Preliminary Technical Data

FEATURES

Nonvolatile memoy maintains wiper settings 256-position
 Compact MSOP-10 ($3 \mathrm{~mm} \times 4.9 \mathrm{~mm}$) package
 $I^{2} \mathbf{C}^{\oplus}$ compatible interface

$V_{\text {logic }}$ pin provides increased interface flexibility. End-to-end resistance $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$
Resistance tolerance stored in EEMEM(0.1\% accuracy)
Power On EEMEM Refresh Time < 1ms
Software write protect command
Tri-state address decode pins AD0 and AD1
100-year typical data retention at $55^{\circ} \mathrm{C}$
Wide operating temperature $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
+3 V to $\mathbf{+ 5 V}$ single-supply

APPLICATIONS

LCD panel V сом adjustment
LCD panel brightness and contrast control
Mechanical potentiometer replacement in new designs
Programmable power supplies
RF amplifier biasing
Automotive electronics adjustment
Gain control and offset adjustment
Low resolution DAC replacement
Electronics level settings

GENERAL OVERVIEW

The AD5259 provides a compact nonvolatile $3 \mathrm{~mm} \times 4.9 \mathrm{~mm}$ packaged solution for 256-position adjustment applications. These devices perform the same electronic adjustment function as mechanical potentiometers or variable resistors, with enhanced resolution and solid-state reliability.

The wiper settings are controllable through an $\mathrm{I}^{2} \mathrm{C}$ compatible digital interface, which can also be used to read back the wiper register and EEMEM content. Resistor tolerance is also stored within EEMEM and can be used to provide an end-to-end tolerance accuracy of 0.1%. In order to provide added security, command bits are available to place the part into a write protect mode in which data can not be written to the EEMEM register.

In addition, a separate $V_{\text {logic }}$ pin provides the user with increased interface flexibility. For users who need multiple

Rev. PrJ 7/22/04 | Page 1 of 14

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.
parts on one bus, address bits AD 0 and $\mathrm{AD1}$ allow up to nine devices on the same bus.

FUNCTIONAL BLOCK DIAGRAMS

Figure 1.

Figure 3. Pinout.

Note:
The terms digital potentiometer, VR, and RDAC are used interchangeably.

Purchase of licensed $I^{2} C$ components of Analog Devices or one of its sublicensed Associated Companies conveys a license for the purchaser under the Philips $I^{2} C$ Patent Rights to use these components in an $I^{2} \mathrm{C}$ system, provided that the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ Standard Specification as defined by Philips.

TABLE OF CONTENTS

Electrical Characteristics- $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ Versions 3
Timing Characteristics- $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ Versions 4Absolute Maximum Ratings ${ }^{1}$
\qquad 5
Outline Dimensions 12

REVISION HISTORY

Revision 0: Initial Version

Figure 3. Block diagram showing level shifters

ELECTRICAL CHARACTERISTICS— $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ VERSIONS

($\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$, or $3 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$; unless otherwise noted.)
Table 1.

Parameter	Symbol	Conditions	Min		Max	Unit
DC CHARACTERISTICS—RHEOSTAT MODE Resistor Differential Nonlinearity Resistor Integral Nonlinearity Nominal Resistor Tolerance Resistance Temperature Coefficient Rwi	R-DNL R-INL $\Delta \mathrm{R}_{\mathrm{AB}}$ $\Delta \mathrm{R}_{A B} / \Delta \mathrm{T}$ Rwв	Rwb, $\mathrm{V}_{\mathrm{A}}=$ no connect $R_{\text {wb }}, V_{A}=$ no connect $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{AB}}=\mathrm{V}_{\mathrm{DD}}$, Wiper = no connect Code $=0 \times 00$	$\begin{aligned} & -2 \\ & -30 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.25 \\ & \\ & 650 \\ & \\ & 50 \end{aligned}$	$\begin{aligned} & +1 \\ & +2 \\ & +30 \\ & \\ & 120 \end{aligned}$	LSB LSB \% $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ Ω
DC CHARACTERISTICS—POTENTIOMETER DIVID Differential Nonlinearity Integral Nonlinearity Voltage Divider Temperature Coefficient Full-Scale Error Zero-Scale Error	ODE DNL INL $\Delta \mathrm{V}_{\mathrm{w}} / \Delta \mathrm{T}$ $V_{\text {WFSE }}$ V wzsE	$\begin{aligned} & \text { Code }=0 \times 80 \\ & \text { Code }=0 \times F F \\ & \text { Code }=0 \times 00 \end{aligned}$	$\begin{aligned} & -1 \\ & -1 \\ & -3 \\ & 0 \end{aligned}$	$\begin{aligned} & \pm 0.1 \\ & \pm 0.3 \\ & 30 \\ & -1 \\ & 1 \end{aligned}$	$\begin{aligned} & +1 \\ & +1 \\ & 0 \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{LSB} \\ & \mathrm{LSB} \\ & \mathrm{ppm} /{ }^{\circ} \mathrm{C} \\ & \mathrm{LSB} \\ & \mathrm{LSB} \end{aligned}$
RESISTOR TERMINALS Voltage Range Capacitance A, B Capacitance W Common-Mode Leakage	$V_{A, B, W}$ $\mathrm{C}_{\mathrm{A}, \mathrm{B}}$ Cw Icm	$\mathrm{f}=1 \mathrm{MHz}$, measured to GND, Code $=0 \times 80$ $\mathrm{f}=1 \mathrm{MHz}$, measured to GND, Code $=0 \times 80$ $V_{A}=V_{B}=V_{D D} / 2$	$\mathrm{V}_{\text {ss }}$	45 60 1	$V_{D D}$	V pF pF nA
DIGITAL INPUTS AND OUTPUTS Input Logic High Input Logic Low Input Current Input Capacitance	$\begin{aligned} & \mathrm{V}_{\mathrm{H}} \\ & \mathrm{~V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{IL}} \\ & \mathrm{C}_{\mathrm{IL}} \end{aligned}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ or 5 V	$\begin{aligned} & 0.7 \times V_{\mathrm{L}} \\ & -0.5 \end{aligned}$	5	$\begin{aligned} & V_{L}+0.5 \\ & 0.3 \times V_{L} \\ & \pm 1 \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mu \mathrm{~A} \\ & \mathrm{pF} \end{aligned}$
POWER SUPPLIES Power Supply Range Positive Supply Current Logic Supply(must match logic levels) Programming Mode Current(EEMEM) Power Dissipation Power Supply Sensitivity	$V_{D D}$ ldD V LoGic logic(PRog) PDISS PSS	$\begin{aligned} & \mathrm{V}_{\mathrm{H}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{H}}=5 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \\ & \mathrm{Code}=\text { Midscale } \end{aligned}$	2.7 2.7	$\begin{aligned} & 35 \\ & 18 \\ & \pm 0.02 \end{aligned}$	5.5 1 VD 50 ± 0.05	V $\mu \mathrm{A}$ mA $\mu \mathrm{W}$ \%/\%
DYNAMIC CHARACTERISTICS Bandwidth -3dB Total Harmonic Distortion Vw Settling Time ($1 \mathrm{k} \Omega / 10 \mathrm{k} \Omega / 50 \mathrm{k} \Omega / 100 \mathrm{k} \Omega$) Resistor Noise Voltage Density	BW THD w ts en_wb	$\begin{aligned} & \mathrm{R}_{\mathrm{AB}}=5 \mathrm{k} \Omega / 10 \mathrm{k} \Omega / 50 \mathrm{k} \Omega / 100 \\ & \mathrm{k} \Omega, \mathrm{Code}=0 \times 80 \\ & \mathrm{~V}_{\mathrm{A}}=1 \mathrm{Vrms}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \\ & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{AB}}=10 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{A}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V}, \\ & \pm 1 \mathrm{LSB} \text { error band } \\ & \mathrm{R}_{\mathrm{WB}}=5 \mathrm{k} \Omega, \mathrm{RS}=0 \\ & \hline \end{aligned}$		$\begin{aligned} & 2000 / 600 / \\ & 100 / 40 \\ & 0.1 \\ & 2 \\ & 9 \end{aligned}$		kHz \% $\mu \mathrm{s}$ $\mathrm{nV} / \sqrt{ } \mathrm{Hz}$

TIMING CHARACTERISTICS— $5 \mathrm{k} \Omega, 10 \mathrm{k} \Omega, 50 \mathrm{k} \Omega, 100 \mathrm{k} \Omega$ VERSIONS

($\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%$, or $+3 \mathrm{~V} \pm 10 \% ; \mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{DD}} ; \mathrm{V}_{\mathrm{B}}=0 \mathrm{~V} ;-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}}<+85^{\circ} \mathrm{C}$; unless otherwise noted. $)$
Table 2.

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
$1^{2} \mathrm{C}$ INTERFACE TIMING CHARACTERISTICS ${ }^{1}$ (Specifications Apply to All Parts)						
SCL Clock Frequency	$\mathrm{f}_{\text {scl }}$		0		400	kHz
$\mathrm{t}_{\text {BuF }}$ Bus Free Time between STOP and START	t_{1}		1.3			$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{HD} ; \text { STA }}$ Hold Time (Repeated START)	t_{2}	After this period, the first clock pulse is generated.	0.6			$\mu \mathrm{s}$
tow Low Period of SCL Clock	t_{3}		1.3			$\mu \mathrm{s}$
$t_{\text {HIGH }}$ High Period of SCL Clock	t_{4}		0.6			$\mu \mathrm{s}$
$\mathrm{tsujSTA}^{\text {Setup Time for Repeated START Condition }}$	t_{5}		0.6			$\mu \mathrm{s}$
thdidat Data Hold Time	t_{6}		0		0.9	$\mu \mathrm{s}$
$\mathrm{tsu}_{\text {jat }}$ Data Setup Time	t_{7}		100			ns
t_{F} Fall Time of Both SDA and SCL Signals	t_{8}				300	ns
$\mathrm{t}_{\text {R }}$ Rise Time of Both SDA and SCL Signals	t_{9}				300	ns
$\mathrm{tsu}_{\text {siso }}$ Setup Time for STOP Condition	t_{10}		0.6			$\mu \mathrm{s}$

Figure 4. ${ }^{1}$ C Interface Timing Diagram

AD5259

I ${ }^{2} \mathrm{C}$ INTERFACE

Table 3. Generic Interface Format

Table 4. Device Address Lookup*
(Note that AD1 and AD0 are tri-state address pins)

Device Address	AD1	AD0
0011000	0	0
0011001	NC	0
0011010	1	0
0101001	0	NC
0101010	NC	NC
0101011	1	NC
1001100	0	1
1001101	NC	1
1001110	1	1

S = Start Condition
$\mathrm{P}=$ Stop Condition
SA = Slave Acknowledge
MA = Master Acknowledge
NA = No Acknowledge
X = Don't Care
$\overline{\mathrm{W}}=$ Write
$\mathrm{R}=$ Read

Table 5. RDAC-to-EEMEM Interface Command Descriptions

C2	C1	C0	Command Description
0	0	0	Operation between $I^{2} \mathrm{C}$ and RDAC
0	0	1	Operation between $I^{2} \mathrm{C}$ and EEPROM
0	1	0	Operation between $I^{2} \mathrm{C}$ and WP register
1	0	0	NOP
1	0	1	Restore EEPROM to RDAC
1	1	0	Store RDAC to EEPROM

Write Modes

Table 6. Writing to RDAC register

Table 7. Writing to EEPROM register

Table 8. Activating Software Write Protect

Store/Restore Modes

Table 9. Storing RDAC value to EEPROM

Table 10. Restoring EEPROM to RDAC

S = Start Condition
P = Stop Condition
SA = Slave Acknowledge
MA = Master Acknowledge
NA = No Acknowledge
X = Don't Care
$\bar{W}=$ Write
$\mathrm{R}=$ Read

Read Modes

Table 11. Traditional Read back of RDAC Register value

Table 12. Traditional Read back of stored EEPROM value

S	$\begin{gathered} \text { Device Address* } \\ (7 \text {-bit) } \end{gathered}$		SA	0	0	0	0	0	0	0	SA	s	$\begin{gathered} \hline \text { Device Address* } \\ \text { (7-bit) } \\ \hline \end{gathered}$	1	SA	D7 D6	6 D5	D4 ${ }^{\text {D }}$	D2	D1	D	NA	P
	Slave Address Byte			Instruction Byte									Slave Address Byte				Read	Back	Data				

Table 13. Traditional Read back of Tolerance
i. Consecutively

\uparrow
Repeat start
ii. Individually

Repeat start

Repeat start

Note: Read modes above are referred to as traditional because the first two bytes for all three cases are "dummy" bytes which function to place the pointer towards the correct register. This is the reason for the Repeat Start. In theory, this step can be avoided if the user is interested in reading a register that was previously written to. For example, if the EEPROM was just written to, then the user can skip the
two dummy bytes and proceed directly to the "Slave Address Byte" which would be followed by the "Read Back Data".

Calculating $R_{A B}$ Tolerance Stored in Read-Only Memory

Figure 5. Format of Stored Tolerance in Sign Magnitude Format with Bit Position Descriptions. (Unit is percent. Only data bytes are shown.)

The AD5259 features a patented $\mathrm{R}_{A B}$ tolerance storage in the nonvolatile memory. The tolerance is stored in the memory during factory production and can be read by users at any time. The knowledge of stored tolerance allows users to calculate $\mathrm{R}_{A B}$ accurately. This feature is valuable for precision, rheostat mode, and open-loop applications where knowledge of absolute resistance is critical.

The stored tolerance resides in the read-only memory, and is expressed as a percentage. The tolerance is stored in two memory locations in sign magnitude binary form(see Figure 5). The two EEMEM address bytes are 11110(sign+integer) and 11111 (decimal number). The two bytes can be accessed individually in two separate commands(see Table 13ii). Alternatively, in order to allow read back of the first byte followed by the second byte in one command(see Table 13i), the memory pointer will automatically increment from the first to the second EEMEM locations(increments from 11110 to 11111) if read consecutively.

In the first memory location, the MSB is designated for the sign $(0=+$ and $1=-)$ and the 7 LSBs are designated for the integer portion of the tolerance. In the second memory location, all eight data bits are designated for the decimal portion of tolerance. For example, if the rated $R_{A B}=10 \mathrm{k} \Omega$ and the data readback from Address 11110 shows 00011100 and Address 11111 shows 0000 1111, then the tolerance can be calculated as

MSB: $0=+$
Next 7 MSB: $0011100=28$
8 LSB: $00001111=15 \times 2^{-8}=0.06$
Tolerance $=+28.06 \%$ and therefore
$\mathrm{R}_{\text {AB_ACTUAL }}=12.806 \mathrm{k} \Omega$

EEMEM Write-Acknowledge Polling

After each write operation to the EEMEM registers, an internal write cycle begins. The $I^{2} \mathrm{C}$ interface of the device is disabled. To determine if the internal write cycle is complete and the $\mathrm{I}^{2} \mathrm{C}$ interface is enabled, interface polling can be executed. $\mathrm{I}^{2} \mathrm{C}$ interface polling can be conducted by sending a start condition followed by the slave address + the write bit. If the $I^{2} \mathrm{C}$ interface responds with an ACK, the write cycle is complete and the interface is ready to proceed with further operations. Other-wise, $\mathrm{I}^{2} \mathrm{C}$ interface polling can be repeated until it succeeds.

I^{2} C COMPATIBLE 2-WIRE SERIAL BUS

1. The master initiates data transfer by establishing a START condition, which is when a high-to-low transition on the SDA line occurs while SCL is high (see Figure 4). The following byte is the Slave Address Byte, which consists of the slave address followed by an $\mathrm{R} / \overline{\mathrm{W}}$ bit (this bit determines whether data is read from or written to the slave device).

The AD5259 has two tri-state configurable address bits, AD0 and AD1 (see Table 4). The slave whose address corresponds to the transmitted address responds by pulling the SDA line low during the ninth clock pulse (this is termed the acknowledge bit). At this stage, all other devices on the bus remain idle while the selected device waits for data to be written to or read from its serial register. If the $\mathrm{R} / \overline{\mathrm{W}}$ bit is high, the master reads from the slave device. If the $\mathrm{R} / \overline{\mathrm{W}}$ bit is low, the master writes to the slave device.
2. Writing: In the write mode, the last $\operatorname{bit}(\mathrm{R} / \overline{\mathrm{W}})$ of the Address Byte is logic low. The second byte is the Instruction Byte. The first 3 bits of the Instruction Byte are the command bits(see Table 5). The final 5 bits indicate which EEMEM location the pointer moves to. The user must choose whether to write to the RDAC register, EEMEM register, or activate the software write protect(see Tables 6-8).

The final byte is the Data Byte MSB first. In the case of the write protect mode, data is not being stored. Rather, a logic high in the LSB will enable write protect and a logic low will disable write protect.
3. Storing/Restoring: In this mode, only two bytes are necessary; Address and Instruction Bytes. The last bit $(\mathrm{R} / \overline{\mathrm{W}})$ of the Address Byte is logic low. The first 3 bits of the Instruction Byte are the command bits(see Table 5). The two choices are transfer data from RDAC to EEMEM(Store) or from EEMEM to RDAC(Restore). The final 5 bits are all zeros(see Tables 9-10).
4. Reading: Assuming the register of interest was not just written to, it is necessary to write a dummy Address and Instruction Byte. The Instruction Byte will vary depending on whether the data that is wanted is the RDAC register, EEMEM register, or Tolerance register(see Tables 11-13). The Tolerance register can be read back consecutively(Table 13i) or individually(Table13ii). Refer to page 8 for detailed information on the interpretation of the tolerance bytes. After the dummy Address and Instruction Bytes are sent, a repeat start is necessary. After the repeat start, another Address Byte is needed except this time, the $\mathrm{R} / \overline{\mathrm{W}}$ bit is logic high. Following this Address Byte is the Read Back Byte containing the information requested in the Instruction Byte.
5. After all data bits have been read or written, a STOP condition is established by the master. A STOP condition is defined as a low-to-high transition on the SDA line while SCL is high. In write mode, the master pulls the SDA line high during the $10^{\text {th }}$ clock pulse to establish a STOP condition (see Figure 6). In read mode, the master issues a No Acknowledge for the ninth clock pulse (i.e., the SDA line remains high). The master then brings the SDA line low before the $10^{\text {th }}$ clock pulse, and then raises SDA high to establish a STOP condition (see Figure 7).

A repeated write function gives the user flexibility to update the RDAC output a number of times after addressing and instructing the part only once. For example, after the RDAC has acknowledged its Slave Address and Instruction Bytes in the write mode, the RDAC output is updated on each successive byte. If different instructions are needed, the write/read mode has to start again with a new Slave Address, Instruction, and Data Byte. Similarly, a repeated read function of the RDAC is also allowed.

DISPLAY APPLICATIONS

Figure 1. $\mathrm{V}_{\text {сом }}$ adjustment application assuming that $\mathrm{a}+5 \mathrm{~V}$ supply is available. In this case, V_{DD} and $\mathrm{V}_{\text {LOGIC }}$ would be tied together.

Figure 2. This circuit demonstrates the flexibility of a $V_{\text {LOGIC }}$ pin when a separate supply is not available for $V_{D D} . V_{D D}$ can be tapped off the +14.4 V where it is resistor divided down to approximately $\sim 5 \mathrm{~V}$. $\mathrm{V}_{\text {LOGIC }}$ can then be taken off the same supply that powers the MCU's logic levels. Now, the 35 mA programming current will be drawn by $\mathrm{V}_{\text {LOGIC }}$, and V_{DD} will only draw microamps of supply current used to bias up the internal switches in the digital potentiometer's internal resistor string.

ABSOLUTE MAXIMUM RATINGS¹

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Table 4

Parameter	Value
$V_{\text {DD }}$ to GND	-0.3 V to +7 V
$\mathrm{V}_{\mathrm{A}}, \mathrm{V}_{\mathrm{B}}, \mathrm{V}_{\mathrm{w}}$ to GND	$\mathrm{V}_{5 S}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{I}_{\text {max }}$	
Pulsed ${ }^{1}$	$\pm 20 \mathrm{~mA}$
Continuous	$\pm 5 \mathrm{~mA}$
Digital Inputs and Output Voltage to GND	0 V to +7 V
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Maximum Junction Temperature (TJmax)	$150^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 sec)	$300^{\circ} \mathrm{C}$
Thermal Resistance ${ }^{2} \theta_{\mathrm{J}}$: MSOP-10	$200^{\circ} \mathrm{C} / \mathrm{W}$
NOTES ${ }^{1}$ Maximum terminal current is bounded by the maxi the switches, maximum power dissipation of the pa applied voltage across any two of the A, B, and W term resistance.	mum current handling of kage, and maximum minals at a given

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 2. AD5172 Pin Configuration

Table 5. AD5259 Pin Function Descriptions

Pin	Mnemonic	Description
1	W	W Terminal. GND $\leq V_{W} \leq V_{D D}$.
2	ADO	Programmable Tri-State Address Bit 0 for Multiple Package Decoding.
3	AD1	Programmable Tri-State Address Bit 1 for Multiple Package Decoding.
4	SDA	Serial Data Input/Output.
5	SCL	Serial Clock Input. Positive edge triggered.
6	VLOGIC	Logic power supply.
7	GND	Digital Ground.
8	VDD	Positive Power Supply.
9	B	B Terminal. GND $\leq V_{B} \leq V_{D D}$.
10	A	A Terminal. GND $\leq V_{A} \leq V_{D D}$.

Outline Dimensions

Figure 3. 10-Lead Mini Small Outline Package [MSOP] (RM-10)
Dimensions shown in millimeters

ORDERING GUIDE

Model	$\mathrm{R}_{\text {AB }}(\mathbf{\Omega})$	Temperature	Package Description	Package Option	Branding
AD5259BRMZ51	5k	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP-10	RM-10	D4P
AD5259BRMZ5-RL71	5k	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP-10	RM-10	D4P
AD5259BRMZ10 ${ }^{1}$	10k	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP-10	RM-10	D4Q
AD5259BRMZ10-RL71	10k	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP-10	RM-10	D4Q
AD5259BRMZ50 ${ }^{1}$	50k	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP-10	RM-10	D4R
AD5259BRMZ50-RL71	50k	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP-10	RM-10	D4R
AD5259BRMZ100 ${ }^{1}$	100k	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP-10	RM-10	D4S
AD5259BRMZ100-RL71	100k	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	MSOP-10	RM-10	D4S

${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance

NOTES

