ST6200L/01L/03L # LOW VOLTAGE 8-BIT ROM MCUs WITH A/D CONVERTER, TWO TIMERS & SAFE RESET #### Memories - 1K or 2K bytes Program memory with readout protection - 64 bytes RAM #### ■ Clock, Reset and Supply Management - Enhanced reset system - Clock sources: crystal/ceramic resonator or RC network, external clock - 2 Power Saving Modes: Wait and Stop #### ■ Interrupt Management - 4 interrupt vectors plus NMI and RESET - 9 external interrupt lines (on 2 vectors) #### ■ 9 I/O Ports - 9 multifunctional bidirectional I/O lines - 4 alternate function lines - 3 high sink outputs (12mA) #### ■ 2 Timers - Configurable watchdog timer - 8-bit timer/counter with a 7-bit prescaler #### Analog Peripheral 8-bit ADC with 4 input channels (except on ST6203L) #### ■ Instruction Set - 8-bit data manipulation - 40 basic instructions - 9 addressing modes - Bit manipulation #### ■ Development Tools - Full hardware/software development package #### **Device Summary** | Features | ST6200L | ST6201L | ST6203L | | | | |------------------------|---------|------------------------|---------|--|--|--| | Program memory - bytes | 1K | 2K | 1K | | | | | RAM - bytes | | 64 | | | | | | Operating Supply | | 2.4V to 3.9V | | | | | | Analog Inputs | | 4 | - | | | | | Clock Frequency | | 4MHz Max | ! | | | | | Operating Temperature | | 0°C to +70°C | | | | | | Packages | | PDIP16 / SO16 / SSOP16 | | | | | Rev. 1.1 July 2001 1/10 #### 1 GENERAL DESCRIPTION #### 1.1 INTRODUCTION The ST6200L/01L and 03L are low voltage mask programmed ROM version of ST62T00C,T01C and T03C OTP devices. They offer the same functionality as OTP devices, selecting as ROM options the options defined in the programmable option byte of the OTP version, with the exception of the LVD Reset and the OSG that are not available. Figure 1. Programming wave form #### 1.2 ROM READOUT PROTECTION If the ROM READOUT PROTECTION option is selected, a protection fuse can be blown to prevent any access to the program memory content. In case the user wants to blow this fuse, high voltage must be applied on the V_{PP} pin. Figure 2. Programming Circuit Note: ZPD15 is used for overvoltage protection 2/10 #### 1.3 ORDERING INFORMATION The following section deals with the procedure for transfer of customer codes to STMicroelectronics. #### 1.3.1 Transfer of Customer Code Customer code is made up of the ROM contents and the list of the selected mask options. The ROM contents are to be sent on diskette, or by electronic means, with the hexadecimal file generated by the development tool. All unused bytes must be set to FFh. The selected mask options are communicated to STMicroelectronics using the correctly filled OP-TION LIST appended. See page 4. #### 1.3.2 Listing Generation and Verification When STMicroelectronics receives the user's ROM contents, a computer listing is generated from it. This listing refers exactly to the mask which will be used to produce the specified MCU. The listing is then returned to the customer who must thoroughly check, complete, sign and return it to STMicroelectronics. The signed listing forms a part of the contractual agreement for the creation of the specific customer mask. The STMicroelectronics Sales Organization will be pleased to provide detailed information on contractual points. Table 1. ROM Memory Map for ST6200L,03L | Device Address | Description | | | |----------------|----------------------|--|--| | 0000h-0B9Fh | Reserved | | | | 0BA0h-0F9Fh | User ROM | | | | 0FA0h-0FEFh | Reserved | | | | 0FF0h-0FF7h | Interrupt Vectors | | | | 0FF8h-0FFBh | Reserved | | | | 0FFCh-0FFDh | NMI Interrupt Vector | | | | 0FFEh-0FFFh | Reset Vector | | | Table 2. ROM Memory Map for ST6201L | Device Address | Description | |----------------|----------------------| | 0000h-087Fh | Reserved | | 0880h-0F9Fh | User ROM | | 0FA0h-0FEFh | Reserved | | 0FF0h-0FF7h | Interrupt Vectors | | 0FF8h-0FFBh | Reserved | | 0FFCh-0FFDh | NMI Interrupt Vector | | 0FFEh-0FFFh | Reset Vector | **Table 3. ROM version Ordering Information** | Sales Type | ROM | Analog inputs | Temperature Range | Package | | | |---------------|------------|---------------|-------------------|---------|--|--------| | ST6200LB1/XXX | | 4 | | | | PDIP16 | | ST6200LM1/XXX | 1036 Bytes | | | PSO16 | | | | ST6200LN1/XXX | | | | SSOP16 | | | | ST6201LB1/XXX | | | 0 to +70°C | PDIP16 | | | | ST6201LM1/XXX | 1836 Bytes | | | PSO16 | | | | ST6201LN1/XXX | | | | SSOP16 | | | | ST6203LB1/XXX | | | | PDIP16 | | | | ST6203LM1/XXX | 1036 Bytes | None | | PSO16 | | | | ST6203LN1/XXX |] | | | SSOP16 | | | | | ST6200L/01L | /03L MICROCONTROLLER | R OPTION LIST | |---|--|---|--| | Customer:
Address: | | | | | Contact:
Phone: | | | | | Reference: | | | | | STMicroele | ectronics references | : | | | Device: | | [] ST6200L (1 KB)
[] ST6201L (2 KB) | [] ST6203L (1 KB) | | Package: | | [] Dual in Line Plastic
[] Small Outline Plastic v
[] Shrink Small Outline P | | | Conditionin
Temperatu | • , | [] Standard (Tube)
[] 0°C to + 70°C | []Tape & Reel | | Marking: | | PSO16 (6 char. r | max):
nax):
r. max): | | Authorized | characters are letters | , digits, '.', '-', '/' and spaces | only. | | Watchdog S
NMI pull-up
Oscillator S
Readout Pr | celection: | [] Software Activation [] Enabled [] Quartz crystal / Ceram [] RC network [] Enabled: | [] Hardware Activation [] Disabled sic resonator | | Neadout Fi | otection. | [] Fuse is blown | by STMicroelectronics
lown by the customer | | External ST | OP Mode Control: | [] Enabled | [] Disabled | | | requency in the applicerating Range in the a | pplication: | | 4/10 #### 2 ELECTRICAL CHARACTERISTICS #### 2.1 ABSOLUTE MAXIMUM RATINGS This product contains devices to protect the inputs against damage due to high static voltages, however it is advisable to take normal precaution to avoid application of any voltage higher than the specified maximum rated voltages. For proper operation it is recommended that V_I and V_O be higher than V_{SS} and lower than V_{DD} . Reliability is enhanced if unused inputs are connected to an appropriate logic voltage level (V_{DD} or V_{SS}). **Power Considerations.** The average chip-junction temperature, Tj, in Celsius can be obtained from: Tj=TA + PD x RthJA Where:TA = Ambient Temperature. RthJA =Package thermal resistance (junction-to ambient). PD = Pint + Pport. Pint =IDD x VDD (chip internal power). Pport =Port power dissipation (determined by the user). | Symbol | Parameter | Value | Unit | |------------------|---|---|------| | V _{DD} | Supply Voltage | -0.3 to 7.0 | V | | V _I | Input Voltage | V_{SS} - 0.3 to V_{DD} + 0.3 ⁽¹⁾ | V | | Vo | Output Voltage | V_{SS} - 0.3 to V_{DD} + 0.3 ⁽¹⁾ | V | | Io | Current Drain per Pin Excluding V _{DD} , V _{SS} | ±10 | mA | | IV_{DD} | Total Current into V _{DD} (source) | 50 | mA | | IV _{SS} | Total Current out of V _{SS} (sink) | 50 | mA | | Tj | Junction Temperature | 150 | °C | | T _{STG} | Storage Temperature | -60 to 150 | °C | #### Notes: - Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. - (1) Within these limits, clamping diodes are guarantee to be not conductive. Voltages outside these limits are authorised as long as injection current is kept within the specification. #### 2.2 RECOMMENDED OPERATING CONDITIONS | Symbol | Parameter | Test Conditions | | Unit | | | |-------------------|------------------------------------|---|----------|------|------------|------| | Symbol | | rest Conditions | Min. | Тур. | Max. | Onit | | T _A | Operating Temperature | 1 Suffix Version | 0 | | 70 | °C | | V _{DD} | Operating Supply Voltage | $f_{OSC} = 2MHz$
$f_{OSC} = 4MHz$ | 2.4
3 | | 3.9
3.9 | V | | fosc | Oscillator Frequency ²⁾ | $V_{DD} = 2.4V$ $V_{DD} = 3.0V$ | 0 | | 2.0
4.0 | MHz | | I _{INJ+} | Pin Injection Current (positive) | $V_{DD} = 2.4 \text{ to } 3.9 \text{V}$ | | | +5 | mA | | I _{INJ-} | Pin Injection Current (negative) | V _{DD} = 2.4 to 3.9V | | | -5 | mA | #### Notes: Figure 3. Maximum Operating FREQUENCY (Fmax) Versus SUPPLY VOLTAGE (VDD) The shaded area is outside the recommended operating range; device functionality is not guaranteed under these conditions. 6/10 ^{1.} Care must be taken in case of negative current injection, where adapted impedance must be respected on analog sources to not affect the A/D conversion. For a -1mA injection, a maximum 10 K Ω is recommended. ^{2.}An oscillator frequency above 1MHz is recommended for reliable A/D results ### 2.3 DC ELECTRICAL CHARACTERISTICS $(T_A = 0 \text{ to } +70^{\circ}\text{C unless otherwise specified})$ | | _ | | | | | | |------------------|---|---|-----------------------|------|--------------------------|------| | Symbol | Parameter | Test Conditions | Min. | Тур. | Max. | Unit | | V _{IL} | Input Low Level Voltage All Input pins | | | | V _{DD} x 0.2 | V | | V _{IH} | Input High Level Voltage
All Input pins | | V _{DD} x 0.8 | | | V | | V _{Hys} | Hysteresis Voltage ⁽¹⁾
All Input pins | V _{DD} = 3V | 0.2 | | | V | | | Low Level Output Voltage
All Output pins | V_{DD} = 3.0V; I_{OL} = +10 μ A
V_{DD} = 3.0V; I_{OL} = + 3.0mA
V_{DD} = 2.4V; I_{OL} = + 1.5mA | | | 0.1
0.8
0.8 | | | V _{OL} | Low Level Output Voltage
20 mA Sink I/O pins | $ \begin{array}{l} V_{DD} \!\!= 3.0V; I_{OL} = \!\!\!\!\! + \!\!\!\! 10 \mu A \\ V_{DD} \!\!\!\!\!\! = 3.0V; I_{OL} = \!\!\!\!\!\!\!\!\! + 8 m A \\ V_{DD} \!\!\!\!\!\!\!\!\!\! = 3.0V; I_{OL} = \!$ | | | 0.1
0.8
1.3
0.8 | V | | V _{OH} | High Level Output Voltage
All Output pins | V_{DD} = 3.0V; I_{OH} = -10 μ A
V_{DD} = 3.0V; I_{OH} = -1.5 μ A
V_{DD} = 2.4V; I_{OH} = -10 μ A | 2.9
2.0
2.3 | | | V | | R _{PU} | Pull-up Resistance | All Input pins | 100 | 250 | 600 | ΚΩ | | 110 | ' | RESET pin | 400 | 600 | 1200 | 1132 | | I _{IL} | Input Leakage Current All Input pins but RESET | $V_{IN} = V_{SS}$ (No Pull-Up configured)
$V_{IN} = V_{DD}$ | | 0.1 | 1.0 | μA | | I _{IH} | Input Leakage Current RESET pin | $V_{IN} = V_{SS}$
$V_{IN} = V_{DD}$ | -8 | -16 | -30
10 | μΑ | | | Supply Current in RESET Mode | V _{RESET} =V _{SS}
f _{OSC} =4MHz | | | 1.5 | mA | | , | Supply Current in RUN Mode ⁽²⁾ | V _{DD} =3.0V f _{INT} =4MHz | | | 1.5 | mA | | I _{DD} | Supply Current in WAIT Mode ⁽³⁾ | V _{DD} =3.0V f _{INT} =4MHz | | | 0.5 | mA | | | Supply Current in STOP Mode ⁽³⁾ | I _{LOAD} =0mA
V _{DD} =3.0V | | | 2 | μΑ | #### Notes <u> 577</u> ⁽¹⁾ Hysteresis voltage between switching levels ⁽²⁾ All peripherals running ⁽³⁾ All peripherals in stand-by ### DC ELECTRICAL CHARACTERISTICS (Cont'd) #### 2.4 AC ELECTRICAL CHARACTERISTICS $((T_A = 0 \text{ to } +70^{\circ}\text{C unless otherwise specified})$ | Symbol | Parameter | Test Conditions | Value Value | | | Unit | |------------------|--|--|-------------------|-----------------|-------------------|-------------------| | | Faiametei | rest Conditions | Min. | Тур. | Max. | Offic | | t _{REC} | Supply Recovery Time (1) | | 100 | | | ms | | f _{RC} | Internal frequency with RC oscillator ^{2) 3)} | VDD=3.0V
R=47k Ω
R=100k Ω
R=470k Ω | 2.5
1.4
450 | 3
1.7
520 | 3.5
2.1
600 | MHz
MHz
kHz | | C _{IN} | Input Capacitance | All Inputs Pins | | | 10 | pF | | C _{OUT} | Output Capacitance | All Outputs Pins | | | 10 | pF | **Notes:** 1. Period for which V_{DD} has to be connected at 0V to allow internal Reset function at next power-up. ² An oscillator frequency above 1MHz is recommended for reliable A/D results. ^{3.} Measure performed with OSCin pin soldered on PCB, with an around 2pF equivalent capacitance. ### 2.5 A/D CONVERTER CHARACTERISTICS $(T_A = 0 \text{ to } +70^{\circ}\text{C unless otherwise specified})$ | Symbol | Parameter | Test Conditions | | Unit | | | |------------------|--|--|------|------------|-------------------|------| | Syllibol | | rest Conditions | Min. | Тур. | Max. | Unit | | Res | Resolution | | | 8 | | Bit | | A _{TOT} | Total Accuracy (1) (2) | $f_{OSC} > 1.2 MHz, V_{DD} = 3.0 V$
$f_{OSC} > 1.2 MHz, V_{DD} = 2.4 V$
$f_{OSC} > 32 kHz, V_{DD} = 3.0 V$ | | | ±25
±35
±50 | mV | | t _C | Conversion Time | $f_{OSC} = 2MHz$
$f_{OSC} = 4 MHz$ | | 280
140 | | μs | | ZIR | Zero Input Reading | Conversion result when $V_{IN} = V_{SS}$ | 00 | | | Hex | | FSR | Full Scale Reading | Conversion result when $V_{IN} = V_{DD}$ | | | FF | Hex | | ADI | Analog Input Current During Conversion | V _{DD} = 4.0V | | | 1.0 | μΑ | | AC _{IN} | Analog Input Capacitance | | | 2 | 5 | pF | - Notes: 1. Noise at VDD, VSS <10mV 2. With oscillator frequencies less than 1MHz, the A/D Converter accuracy is decreased. ## 2.6 TIMER CHARACTERISTICS $((T_A = 0 \text{ to } +70^{\circ}\text{C unless otherwise specified})$ | Symbol | Parameter | Test Conditions | | Unit | | | |-----------------|------------------------------|------------------------|------|------|----------------------------|-------| | | i arameter | | Min. | Тур. | Max. | Oilit | | f _{IN} | Input Frequency on TIMER Pin | | | | $\frac{f_{\text{INT}}}{4}$ | MHz | | t _W | Pulse Width at TIMER Pin | V _{DD} = 2.4V | 250 | | | ns | Notes: Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without the express written approval of STMicroelectronics. The ST logo is a registered trademark of STMicroelectronics ©2001 STMicroelectronics - All Rights Reserved. Purchase of I^2C Components by STMicroelectronics conveys a license under the Philips I^2C Patent. Rights to use these components in an I^2C system is granted provided that the system conforms to the I^2C Standard Specification as defined by Philips. STMicroelectronics Group of Companies Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain Sweden - Switzerland - United Kingdom - U.S.A. http://www.st.com