

Current Transducer LTC 600-SFC

 $I_{PN} = 500 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range @ 24 V Max overload not measurable Measuring resistance		500 0±1 10/10 R _{M min}		A A kA/ms
	with ± 15 V	$@ \pm 500 A_{max}$	0	70	Ω
		@ ± 1200 A max	0	5	Ω
	with ± 24 V	@ ± 500 A max	0	150	Ω
		@ ± 1500 A _{max}	0	20	Ω
I _{SN}	Secondary nominal r.m.s. current		100		m A
K _N	Conversion ratio		1:500	0	
v _c	Supply voltage (± 5 %)		± 15	24	V
	Current consumption		$< 30 (@\pm 24 V) + I_S m A$		
Λ ^q I ^c	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		13.4 ¹⁾		kV
-			1.5 ²⁾		kV
\mathbf{V}_{e}	R.m.s. voltage for partial discharge extinction		> 2.8 3)	kV

Accuracy - Dynamic performance data

	r requericy baridwidth (- 1 db)	DC 100	
t _r di/dt f	Response time 4) @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1 > 100 DC 100	µs A∕µs kHz
I ₀	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O - 40°C	Max ± 0.5 + 85°C ± 1	m A m A
e _L	© \mathbf{I}_{PN} , $\mathbf{T}_{A} = -40^{\circ}\text{C} + 85$ Linearity		% %
X _G	Overall accuracy @ I _{PN} , T _Δ = 25°C	< ± 0.7	%

General data

T _A T _S R _S m	Ambient operating temperature Ambient storage temperature Secondary coil resistance @ T _A = 85°C Mass	- 40 + 85 - 45 + 90 44 800	°C °C Ω g
	Standards	EN 50155 (01.12.20)	

Notes: 1) Between primary and secondary + shield

2) Between secondary and shield

3) Test carried out with a busbar Ø 40 mm centred in the through-hole

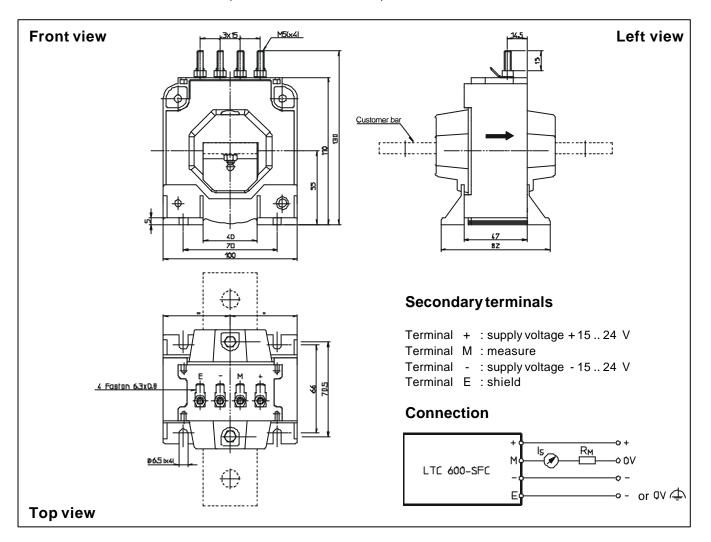
 $^{4)}$ With a di/dt of 100 A/ μ s.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- Transducer delivered with feet and clamps
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.


Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

030528/0

Dimensions LTC 600-SFC (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fixing the transducer

Fastening torque max

- Primary through-hole
- Connection of secondary Fastening torque max
- ± 1 mm
- 4 slots Ø 6.5 mm
- 4 screws M6
- 5 Nm
- Ø 42 mm

M5 threaded studs 2.2 Nm or 1.62 Lb.-Ft. Faston 6.3 x 0.8 mm

Remarks

- $\bullet~\mathbf{I}_{\mathrm{S}}$ is positive when \mathbf{I}_{P} flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.