SKET 800

Thyristor Modules

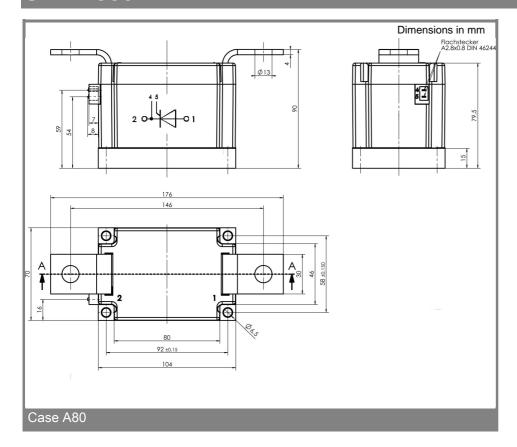
SKET 800

Target Data

Features

- Precious metal pressure contacts for high reliability
- Thyristor with amplifying gate

Typical Applications


- DC motor control (e. g. for machine tools)
- Temperature control (e. g. for ovens, chemical processes)
- Softstart application

V_{RSM}	V_{RRM}, V_{DRM}	I _{TRMS} = 1500 A (maximum value for continuous operation)		
V	V	I _{TAV} = 805 A (sin. 180; T _c = 85 °C)		
1500	1400	SKET 800/14E H4		
1900	1800	SKET 800/18E H4		

Symbol	Conditions	Values	Units
I_{TAV}	sin. 180; T _c = 85 (100) °C	805 (580)	Α
I _{TSM}	T _{vi} = 25 °C; 10 ms	40000	Α
	T _{vi} = 130 °C; 10 ms	35000	Α
i²t	T _{vj} = 25 °C; 8,3 10 ms	8000000	A²s
	T _{vj} = 130 °C; 8,3 10 ms	6125000	A²s
V _T	T _{vi} = 25 °C; I _T = 3000 A	max. 1,55	V
$V_{T(TO)}$	$T_{vi} = 130 ^{\circ}\text{C}$	max. 0,98	V
r _T	$T_{vj} = 130 ^{\circ}\text{C}$	max. 0,175	mΩ
I_{DD} ; I_{RD}	$T_{vj} = 130 ^{\circ}\text{C}; V_{RD} = V_{RRM}; V_{DD} = V_{DRM}$	max. 150	mA
t _{gd}	$T_{vj} = 25 \text{ °C; } I_G = 1 \text{ A; } di_G/dt = 1 \text{ A/}\mu\text{s}$	1	μs
t_{gr}	$V_{D} = 0.67 * V_{DRM}$	2	μs
(di/dt) _{cr}	T _{vi} = 130 °C	max. 200	A/µs
(dv/dt) _{cr}	$T_{vi} = 130 ^{\circ}\text{C}$	max. 1000	V/µs
t_q	T _{vi} = 130 °C	200	μs
I _H	$T_{vj} = 25 ^{\circ}\text{C}$; typ. / max.	1000 / 2000	mA
I_L	$T_{vj} = 25 ^{\circ}\text{C}; R_G = 33 \Omega; \text{typ. / max.}$	1500 / 2500	mA
V _{GT}	T _{vj} = 25 °C; d.c.	min. 3	V
I _{GT}	$T_{vj} = 25 ^{\circ}\text{C}; \text{d.c.}$	min. 300	mA
V_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 0,25	V
I_{GD}	$T_{vj} = 130 ^{\circ}\text{C}; \text{d.c.}$	max. 10	mA
R _{th(j-c)}	cont.	0,0405	K/W
R _{th(j-c)}	sin. 180	0,042	K/W
R _{th(j-c)}	rec. 120	0,043	K/W
R _{th(c-s)}		0,01	K/W
T_{vj}		- 40 + 130	°C
T _{stg}		- 40 + 125	°C
V _{isol}	a. c. 50 Hz; r.m.s.; 1s / 1 min.	4800 / 4000	V~
M_s	to heatsink	6 ± 15 %	Nm
M _t	to terminal	18 ± 15 %	Nm
а		5 * 9,81	m/s²
m	approx.	2150	g
Case		A80	

SKET 800

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.