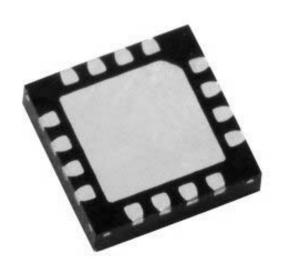
Honeywell

Preliminary


31.5 dB, DC-4GHz, 6 Bit Serial Digital Attenuator

Features

- Very Low DC Power Consumption
- Attenuation In Steps From 0.5 dB To 31.5 dB
- Single Or Dual Power Supply Voltages
- Serial Data Interface
- 50 Ohm Compatible Impedance
- Space Saving LPCC[™] Surface Mount Packaging

Product Description

The Honeywell HRF-AT4611 is a 6-bit digital attenuator that is ideal for use in broadband communication system applications that require accuracy, speed and low power consumption. The HRF-AT4611 is manufactured with Honeywell's patented Silicon On Insulator (SOI) CMOS manufacturing technology, which provides the performance of GaAs with the economy and integration capabilities of conventional CMOS

HRF-AT4611 in LPCC™ Package

RF Electrical Specifications @ + 25°C

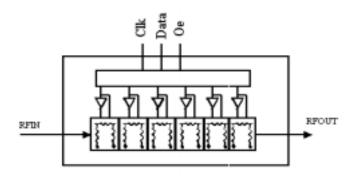
Results @ Vdd = 5.0 + /-10%, Vss = 0 unless otherwise stated, Z0 = 50 Ohms

Parameter	Test Condition	Frequency	Minimum	Typical	Maximum	Units
Insertion Loss		DC – 0.5 GHz		2.1		dB
		2.0 GHz		2.9		dB
		3.0 GHz				dB
		4.0 GHz				dB
1dB Compression	VSS = 0V, Input Power	DC – 2.0 GHz		24		dBm
1dB Compression	VSS = - VDD, Input Power	DC – 2.0 GHz		29		dBm
Input IP3	VSS = 0V Two-tone inputs	DC – 2.0 GHz		38		dBm
	Up To +5 dB @ 0 dB					
	Attenuation					
Input IP3	$V_{ss} = -V_{DD}$	DC - 2.0 GHz		>38		dBm
	Two-tone inputs Up To + 5					
	dBm @ 0 dBm Attenuation					
Return Loss*	Any Bit or Combination	DC - 4.0 GHz		11		dB
Attenuation Accuracy	All attenuation states	DC - 1.0 GHz		.3 + 3% of program		dB
	All attenuation states	2.0 GHz		.3 + 3% of program		dB
	All attenuation states	3.0 GHz	+/-(0	.4 + 4% of program	med IL)	dB
	All attenuation states	4.0 GHz	+/-(0	.5 + 6% of program	med IL)	dB
Trise, Tfall*	10% To 90%			10		nS
Ton, Toff (Tpd)	50% Cntl To 90%/10%RF			15		nS
Transients	In-Band			30		mV
T clock Period (Tprd)*	T high / T low = $\frac{1}{2}$ minimum c	lock period	50			nS
T data set up (Tsup)*	Set up to rising edge of clock		5			nS
T data hold (Thld)*	Data hold after rising edge of	clock	2			nS
T latch set up (Tlsup*)	Data set up to falling edge of	OE	5			nS

0.01uF Decoupling Capacitors Required On Power Supply Rails.

*By design

Web Site: www.mysoiservices.com
Email: mysoiservices@honeywell.com


2002 4611W Published June 2002 Page 1

Honeywell Solid State Electronics Center 12001 State Highway 55 Plymouth, Minnesota 55441-4799 1-800-323-8295

Preliminary

Functional Schematic

DC Electrical Specifications @ + 25°C

Parameter	Minimum	Typical	Maximum	Units
V_{DD}	3.3 ¹	5.0		V
V _{SS}			-5.0	V
I _{DD} Power Supply Current			2	mA
CMOS Logic level (0)	0		0.8	V
CMOS Logic level (1)	V _{DD} - 0.8		V_{DD}	V
Input Leakage Current			10	uA

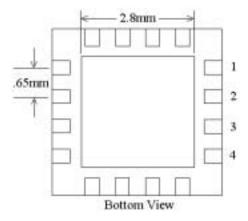
Note 1, the performance curves are for Vdd = +5.0 +/-10%

Absolute Maximum Ratings²

Parameter	Absolute Maximum	Units
Input Power	+ 35	dBm
V_{DD}	+6.0	V
V _{SS}	-5.5	V
ESD Voltage	400	V
Operating Temperature	-40 To +85	Degrees C
Storage Temperature	-65 To +125	Degrees C
Digital Inputs	V _{DD} +0.6 max to V _{SS} -0.6 min	V

(Note 2) Operation of this Device beyond any of these parameters may cause permanent damage. **Latch-Up:** Unlike conventional CMOS digital attenuators, Honeywell's HRF-AT4611 is immune to latch-up.

Web Site: www.mysoiservices.com
Email: mysoiservices@honeywell.com

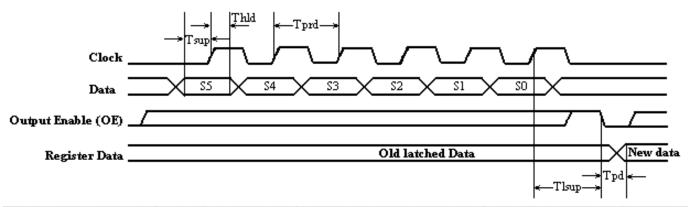

Solid State Electronics Center 12001 State Highway 55 Plymouth, Minnesota 55441-4799 1-800-323-8295

Honeywell

ESD Protection: Although the HRF-AT4611 contains ESD protection circuitry on all digital inputs, conventional precautions should be taken to ensure that the Absolute Maximum Ratings are not exceeded.

Preliminary

Package Outline Drawing


This package conforms to the LPCC^{IM} 4 X 4 mm 16 lead body dimensions. See ASAT LPCC Marketing Outline Dwg. # DGMJ00004 Latest Rev. at http://www.asat.com for additional dimensional information.

Pin Configuration

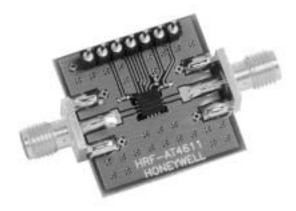
Pin	Function	Pin	Function
1	VDD	9	GROUND
2	GROUND	10	RF OUTPUT
3	RF INPUT	11	GROUND
4	GROUND	12	VSS
5	GROUND	13	DIGITAL GROUND
6	GROUND	14	OE
7	GROUND	15	CLK
8	GROUND	16	DATA

Serial Data Load

Serial data is shifted into the register on the rising edge of clock, MSB first. The OE falling edge must occur prior to any additional rising clock edges. See the Electrical Spec Table for AC parameters.

Web Site: Email:

www.mysoiservices.com mysoiservices@honeywell.com


Preliminary

Truth Table

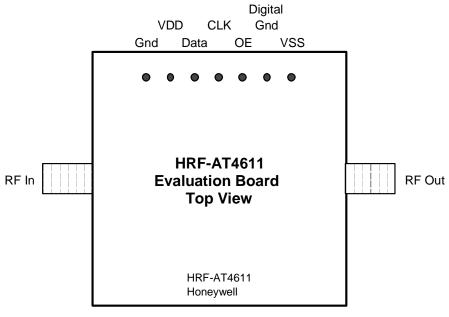
S5	S4	S3	S2	S1	S0	Output
0	0	0	0	0	0	Reference Input
0	0	0	0	0	1	0.5 dB
0	0	0	0	1	0	1 dB
0	0	0	1	0	0	2 dB
0	0	1	0	0	0	4 dB
0	1	0	0	0	0	8 dB
1	0	0	0	0	0	16 dB
1	1	1	1	1	1	31.5 dB

Operation: Data on serial input D is clocked into internal registers on the low to high transition of the Clock signal (CK). The register output is enabled when Output Enable (OE) is in the low state. "0" = CMOS Low, "1" = CMOS High.

Evaluation Circuit Board

HRF-AT4611 Evaluation Board

Honeywell's evaluation board provides an easy to use method of evaluating the RF performance of our attenuator. Simply connect power, DC and RF signals to be measuring attenuator performance in less than 10 minutes.

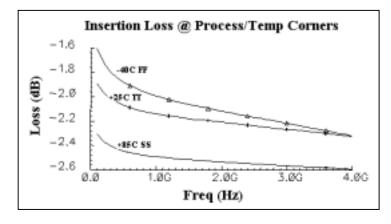

Evaluation Circuit Board Layout Design Details

Item	Description	
PCB	Impedance Matched Multi-Layer FR4	
Attenuator	HRF-AT4611 Digital Attenuator	
Chip Capacitor	Panasonic Model ECU-E1C103KBQ Capacitor, .01uf 0402 10% 16V	
RF Connector	Johnson Connectors Model 142-0701-801 SMA RF Coaxial Connector	
DC Pin	Mil-Max Model 800-10-064-10-001 Header Pins	

Web Site: Email: www.mysoiservices.com mysoiservices@honeywell.com

Preliminary

Evaluation Circuit Board Connections

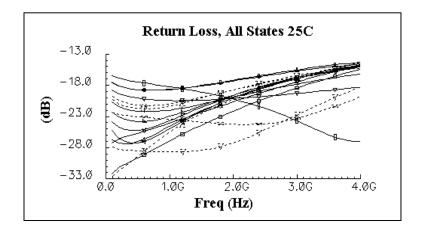


"0" = CMOS Low, "1" = CMOS High

Refer to HRF-AT4611 Product Spec. for Serial Data Load Information (http://www.ssec.honeywell.com/microwave/products/attenuators.html)

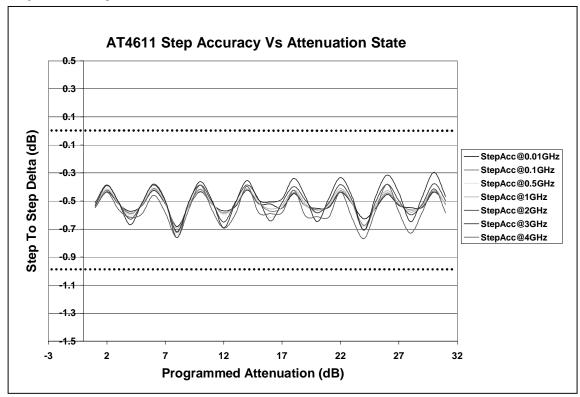
Performance Curves

Insertion Loss



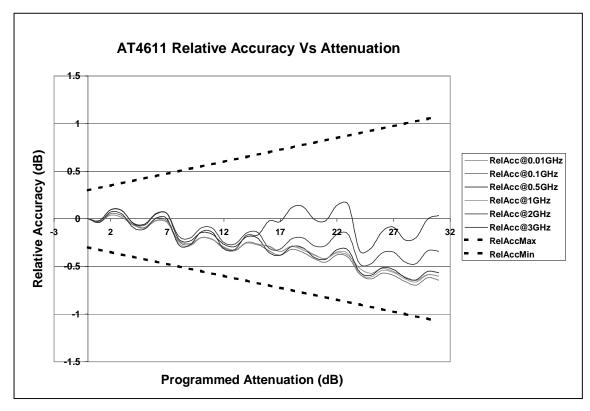
This Insertion Loss curve represents the Min/Max conditions for the "0" pass state versus all processing and temperature conditions. The Min case is at -40C with the "Fast" processing conditions. The Max case is at +85C with the "Slow" processing conditions. All other combinations fall within that band. The typical 25C case is labeled +25C TT.

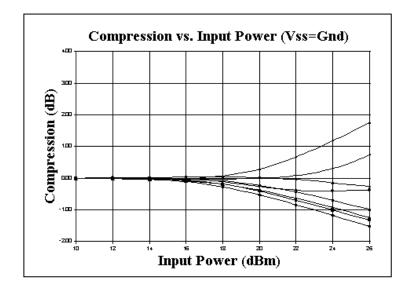
Honeywell


Preliminary

Return Loss

This Return Loss set of curves represents the combination of all Return Loss cases for all attenuation settings. All cases are better than –14dB Return Loss at 4GHz.

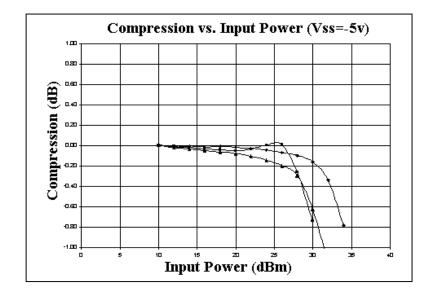

Step Accuracy


Honeywell

Preliminary

Relative Accuracy

Compression



The P1dB curve shows all states with a P1dB compression at approximately 23dB input power. The conditions for this curve are Vdd = +5.0v and Vss = 0v. For higher P1dB compression values, supply Vss with a negative voltage as shown in the next curve.

2002 4611W

Honeywe

Preliminary

The P1dB curve shows all states with a P1dB compression at approximately 31dB input power. The conditions for this curve are Vdd = +5.0v and Vss = -5.0v.

Ordering Information

Ordering Number	Delivery Method	Units Per Shipment
HRF-AT4611-B	In Chip Tubes	Customer Specific, Usually Minimum
		Of 50 Per Chip Tube
HRF-AT4611-TR	On Tape And Reel ³	Customer Specific
HRF-AT4611-E	On Individual Engineering Evaluation Board	One Board Per Box

(Note 3) Call Honeywell for details

LPCCTM is a registered Trademark of ASAT Ltd.

Honeywell reserves the right to make changes to improve reliability, function or design. Honeywell does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others.