Balanced Three-chip MicroCapacitance (MC) SIDACtor Device The balanced three-chip TO-220 MC *SIDACtor* solid state device protects telecommunication equipment in high-speed applications that are sensitive to load values and that require a lower capacitance. $C_{\rm O}$ values for the MC are 40% lower than a standard AC part. This MC *SIDACtor* series is used to enable equipment to meet various regulatory requirements including GR 1089, ITU K.20, K.21, and K.45, IEC 60950, UL 60950, and TIA-968-A (formerly known as FCC Part 68) without the need of series resistors. #### **Electrical Parameters** | Part
Number * | V _{DRM}
Volts | V _S
Volts | V _{DRM}
Volts | V _S
Volts | V _T | I _{DRM} | ls | lτ | lμ | Co | |------------------|---------------------------|-------------------------|---------------------------|-------------------------|----------------|------------------|-------|------|-------|----| | | Pins 1-2, 2-3 | | Pins 1-3 | | Volts | μAmps | mAmps | Amps | mAmps | pF | | P1553AC MC | 130 | 180 | 130 | 180 | 8 | 5 | 800 | 2.2 | 150 | 40 | | P1803AC MC | 150 | 210 | 150 | 210 | 8 | 5 | 800 | 2.2 | 150 | 40 | | P2103AC MC | 170 | 250 | 170 | 250 | 8 | 5 | 800 | 2.2 | 150 | 40 | | P2353AC MC | 200 | 270 | 200 | 270 | 8 | 5 | 800 | 2.2 | 150 | 40 | | P2703AC MC | 230 | 300 | 230 | 300 | 8 | 5 | 800 | 2.2 | 150 | 30 | | P3203AC MC | 270 | 350 | 270 | 350 | 8 | 5 | 800 | 2.2 | 150 | 30 | | P3403AC MC | 300 | 400 | 300 | 400 | 8 | 5 | 800 | 2.2 | 150 | 30 | | P5103AC MC | 420 | 600 | 420 | 600 | 8 | 5 | 800 | 2.2 | 150 | 30 | ^{*} For surge ratings, see table below. #### General Notes - All measurements are made at an ambient temperature of 25 °C. I_{PP} applies to -40 °C through +85 °C temperature range. - $\ensuremath{\mathsf{I}_{PP}}$ is a repetitive surge rating and is guaranteed for the life of the product. - Listed SIDACtor devices are bi-directional. All electrical parameters and surge ratings apply to forward and reverse polarities. - V_{DRM} is measured at I_{DRM}. - V_S is measured at 100 V/µs. - Special voltage (V_S and V_{DRM}) and holding current (I_H) requirements are available upon request. - Off-state capacitance (C_O) is measured between Pins 1-2 and 3-2 at 1 MHz with a 2 V bias. - Device is designed to meet balance requirements of GTS 8700 and GR 974. ## Surge Ratings | | Series | I _{PP}
2x10 µs
Amps | I _{PP}
8x20 µs
Amps | I _{PP}
10x160 μs
Amps | I _{PP}
10x560 μs
Amps | I _{PP}
10x1000 μs
Amps | I _{TSM}
60 Hz
Amps | di/dt
Amps/µs | |---|--------|------------------------------------|------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|-----------------------------------|------------------| | I | С | 500 | 400 | 200 | 150 | 100 | 50 | 500 | ### **Thermal Considerations** | Package | Symbol | Parameter | Value | Unit | |--------------------|---------------|---|-------------|------| | | TJ | Operating Junction Temperature Range | -40 to +150 | °C | | Modified
TO-220 | Ts | Storage Temperature Range | -65 to +150 | °C | | PIN 1 PIN 2 | $R_{ hetaJA}$ | Thermal Resistance: Junction to Ambient | 50 | °C/W | Ipp – Peak Pulse Current – %Ipp 50 Half Value 0 0 t - Time (µs) Peak Value Waveform = $t_r x t_d$ t_r = rise time to peak value t_d = decay time to half value V-I Characteristics $t_{r} \ x \ t_{d}$ Pulse Wave-form 100 Normalized V_S Change versus Junction Temperature Normalized DC Holding Current versus Case Temperature