

3.3V CMOS 18-BIT REGISTERED TRANSCEIVER WITH 3-STATE OUTPUTS, 5 VOLT TOLERANT I/O, BUS-HOLD

IDT74LVCHR16501A

FEATURES:

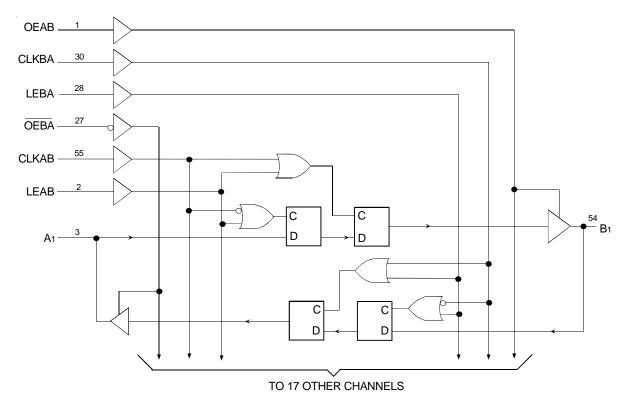
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- CMOS power levels (0.4μ W typ. static)
- · All inputs, outputs, and I/O are 5V tolerant
- · Supports hot insertion
- · Available in SSOP, TSSOP, and TVSOP packages

DRIVE FEATURES:

- · Balanced Output Drivers: ±12mA
- · Low switching noise

APPLICATIONS:

- 5V and 3.3V mixed voltage systems
- · Data communication and telecommunication systems

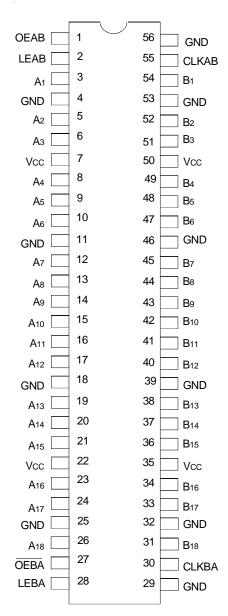

DESCRIPTION:

The LVCHR16501A 18-bit registered transceiver is built using advanced dual metal CMOS technology. This high-speed, low power 18-bit registered bus transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, and clocked modes. Data flow in each direction is controlled by output-enable (OEAB and $\overline{\text{OEBA}}$), latch enable (LEAB and LEBA) and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates in transparent mode when LEAB is high. When LEAB is low, the A data is latched if CLKAB is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the low-to-high transition of CLKAB. OEAB performs the output enable function on the B port. Data flow from B port to A port is similar but requires using $\overline{\text{OEBA}}$, LEBA and CLKBA. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The LVCHR16501A has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been developed to drive $\pm 12mA$ at the designated thresholds.

The LVCHR16501A has "bus-hold" which retains the inputs' last state whenever the input goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

OCTOBER 1999

PIN CONFIGURATION

SSOP/ TSSOP/ TVSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description	
OEAB	A-to-B Output Enable Input	
ŌĒBĀ	B-to-A Output Enable Input (Active LOW)	
LEAB	A-to-B Latch Enable Input	
LEBA	B-to-A Latch Enable Input	
CLKAB	A-to-B Clock Input	
CLKBA	B-to-A Clock Input	
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs(1)	
Вх	B-to-A Data Inputs or A-to-B 3-State Outputs ⁽¹⁾	

NOTE

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +6.5	V
Tstg	Storage Temperature	-65 to +150	°C
Іоит	DC Output Current	-50 to +50	mA
lik lok	Continuous Clamp Current, VI < 0 or Vo < 0	- 50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	4.5	6	pF
Соит	Output Capacitance	Vout = 0V	6.5	8	pF
CI/O	I/O Port Capacitance	VIN = 0V	6.5	8	pF

NOTE:

1. As applicable to the device type.

FUNCTION TABLE^(1,2)

	Inputs				
OEAB	LEAB	CLKAB	Ax	Вх	
L	Х	Х	Х	Z	
Н	Н	Х	L	L	
Н	Н	Х	Н	Н	
Н	L	↑	L	L	
Н	L	↑	Н	Н	
Н	L	L	Χ	B ⁽³⁾	
Н	L	Н	Х	B ⁽⁴⁾	

NOTES:

- 1. A-to-B data flow is shown. B-to-A data flow is similar, but uses $\overline{\text{OEBA}}$, LEBA, and CLKBA.
- 2. H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Don't Care
- Z = High-Impedance
- ↑ = LOW-to-HIGH Transition
- 3. Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test Con	ditions	Min.	Typ. ⁽¹⁾	Max.	Unit
ViH	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V		T -	_	0.7	V
		Vcc = 2.7V to 3.6V		T -	_	0.8	
lih lil	Input Leakage Current	Vcc = 3.6V	Vi = 0 to 5.5V	_	_	±5	μΑ
lozh lozl	High Impedance Output Current (3-State Output pins)	Vcc = 3.6V	Vo = 0 to 5.5V	-	_	±10	μΑ
loff	Input/Output Power Off Leakage	$VCC = 0V$, $VIN or VO \le 5.5V$		_	_	±50	μA
Vik	Clamp Diode Voltage	VCC = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V		_	100	_	mV
ICCL ICCH	Quiescent Power Supply Current	Vcc = 3.6V	VIN = GND or VCC	_	_	10	μΑ
Iccz			$3.6 \le VIN \le 5.5V^{(2)}$	_	_	10	
∆lcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other in	puts at Vcc or GND	_	_	500	μΑ

NOTES:

- 1. Typical values are at Vcc = 3.3V, +25°C ambient.
- $2. \ \mbox{This applies}$ in the disabled state only.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Co	nditions	Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	- 75	_	_	μΑ
IBHL			VI = 0.8V	75	_	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	_	_	_	μΑ
IBHL			VI = 0.7V	_	_	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	_	_	±500	μΑ
Івньо							

NOTES:

- 1. Pins with Bus-Hold are identified in the pin description.
- 2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	TestCon	ditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	IOH = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	IOH = -4mA	1.9	_	
			IOH = -6mA	1.7	-	
		Vcc = 2.7V	IOH = -4mA	2.2	_	
			IOH = -8mA	2	_	
		Vcc = 3V	IOH = - 6mA	2.4	_	
			IOH = - 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	_	0.2	V
		Vcc = 2.3V	IoL = 4mA	_	0.4	
			IoL = 6mA	_	0.55	
		Vcc = 2.7V	IoL = 4mA	_	0.4	
			IoL = 8mA	_	0.6	
		Vcc = 3V	IoL = 6mA	_	0.55	
			IOL = 12mA	_	0.8	

NOTE:

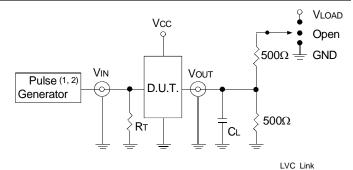
OPERATING CHARACTERISTICS, Vcc = 3.3V ± 0.3V, Ta = 25°C

Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance per Transceiver Outputs enabled	CL = 0pF, f = 10Mhz		pF
CPD	Power Dissipation Capacitance per Transceiver Outputs disabled			

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40°C to +85°C.

SWITCHING CHARACTERISTICS(1)

				Vcc =	= 2.7V	Vcc = 3.	3V ± 0.3V	
Symbol	Parameter			Min.	Max.	Min.	Max.	Unit
t PLH	Propagation Delay			1.5	7	1.5	6	ns
t PHL	Ax to Bx or Bx to Ax							
t PLH	Propagation Delay			1.5	8	1.5	7	ns
t PHL	LEBA to Ax, LEAB to Bx							
t PLH	Propagation Delay			1.5	8	1.5	6.7	ns
t PHL	CLKBA to Ax, CLKAB to Bx							
tpzh	Output Enable Time			1.5	8.2	1.5	7.2	ns
tpzl	OEBA to Ax, OEAB to Bx							
tphz	Output Disable Time		1.5	8	1.5	7	ns	
tPLZ	OEBA to Ax, OEAB to Bx							
tsu	Set-up Time, HIGH or LOW			2.5	_	2.5	_	ns
	Ax to CLKAB, Bx to CLKBA							
tΗ	Hold Time, HIGH or LOW			0	_	0	_	ns
	Ax to CLKAB, Bx to CLKBA							
tsu	Set-up Time, HIGH or LOW	CLK LOW		2.5	_	2.5	_	ns
	Ax to LEAB, Bx to LEBA	CLK HIGH		2.5	_	2.5	_	
tн	Hold Time, HIGH or LOW		1.5	_	1.5	_	ns	
	Ax to LEAB, Bx to LEBA							
tw	Pulse Width HIGH, LEAB or LEBA		3	_	3	_	ns	
tw	Pulse Width HIGH or LOW, CLKAI	B or CLKBA		3	_	3	_	ns
tsk(0)	Output Skew ⁽²⁾			_	_	_	500	ps


NOTES:

^{1.} See TEST CIRCUITS AND WAVEFORMS. TA = -40° C to $+85^{\circ}$ C.

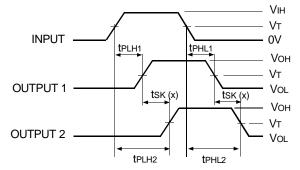
² Skew between any two outputs of the same package and switching in the same direction.

TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	$Vcc^{(1)} = 3.3V \pm 0.3V$	Vcc ⁽¹⁾ = 2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
ViH	2.7	2.7	Vcc	V
VT	1.5	1.5	Vcc / 2	V
VLZ	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

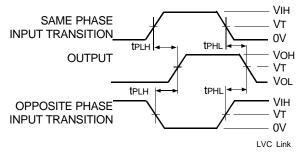

CL = Load capacitance: includes jig and probe capacitance.

 $\mathsf{R} \tau = \mathsf{Termination}$ resistance: should be equal to $\mathsf{Zou} \tau$ of the Pulse Generator. **NOTES:**

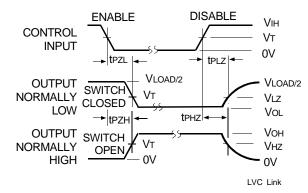
- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tr \leq 2ns; tr \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Vload
Disable High Enable High	GND
All Other Tests	Open

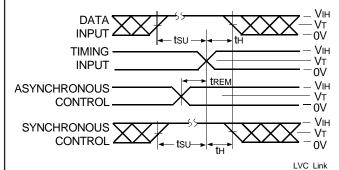


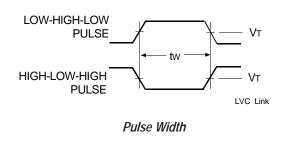
tsk(x) = |tplh2 - tplh1| or |tphl2 - tphl1|


Output Skew - tsκ(x)

NOTES:

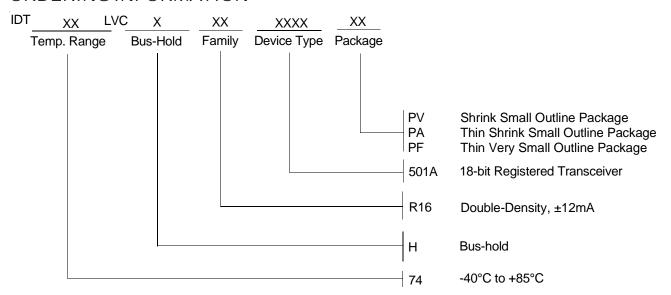
- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.


Propagation Delay


Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.



Set-up, Hold, and Release Times

LVC Link

ORDERING INFORMATION

CORPORATE HEADQUARTERS

2975 Stender Way Santa Clara, CA 95054 for SALES:

800-345-7015 or 408-727-6116 fax: 408-492-8674 www.idt.com for Tech Support: logichelp@idt.com (408) 654-6459