

Current Transducer LA 100-S/SP1

 $I_{PN} = 100 A$

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN} I _P R _M	Primary nominal r.m.s. current Primary current, measuring range Measuring resistance		100 0 ± 200 $\mathbf{R}_{Mmin} \mathbf{R}_{Mmax}$		A A
IVI	with ± 15 V	@ ± 100 A _{max} @ ± 200 A _{max}	0	180	Ω
I _{sn} K _n	Secondary nominal r.m.s. current Conversion ratio		50 1 : 200		m A
V _C I _C V _d	Supply voltage (± 5 %) Current consumption R.m.s. voltage for AC isolation test, 50 Hz, 1 min		± 15 22 + I _s 3		V m A k V

Accuracy - Dynamic performance data

X _G	Overall accuracy @ \mathbf{I}_{PN_1} $\mathbf{T}_A = 25^{\circ}C$ Linearity		± 0.5 < 0.1		% %
I _О	Offset current @ $\mathbf{I}_{p} = 0$, $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$ Thermal drift of \mathbf{I}_{O}	- 10 °C + 70°C	Typ ± 0.2	Max ± 0.1 ± 0.4	m A m A
t _, di/dt f	Response time ¹⁾ @ 90 % of I _{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)		< 1 > 50 DC 1	150	μs A/μs kHz

General data

$T_{_{A}}$	Ambient operating temperature	- 10 + 70	°C
T _s	Ambient storage temperature	- 25 + 85	°C
\mathbf{R}_{s}	Secondary coil resistance @ T _A = 70°C	85	Ω
m	Mass	65	g
	Standards 2)	EN 50178	

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

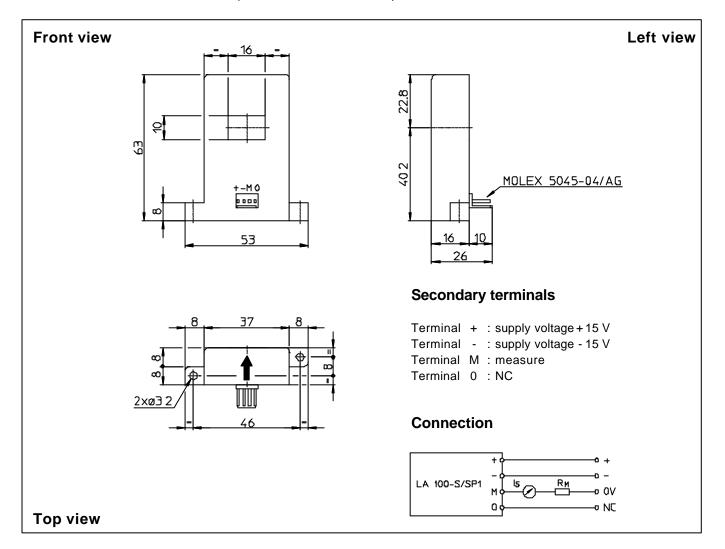
• $I_p = 0.. \pm 200 \text{ A}$ • $K_N = 1:2000$

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) With a di/dt of 50 A/µs

²⁾ A list of corresponding tests is available.

991015/5

Dimensions LA 100-S/SP1 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

Fastening

Primary through-holeConnection of secondary

± 0.3 mm

2 holes Ø 3.2 mm

16 x 10 mm

Molex 5045-04/AG

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- To measure nominal currents of less than 100 A, the optimum accuracy is obtained by having several primary turns (nominal current x number of turns < 100 At).