

Gigabit Ethernet: 1.25 GBd 1300 nm Laser Transceiver in Low Cost 1 x 9 Package Style

Preliminary Technical Data

HFCT-5305

Features

- Compliant with Proposed Specifications for IEEE-802-3 Gigabit Ethernet
- 1300 nm Trenched BH Laser Source Technology
- Industry Standard 1 x 9 Package Style with Integral Duplex SC Connector
- Class 1 Laser Safety (Certification Pending)
- 3 km Links in 8/125 μm SMF Cables
- 550 m Links in 62.5/125 μ m MMF Cables
- Single +5 V Power Supply Operation and PECL Logic Interfaces
- Wave Solder and Aqueous Wash Process Compatible
- Designed and Manufactured in an ISO 9000 Certified Facility

Applications

• Host to Host Interface

Description

General Transmitter Section

The transmitter section consists of a 1300 nm Laser in an eye safe optical subassembly, (ELSA), which mates to the fiber cable. The ELSA is driven by a custom silicon bipolar IC which converts differential PECL logic signals, ECL referenced to a +5 V supply, into an analog Laser Diode drive current.

Eye Safety Design

The ELSA is designed to be eye safe under a single fault condition. To be eye-safe, only one of two results can occur in the event of a single fault. The transmitter must either maintain a safe level of output power or the transmitter should be disabled.

The ELSA contains a patented optical fiber stub which restricts the level of light emerging from the connector port under all conditions. Overdriving the laser (even to destruction) cannot produce enough light to violate the IEC safe level. As a result the HFCT-5305 is intrinsically eye safe.

Receiver Section

The receiver includes an InP PIN photodiode mounted together with a custom silicon bipolar transimpedance preamplifier IC in an optical subassembly, OSA. This OSA is mated to a custom silicon bipolar circuit providing post-amplification and quantization.

The custom silicon bipolar circuit also includes a Signal Detect circuit which provides a PECL logic high output upon detection of a usable input optical signal level. This single-ended low-power PECL output is designed to drive a standard PECL input

Preliminary Product Disclaimer

This preliminary data sheet is provided to assist you in the evaluation of engineering samples of the product which is under development and targeted for release during 1997. Until Hewlett-Packard releases this product for general sales, HP reserves the right to alter prices, specifications, features, capabilities, function, manufacturing release dates, and even general availability of the product at any time.

(5/97) 565

through a 10 Ω load instead of the normal 50 Ω ECL load.

Regulatory Compliance

See the Regulatory Compliance Table for the targeted typical and measured performance for these transceivers. As the product design is completed, full characterization testing will be done to determine the actual performance of the final design.

The overall equipment design will determine the level it is able to be certified to. These transceiver performance targets are offered as a figure of merit to assist the designer in considering their use in equipment designs.

Electrostatic Discharge (ESD)

There are two design cases in which immunity to ESD damage is important.

The first case is during handling of the transceiver prior to mounting it on the circuit board. It is important to use normal ESD handling precautions for ESD sensitive devices. These precautions include using grounded wrist straps, work benches, and floor mats in ESD controlled areas.

The targeted performance has been shown to provide adequate performance typical industry production environments.

The second case to consider is static discharges to the exterior of the equipment chassis containing the transceiver parts. To the extent that the duplex SC connector is exposed to the outside of the equipment chassis it may be subject to whatever system level ESD test criteria that the equipment is intended to meet. The targeted performance is more robust than typical

industry equipment practices today.

Electromagnetic Interference (EMI)

Most equipment designs utilizing these high speed transceivers from Hewlett-Packard will be required to meet the requirements of FCC in the United States, CENELEC EN55022 (CISPR 22) in Europe and VCCI in Japan.

These transceivers, with their shielded design, are targeted to perform to the limits listed to assist the designer in the management of the overall equipment EMI performance.

Immunity

Equipment utilizing these transceivers will be subject to radio-frequency electromagnetic fields in some environments.

Regulatory Compliance

Feature	Test Method	Targeted Performance
Electrostatic Discharge	MIL-STD-883C	Class 1 (>500 V)
(ESD) to the	Method 3015.4	
Electrical Pins		
Electrostatic Discharge	Variation of IEC 801-2	Products of this type will typically withstand at
(ESD) to the		least 25 kV without damage when the Duplex
Duplex SC Receptacle		SC Connector Receptacle is contacted by a
		Human Body Model probe.
Electromagnetic	FCC Class A	Typically provide a TBD dB margin to the noted
Interference (EMI)	CENELEC EN55022 Class A	standard limits when tested at a certified test
	(CISPR 22A)	range with the transceiver mounted to a circuit
	VCCI Class I	card without a chassis enclosure.
Immunity	Variation of IEC 801-3	Typically show no measurable effect from a
		3 V/m field swept from 10 to 450 MHz applied
		to the transceiver without a chassis enclosure.
Eye Safety	FDA CDRH 21-CFR 1040 Class	Compliant per Hewlett-Packard Testing for all
	1 IEC 825 Issue 1 1993:	three requirements under normal operating
	11 Class	conditions. Fault condition testing pending
	1 CENELEC EN60825 Class 1	completion of product development.

These transceivers have an immunity to such fields due to their shielded design.

Eye Safety

These 1300 nm Laser-based transceivers are intended to

provide Class 1 eye safety by design. Hewlett-Packard has tested the current transceiver design for compliance with the requirements listed below under normal operating conditions and will test for compliance under fault conditions when the product design is completed. HP will obtain certification from outside sources for eye safety.

This performance will enable the transceivers to be used without concern for eye safety in the same way that LED-based transceivers are used today.

Absolute Maximum Ratings

Parameter	Symbol	Min.	Тур.	Max.	Unit	Reference
Storage Temperature	T_{S}	-40		+100	$^{\circ}\mathrm{C}$	
Ambient Operating Temperature	TA	-10		+80	$^{\circ}\mathrm{C}$	
Supply Voltage	V _{CC}	-0.5		7	V	
Data Input Voltage	VI	-0.5		$V_{\rm CC}$	V	
Transmitter Differential Input	V_{D}	See Table		1.4	V	1
Voltage		Below				

Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Reference
Ambient Operating Temperature	TA	0		+70	$^{\circ}\!\mathrm{C}$	
Relative Humidity	RH	5		95	%	
Supply Voltage	V _{CC}	4.75		5.25	V	
Power Supply Ripple				TBD	Hz/V _{pp}	
Power Supply Rejection				TBD	Hz/V _{pp}	
Transmitter Data Input Voltage - Low	V _{IL} -V _{CC}	-1.810		-1.475	V	2
Transmitter Data Input Voltage - High	V _{IH} -V _{CC}	-1.165		-0.880	V	2
Transmitter Differential Input Voltage	V_{D}	0.3		See Table Above	V	
Data Output Load	$R_{ m DL}$	50			Ω	3
Signal Detect Output Load	R_{SDL}	7	10		Ω	4
Conducted Noise on Data and Signal Detect Outputs			TBD		Hz/V _{pp}	

Process Compatibility

Parameter	Symbol	Min.	Тур.	Max.	Unit	Reference
Hand Lead Soldering Temperature/Time	$T_{ m SOLD}/t_{ m SOLD}$			+270/10	°C/sec.	
Wave Soldering and Aqueous Wash	$T_{ m SOLD}/t_{ m SOLD}$			+270/10	°C/sec.	

Notes:

- 1. This is the maximum voltage that can be applied across the Differential Transmitter Data Inputs without damaging the ESD protection circuit.
- 2. Compatible with 10 K, 10 KH and 100 K ECL and PECL signals.
- 3. The outputs are terminated to $\ensuremath{V_{CC}}$ $2\ensuremath{~V_{.}}$
- 4. The outputs are terminated to ground.

Transmitter Electrical Characteristics

 $(T_A = 0$ °C to +70°C, $V_{CC} = 4.75$ V to 5.25 V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Reference
Supply Current	I_{CCT}		65	130	mA	5
Power Dissipation	$P_{ m DIST}$		0.35	0.68	W	
Data Input Current – Low	${ m I}_{ m IL}$	-350	0		μΑ	
Data Input Current – High	I_{IH}		16	350	μΑ	

Receiver Electrical Characteristics

 $(T_A = 0^{\circ}C \text{ to } +70^{\circ}C, V_{CC} = 4.75 \text{ V to } 5.25 \text{ V})$

Parameter	Symbol	Min.	Typ.	Max.	Unit	Reference
Supply Current	I_{CCR}		100	120	mA	
Power Dissipation	P _{DISR}		0.4	0.5	W	6
Data Output Voltage – Low	$V_{ m OL}$ – $V_{ m CC}$	-1.950		-1.620	V	7
Data Output Voltage – High	$V_{ m OH}$ – $V_{ m CC}$	-1.045		-0.740	V	7
Data Output Rise Time	$t_{ m r}$	0.2	0.3	0.51	ns	8
Data Output Fall Time	t_{f}	0.2	0.3	0.51	ns	8
Signal Detect Output Voltage – Low	$V_{ m OL}$ – $V_{ m CC}$	-1.840		-1.620	V	7
Signal Detect Output Voltage – High	$V_{ m OH}$ – $V_{ m CC}$	-1.045		-0.880	V	7
Signal Detect Assert Time	t_{SDA}			TBD	μs	9
(Off to On)						
Signal Detect Assert Time	$ m t_{SDD}$			TBD	μs	10
(On to Off)						

Notes:

- 5. The typical value is at +70°C; maximum value is an end of life value.
- 6. Power dissipation value is the power dissipated in the receiver itself. It is calculated as the sum of the products of $V_{\rm CC}$ and $I_{\rm CC}$ minus the sum of the products of the output voltages and currents.
- 7. These outputs are compatible with 10 K, 10 KH and 100 K ECL and PECL inputs.
- 8. These values are under review and may be replaced by an eye mask test.
- 9. The Signal Detect output will change from logic "0" to "1" within TBD us of a step transition in optical input power from no light to -18 dBm.
- 10. The Signal Detect output will change from logic "1" to "0" within TBD us of a step transition in optical input power from -16 dBm to no light.

Transmitter Optical Characteristics

 $(T_A = 0$ °C to +70°C, $V_{CC} = 4.75$ V to 5.25 V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Reference
Output Optical Power	Po	-13		-3	dBm avg.	
$62.5/125 \mu \text{m}, \text{NA} = 0.275 \text{fiber}$						
Optical Extinction Ratio		9			dB	
Center Wavelength	λC	1270		1355	nm	
Spectral Width – rms	σ			4	nm rms	
RIN_{12}				-116	dB/Hz	

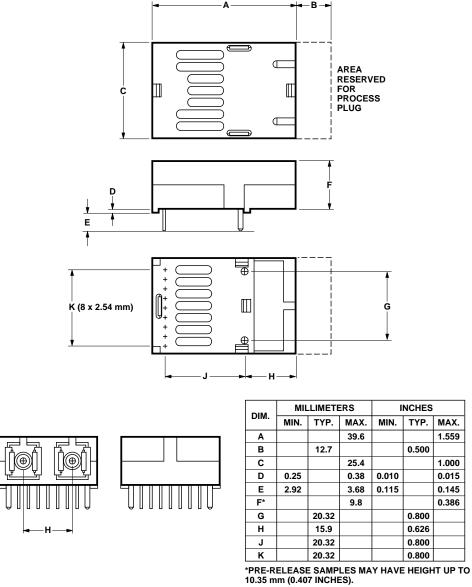
Receiver Optical Characteristics

 $(T_A = 0$ °C to +70°C, $V_{CC} = 4.75$ V to 5.25 V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Reference
Input Optical Power Minimum	P _{IN}	-3		-20	dBm avg.	11
Return Loss		12			dB	
Signal Detect – Asserted	P _A	$P_{\rm D} + 1.5 \; {\rm dB}$			dBm avg.	
Signal Detect – Deasserted	P_{D}	-45			dBm avg.	
Signal Detect – Hysteresis	P _A – P _D	1.5			dB	

Note:

11. The sensitivity is provided at a BER of 1 x 10^{-12} .


Table 1. Pinout Table

Pin	Symbol	Functional Description				
Mounting Studs		The mounting studs are provided for transceiver mechanical attachment to the circuit board, they are embedded in the nonconductive plastic housing and are not tied to the transceiver internal circuit. They should be soldered into plated-through holes on the printed circuit board.				
1	$V_{\rm EER}$	Receiver Signal Ground Directly connect this pin to receiver signal ground plane.				
2	RD+	Receiver Data Out See recommended circuit schematic.				
3	RD-	Receiver Data Out Bar See recommended circuit schematic.				
4	SD	Signal Detect Normal optical input levels to the receiver result in a logic "1" output. Low optical input levels to the receiver result in a fault condition indication shown by a logic "0" output.				
		Signal Detect is a single-ended, low-power, PECL output. Since SD is a low-power PECL output, complete the interconnection of SD output with other PECL inputs using a 10 k Ω pull-down resistor to V _{EE} to allow biasing of this interconnection. Do not load this SD output with standard PECL, 50 Ω to V _{CC} – 2 V, termination. If Signal Detect output is not used, leave it open-circuited.				
		This Signal Detect output can be used to drive a PECL input on an upstream circuit, such as, Signal Detect input or Loss of Signal-bar.				
5	V _{CCR}	Receiver Power Supply Provide $+5$ V dc via the recommended transmitter power supply filter circuit. Locate the power supply filter circuit as close as possible to the $V_{\rm CCR}$ pin.				
6	$V_{\rm CCT}$	Transmitter Power Supply Provide $+5$ V dc via the recommended transmitter power supply filter circuit. Locate the power supply filter circuit as close as possible to the $V_{\rm CCT}$ pin.				
7	TD-	Transmitter Data In Bar See recommended circuit schematic.				
8	TD+	Transmitter Data In See recommended circuit schematic.				
9	$V_{\rm EET}$	Transmitter Signal Ground Directly connect this pin to the transmitter signal ground plane.				

RECEIVER SIGNAL GROUND	0 1	0
RECEIVER DATA OUT	O 2	N/C
RECEIVER DATA OUT BAR	O 3	
SIGNAL DETECT	0 4	
RECEIVER POWER SUPPLY	O 5	
TRANSMITTER POWER SUPPLY	O 6	
TRANSMITTER DATA IN BAR	0 7	
TRANSMITTER DATA IN	0 8	N/C
TRANSMITTER SIGNAL GROUND	O 9	Õ

TOP VIEW

Figure 1. Pinout.

10.33 IIIII (0.407 INCHES).

Figure 2. Package Outline Drawing and Pinout.

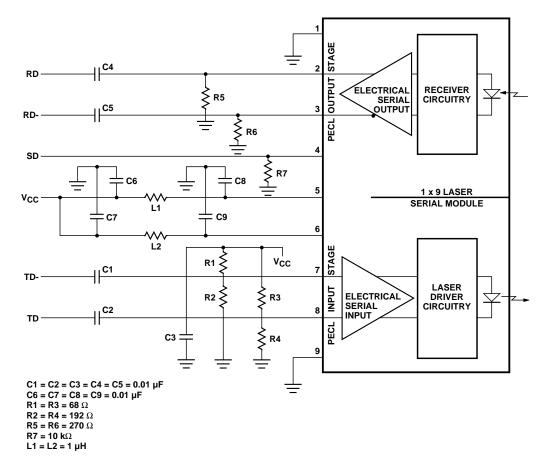
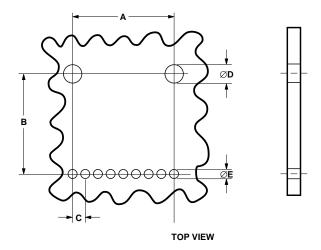



Figure 3. Recommended Circuit Schematic.

DIM.	MIL	LIMETE	ERS	INCHES			
Dilvi.	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.	
Α	_	20.32	ı	-	0.800	-	
В	-	20.32	-	-	0.800	_	
С	_	2.54	-	-	0.100	-	
ØD	1.8	_	2.0	0.071	-	0.079	
ØE	0.7	-	0.9	0.028	-	0.036	

Figure 4. Recommended Board Layout Hole Pattern.