN 4×4-8 Top View

The Pin 7 must be connected to the Exposed Pad

Ordering and Marking Information

Note : ANPEC lead-free products contain molding compounds/die attach materials and 100\% matte tin plate termination finish; which are fully compliant with RoHS. ANPEC lead-free products meet or exceed the lead-free requirements of IPC/JEDEC J-STD020C for MSL classification at lead-free peak reflow temperature. ANPEC defines "Green" to mean lead-free (RoHS compliant) and halogen free (Br or Cl does not exceed 900ppm by weight in homogeneous material and total of Br and Cl does not exceed 1500ppm by weight).

Absolute Maximum Ratings (Note 1)

Symbol	Parameter		Rating	Unit
$\mathrm{V}_{\text {IN }}$	VIN Supply Voltage (VIN to AGND)		-0.3 ~ 15	V
$\mathrm{V}_{\text {LX }}$	LX to GND Voltage	> 100ns	$-1 \sim \mathrm{~V}_{\text {IN }}+1$	V
		< 100ns	-5 ~ $\mathrm{V}_{\text {IN }}+5$	
	PGND to AGND Voltage		$-0.3 \sim+0.3$	V
	EN to AGND Voltage		$-0.3 \sim \mathrm{~V}_{\text {IN }}+0.3$	V
	FB, COMP to AGND Voltage		-0.3 ~ 6	V
P_{D}	Power Dissipation		Internally Limited	W
	Maximum Junction Temperature		150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65 ~ 150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {SDR }}$	Maximum Lead Soldering Temperature, 10 Seconds		260	${ }^{\circ} \mathrm{C}$

Note 1 : Stresses above those listed in bsolute Maximum Ratings may cause permanent damage to the device.

Thermal Characteristics

Note 2 : θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air.
Note 3 : The case temperature is measured at the center of the exposed pad on the underside of the SOP-8P and DFN4x4-8 packages.

Recommended Operating Conditions (Note 4)

Symbol	Parameter	Range	Unit
$\mathrm{V}_{\text {IN }}$	VIN Supply Voltage	$4.3 \sim 14$	V
$\mathrm{~V}_{\text {OUT }}$	Converter Output Voltage	$0.8 \sim \mathrm{~V}_{\text {IN }}$	V
$\mathrm{I}_{\text {OUT }}$	Converter Output Current	$0 \sim 3$	A
$\mathrm{C}_{\text {IN }}$	Converter Input Capacitor (MLCC)	$8 \sim 50$	$\mu \mathrm{~F}$
	Converter Output Capacitor	$20 \sim 1000$	$\mu \mathrm{~F}$
	Effective Series Resistance	$0 \sim 60$	$\mathrm{~m} \Omega$
L $_{\text {OUT }}$	Converter Output Inductor	$1 \sim 22$	$\mu \mathrm{H}$
	Resistance of the Feedback Resistor connected from FB to GND	$1 \sim 20$	$\mathrm{k} \Omega$
T_{A}	Ambient Temperature	$-40 \sim 85$	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature	$-40 \sim 125$	${ }^{\circ} \mathrm{C}$

Note 4: Refer to the Typical Application Circuits

Electrical Characteristics

Refer to the "Typical Application Circuits". These specifications apply over $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $\mathrm{V}_{\mathrm{OUT}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=-40 \sim 85^{\circ} \mathrm{C}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Test Conditions	APW7145			Unit
			Min.	Typ.	Max.	
SUPPLY CURRENT						
IVIN	VIN Supply Current	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }}+50 \mathrm{mV}, \mathrm{V}_{\mathrm{EN}}=3 \mathrm{~V}, \mathrm{LX}=\mathrm{NC}$	-	0.5	1.5	mA
IVIN _Sd	VIN Shutdown Supply Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$	-	-	3	$\mu \mathrm{A}$
POWER-ON-RESET (POR) VOLTAGE THRESHOLD						
	VIN POR Voltage Threshold	$\mathrm{V}_{\text {IN }}$ rising	3.9	4.1	4.3	V
	VIN POR Hysteresis		-	0.5	-	V
REFERENCE VOLTAGE						
$V_{\text {REF }}$	Reference Voltage	Regulated on FB pin	-	0.8	-	V
	Output Voltage Accuracy	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {OUT }}=10 \mathrm{~mA}, \mathrm{~V}_{\text {IN }}=12 \mathrm{~V}$	-1.0	-	+1.0	\%
		$\mathrm{l}_{\text {OUT }}=10 \mathrm{~mA} \sim 3 \mathrm{~A}, \mathrm{~V}_{\text {IN }}=4.75 \sim 14 \mathrm{~V}$	-2.0	-	+2.0	
	Line Regulation	$\mathrm{V}_{\text {IN }}=4.75 \mathrm{~V}$ to 14 V	-	+0.02	-	\%/V
	Load Regulation	$\mathrm{l}_{\text {OUt }}=0.5 \mathrm{~A} \sim 3 \mathrm{~A}$	-	-0.04	-	\%/A

Electrical Characteristics (Cont.)

Refer to the "Typical Application Circuits". These specifications apply over $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$, $\mathrm{V}_{\text {OUT }}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=-40 \sim 85^{\circ} \mathrm{C}$, unless otherwise specified. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Test Conditions	APW7145			Unit
			Min.	Typ.	Max.	
OSCILLATOR AND DUTY CYCLE						
Fosc	Oscillator Frequency	$\mathrm{T}_{\mathrm{J}}=-40 \sim 125^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=4.75 \sim 14 \mathrm{~V}$	450	500	550	kHz
	Foldback Frequency	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-	80	-	kHz
	Maximum Converter's Duty		-	99	-	\%
Ton_min	Minimum Pulse Width of LX		-	150	-	ns
CURRENT-MODE PWM CONVERTER						
Gm	Error Amplifier Transconductance	$\mathrm{V}_{\mathrm{FB}}=\mathrm{V}_{\text {REF }} \pm 50 \mathrm{mV}$	-	200	-	$\mu \mathrm{A} / \mathrm{V}$
	Error Amplifier DC Gain	COMP = NC	-	80	-	dB
	Current-Sense to COMP Voltage Transresistance		-	0.1	-	V/A
	High-Side Switch Resistance	Between VIN and Exposed Pad, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	70	100	$\mathrm{m} \Omega$
		Between VIN and Exposed Pad, $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	55	80	
	Low-Side Switch Resistance	Between GND and Exposed Pad, $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	55	80	$\mathrm{m} \Omega$
		Between GND and Exposed Pad, $\mathrm{V}_{\mathrm{IN}_{\mathrm{N}}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	-	45	60	
PROTECTIONS						
$\mathrm{I}_{\text {LIM }}$	High-Side Switch Current-limit	Peak Current	5	6.5	8	A
$\mathrm{V}_{\text {TH_UV }}$	FB Under-Voltage Threshold	V_{FB} falling	45	50	55	\%
$\mathrm{V}_{\text {TH_OV }}$	FB Over-Voltage Threshold	V_{FB} rising	114	118	122	\%
	FB Under-Voltage Debounce		-	1	-	$\mu \mathrm{s}$
T ${ }_{\text {OTP }}$	Over-Temperature Trip Point		-	150	-	${ }^{\circ} \mathrm{C}$
	Over-Temperature Hysteresis		-	40	-	${ }^{\circ} \mathrm{C}$
T ${ }_{\text {D }}$	Dead-Time	$\mathrm{V}_{\mathrm{Lx}}=-0.7 \mathrm{~V}$	-	20	-	ns
SOFT-START, SOFT-STOP, ENABLE, AND INPUT CURRENTS						
$\mathrm{T}_{\text {ss }}$	Soft-Start / Soft-Stop Interval		1.5	2	2.5	ms
	EN Shutdown Voltage Threshold	$\mathrm{V}_{\text {EN }}$ falling	0.5	-	-	V
	EN Enable Voltage Threshold		-	-	2.1	V
	High-side Switch Leakage Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{LX}}=0 \mathrm{~V}$	-	-	2	$\mu \mathrm{A}$
$\mathrm{I}_{\text {FB }}$	FB Pin Input Current		-100	-	+100	nA
$\mathrm{I}_{\text {EN }}$	EN Pin Input Current	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V} \sim \mathrm{~V}_{\mathrm{IN}}$	-100	-	+100	nA

Typical Operating Characteristics

(Refer to the application circuit 1 in the section "Typical Application Circuits", $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~L} 1=4.7 \mu \mathrm{H}$)

Current Limit Level (Peak Current)
vs. Junction Temperature

VIN Input Current vs. Supply Voltage

Output Current vs. Output Voltage

Output Voltage vs. Supply Voltage

Reference Voltage vs. Junction Temperature

Typical Operating Characteristics (Cont.)

(Refer to the application circuit 1 in the section "Typical Application Circuits", $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3.3 \mathrm{~V}, \mathrm{~L} 1=4.7 \mu \mathrm{H}$)

Operating Waveforms

(Refer to the application circuit 1 in the section "Typical Application Circuits", $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {out }}=3.3 \mathrm{~V}, \mathrm{~L} 1=4.7 \mu \mathrm{H}$)

Operating Waveforms (Cont.)

(Refer to the application circuit 1 in the section "Typical Application Circuits", $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {out }}=3.3 \mathrm{~V}, \mathrm{~L} 1=4.7 \mu \mathrm{H}$)

CH1: $\mathrm{V}_{\mathrm{Lx}}, 10 \mathrm{~V} / \mathrm{div}$
CH2 : $\mathrm{V}_{\text {OUT }}, 2 \mathrm{~V} / \mathrm{div}$
CH3: $\mathrm{I}_{\mathrm{L} 1}, 5 \mathrm{~A} / \mathrm{div}$
Time : $20 \mu \mathrm{~s} / \mathrm{div}$

Load Transient Response

CH1: $\mathrm{V}_{\text {OUT }}, 200 \mathrm{mV} /$ div
CH2 : $\mathrm{I}_{\mathrm{L} 1}, 2 \mathrm{~A} /$ div
Time : $100 \mu \mathrm{~s} / \mathrm{div}$

Short Circuit

CH1: $\mathrm{V}_{\mathrm{LX}}, 5 \mathrm{~V} / \mathrm{div}$
CH2 : V ${ }_{\text {OUT }}$, 200mV/div
CH3: $I_{L 1}, 5 A / d i v$
Time : $5 \mathrm{~ms} / \mathrm{div}$

Load Transient Response

$\mathrm{CH} 1: \mathrm{V}_{\text {OUT }}, 100 \mathrm{mV} / \mathrm{div}$
$\mathrm{CH} 2: \mathrm{I}_{\mathrm{L} 1}, 2 \mathrm{~A} / \mathrm{div}$
Time $: 100 \mu \mathrm{~s} / \mathrm{div}$

Operating Waveforms (Cont.)

(Refer to the application circuit 1 in the section "Typical Application Circuits", $\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {out }}=3.3 \mathrm{~V}, \mathrm{~L} 1=4.7 \mu \mathrm{H}$)

CH1: $\mathrm{V}_{\mathrm{Lx}}, 5 \mathrm{~V} / \mathrm{div}$
CH2: $\mathrm{L}_{\mathrm{L} 1}, 2 \mathrm{~A} /$ div
Time : $1 \mu \mathrm{~s} / \mathrm{div}$

Line Transient

CH1: $\mathrm{V}_{\text {IN }}, 5 \mathrm{~V} /$ div
CH2 : $\mathrm{V}_{\text {out }}, 50 \mathrm{mV} /$ div (Voffset=3.3V)
CH3: $\mathrm{I}_{\mathrm{L} 1}, 2 \mathrm{~A} /$ div
Time : $100 \mu \mathrm{~s} / \mathrm{div}$

Switching Waveform

CH1: $\mathrm{V}_{\mathrm{LX}}, 5 \mathrm{~V} /$ div
CH2 : $\mathrm{L}_{\mathrm{L} 1}, 2 \mathrm{~A} / \mathrm{div}$
Time : $1 \mu \mathrm{~s} / \mathrm{div}$

Over Voltage Protection

CH1: $\mathrm{V}_{\text {IN }}, 5 \mathrm{~V} /$ div
CH2 : $\mathrm{V}_{\text {out }}, 2 \mathrm{~V} /$ div
CH3: $\mathrm{V}_{\mathrm{Lx}}, 5 \mathrm{~V} / \mathrm{div}$
CH4: $\mathrm{I}_{\text {Lx }}$, 5A/div
Time: $20 \mu \mathrm{~s} / \mathrm{div}$

Pin Description

PIN		FUNCTION
NO.	NAME	
1	NC	No Connection.
2	VIN	Power Input. VIN supplies the power (4.3 V to 14 V) to the control circuitry, gate drivers and step-down converter switches. Connecting a ceramic bypass capacitor and a suitably large capacitor between VIN and both of AGND and PGND to eliminate switching noise and voltage ripple on the input to the IC.
3	AGND	Ground of MOSFET Gate Drivers and Control Circuitry.
4	FB	Output Feedback Input. The APW7145 senses the feedback voltage via FB and regulates the voltage at 0.8 V . Connecting FB with a resistor-divider from the converter's output sets the output voltage from 0.8 V to VIN .
5	COMP	Output of the error amplifier. Connecting a series RC network from COMP to GND to compensate the regulation control loop. In some cases, an additional capacitor from COMP to GND is required.
6	EN	Enable Input. EN is a digital input that turns the regulator on or off. Drive EN high to turn on the regulator, drive it low to turn it off. Connecting this pin to VIN if it is not used.
7	LX	Power Switching Output. LX is the junction of the high-side and low-side power MOSFETs to supply power to the output LC filter.
8	PGND	Power Ground of the APW7145, which is the source of the N-channel power MOSFET. Connect this pin to the system ground with lowest impedance.
$\begin{gathered} 9 \\ \text { (Exposed Pad) } \end{gathered}$	LX	Power Switching Output. LX is the Drain of the P-channel MOSFET to supply power to the output. The Exposed Pad provides current with lower impedance than the Pin 7. Connecting the pad to output LC filter via a top-layer thermal pad on PCBs. The PCB will be a heat sink of the IC.

Block Diagram

Typical Application Circuit

1. 4.3~14V Single Power Input Step-down Converter (with a Ceramic Output Capacitor)

a. Cost-effective Feedback Compensation (C4 is no connection)

$\mathrm{V}_{\text {IN }}(\mathrm{V})$	$\mathrm{V}_{\text {our }}(\mathrm{V})$	$\mathrm{L} 1(\mu \mathrm{~F})$	$\mathrm{C} 2(\mu \mathrm{~F})$	$\mathrm{C} 2 \mathrm{ESR}(\mathrm{m} \Omega)$	$\mathrm{R} 1(\mathrm{k} \Omega)$	$\mathrm{R} 2(\mathrm{k} \Omega)$	$\mathrm{R} 3(\mathrm{k} \Omega)$	$\mathrm{C} 3(\mathrm{pF})$
12	5	6.8	22	5	63.0	12	33.0	820
12	5	6.8	44	3	63.0	12	68.0	820
12	3.3	4.7	22	5	46.9	15	27.0	1000
12	3.3	4.7	44	3	46.9	15	56.0	1000
12	2	3.3	22	5	30.0	20	18.0	1800
12	2	3.3	44	3	30.0	20	33.0	1800
12	1.8	3.3	22	5	18.8	15	15.0	1800
12	1.8	3.3	44	3	18.8	15	30.0	1800
5	3.3	2.2	22	5	46.9	15	27.0	470
5	3.3	2.2	44	3	46.9	15	56.0	470
5	1.8	2.2	22	5	25.0	20	15.0	820
5	1.8	2.2	44	3	25.0	20	30.0	820
5	1.5	2.2	22	5	21.9	25	12.0	1000
5	1.5	2.2	44	3	21.9	25	24.0	1000
5	1.2	2.2	22	5	7.5	15	10.0	1200
5	1.2	2.2	44	3	7.5	15	20.0	1200

Typical Application Circuit (Cont.)

b. Fast-Transient-Response Feedback Compensation (C4 is connected)

$\mathrm{V}_{\mathrm{IN}}(\mathrm{V})$	$\mathrm{V}_{\text {OUT }}(\mathrm{V})$	$\mathrm{L} 1(\mu \mathrm{H})$	$\mathrm{C} 2(\mu \mathrm{~F})$	$\mathrm{C} 2 \mathrm{ESR}(\mathrm{m} \Omega)$	$\mathrm{R} 1(\mathrm{k} \Omega)$	$\mathrm{R} 2(\mathrm{k} \Omega)$	$\mathrm{R} 3(\mathrm{k} \Omega)$	$\mathrm{C} 3(\mathrm{pF})$	$\mathrm{C} 4(\mathrm{pF})$
12	5	6.8	22	5	63.0	12	43	680.0	27
12	5	6.8	44	3	63.0	12	82	680.0	27
12	3.3	4.7	22	5	46.9	15	27	1000.0	27
12	3.3	4.7	44	3	46.9	15	56	1000.0	27
12	2	3.3	22	5	30.0	20	18	1800.0	27
12	2	3.3	44	3	30.0	20	33	1800.0	27
12	1.8	3.3	22	5	18.8	15	15	1800.0	33
12	1.8	3.3	44	3	18.8	15	30	1800.0	33
5	3.3	2.2	22	5	46.9	15	27	470.0	27
5	3.3	2.2	44	3	46.9	15	56	470.0	27
5	1.8	2.2	22	5	25.0	20	15	820.0	56
5	1.8	2.2	44	3	25.0	20	30	820.0	56
5	1.5	2.2	22	5	22	25	12	1000	56
5	1.5	2.2	44	3	22	25	24	1000	56
5	1.2	2.2	22	5	7.5	15	10	1200	180
5	1.2	2.2	44	3	7.5	15	20	1200	270

2. +12 V Single Power Input Step-down Converter (with an Electrolytic Output Capacitor)

Function Description

VIN Power-On-Reset (POR)

The APW7145 keeps monitoring the voltage on the VIN pin to prevent wrong logic operations which may occur when VIN voltage is not high enough for the internal control circuitry to operate. The VIN POR has a rising threshold of 4.1 V (typical) with 0.5 V of hysteresis.
During start-up, the VIN voltage must exceed the enable voltage threshold. Then, the IC starts a start-up process and ramps up the output voltage to the voltage target.

Digital Soft-Start

The APW7145 has a built-in digital soft-start to control the rise rate of the output voltage and limit the input current surge during start-up. During soft-start, an internal voltage ramp $\left(\mathrm{V}_{\text {RAMP }}\right)$, connected to one of the positive inputs of the error amplifier, rises up from 0 V to 0.95 V to replace the reference voltage (0.8 V) until the voltage ramp reaches the reference voltage.
During soft-start without output overvoltage, the APW7145 converter's sinking capability is disabled until the output voltage reaches the voltage target.

Digital Soft-Stop

At the moment of shutdown controlled by EN signal, undervoltage event, or over-temperature protection, the APW7145 initiates a digital soft-stop process to discharge the output voltage in the output capacitors. Certainly, the load current also discharges the output voltage.
During soft-stop, the internal voltage ramp ($\mathrm{V}_{\text {RAMP }}$) falls down from 0.95 V to 0 V to replace the reference voltage. Therefore, the output voltage falls down slowly at light load. After the soft-stop interval elapses, the soft-stop process ends and the the IC turns on the low-side power MOSFET.

Output Undervoltage Protection (UVP)

In the operational process, if a short-circuit occurs, the output voltage will drop quickly. Before the current-limit circuit responds, the output voltage will fall out of the required regulation range. The undervoltage continually monitors the FB voltage after soft-start is completed. If a load step is strong enough to pull the output voltage lower than the under-voltage threshold, the IC shuts down converter's output.

The under-voltage threshold is 50% of the nominal output voltage. The undervoltage comparator has a built-in 2μ s noise filter to prevent the chips from wrong UVP shutdown caused by noise. The under-voltage protection works in a hiccup mode without latched shutdown. The IC will initiate a new soft-start process at the end of the preceding delay.

Over-Voltage Protection (OVP)

The over-voltage function monitors the output voltage by FB pin. When the FB voltage increase over 118% of the reference voltage due to the high-side MOSFET failure, or for other reasons, the over-voltage protection comparator will force the low-side MOSFET gate driver high. This action actively pulls down the output voltage and eventually attempts to blow the internal bonding wires. As soon as the output voltage is within regulation, the OVP comparator is disengaged. The chip will restore its normal operation. This OVP scheme only clamps the voltage overshoot and does not invert the output voltage when otherwise activated with a continuously high output from lowside MOSFET driver - a common problem for OVP schemes with a latch.

Over-Temperature Protection (OTP)

The over-temperature circuit limits the junction temperature of the APW7145. When the junction temperature exceeds $T_{J}=+150^{\circ} \mathrm{C}$, a thermal sensor turns off the both power MOSFETs, allowing the devices to cool. The thermal sensor allows the converters to start a start-up process and regulate the output voltage again after the junction temperature cools by $40^{\circ} \mathrm{C}$. The OTP is designed with a $40^{\circ} \mathrm{C}$ hysteresis to lower the average T_{\jmath} during continuous thermal overload conditions, increasing lifetime of the APW7145.

Enable/Shutdown

Driving EN to the ground initiates a soft-stop process and then places the APW7145 in shutdown. When in shutdown, after the soft-stop process is completed, the internal power MOSFETs turns off, all internal circuitry shuts down and the quiescent supply current reduces to less than 3 mA .

Function Description (Cont.)

Current-Limit Protection

The APW7145 monitors the output current, flowing through the high-side power MOSFET, and limits the current peak at current-limit level to prevent loads and the IC from damages during overload or short-circuit conditions.

Frequency Foldback

The foldback frequency is controlled by the FB voltage. When the output is shortened to the ground, the frequency of the oscillator will be reduced to 80 kHz . This lower frequency allows the inductor current to safely discharge, thereby preventing current runaway. The oscillator's frequency will gradually increase to its designed rate when the feedback voltage on FB again approaches 0.8 V .

Application Information

Setting Output Voltage

The regulated output voltage is determined by:

$$
\begin{equation*}
\text { Vout }=0.8 \cdot\left(1+\frac{\mathrm{R} 1}{\mathrm{R} 2}\right) \tag{V}
\end{equation*}
$$

Suggested R2 is in the range from 1 K to $20 \mathrm{k} \Omega$. For portable applications, a 10 K resistor is suggested for R2. To prevent stray pickup, please locate resistors R1 and R2 close to APW7145.

Input Capacitor Selection

Use small ceramic capacitors for high frequency decoupling and bulk capacitors to supply the surge current needed each time the P-channel power MOSFET (Q1) turns on. Place the small ceramic capacitors physically close to the VIN and between the VIN and the GND.

The important parameters for the bulk input capacitor are the voltage rating and the RMS current rating. For reliable operation, select the bulk capacitor with voltage and current ratings above the maximum input voltage and largest RMS current required by the circuit. The capacitor voltage rating should be at least 1.25 times greater than the maximum input voltage and a voltage rating of 1.5 times is a conservative guideline. The RMS current ($\mathrm{I}_{\text {RMS }}$) of the bulk input capacitor is calculated as the following equation:

$$
\begin{equation*}
\text { IRMS }=\text { Iout } \cdot \sqrt{D \cdot(1-D)} \tag{A}
\end{equation*}
$$

where D is the duty cycle of the power MOSFET.
For a through hole design, several electrolytic capacitors may be needed. For surface mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rating.

Figure 1. Converter Waveforms

Output Capacitor Selection

An output capacitor is required to filter the output and supply the load transient current. The filtering requirements are the function of the switching frequency and the ripple current ($\Delta \mathrm{I}$). The output ripple is the sum of the voltages, having phase shift, across the ESR, and the ideal output capacitor. The peak-to-peak voltage of the ESR is calculated as the following equations:

$$
\begin{align*}
& D=\frac{\text { Vout }}{V_{\text {IN }}} \tag{1}\\
& \Delta I=\frac{\text { Vout } \cdot(1-D)}{\text { Fosc } \cdot L} \tag{2}
\end{align*}
$$

\qquad
The peak-to-peak voltage of the ideal output capacitor is calculated as the following equation:

$$
\begin{equation*}
\Delta \mathrm{V}_{\text {cout }}=\frac{\Delta \mathrm{I}}{8 \cdot \text { Fosc } \cdot \text { Cout }}(\mathrm{V}) \tag{4}
\end{equation*}
$$

For the applications using bulk capacitors, the $\Delta \mathrm{V}_{\text {cout }}$ is much smaller than the $\mathrm{V}_{\text {ESR }}$ and can be ignored. Therefore, the AC peak-to-peak output voltage ($\Delta \mathrm{V}_{\text {out }}$) is shown as below:

$$
\begin{equation*}
\Delta \text { Vout }=\Delta I \cdot \text { ESR } \quad(V) \tag{V}
\end{equation*}
$$

Application Information (Cont.)

Output Capacitor Selection (Cont.)

For the applications using ceramic capacitors, the $\mathrm{V}_{\text {ESR }}$ is much smaller than the $\Delta \mathrm{V}_{\text {cout }}$ and can be ignored. Therefore, the AC peak-to-peak output voltage ($\Delta \mathrm{V}_{\text {out }}$) is close to $\Delta \mathrm{V}_{\text {cout }}$.
The load transient requirements are the function of the slew rate (di/dt) anddisengagedlthe magnitude of the transient load current. These requirements are generally met with a mix of capacitors and careful layout. High frequency capacitors initially supply the transient and slow the current load rate seen by the bulk capacitors. The bulk filter capacitor values are generally determined by the ESR (Effective Series Resistance) and voltage rating requirements rather than actual capacitance requirements.

High frequency decoupling capacitors should be placed as close to the power pins of the load as physically possible. Be careful not to add inductance in the circuit board wiring that could cancel the usefulness of these low inductance components. An aluminum electrolytic capacitor's ESR value is related to the case size with lower ESR available in larger case sizes. However, the Equivalent Series Inductance (ESL) of these capacitors increases with case size and can reduce the usefulness of the capacitor to high slew-rate transient loading.

Inductor Value Calculation

The operating frequency and inductor selection are interrelated in that higher operating frequencies permit the use of a smaller inductor for the same amount of inductor ripple current. However, this is at the expense of efficiency due to an increase in MOSFET gate charge losses. The equation (2) shows that the inductance value has a direct effect on ripple current.

Accepting larger values of ripple current allows the use of low inductances, but results in higher output voltage ripple and greater core losses. A reasonable starting point for setting ripple current is $\Delta \mathrm{I} \leq 0.4 \cdot \mathrm{I}_{\text {out(MAX) }}$. Please be noticed that the maximum ripple current occurs at the maximum input voltage. The minimum inductance of the inductor is calculated by using the following equation:

$$
\frac{\text { Vout } \cdot\left(\text { Vin }-\mathrm{Vout}_{\text {OU }}\right.}{500000 \cdot \mathrm{~L} \cdot \mathrm{VIN}_{\text {IN }}} \leq 1.2
$$

$$
\begin{equation*}
\mathrm{L} \geq \frac{\mathrm{Vout} \cdot\left(\mathrm{~V}_{\text {IN }}-\text { Vout }\right)}{600000 \cdot \mathrm{~V}_{\text {IN }}} \tag{H}
\end{equation*}
$$

where $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IN(MAX) }}$

Layout Consideration

In high power switching regulator, a correct layout is important to ensure proper operation of the regulator. In general, interconnecting impedance should be minimized by using short and wide printed circuit traces. Signal and power grounds are to be kept separating and finally combined using ground plane construction or single point grounding. Figure 2 illustrates the layout, with bold lines indicating high current paths. Components along the bold lines should be placed close together. Below is a checklist for your layout:

1. Firstly, to initial the layout by placing the power components. Orient the power circuitry to achieve a clean power flow path. If possible, make all the connections on one side of the PCB with wide and copper filled areas.

Figure 2. Current Path Diagram
2. In Figure 2, the loops with same color bold lines conduct high slew rate current. These interconnecting impedances should be minimized by using wide and short printed circuit traces.

Application Information (Cont.)

Layout Consideration (Cont.)

3. Keep the sensitive small signal nodes (FB and COMP) away from switching nodes (LX or others) on the PCB. Therefore, place the feedback divider and the feedback compensation network close to the IC to avoid switching noise. Connect the ground of feedback divider directly to the AGND pin of the IC using a dedicated ground trace.
4. Place the decoupling ceramic capacitor C1 near the VIN as close as possible. Use a wide power ground plane to connect the C1 and C2 to provide a low impedance path between the components for large and high slew rate current.

Figure 3. Recommended Layout Diagram

Package Information

SOP-8P

VIEW A

$\begin{aligned} & \mathrm{S} \\ & \mathrm{Y} \\ & \mathrm{M} \\ & \mathrm{~B} \\ & \mathrm{O} \end{aligned}$	SOP-8P			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX.
A		1.60		0.063
A1	0.00	0.15	0.000	0.006
A2	1.25		0.049	
b	0.31	0.51	0.012	0.020
C	0.17	0.25	0.007	0.010
D	4.80	5.00	0.189	0.197
D1	2.25	3.50	0.098	0.138
E	5.80	6.20	0.228	0.244
E1	3.80	4.00	0.150	0.157
E2	2.00	3.00	0.079	0.118
e	1.27 BSC		0.050 BSC	
h	0.25	0.50	0.010	0.020
L	0.40	1.27	0.016	0.050
θ	0°	8°	0°	8°

Note : 1. Follow JEDEC MS-012 BA.
2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion or gate burrs shall not exceed 6 mil per side
3. Dimension "E" does not include inter-lead flash or protrusions. Inter-lead flash and protrusions shall not exceed 10 mil per side.

Package Information

DFN4x4-8

DFN4x4-8

$\begin{aligned} & \mathrm{S} \\ & \mathrm{Y} \\ & \mathrm{M} \\ & \mathrm{~B} \\ & \mathrm{O} \end{aligned}$	DFN4x4-8			
	MILLIMETERS		INCHES	
	MIN.	MAX.	MIN.	MAX
A	0.80	1.00	0.031	0.039
A1	0.00	0.05	0.000	0.002
A3	0.20 REF		0.008 REF	
b	0.25	0.35	0.010	0.014
D	3.90	4.10	0.154	0.161
D2	3.10	3.30	0.122	0.130
E	3.90	4.10	0.154	0.161
E2	2.40	2.60	0.094	0.102
e	0.80 BSC		0.031 BSC	
L	0.40	0.60	0.016	0.024
K	0.20		0.008	

Note : 1. Followed from JEDEC MO-229 VGGB.

Carrier Tape \& Reel Dimensions

SECTION A-A
$\underbrace{}_{\text {SECTION B-B }}$

Application	A	H	T1	C	d	D	W	E1	F
SOP-8(P)	330.0 ± 2.00	50 MIN .	$\begin{array}{r} 12.4+2.00 \\ -0.00 \end{array}$	$\begin{array}{r} 13.0+0.50 \\ -0.20 \end{array}$	1.5 MIN.	20.2 MIN.	12.0 ± 0.30	1.75 ± 0.10	5.5 ± 0.05
	P0	P1	P2	D0	D1	T	A0	B0	K0
	4.0 ± 0.10	8.0 ± 0.10	2.0 ± 0.05	$\begin{array}{r} 1.5+0.10 \\ -0.00 \end{array}$	1.5 MIN.	$\begin{array}{r} 0.6+0.00 \\ -0.40 \end{array}$	6.40 ± 0.20	5.20 ± 0.20	2.10 ± 0.20
Application	A	H	T1	C	d	D	W	E1	F
DFN4x4-8	330.0 ± 2.00	50 MIN .	$\begin{array}{r} 12.4+2.00 \\ -0.00 \end{array}$	$\begin{array}{r} 13.0+0.50 \\ -0.20 \end{array}$	1.5 MIN.	20.2 MIN.	12.0 ± 0.30	1.75 ± 0.10	5.5 ± 0.05
	P0	P1	P2	D0	D1	T	A0	B0	K0
	4.0 ± 0.10	8.0 ± 0.10	2.0 ± 0.05	$\begin{array}{r} 1.5+0.10 \\ -0.00 \end{array}$	1.5 MIN.	$\begin{array}{r} 0.6+0.00 \\ -0.40 \end{array}$	4.30 ± 0.20	4.30 ± 0.20	1.30 ± 0.20

Devices Per Unit

Package Type	Unit	Quantity
SOP-8P	Tape \& Reel	2500
DFN4x4-8	Tape \& Reel	3000

Taping Direction Information

SOP-8P

DFN4x4-8

Reflow Condition (IR/Convection or VPR Reflow)

Reliability Test Program

Test item	Method	Description
SOLDERABILITY	MIL-STD-883D-2003	$245^{\circ} \mathrm{C}, 5 \mathrm{sec}$
HOLT	MIL-STD-883D-1005.7	$1000 \mathrm{Hrs} \mathrm{Bias} \mathrm{@125}^{\circ} \mathrm{C}$
PCT	JESD-22-B, A102	$168 \mathrm{Hrs}, 100 \% \mathrm{RH}, 121^{\circ} \mathrm{C}$
TST	MIL-STD-883D-1011.9	$-65^{\circ} \mathrm{C} \sim 150^{\circ} \mathrm{C}, 200 \mathrm{Cycles}$
ESD	MIL-STD-883D-3015.7	$\mathrm{VHBM}>2 \mathrm{KV}, \mathrm{VMM}>200 \mathrm{~V}$
Latch-Up	JESD 78	$10 \mathrm{~ms}, 1_{\mathrm{tr}}>100 \mathrm{~mA}$

Classification Reflow Profiles

Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average ramp-up rate (T_{L} to T_{P})	$3^{\circ} \mathrm{C} /$ second max.	$3^{\circ} \mathrm{C} /$ second max.
Preheat - Temperature Min (Tsmin) - Temperature Max (Tsmax) - Time (min to max) (ts)	$\begin{gathered} 100^{\circ} \mathrm{C} \\ 150^{\circ} \mathrm{C} \\ 60-120 \text { seconds } \end{gathered}$	$\begin{gathered} 150^{\circ} \mathrm{C} \\ 200^{\circ} \mathrm{C} \\ 60-180 \text { seconds } \end{gathered}$
Time maintained above: - Temperature (T_{L}) - Time (t_{L})	$\begin{gathered} 183^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$	$\begin{gathered} 217^{\circ} \mathrm{C} \\ 60-150 \text { seconds } \end{gathered}$
Peak/Classification Temperature (Tp)	See table 1	See table 2
Time within $5^{\circ} \mathrm{C}$ of actual Peak Temperature (tp)	10-30 seconds	20-40 seconds
Ramp-down Rate	$6^{\circ} \mathrm{C} /$ second max.	$6^{\circ} \mathrm{C} /$ second max.
Time $25^{\circ} \mathrm{C}$ to Peak Temperature	6 minutes max.	8 minutes max.

Notes: All temperatures refer to topside of the package. Measured on the body surface.

Classification Reflow Profiles (Cont.)

Table 1. SnPb Eutectic Process - Package Peak Reflow Temperatures

Package Thickness	Volume $\mathbf{m m}^{\mathbf{3}}$ <350	Volume $\mathbf{m m}^{\mathbf{3}}$ ≥ 350
$<2.5 \mathrm{~mm}$	$240+0 /-5^{\circ} \mathrm{C}$	$225+0 /-5^{\circ} \mathrm{C}$
$\geq 2.5 \mathrm{~mm}$	$225+0 / 5^{\circ} \mathrm{C}$	$225+0 /-5^{\circ} \mathrm{C}$

Table 2. Pb-free Process - Package Classification Reflow Temperatures

Package Thickness	Volume $\mathbf{~ m m}^{\mathbf{3}}$ $<\mathbf{3 5 0}$	Volume $\mathbf{~ m m}^{\mathbf{3}}$ $\mathbf{3 5 0 - 2 0 0 0}$	Volume $\mathbf{~ m m}^{\mathbf{3}}$ $>\mathbf{2 0 0 0}$
$<1.6 \mathrm{~mm}$	$260+0^{\circ} \mathrm{C}^{*}$	$260+0^{\circ} \mathrm{C}^{*}$	$260+0^{\circ} \mathrm{C}^{\star}$
$1.6 \mathrm{~mm}-2.5 \mathrm{~mm}$	$260+0^{\circ} \mathrm{C}^{\star}$	$250+0^{\circ} \mathrm{C}^{*}$	$245+0^{\circ} \mathrm{C}^{*}$
$\geq 2.5 \mathrm{~mm}$	$250+0^{\circ} \mathrm{C}^{\star}$	$245+0^{\circ} \mathrm{C}^{*}$	$245+0^{\circ} \mathrm{C}^{\star}$

${ }^{*}$ Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature $+0^{\circ} \mathrm{C}$. For example $260^{\circ} \mathrm{C}+0^{\circ} \mathrm{C}$) at the rated MSL level.

Customer Service

Anpec Electronics Corp.

Head Office :
No.6, Dusing 1st Road, SBIP,
Hsin-Chu, Taiwan
Tel : 886-3-5642000
Fax : 886-3-5642050
Taipei Branch :
2F, No. 11, Lane 218, Sec 2 Jhongsing Rd., Sindian City, Taipei County 23146, Taiwan
Tel : 886-2-2910-3838
Fax : 886-2-2917-3838

[^0]: ANPEC reserves the right to make changes to improve reliability or manufacturability without notice, and advise customers to obtain the latest version of relevant information to verify before placing orders.

