

512K x 32/256K x 32 Dual Array Synchronous Pipeline Burst NBL SRAM

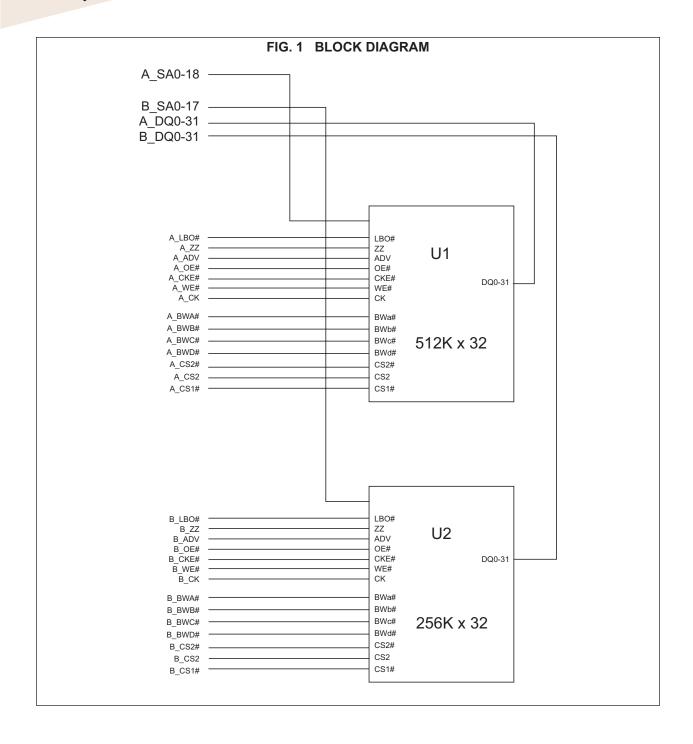
FEATURES

- Fast clock speed: 166, 150, 133, and 100MHz
- Fast access times: 3.5ns, 3.8ns, 4.2ns, and 5.0ns
- Fast OE# access times: 3.5ns, 3.8ns, 4.2ns, and 5.0ns
- Single +2.5V ± 5% power supply (Vcc)
- Snooze Mode for reduced-standby power
- Individual Byte Write control
- Clock-controlled and registered addresses, data I/Os and control signals
- Burst control (interleaved or linear burst)
- Packaging:
 - 209-bump BGA package
- Low capacitive bus loading

DESCRIPTION

The WED2ZLRSP01S, Dual Independent Array, NBL-SSRAM device employs high-speed, Low-Power CMOS silicon and is fabricated using an advanced CMOS process. WEDC's 24Mb, Sync Burst SRAM MCP integrates two totally independent arrays, the first organized as a 512K x 32, and the second a 256K x 32.

All Synchronous inputs pass through registers controlled by a positive edge triggered, single clock input per array. The NBL or No Bus Latency Memory provides 100% bus utilizaton, with no loss of cycles caused by change in modal operation (Write to Read/Read to Write). All inputs except for Asynchronous Output Enable and Burst Mode control are synchronized on the positive or rising edge of Clock. Burst order control must be tied either HIGH or LOW, Write cycles are internally self-timed, and writes are initiated on the rising edge of clock. This feature eliminates the need for complex off-chip write pulse generation and proved increased timing flexibility for incoming signals.


PIN CONFIGURATION

(TOP VIEW)

	1	2	3	4	5	6	7	8	9	10	11
Α	Vss	A_DATb ₀	A_DATb ₁	A_DATb ₂	A_DATb ₃	Vss	A_DATa₀	A_DATa ₁	A_DATa ₂	A_DATa₃	Vss
в	NC	A_DATb ₄	A_DATb₅	A_DATb ₆	A_DATb7	Vss	A_DATa ₄	A_DATa₅	A_DATa ₆	A_DATa7	NC
С	A_ADR	A_ADR	A_OE#	A_ADV	A_BWEb	Vss	A_BWEa	A_ZZ	A_ADR	A_ADR	A_ADR
D	A_ADR	Vss	A_CKE#	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	A_ADR	A_ADR
Е	A_ADR	A_CK	A_GWE#	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	A_ADR1	A_ADR₀
F	A_ADR	Vss	A_CS2#	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	A_ADR	A_ADR
G	A_ADR	A_ADR	A_CS1#	A_CS ₂	A_BWEc	Vss	A_BWEd	A_LBO#	A_ADR	A_ADR	A_ADR
н	NC	A_DATco	A_DATc1	A_DATc2	A_DATc ₃	Vss	A_DATdo	A_DATd1	A_DATd2	A_DATd3	NC
J	Vss	A_DATc4	A_DATc5	A_DATc6	A_DATc7	Vss	A_DATd4	A_DATd₅	A_DATd6	A_DATd7	Vss
к	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vss	Vss
L	Vss	B_DATb ₀	B_DATb ₁	B_DATb ₂	B_DAT ₃	Vss	B_DATa₀	B_DATa ₁	B_DATa ₂	B_DATa ₃	Vss
М	NC	B_DATb ₄	B_DATb₅	B_DATb ₆	B_DAT7	Vss	B_DATa ₄	B_DATa₅	B_DATa ₆	B_DATa7	NC
N	B_ADR	B_ADR	B_OE#	B_ADV	B_BWEb	Vss	B_BWEa	B_ZZ	B_ADR	B_ADR	B_ADR
Р	B_ADR	Vss	B_CKE#	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	B_ADR	B_ADR
R	B_ADR	B_CK	B_GWE#	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	B_ADR1	B_ADR₀
Т	B_ADR	Vss	B_CS2#	Vcc	Vcc	Vcc	Vcc	Vcc	Vcc	B_ADR	B_ADR
U	B_ADR	NC	B_CS1#	B_CS ₂	B_BWEc	Vss	B_BWEd	B_LBO#	B_ADR	B_ADR	B_ADR
v	NC	B_DATc4	B_DATc5	B_DATc6	B_DATc7	Vss	B_DATd4	B_DATd₅	B_DATd6	B_DATd7	NC
w	Vss	B_DATco	B_DATc1	B_DATc2	B_DATc ₃	Vss	B_DATdo	B_DATd1	B_DATd2	B_DATd3	Vss

WED2ZLRSP01S

WHITE ELECTRONIC DESIGNS ______

WHITE ELECTRONIC DESIGNS ____

FUNCTION DESCRIPTION

The WED2ZLRSP01S is an NBL Dual Array SSRAM designed to sustain 100% bus bandwidth by eliminating turnaround cycle when there is transition from Read to Write, or vice versa. All inputs (with the exception of OE#, LBO# and ZZ) are synchronized to rising clock edges, and all features are available on each of the independent arrays.

All read, write and deselect cycles are initiated by the ADV input. Subsequent burst addresses can be internally generated by the burst advance pin (ADV). ADV should be driven to Low once the device has been deselected in order to load a new address for next operation.

Clock Enable (CKE#) pin allows the operation of the chip to be suspended as long as necessary. When CKE# is high, all synchronous inputs are ignored and the internal device registers will hold their previous values. NBL SSRAM latches external address and initiates a cycle when CKE# and ADV are driven low at the rising edge of the clock.

Output Enable (OE#) can be used to disable the output at any given time. Read operation is initiated when at the rising edge of the clock, the address presented to the address inputs are latched in the address register, CKE# is driven low, the write enable input signals WE# are driven high, and ADV driven low. The internal array is read between the first rising edge and the second rising edge of the clock and the data is latched in the output register. At the second clock edge the data is driven out of the SRAM. During read operation OE# must be driven low for the device to drive out the requested data. Write operation occurs when WE# is driven low at the rising edge of the clock. BW#[d:a] can be used for byte write operation. The pipe-lined NBL SSRAM uses a late-late write cycle to utilize 100% of the bandwidth. At the first rising edge of the clock, WE and address are registered, and the data associated with that address is required two cycle later.

Subsequent addresses are generated by ADV High for the burst access as shown below. The starting point of the burst seguence is provided by the external address. The burst address counter wraps around to its initial state upon completion. The burst sequence is determined by the state of the LBO# pin. When this pin is low, linear burst sequence is selected. And when this pin is high, Interleaved burst sequence is selected.

During normal operation, ZZ must be driven low. When ZZ is driven high, the SRAM will enter a Power Sleep Mode after 2 cycles. At this time, internal state of the SRAM is preserved. When ZZ returns to low, the SRAM operates after 2 cycles of wake up time.

BURST SEQUENCE TABLE

		Case 1		Case 2		Cas	ie 3	Case 4	
LBO# Pin	High	A 1	A ₀						
First Address		0	0	0	1	1	0	1	1
Fourth Address		0	1	0	0	1	1	1	0
		1	0	1	1	0	0	0	1
		1	1	1	0	0	1	0	0

(Interleaved Burst, LBO# = High)

NOTE 1: LBO# pin must be tied to High or Low, and Floating State must not be allowed.

(Interleaved Burst, LBO = High)

		Case 1		Case 2		Cas	se 3	Case 4	
LBO# Pin	High	A 1	A0	A 1	A ₀	A 1	A ₀	A 1	A0
First Address		0	0	0	1	1	0	1	1
Fourth Address		0	1	1	0	1	1	0	0
		1	0	1	1	0	0	0	1
1 our un / to	arooo	1	1	0	0	0	1	1	0

NIC DESIGNS _____WI

WHITE	Electronic	Desi

CEx#	ADV	WE#	BWx#	OE#	CKE#	СК	Address Accessed	Operation
Н	L	Х	Х	Х	L	1	N/A	Deselect
Х	Н	Х	Х	Х	L	↑ N/A		Continue Deselect
L	L	Н	Х	L	L	1	External Address	Begin Burst Read Cycle
Х	Н	Х	Х	L	L	1	Next Address	Continue Burst Read Cycle
L	L	Н	Х	Н	L	1	External Address	NOP/Dummy Read
Х	Н	Х	Х	Н	L	1	Next Address	Dummy Read
L	L	L	L	Х	L	1	External Address	Begin Burst Write Cycle
Х	Н	Х	L	Х	L	↑	Next Address	Continue Burst Write Cycle
L	L	L	Н	Х	L	↑ (N/A	NOP/Write Abort
Х	Н	Х	Н	Х	L	1	Next Address	Write Abort
Х	Х	Х	Х	Х	Н	↑	Current Address	Ignore Clock

SYNCHRONOUS TRUTH TABLE

TRUTH TABLES

NOTES:

1. X means "Don't Care."

2. The rising edge of clock is symbolized by (\uparrow)

3. A continue deselect cycle can only be entered if a deselect cycle is executed first.

 WRITE# = L means Write operation in WRITE TRUTH TABLE. WRITE# = H means Read operation in WRITE TRUTH TABLE.

5. Operation finally depends on status of asynchronous input pins (ZZ and OE#).

6. CEx# refers to the combination of CE1#, CE2 and CE2#.

7. Applies to each of the independent arrays.

WE#	BWa#	BWb#	BWc#	BWd#	Operation
Н	Х	Х	Х	Х	Read
L	L	Н	Н	Н	Write Byte a
L	н	L	Н	Н	Write Byte b
L	Н	Н	L	Н	Write Byte c
L	Н	Н	Н	L	Write Byte d
L	L	L	L	L	Write All Bytes
L	Н	Н	Н	Н	Write Abort/NOP

WRITE TRUTH TABLE

NOTES:

1. X means "Don't Care."

 All inputs in this table must meet setup and hold time around the rising edge of CK (↑).

3. Applies to each of the independent arrays.

WHITE ELECTRONIC DESIGNS ______

ABSOLUTE MAXIMUM RATINGS*

Voltage on Vdd Supply Relative to Vss	-0.3V to +3.6V				
V _{IN} (DQx)	-0.3V to +3.6V				
V _{IN} (Inputs)	-0.3V to +3.6V				
Storage Temperature (BGA)	-55°C to +125°C				
Short Circuit Output Current	100mA				

*Stress greater than those listed under "Absolute Maximum Ratings": may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

ELECTRICAL CHARACTERISTICS (0°C ≤ T_A ≤ 70°C)

Description	Symbol	Conditions	Min	Max	Units	Notes
Input High (Logic 1) Voltage	Vih		1.7	Vcc +0.3	V	1
Input Low (Logic 0) Voltage	VIL		-0.3	0.7	V	1
Input Leakage Current	ILI	$0V \le V_{IN} \le V_{CC}$	-5	5	μA	2
Output Leakage Current	ILO	Output(s) Disabled, $0V \le V_{IN} \le V_{CC}$	-5	5	μA	
Output High Voltage	Vон	I _{OH} = -1.0mA	2.0		V	1
Output Low Voltage	Vol	I _{OL} = 1.0mA		0.4	V	1
Supply Voltage	Vcc		2.375	2.625	V	1

NOTES:

1. All voltages referenced to V_{SS} (GND)

2. ZZ pin has an internal pull-up, and input leakage is higher.

DC CHARACTERISTICS

Description	Symbol	Conditions	Тур	166 MHz	150 MHz	133 MHz	100 MHz	Units	Notes
Power Supply Current: Operating	lod	Device Selected; All Inputs $\leq V_{IL}$ or $\geq V_{IH}$; Cycle Time = t _{CYC} MIN; V _{CC} = MAX; Output Open		650	600	560	500	mA	1, 2
Power Supply Current: Standby	ISB2	$ \begin{array}{l} \mbox{Device Deselected; $V_{CC} = MAX; All Inputs \leq V_{SS} + 0.2$ or $V_{CC} - 0.2; All Inputs Static; $CK Frequency = 0;$ $ZZ \leq V_{IL}$ } \end{array} $	30	60	60	60	60	mA	2
Power Supply Current: Current	ISB3	$ \begin{array}{l} \mbox{Device Selected; All Inputs $\leq V_{IL}$ or $\geq V_{IH}$; Cycle} \\ \mbox{Time =}tcyc MIN; Vcc = MAX; Output Open; \\ \mbox{ZZ $\geq Vcc - 0.2V} \end{array} $	20	40	40	40	40	mA	2
Clock Running Standby Current	ISB4	Device Deselected; V _{CC} = MAX; All Inputs \leq Vss + 0.2 or V _{CC} - 0.2; Cycle Time = t _{CYC} MIN; ZZ \leq V _{IL}		140	120	100	80	mA	2

NOTES:

1. IDD is specified with no output current and increases with faster cycle times. IDD increases with faster cycle times and greater output loading.

2. Typical values are measured at 2.5V, 25°C, and 10ns cycle time.

BGA CAPACITANCE

Description	Symbol	Conditions	Тур	Max	Units	Notes
Control Input Capacitance	Сі	TA = 25°C; f = 1MHz	5	7	pF	1
Input/Output Capacitance (DQ)	Co	TA = 25°C; f = 1MHz	6	8	pF	1
Address Capacitance	CA	T _A = 25°C; f = 1MH _Z	5	7	pF	1
Clock Capacitance	Сск	T _A = 25°C; f = 1MHz	3	5	pF	1

NOTES:

1. This parameter is sampled.

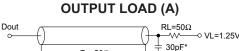
WHITE ELECTRONIC DESIGNS

-		166	MHz	150MHz		133	MHz	100MHz		
Parameter	Symbol	Min	Max	Min	Max	Min	Max	Min	Max	Units
Clock Time	tcyc	6.0		6.7		7.5		10.0		ns
Clock Access Time	tcp	_	3.5	_	3.8	_	4.2	_	5.0	ns
Output enable to Data Valid	toe	_	3.5	_	3.8	_	4.2	_	5.0	ns
Clock High to Output Low-Z	tLZC	1.5	_	1.5	_	1.5	_	1.5	_	ns
Output Hold from Clock High	toн	1.5	_	1.5	_	1.5	_	1.5	_	ns
Output Enable Low to output Low-Z	t LZOE	0.0	_	0.0	_	0.0	_	0.0	_	ns
Output Enable High to Output High-Z	tHZOE	_	3.0	_	3.0	_	3.5	_	3.5	ns
Clock High to Output High-Z	tHZC	_	3.0	_	3.0	_	3.5	_	3.5	ns
Clock High Pulse Width	tсн	2.2	_	2.5	_	3.0	_	3.0	_	ns
Clock Low Pulse Width	tcL	2.2	_	2.5	-	3.0	-	3.0	—	ns
Address Setup to Clock High	tas	1.5	-	1.5	_	1.5	_	1.5	_	ns
CKE# Setup to Clock High	tces	1.5	-	1.5	_	1.5	_	1.5	_	ns
Data Setup to Clock High	tos	1.5	_	1.5	_	1.5	_	1.5	_	ns
Write Setup to Clock High	tws	1.5	_	1.5	_	1.5	_	1.5	_	ns
Address Advance to Clock High	tadvs	1.5		1.5		1.5		1.5		ns
Chip Select Setup to Clock High	tcss	1.5		1.5		1.5		1.5		ns
Address Hold to Clock high	tан	0.5	_	0.5	_	0.5	_	0.5	_	ns
CKE# Hold to Clock High	tсен	0.5	_	0.5	_	0.5	_	0.5	_	ns
Data Hold to Clock High	tон	0.5	_	0.5	_	0.5	_	0.5	_	ns
Write Hold to Clock High	twн	0.5	_	0.5	_	0.5	_	0.5	_	ns
Address Advance to Clock High	t _{ADVH}	0.5	_	0.5	_	0.5	_	0.5	_	ns
Chip Select Hold to Clock High	tcsн	0.5	-	0.5	_	0.5	_	0.5	_	ns

AC CHARACTERISTICS

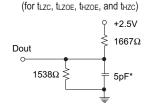
NOTES:

1. All Address inputs must meet the specified setup and hold times for all rising clock (CK) edges when ADV is sampled low and CEx# is sampled valid. All other synchronous inputs must meet the specified setup and hold times whenever this device is chip selected.


2. Chip enable must be valid at each rising edge of CK (when ADV is Low) to remain enabled.

- A write cycle is defined by WE# low having been registered into the device at ADV Low. A Read cycle is defined by WE# High with ADV Low. Both cases must meet setup and hold times.
- 4. Applies to each of the independent arrays.

AC TEST CONDITIONS

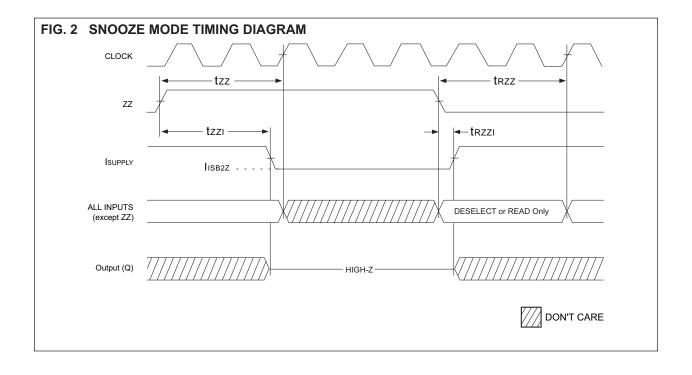

 $(0 \le T_A \le 70^{\circ}C, V_{CC} = 2.5V \pm 5\%, Unless Otherwise Specified)$

Parameter	Value
Input Pulse Level	0 to 2.5V
Input Rise and Fall Time (Measured at 20% to 80%)	1.0V/ns
Input and Output Timing Reference Levels	1.25V
Output Load	See Output Load (A)

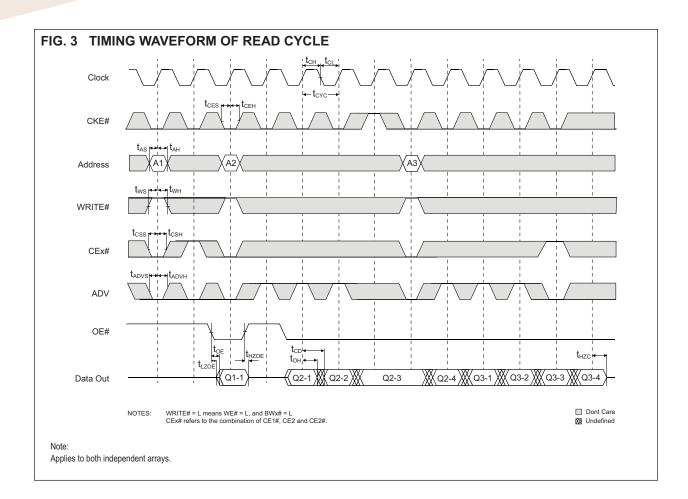
Zo=50Ω

OUTPUT LOAD (B)

*Including Scope and Jig Capacitance

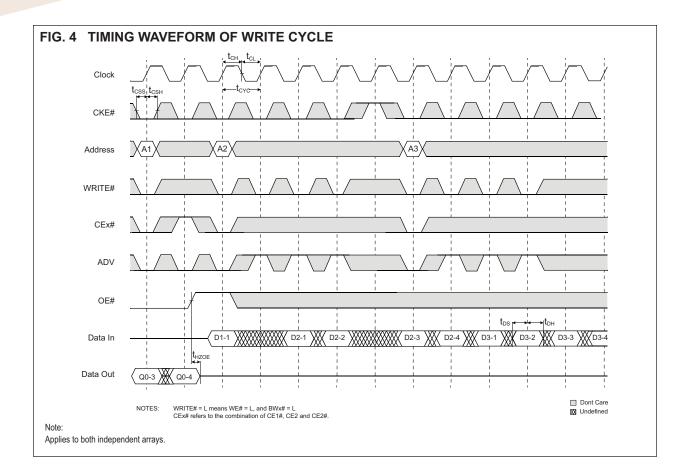


SNOOZE MODE


SNOOZE MODE is a low-current, "power-down" mode in which the device is deselected and current is reduced to IsB2Z. The duration of SNOOZE MODE is dictated by the length of time Z is in a HIGH state. After the device enters SNOOZE MODE, all inputs except ZZ become gated inputs and are ignored. ZZ is an asynchronous, active HIGH input that causes the device to enter SNOOZE MODE. When ZZ becomes a logic HIGH, I_{SB2Z} is guaranteed after the setup time t_{ZZ} is met. Any READ or WRITE operation pending when the device enters SNOOZE MODE is not guaranteed to complete successfully. Therefore, SNOOZE MODE must not be initiated until valid pending operations are completed.

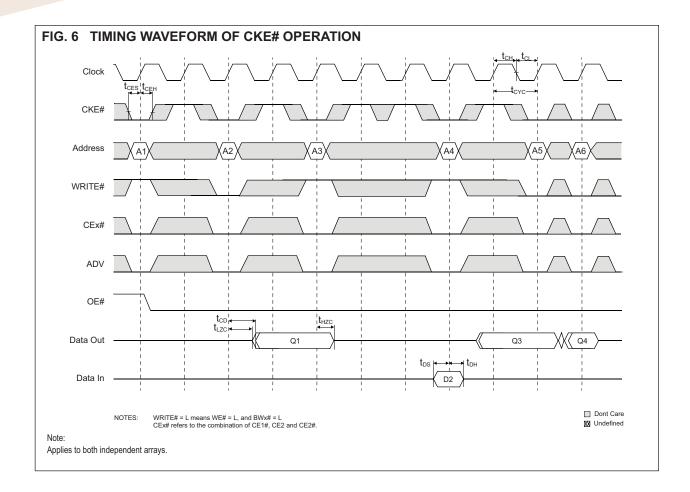
Description	Conditions	Symbol	Min	Мах	Units	Notes
Current during SNOOZE MODE	ZZ ≥ V _{IH}	Isb2z		10	mA	
ZZ active to input ignored		tzz		2(tкc)	ns	1
ZZ inactive to input sampled		t _{RZZ}	2(tкc)		ns	1
ZZ active to snooze current		tzzı		2(tĸc)	ns	1
ZZ inactive to exit snooze current		trzzi			ns	1

SNOOZE MODE


White Electronic Designs

White Electronic Designs Corp. reserves the right to change products or specifications without notice.

8


► WHITE ELECTRONIC DESIGNS

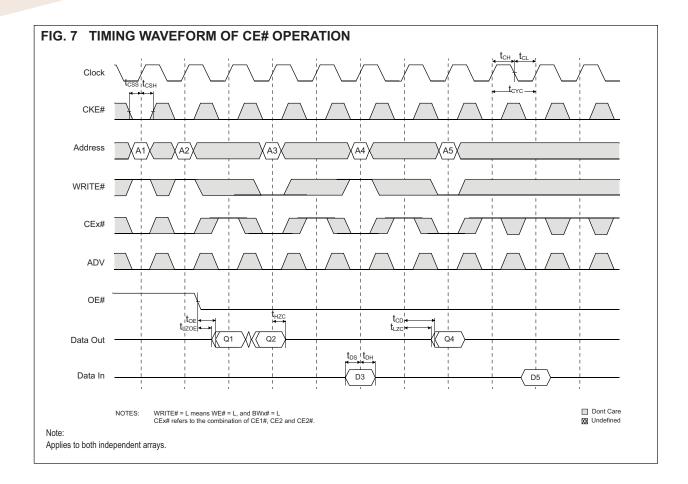
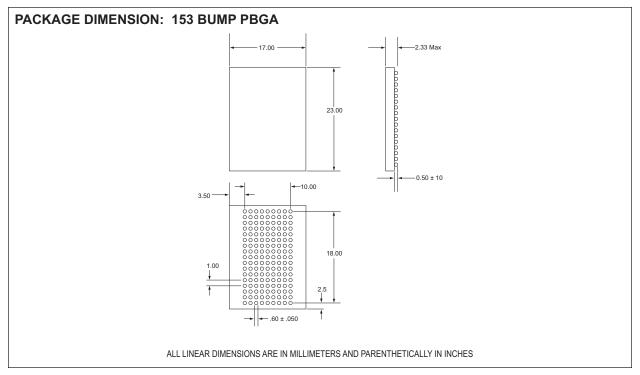

WHITE ELECTRONIC DESIGNS

FIG. 5 TIMING WAVEFORM OF SINGLE READ/WRITE Clock tovo t_{CĘI} CKE# Address 42 A3 A4 A5 A6 A۶ WRITE# CEx# ADV OE# toE tLZOE Data In Q1 Q2 Q4 Q6 Q7 t_{DS} t_{DH} H4 Data Out D2 D5 Dont Care NOTES: WRITE# = L means WE# = L, and BWx# = L Direct Undefined CEx# refers to the combination of CE1#, CE2 and CE2#. Note: Applies to both independent arrays.

White Electronic Designs



• White Electronic Designs

WED2ZLRSP01S

WHITE ELECTRONIC DESIGNS _____

NOTE: Ball attach pad for above BGA package is 620 microns in diameter. Pad is solder mask defined.

ORDERING INFORMATION

Commercial Temp Range (0°C to 70°C)

Part Number	Configuration	tCD (ns)	Clock (MHz)	Operating Range	Temperature Range
WED2ZLRSP01S35BC	512K x 32/256K x 32	3.5	166	Commercial	0° - 70° C
WED2ZLRSP01S38BC	512K x 32/256K x 32	3.8	150	Commercial	0° - 70°C
WED2ZLRSP01S42BC	512K x 32/256K x 32	4.2	133	Commercial	0° - 70°C
WED2ZLRSP01S50BC	512K x 32/256K x 32	5.0	100	Commercial	0° - 70°C
WED2ZLRSP01S38BI	512K x 32/256K x 32	3.8	150	Industrial	-40° - 85°C
WED2ZLRSP01S42BI	512K x 32/256K x 32	4.2	133	Industrial	-40° - 85°C
WED2ZLRSP01S50BI	512K x 32/256K x 32	5.0	100	Industrial	-40° - 85°C