32768-word × 8-bit CMOS One Time Electrically Programmable ROM

HITACHI

Maintenance only

Description

The HN27C256AP/AFP is a 32768-word by 8-bit one time electrically programmable ROM. Initially, all bits of the HN27C256AP/AFP are in the "1" State (Output High). Data is introduced by selectively programming "0" into the desired bit locations. This device is packaged in a 28-pin plastic package (DIP, SOP). Therefore, this device cannot be re-written.

Features

• High speed

Access time: 120/150 ns (max)

Low power dissipation

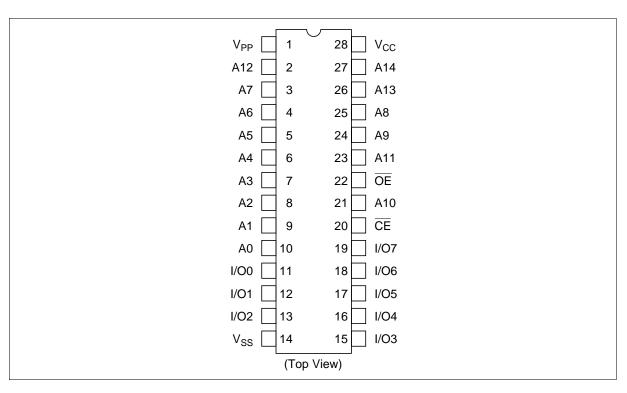
Active mode: 25 mW (typ) (f = 1 MHz)

Standby mode: 5 µW (typ)

 High reliability and fast programming Programming voltage: +12.5 V DC

Fast High-Reliability Programming Algorithm available

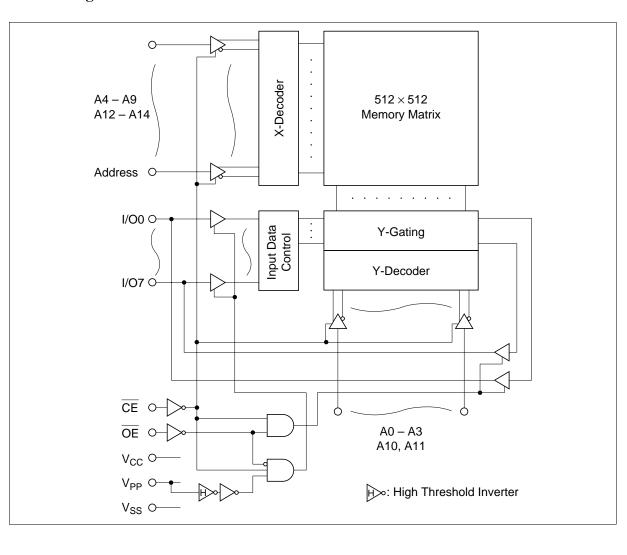
• Device identifier mode


Manufacturer code and device code

Ordering Information

Type No.	Access Time	Package	
HN27C256AP-12 HN27C256AP-15	120 ns 150 ns	28-pin plastic DIP (DP-28)	
HN27C256AFP-12T HN27C256AFP-15T	120 ns 150 ns	28-pin plastic SOP (FP-28DA)	

Note: This device is not available for new application.


Pin Arrangement

Pin Description

Pin Name	Function
A0 – A14	Address
I/O0 – I/O7	Input/output
CE	Chip enable
ŌĒ	Output enable
V _{cc}	Power supply
V _{PP}	Programming power supply
V _{ss}	Ground

Block Diagram

Mode Selection

Mode	CE (20)	OE (22)	A9 (24)	V _{PP} (1)	V _{cc} (28)	I/O (11 – 13, 15 – 19)
Read	V_{IL}	V_{IL}	Χ	V _{cc}	V _{cc}	Dout
Output disable	V_{IL}	V_{IH}	Χ	V_{cc}	V_{cc}	High-Z
Standby	V _{IH}	Х	Х	V _{cc}	V _{cc}	High-Z
Program	V _{IL}	V _{IH}	Х	V_{PP}	V _{cc}	Din
Program verify	V _{IH}	V _{IL}	Х	V_{PP}	V _{cc}	Dout
Optional verify	V _{IL}	V _{IL}	Х	V _{PP}	V _{cc}	Dout
Program inhibit	V _{IH}	V _{IH}	Х	V_{PP}	V _{cc}	High-Z
Identifier	V _{IL}	V _{IL}	V _H *2	V _{CC}	V _{cc}	Code

Notes: 1. x = Don't care.

2. $V_H = 12.0 \text{ V} \pm 0.5 \text{ V}.$

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
All input and output voltage*1	Vin, Vout	-0.6*2 to +7.0	V
A9 input voltage ^{*1}	V _{ID}	-0.6*2 to +13.5	V
V _{PP} voltage*1	V _{PP}	-0.6 to +13.5	V
V _{cc} voltage*1	V _{cc}	-0.6 to +7.0	V
Operating temperature range	Topr	0 to +70	°C
Storage temperature range	Tstg	-55 to +125	°C
Storage temperature range under bias	Tbias	-10 to +80	°C

Notes: 1. Relative to V_{ss}.

2. Vin, Vout, V_{ID} min = -1.0 V for pulse width \leq 50 ns.

Capacitance (Ta = 25°C, f = 1 MHz)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input capacitance	Cin	_	4	8	pF	Vin = 0 V
Output capacitance	Cout	_	8	12	pF	Vout = 0 V

Read Operation

DC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{PP} = V_{CC})

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2	μΑ	Vin = 0 V to V _{CC}
Output leakage current	I _{LO}	_	_	2	μΑ	Vout = 0 V to V _{cc}
V _{PP} current	I _{PP1}	_	1	20	μΑ	V _{PP} = 5.5 V
Standby V _{cc} current	I _{SB1}	_	_	1	mA	CE = V _{IH}
	I _{SB2}	_	1	20	μΑ	$\overline{\text{CE}} = V_{\text{cc}} \pm 0.3 \text{ V}$
Operating V _{cc} current	I _{CC1}	_	_	30	mA	CE = V _{IL} , lout = 0 mA
	I _{CC2}	_	_	30	mA	f = 10 MHz, lout = 0 mA
	I _{CC3}	_	5	15	mA	f = 1 MHz, lout = 0 mA
Input low voltage*3	V _{IL}	-0.3 ^{*1}	_	0.8	V	
Input high voltage*3	V _{IH}	2.2	_	V _{CC} + 1.0*2	V	
Output low voltage	V _{oL}	_	_	0.45	V	I _{OL} = 2.1 mA
Output high voltage	V _{OH1}	2.4	_	_	V	$I_{OH} = -1.0 \text{ mA}$
	V_{OH2}	$V_{CC} - 0.7$	_	_	V	$I_{OH} = -100 \mu A$

Notes: 1. V_{IL} min = -1.0 V for pulse width \leq 50 ns.

^{2.} V_{IH} max = V_{CC} + 1.5 V for pulse width \leq 20 ns. If V_{IH} is over the specified maximum value, read operation cannot be guaranteed.

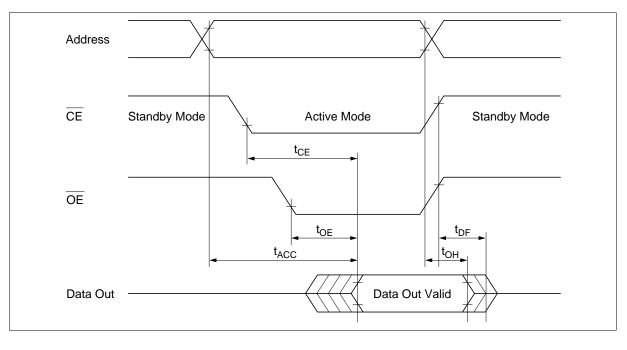
^{3.} Only defined for DC function test. V_{IL} max = 0.45 V, V_{IH} min = 2.4 V for AC function test.

AC Characteristics (Ta = 0 to +70°C, V_{CC} = 5 V \pm 10%, V_{PP} = V_{CC})

Test Conditions

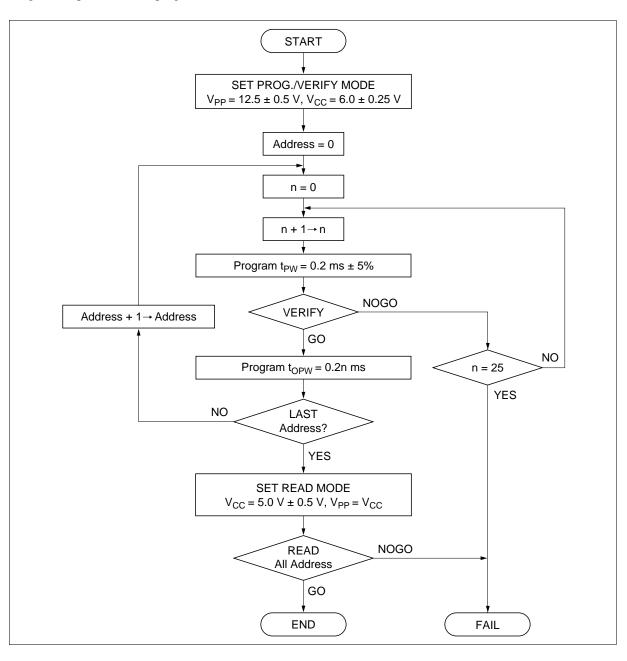
Input pulse levels: 0.45 V to 2.4 V
 Input rise and fall time: ≤ 10 ns
 Output load: 1TTL gate + 100 pF

• Reference levels for measuring timing: Inputs; 0.8 V and 2.0 V


Outputs; 0.8 V and 2.0 V

HN27C256AP-12 HN27C256AP-15 HN27C256AFP-12T HN27C256AFP-15T

Parameter	Symbol	Min	Max	Min	Max	Unit	Test Conditions
Address to output delay	t _{ACC}	_	120	_	150	ns	$\overline{CE} = \overline{OE} = V_{IL}$
CE to output delay	t _{CE}	_	120	_	150	ns	OE = V _{IL}
OE to output delay	t _{OE}	_	60	_	70	ns	CE = V _{IL}
OE high to output float	t _{DF}	0	40	0	50	ns	CE = V _{IL}
Address to output hold	t _{OH}	5	_	5	_	ns	$\overline{CE} = \overline{OE} = V_{IL}$


Note: t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

Read Timing Waveform

Fast High-Reliability Programming

This device can be applied the Fast High-Reliability Programming Algorithm shown in following flowchart. This algorithm offers both faster programming time and high reliability data retension. A theoretical programming time (except brank checking and verifying time) is one-tenth of conventional high performance programming algorithm's. Regarding the model and software version of the programmers available this algorithm, please contact programmer maker.

DC Characteristics (Ta = 25°C \pm 5°C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.5 V)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2	μΑ	Vin = 0 V to V _{cc}
V _{PP} supply current	I _{PP}	_	_	30	mA	Œ = V _{IL}
Operating V _{cc} current	I _{CC}	_	_	30	mA	
Input low level	V_{IL}	-0.1 ^{*5}	_	8.0	V	
Input high level	V_{IH}	2.2	_	$V_{cc} + 0.5$	*6 V	
Output low voltage during verify	V _{OL}	_	_	0.45	V	I _{OL} = 2.1 mA
Output high voltage during verify	V _{OH}	2.4	_	_	V	I _{OH} = -400 μA

Notes: 1. V_{cc} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

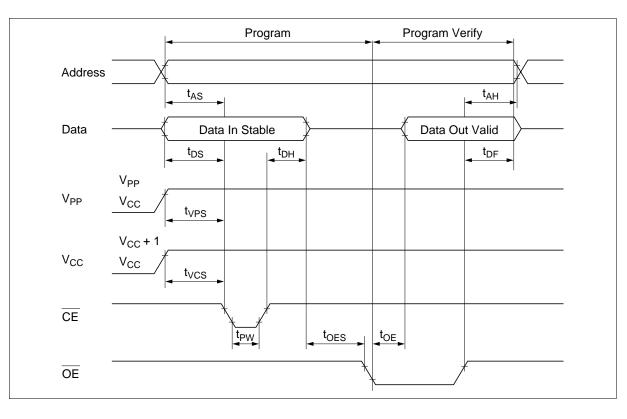
- 2. V_{PP} must not exceed 13.5 V including overshoot.
- 3. An influence may be had upon device reliability if the device is installed or removed while $V_{pp} = 12$. 5V.
- 4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V or 12.5 V to V_{IL} when \overline{CE} = Low.
- 5. V_{IL} min = -0.6 V for pulse width \leq 20 ns.
- 6. If V_{IH} is over the specified maximum value, programming operation cannot be guaranteed.

AC Characteristics (Ta = 25°C \pm 5°C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.5 V)

Test Conditions

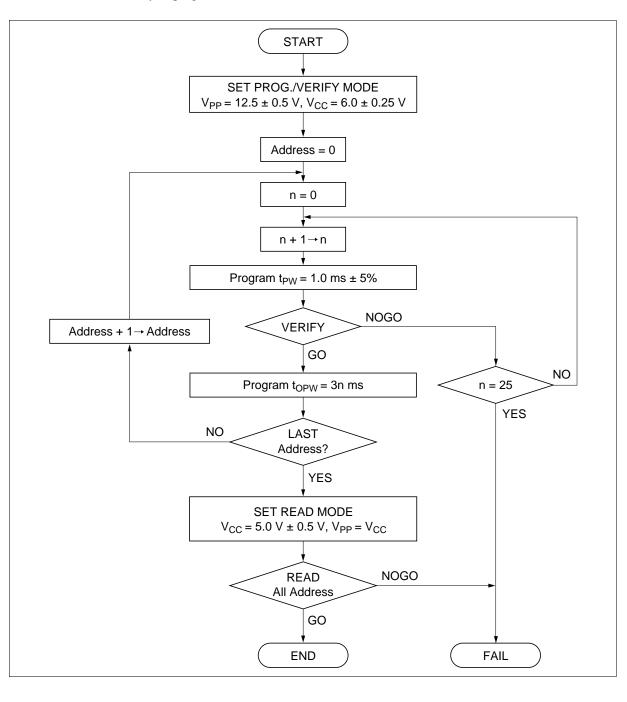
Input pulse levels: 0.45 V to 2.4 V
Input rise and fall time: ≤ 20 ns

• Reference levels for measuring timing: Inputs; 0.8 V and 2.0 V


Outputs; 0.8 V and 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	_
OE setup time	t _{OES}	2	_	_	μs	
Data setup time	t _{DS}	2	_	_	μs	
Address hold time	t _{AH}	0	_	_	μs	
Data hold time	t _{DH}	2	_	_	μs	
V _{PP} setup time	t _{VPS}	2	_	_	μs	
V _{cc} setup time	t _{vcs}	2	_	_	μs	
CE initial programming pulse width	t _{PW}	0.19	0.20	0.21	ms	
CE over programming pulse width	t _{OPW} *1	0.19	_	5.25	ms	
Data valid from OE	t _{oe}	0	_	150	ns	
OE to output float delay	t _{DF} *2	_	_	130	ns	

Notes: 1. Refer to the Fast High-Reliability Programming Flowchart for t_{OPW}.


2. t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

Fast High-Reliability Programming Timing Waveform

High Performance Programming

This device can be applied the high performance programming algorithm shown in following flowchart. This algorithm is as same as our 256-kbit EPROM series so existing programmers can be used with this device. This algorithm allows to obtain faster programming time without any voltage stress to the device nor deterioration in reliability of programmed data.

DC Characteristics (Ta = 25°C \pm 5°C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.5 V)

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Input leakage current	I _{LI}	_	_	2	μΑ	Vin = 0 V to V _{CC}
V _{PP} supply current	I _{PP}	_	_	30	mA	Œ = V _{IL}
Operating V _{cc} current	I _{CC}	_	_	30	mA	
Input low level	V_{IL}	-0.1 ^{*5}	_	8.0	V	
Input high level	V_{IH}	2.2	_	V _{cc} + 0.5	5*6 V	
Output low voltage during verify	V_{OL}	_	_	0.45	V	I _{OL} = 2.1 mA
Output high voltage during verify	V_{OH}	2.4	_	_	V	$I_{OH} = -400 \mu A$

Notes: 1. V_{cc} must be applied simultaneously or before V_{PP} and removed simultaneously or after V_{PP} .

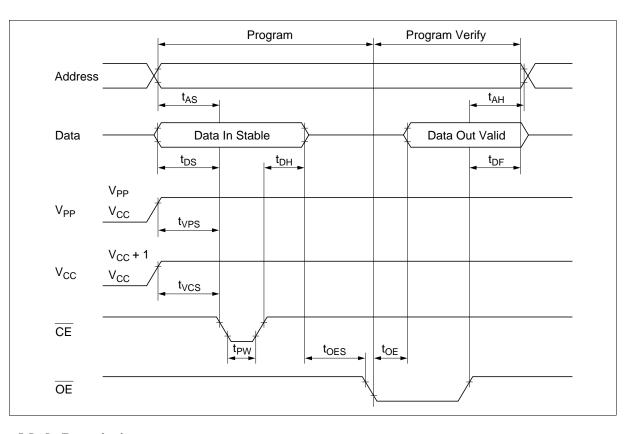
- 2. V_{PP} must not exceed 13.5 V including overshoot.
- 3. An influence may be had upon device reliability if the device is installed or removed while V_{pp} = 12. 5V.
- 4. Do not alter V_{PP} either V_{IL} to 12.5 V or 12.5 V to V_{IL} when \overline{CE} = Low.
- 5. V_{IL} min = -0.6 V for pulse width \leq 20 ns.
- 6. If $V_{\text{\tiny IH}}$ is over the specified maximum value, programming operation cannot be guaranteed.

AC Characteristics (Ta = 25°C \pm 5°C, V_{CC} = 6 V \pm 0.25 V, V_{PP} = 12.5 V \pm 0.5 V)

Test Conditions

Input pulse levels: 0.45 V to 2.4 V
Input rise and fall time: ≤ 20 ns

• Reference levels for measuring timing: Inputs; 0.8 V and 2.0 V


Outputs; 0.8 V and 2.0 V

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions
Address setup time	t _{AS}	2	_	_	μs	_
OE setup time	t _{OES}	2	_	_	μs	
Data setup time	t _{DS}	2	_	_	μs	
Address hold time	t _{AH}	0	_	_	μs	
Data hold time	t _{DH}	2	_	_	μs	
V _{PP} setup time	t _{VPS}	2	_	_	μs	
V _{cc} setup time	t _{vcs}	2	_	_	μs	
CE initial programming pulse width	t _{PW}	0.95	1.0	1.05	ms	
CE over programming pulse width	t _{OPW} *1	2.85	_	78.75	ms	
Data valid from OE	t _{oe}	0	_	150	ns	
OE to output float delay	t _{DF} *2	_	_	130	ns	

Notes: 1. Refer to the high performance programming flowchart for t_{OPW} .

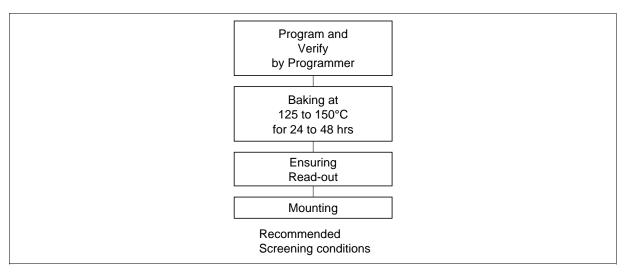
^{2.} t_{DF} is defined as the time at which the output achieves the open circuit condition and data is no longer driven.

High Performance Programming Timing Waveform

Mode Description

Device Identifier Mode

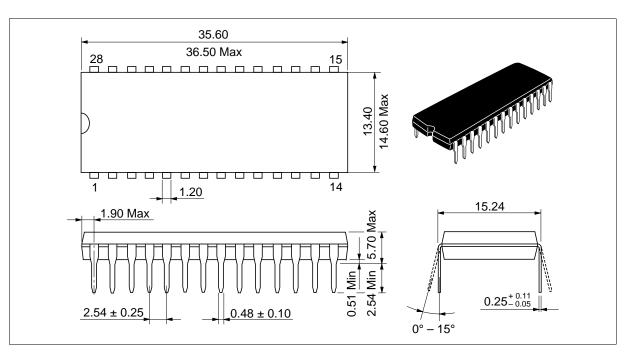
Programming condition of OTPROM is various according to OTPROM manufacturers and device types. It may cause miss operation. To countermeasure it, some OTPROMs provide maker identifier code. Users can write OTPROM by reading out write condition coded before shipped. Some commercial programmers can set write condition by recognizing this code. This function enables effective program. Regarding commercial programmers that can recognize this device's identifier code, please contact programmer maker.


Identifier	A0 (10)	I/O7 (19)	I/O6 (18)	I/O5 (17)	I/O4 (16)	I/O3 (15)	I/O2 (13)	I/O1 (12)	I/O0 (11)	Hex Data
Manufacturer code	V_{IL}	0	0	0	0	0	1	1	1	07
Device code	V_{IH}	0	0	1	1	0	0	0	1	31

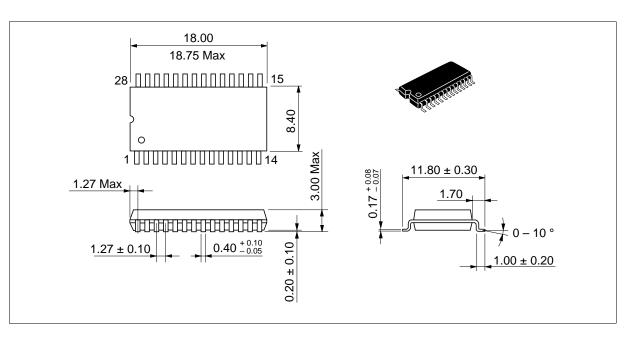
Notes: 1. A9 = 12.0 V \pm 0.5 V.

2. A1 – A8, A10 – A14, \overline{CE} , \overline{OE} = V_{IL} .

Recommended Screening Conditions


Before mounting, please make the screening (baking without bias) shown in the right.

Package Dimensions


HN27C256AP Series (DP-28)

Unit: mm

HN27C256AFP Series (FP-28DA)

Unit: mm

