Features

- High Performance, Low Power AVR ${ }^{\circledR}$ 8-Bit Microcontroller
- Advanced RISC Architecture
- 135 Powerful Instructions - Most Single Clock Cycle Execution
- 32×8 General Purpose Working Registers
- Fully Static Operation
- Up to 16 MIPS Throughput at 16 MHz
- On-Chip 2-cycle Multiplier
- Non-volatile Program and Data Memories
- 64K/128K/256K Bytes of In-System Self-Programmable Flash Endurance: 10,000 Write/Erase Cycles
- Optional Boot Code Section with Independent Lock Bits In-System Programming by On-chip Boot Program True Read-While-Write Operation
- 4K Bytes EEPROM

Endurance: 100,000 Write/Erase Cycles

- 8K Bytes Internal SRAM
- Up to 64K Bytes Optional External Memory Space
- Programming Lock for Software Security
- JTAG (IEEE std. 1149.1 compliant) Interface
- Boundary-scan Capabilities According to the JTAG Standard
- Extensive On-chip Debug Support
- Programming of Flash, EEPROM, Fuses, and Lock Bits through the JTAG Interface
- Peripheral Features
- Two 8-bit Timer/Counters with Separate Prescaler and Compare Mode
- Four 16-bit Timer/Counter with Separate Prescaler, Compare- and Capture Mode
- Real Time Counter with Separate Oscillator
- Four 8-bit PWM Channels
- Six/Twelve PWM Channels with Programmable Resolution from 2 to 16 Bits (ATmega1281/2561, ATmega640/1280/2560)
- Output Compare Modulator
- 8/16-channel, 10-bit ADC
- Two/Four Programmable Serial USART (ATmega1281/2561,ATmega640/1280/2560)
- Master/Slave SPI Serial Interface
- Byte Oriented 2-wire Serial Interface
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Interrupt and Wake-up on Pin Change
- Special Microcontroller Features
- Power-on Reset and Programmable Brown-out Detection
- Internal Calibrated Oscillator
- External and Internal Interrupt Sources
- Six Sleep Modes: Idle, ADC Noise Reduction, Power-save, Power-down, Standby, and Extended Standby
- I/O and Packages
- 51/86 Programmable I/O Lines (ATmega1281/2561, ATmega640/1280/2560)
- 64-lead (ATmega1281/2561)
- 100-lead (ATmega640/1280/2560)
- 100-lead TQFP (64-lead TQFP Option)
- Temperature Range:
- $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ Industrial
- Speed Grade:
- ATmega1281/2561V/ATmega640/1280/2560V:

0-4 MHz @ 1.8-5.5V, 0-8 MHz @ 2.7-5.5V

- ATmega640/1280/1281/2560/2561:

0-8 MHz @ 2.7-5.5V, 0-16 MHz @ 4.5-5.5V

Note: This is a summary document. A complete document is available on our Web site at www.atmel.com.

Pin Configurations

Figure 1. Pinout ATmega640/1280/2560

Figure 2. Pinout ATmega1281/2561

Note: The large center pad underneath the QFN/MLF package is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

Disclaimer

Typical values contained in this datasheet are based on simulations and characterization of other AVR microcontrollers manufactured on the same process technology. Min and Max values will be available after the device is characterized.

Overview

The ATmega640/1280/1281/2560/2561 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the ATmega640/1280/1281/2560/2561 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

Block Diagram

Figure 3. Block Diagram

The AVR core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The resulting architecture is more code efficient while achieving throughputs up to ten times faster than conventional CISC microcontrollers.

The ATmega640/1280/1281/2560/2561 provides the following features: $64 \mathrm{~K} / 128 \mathrm{~K} / 256 \mathrm{~K}$ bytes of In-System Programmable Flash with Read-While-Write capabilities, 4K bytes EEPROM, 8K bytes SRAM, 54/86 general purpose I/O lines, 32 general purpose working registers, Real Time Counter (RTC), six flexible Timer/Counters with compare modes and PWM, 4 USARTs, a byte oriented 2 -wire Serial Interface, a 16-channel, 10bit ADC with optional differential input stage with programmable gain, programmable Watchdog Timer with Internal Oscillator, an SPI serial port, IEEE std. 1149.1 compliant JTAG test interface, also used for accessing the On-chip Debug system and programming and six software selectable power saving modes. The Idle mode stops the CPU while allowing the SRAM, Timer/Counters, SPI port, and interrupt system to continue functioning. The Power-down mode saves the register contents but freezes the Oscillator, disabling all other chip functions until the next interrupt or Hardware Reset. In Power-save mode, the asynchronous timer continues to run, allowing the user to maintain a timer base while the rest of the device is sleeping. The ADC Noise Reduction mode stops the CPU and all I/O modules except Asynchronous Timer and ADC, to minimize switching noise during ADC conversions. In Standby mode, the Crystal/Resonator Oscillator is running while the rest of the device is sleeping. This allows very fast start-up combined with low power consumption. In Extended Standby mode, both the main Oscillator and the Asynchronous Timer continue to run.
The device is manufactured using Atmel's high-density nonvolatile memory technology. The On-chip ISP Flash allows the program memory to be reprogrammed in-system through an SPI serial interface, by a conventional nonvolatile memory programmer, or by an On-chip Boot program running on the AVR core. The boot program can use any interface to download the application program in the application Flash memory. Software in the Boot Flash section will continue to run while the Application Flash section is updated, providing true Read-While-Write operation. By combining an 8-bit RISC CPU with In-System Self-Programmable Flash on a monolithic chip, the Atmel ATmega640/1280/1281/2560/2561 is a powerful microcontroller that provides a highly flexible and cost effective solution to many embedded control applications.
The ATmega640/1280/1281/2560/2561 AVR is supported with a full suite of program and system development tools including: C compilers, macro assemblers, program debugger/simulators, in-circuit emulators, and evaluation kits.

Comparison Between ATmega1281/2561 and ATmega640/1280/2560

Each device in the ATmega640/1280/1281/2560/2561 family differs only in memory size and number of pins. Table 1 summarizes the different configurations for the six devices.

Table 1. Configuration Summary

Device	Flash	EEPROM	RAM	General Purpose I/O pins	16 bits resolution PWM channels	Serial USARTs	ADC Channels
ATmega640	64 KB	4 KB	8 KB	86	12	4	16
ATmega1280	128 KB	4 KB	8 KB	86	12	4	16
ATmega1281	128 KB	4 KB	8 KB	54	6	2	8
ATmega2560	256 KB	4 KB	8 KB	86	12	4	16
ATmega2561	256 KB	4 KB	8 KB	54	6	2	8

Pin Descriptions

vcc
GND
Port A (PA7..PA0)

Port B (PB7..PB0)

Port D (PD7..PD0)

Digital supply voltage.
Ground.
Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port A also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 88.

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port B has better driving capabilities than the other ports.
Port B also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 89.

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port C also serves the functions of special features of the ATmega640/1280/1281/2560/2561 as listed on page 92.

Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port D output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port D pins that are externally pulled low will source

Port E (PE7..PE0)

Port F (PF7..PF0)

Port G (PG5..PG0)

Port H (PH7..PHO)

Port J (PJ7..PJO)

Port K (PK7..PK0)
current if the pull-up resistors are activated. The Port D pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port D also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 94.

Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port E output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up resistors are activated. The Port E pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port E also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 96.

Port F serves as analog inputs to the A / D Converter.
Port F also serves as an 8 -bit bi-directional I/O port, if the A/D Converter is not used. Port pins can provide internal pull-up resistors (selected for each bit). The Port F output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port F pins that are externally pulled low will source current if the pull-up resistors are activated. The Port F pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will be activated even if a reset occurs.

Port F also serves the functions of the JTAG interface.
Port G is a 6-bit I/O port with internal pull-up resistors (selected for each bit). The Port G output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up resistors are activated. The Port G pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port G also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 102.

Port H is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port H output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port H pins that are externally pulled low will source current if the pull-up resistors are activated. The Port H pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port H also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 104.

Port J is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset condition becomes active, even if the clock is not running.
Port J also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 106.

Port K serves as analog inputs to the A / D Converter.

Port K is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port K output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port K pins that are externally pulled low will source current if the pull-up resistors are activated. The Port K pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port K also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 108.

Port L (PL7..PLO)

RESET

XTAL1
XTAL2
AVCC

AREF

Port L is a 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port L output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port L pins that are externally pulled low will source current if the pull-up resistors are activated. The Port L pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port L also serves the functions of various special features of the ATmega640/1280/1281/2560/2561 as listed on page 110.

Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 23 on page 58. Shorter pulses are not guaranteed to generate a reset.

Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
Output from the inverting Oscillator amplifier.
AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to V_{CC}, even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.

This is the analog reference pin for the A/D Converter.

Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x1FF)	Reserved	-	-	-	-	-	-	-	-	
...	Reserved	-	-	-	-	-	-	-	-	
(0x13F)	Reserved									
(0x13E)	Reserved									
(0x13D)	Reserved									
(0x13C)	Reserved									
(0x13B)	Reserved									
(0x13A)	Reserved									
(0x139)	Reserved									
(0x138)	Reserved									
(0x137)	Reserved									
(0x136)	UDR3	USART3 I/O Data Register								
(0x135)	UBRR3H	-	-	-	-	USART3 Baud Rate Register High Byte				
(0x134)	UBRR3L	USART3 Baud Rate Register Low Byte								
(0x133)	Reserved	-	-	-	-	-	-	-	-	
(0x132)	UCSR3C	UMSEL31	UMSEL30	UPM31	UPM30	USBS3	UCSZ31	UCSZ30	UCPOL3	
(0x131)	UCSR3B	RXCIE3	TXCIE3	UDRIE3	RXEN3	TXEN3	UCSZ32	RXB83	TXB83	
(0x130)	UCSR3A	RXC3	TXC3	UDRE3	FE3	DOR3	UPE3	U2X3	MPCM3	
(0x12F)	Reserved	-	-	-	-	-	-	-	-	
(0x12E)	Reserved	-	-	-	-	-	-	-	-	
(0x12D)	OCR5CH	Timer/Counter5 - Output Compare Register C High Byte								
(0x12C)	OCR5CL	Timer/Counter5- Output Compare Register C Low Byte								
(0x12B)	OCR5BH	Timer/Counter5 - Output Compare Register B High Byte								
(0x12A)	OCR5BL	Timer/Counter5 - Output Compare Register B Low Byte								
(0x129)	OCR5AH	Timer/Counter5 - Output Compare Register A High Byte								
(0x128)	OCR5AL	Timer/Counter5 - Output Compare Register A Low Byte								
(0x127)	ICR5H	Timer/Counter5 - Input Capture Register High Byte								
(0x126)	ICR5L	Timer/Counter5 - Input Capture Register Low Byte								
(0x125)	TCNT5H	Timer/Counter5 - Counter Register High Byte								
(0x124)	TCNT5L	Timer/Counter5 - Counter Register Low Byte								
(0x123)	Reserved	-	-	-	-	-	-	-	-	
(0x122)	TCCR5C	FOC5A	FOC5B	FOC5C	-	-	-	-	-	
(0x121)	TCCR5B	ICNC5	ICES5	-	WGM53	WGM52	CS52	CS51	CS50	
(0x120)	TCCR5A	COM5A1	COM5AO	COM5B1	COM5B0	COM5C1	COM5C0	WGM51	WGM50	
(0x11F)	Reserved	-	-	-	-	-	-	-	-	
(0x11E)	Reserved	-	-	-	-	-	-	-	-	
(0x11D)	Reserved	-	-	-	-	-	-	-	-	
(0x11C)	Reserved	-	-	-	-	-	-	-	-	
(0x11B)	Reserved	-	-	-	-	-	-	-	-	
(0x11A)	Reserved	-	-	-	-	-	-	-	-	
(0x119)	Reserved	-	-	-	-	-	-	-	-	
(0x118)	Reserved	-	-	-	-	-	-	-	-	
(0x117)	Reserved	-	-	-	-	-	-	-	-	
(0x116)	Reserved	-	-	-	-	-	-	-	-	
(0x115)	Reserved	-	-	-	-	-	-	-	-	
(0x114)	Reserved	-	-	-	-	-	-	-	-	
(0x113)	Reserved	-	-	-	-	-	-	-	-	
(0x112)	Reserved	-	-	-	-	-	-	-	-	
(0x111)	Reserved	-	-	-	-	-	-	-	-	
(0x110)	Reserved	-	-	-	-	-	-	-	-	
(0x10F)	Reserved	-	-	-	-	-	-	-	-	
(0x10E)	Reserved	-	-	-	-	-	-	-	-	
(0x10D)	Reserved	-	-	-	-	-	-	-	-	
(0x10C)	Reserved	-	-	-	-	-	-	-	-	
(0x10B)	PORTL	PORTL7	PORTL6	PORTL5	PORTL4	PORTL3	PORTL2	PORTL1	PORTLO	
(0x10A)	DDRL	DDL7	DDL6	DDL5	DDL4	DDL3	DDL2	DDL1	DDLO	
(0x109)	PINL	PINL7	PINL6	PINL5	PINL4	PINL3	PINL2	PINL1	PINLO	
(0x108)	PORTK	PORTK7	PORTK6	PORTK5	PORTK4	PORTK3	PORTK2	PORTK1	PORTK0	
(0x107)	DDRK	DDK7	DDK6	DDK5	DDK4	DDK3	DDK2	DDK1	DDK0	
(0x106)	PINK	PINK7	PINK6	PINK5	PINK4	PINK3	PINK2	PINK1	PINK0	
(0x105)	PORTJ	PORTJ7	PORTJ6	PORTJ5	PORTJ4	PORTJ3	PORTJ2	PORTJ1	PORTJO	
(0x104)	DDRJ	DDJ7	DDJ6	DDJ5	DDJ4	DDJ3	DDJ2	DDJ1	DDJo	
(0x103)	PINJ	PINJ7	PINJ6	PINJ5	PINJ4	PINJ3	PINJ2	PINJ1	PINJO	
(0x102)	PORTH	PORTH7	PORTH6	PORTH5	PORTH4	PORTH3	PORTH2	PORTH1	PORTH0	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x101)	DDRH	DDH7	DDH6	DDH5	DDH4	DDH3	DDH2	DDH1	DDH0	
(0x100)	PINH	PINH7	PINH6	PINH5	PINH4	PINH3	PINH2	PINH1	PINHO	
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	-	-	-	-	
(0xF1)	Reserved	-	-	-	-	-	-	-	-	
(0xFO)	Reserved	-	-	-	-	-	-	-	-	
(0xEF)	Reserved	-	-	-	-	-	-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	-	
(0xED)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	-	-	-	-	-	-	-	-	
(0xEB)	Reserved	-	-	-	-		-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	Reserved	-	-	-	-		-	-	-	
(0xE6)	Reserved	-	-	-	-	-	-	-	-	
(0xE5)	Reserved	-	-	-	-	-	-	-	-	
(0xE4)	Reserved	-	-	-	-	-	-	-	-	
(0xE3)	Reserved	-	-	-	-		-	-	-	
(0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE1)	Reserved	-	-	-	-		-	-	-	
(0xE0)	Reserved	-	-	-	-		-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	Reserved	-	-	-	-		-	-	-	
(0xDC)	Reserved	-	-	-	-	-	-	-	-	
(0xDB)	Reserved	-	-	-	-	-	-	-	-	
(0xDA)	Reserved	-	-	-	-	-	-	-	-	
(0xD9)	Reserved	-	-	-	-		-	-	-	
(0xD8)	Reserved	-	-	-	-	-	-	-	-	
(0xD7)	Reserved	-	-	-	-	-	-	-	-	
(0xD6)	UDR2	USART2 I/O Data Register								
(0xD5)	UBRR2H	-	-	-	-	USART2 Baud Rate Register High Byte				
(0xD4)	UBRR2L	USART2 Baud Rate Register Low Byte								
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	UCSR2C	UMSEL21	UMSEL20	UPM21	UPM20	USBS2	UCSZ21	UCSZ20	UCPOL2	
(0xD1)	UCSR2B	RXCIE2	TXCIE2	UDRIE2	RXEN2	TXEN2	UCSZ22	RXB82	TXB82	
(0xD0)	UCSR2A	RXC2	TXC2	UDRE2	FE2	DOR2	UPE2	U2X2	MPCM2	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	UDR1	USART1 I/O Data Register								
(0xCD)	UBRR1H	-	-	-	-	USART1 Baud Rate Register High Byte				
(0xCC)	UBRR1L	USART1 Baud Rate Register Low Byte								
(0xCB)	Reserved	-	-	-	-	-	-	-	-	
(0xCA)	UCSR1C	UMSEL11	UMSEL10	UPM11	UPM10	USBS1	UCSZ11	UCSZ10	UCPOL1	
(0xC9)	UCSR1B	RXCIE1	TXCIE1	UDRIE1	RXEN1	TXEN1	UCSZ12	RXB81	TXB81	
(0xC8)	UCSR1A	RXC1	TXC1	UDRE1	FE1	DOR1	UPE1	U2X1	MPCM1	
(0xC7)	Reserved	-	-	-	-	-	-	-	-	
(0xC6)	UDR0	USARTO I/O Data Register								
(0xC5)	UBRROH	-	-	-	-	USART0 Baud Rate Register High Byte				
(0xC4)	UBRROL	USARTO Baud Rate Register Low Byte								
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	UCSROC	UMSEL01	UMSELOO	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOLO	
(0xC1)	UCSROB	RXCIEO	TXCIE0	UDRIEO	RXENO	TXENO	UCSZ02	RXB80	TXB80	
(0xC0)	UCSROA	RXC0	TXC0	UDRE0	FEO	DOR0	UPE0	U2X0	MPCM0	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	Reserved	-	-	-	-	-	-	-	-	
(0xBD)	TWAMR	TWAM6	TWAM5	TWAM4	TWAM3	TWAM2	TWAM1	TWAM0	-	
(0xBC)	TWCR	TWINT	TWEA	TWSTA	TWSTO	TWWC	TWEN	-	TWIE	
(0xBB)	TWDR	2-wire Serial Interface Data Register								
(0xBA)	TWAR	TWA6	TWA5	TWA4	TWA3	TWA2	TWA1	TWAO	TWGCE	
(0xB9)	TWSR	TWS7	TWS6	TWS5	TWS4	TWS3	-	TWPS1	TWPS0	
(0xB8)	TWBR	2-wire Serial Interface Bit Rate Register								
(0xB7)	Reserved	-	-	-	-	-	-	-	-	
(0xB6)	ASSR	-	EXCLK	AS2	TCN2UB	OCR2AUB	OCR2BUB	TCR2AUB	TCR2BUB	
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	OCR2B	Timer/Counter2 Output Compare Register B								
(0xB3)	OCR2A	Timer/Counter2 Output Compare Register A								
(0xB2)	TCNT2	Timer/Counter2 (8 Bit)								
(0xB1)	TCCR2B	FOC2A	FOC2B	-	-	WGM22	CS22	CS21	CS20	
(0xB0)	TCCR2A	COM2A1	COM2A0	COM2B1	COM2B0	-	-	WGM21	WGM20	
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	OCR4CH	Timer/Counter4 - Output Compare Register C High Byte								
(0xAC)	OCR4CL	Timer/Counter4 - Output Compare Register C Low Byte								
(0xAB)	OCR4BH	Timer/Counter4 - Output Compare Register B High Byte								
(0xAA)	OCR4BL	Timer/Counter4 - Output Compare Register B Low Byte								
(0xA9)	OCR4AH	Timer/Counter4 - Output Compare Register A High Byte								
(0xA8)	OCR4AL	Timer/Counter4 - Output Compare Register A Low Byte								
(0xA7)	ICR4H	Timer/Counter4 - Input Capture Register High Byte								
(0xA6)	ICR4L	Timer/Counter4 - Input Capture Register Low Byte								
(0xA5)	TCNT4H	Timer/Counter4-Counter Register High Byte								
(0xA4)	TCNT4L	Timer/Counter4-Counter Register Low Byte								
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	TCCR4C	FOC4A	FOC4B	FOC4C	-	-	-	-	-	
(0xA1)	TCCR4B	ICNC4	ICES4	-	WGM43	WGM42	CS42	CS41	CS40	
(0xA0)	TCCR4A	COM4A1	COM4A0	COM4B1	COM4B0	COM4C1	COM4C0	WGM41	WGM40	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	OCR3CH	Timer/Counter3 - Output Compare Register C High Byte								
(0x9C)	OCR3CL	Timer/Counter3 - Output Compare Register C Low Byte								
(0x9B)	OCR3BH	Timer/Counter3 - Output Compare Register B High Byte								
(0x9A)	OCR3BL	Timer/Counter3 - Output Compare Register B Low Byte								
(0x99)	OCR3AH	Timer/Counter3 - Output Compare Register A High Byte								
(0x98)	OCR3AL	Timer/Counter3 - Output Compare Register A Low Byte								
(0x97)	ICR3H	Timer/Counter3 - Input Capture Register High Byte								
(0x96)	ICR3L	Timer/Counter3 - Input Capture Register Low Byte								
(0x95)	TCNT3H	Timer/Counter3 - Counter Register High Byte								
(0x94)	TCNT3L	Timer/Counter3 - Counter Register Low Byte								
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	TCCR3C	FOC3A	FOC3B	FOC3C	-	-	-	-	-	
(0x91)	TCCR3B	ICNC3	ICES3	-	WGM33	WGM32	CS32	CS31	CS30	
(0x90)	TCCR3A	COM3A1	СОМ3A0	COM3B1	СОМ3B0	COM3C1	COM3C0	WGM31	WGM30	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	OCR1CH	Timer/Counter1 - Output Compare Register C High Byte								
(0x8C)	OCR1CL	Timer/Counter1 - Output Compare Register C Low Byte								
(0x8B)	OCR1BH	Timer/Counter1 - Output Compare Register B High Byte								
(0x8A)	OCR1BL	Timer/Counter1 - Output Compare Register B Low Byte								
(0x89)	OCR1AH	Timer/Counter1 - Output Compare Register A High Byte								
(0x88)	OCR1AL	Timer/Counter1 - Output Compare Register A Low Byte								
(0x87)	ICR1H	Timer/Counter1 - Input Capture Register High Byte								
(0x86)	ICR1L	Timer/Counter1 - Input Capture Register Low Byte								
(0x85)	TCNT1H	Timer/Counter1 - Counter Register High Byte								
(0x84)	TCNT1L	Timer/Counter1-Counter Register Low Byte								
(0x83)	Reserved	-	-	-	-	-	-	-	-	
(0x82)	TCCR1C	FOC1A	FOC1B	FOC1C	-	-	-	-	-	
(0x81)	TCCR1B	ICNC1	ICES1	-	WGM13	WGM12	CS12	CS11	CS10	
(0x80)	TCCR1A	COM1A1	COM1A0	COM1B1	COM1B0	COM1C1	COM1C0	WGM11	WGM10	
(0x7F)	DIDR1	-	-	-	-	-	-	AIN1D	AINOD	
(0x7E)	DIDR0	ADC7D	ADC6D	ADC5D	ADC4D	ADC3D	ADC2D	ADC1D	ADCOD	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0x7D)	DIDR2	ADC15D	ADC14D	ADC13D	ADC12D	ADC11D	ADC10D	ADC9D	ADC8D	
(0x7C)	ADMUX	REFS1	REFSO	ADLAR	MUX4	MUX3	MUX2	MUX1	MUX0	
(0x7B)	ADCSRB	-	ACME	-	-	MUX5	ADTS2	ADTS1	ADTS0	
(0x7A)	ADCSRA	ADEN	ADSC	ADATE	ADIF	ADIE	ADPS2	ADPS1	ADPS0	
(0x79)	ADCH	ADC Data Register High byte								
(0x78)	ADCL	ADC Data Register Low byte								
(0x77)	Reserved	-	-	-	-	-	-	-	-	
(0x76)	Reserved	-	-	-	-	-	-	-	-	
(0x75)	XMCRB	XMBK	-	-	-	-	XMM2	XMM1	XMM0	
(0x74)	XMCRA	SRE	SRL2	SRL1	SRLO	SRW11	SRW10	SRW01	SRW00	
(0x73)	TIMSK5	-	-	ICIE5	-	OCIE5C	OCIE5B	OCIE5A	TOIE5	
(0x72)	TIMSK4	-	-	ICIE4	-	OCIE4C	OCIE4B	OCIE4A	TOIE4	
(0x71)	TIMSK3	-	-	ICIE3	-	OCIE3C	OCIE3B	OCIE3A	TOIE3	
(0x70)	TIMSK2	-	-	-	-	-	OCIE2B	OCIE2A	TOIE2	
(0x6F)	TIMSK1	-	-	ICIE1	-	OCIE1C	OCIE1B	OCIE1A	TOIE1	
(0x6E)	TIMSK0	-	-	-	-	-	OCIEOB	OCIE0A	TOIE0	
(0x6D)	PCMSK2	PCINT23	PCINT22	PCINT21	PCINT20	PCINT19	PCINT18	PCINT17	PCINT16	
(0x6C)	PCMSK1	PCINT15	PCINT14	PCINT13	PCINT12	PCINT11	PCINT10	PCINT9	PCINT8	
(0x6B)	PCMSK0	PCINT7	PCINT6	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINT0	
(0x6A)	EICRB	ISC71	ISC70	ISC61	ISC60	ISC51	ISC50	ISC41	ISC40	
(0x69)	EICRA	ISC31	ISC30	ISC21	ISC20	ISC11	ISC10	ISC01	ISC00	
(0x68)	PCICR	-	-	-	-	-	PCIE2	PCIE1	PCIEO	
(0x67)	Reserved	-	-	-	-	-	-	-	-	
(0x66)	OSCCAL	Oscillator Calibration Register								
(0x65)	PRR1	-	-	PRTIM5	PRTIM4	PRTIM3	PRUSART3	PRUSART2	PRUSART1	
(0x64)	PRRO	PRTWI	PRTIM2	PRTIM0	-	PRTIM1	PRSPI	PRUSARTO	PRADC	
(0x63)	Reserved	-	-	-	-	-	-	-	-	
(0x62)	Reserved	-	-	-	-	-	-	-	-	
(0x61)	CLKPR	CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPSO	
(0x60)	WDTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDP0	
0x3F (0x5F)	SREG	1	T	H	S	V	N	Z	C	
0x3E (0x5E)	SPH	SP15	SP14	SP13	SP12	SP11	SP10	SP9	SP8	
0x3D (0x5D)	SPL	SP7	SP6	SP5	SP4	SP3	SP2	SP1	SP0	
0x3C (0x5C)	EIND	-	-	-	-	-	-	-	EINDO	
0x3B (0x5B)	RAMPZ	-	-	-	-	-	-	RAMPZ1	RAMPZO	
0x3A (0x5A)	Reserved	-	-	-	-	-	-	-	-	
0×39 (0x59)	Reserved	-	-	-	-	-	-	-	-	
0x38 (0x58)	Reserved	-	-	-	-	-	-	-	-	
0x37 (0x57)	SPMCSR	SPMIE	RWWSB	SIGRD	RWWSRE	BLBSET	PGWRT	PGERS	SPMEN	
0x36 (0x56)	Reserved	-	-	-	-	-	-	-	-	
0×35 (0x55)	MCUCR	JTD	-	-	PUD	-	-	IVSEL	IVCE	
0x34 (0x54)	MCUSR	-	-	-	JTRF	WDRF	BORF	EXTRF	PORF	
0×33 (0x53)	SMCR	-	-	-	-	SM2	SM1	SM0	SE	
0x32 (0x52)	Reserved	-	-	-	-	-	-	-	-	
0x31 (0x51)	OCDR/ MONDR	OCDR7	OCDR6	OCDR5	OCDR4	OCDR3	OCDR2	OCDR1	OCDRO	
		Monitor Data Register								
0x30 (0x50)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIS1	ACISO	
0x2F (0x4F)	Reserved	-	-	-	-	-	-	-	-	
0x2E (0x4E)	SPDR	SPI Data Register								
0x2D (0x4D)	SPSR	SPIF	WCOL	-	-	-	-	-	SPI2X	
0x2C (0x4C)	SPCR	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	
0x2B (0x4B)	GPIOR2	General Purpose I/O Register 2								
0x2A (0x4A)	GPIOR1	General Purpose I/O Register 1								
0x29 (0x49)	Reserved	-	-	-	-	-	-	-	-	
0x28 (0x48)	OCROB	Timer/Counter0 Output Compare Register B								
0x27 (0x47)	OCROA	Timer/Counter0 Output Compare Register A								
0x26 (0x46)	TCNT0	Timer/Counter0 (8 Bit)								
0x25 (0x45)	TCCROB	FOCOA	FOC0B	-	-	WGM02	CS02	CS01	CSOO	
0x24 (0x44)	TCCROA	COM0A1	СОМОАО	COM0B1	COM0B0	-	-	WGM01	WGM00	
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	PSRASY	PSRSYNC	
0x22 (0x42)	EEARH	-	-	-	EEPROM Address Register High Byte					
0x21 (0x41)	EEARL	EEPROM Address Register Low Byte								
0x20 (0x40)	EEDR	EEPROM Data Register								
0x1F (0x3F)	EECR	-	-	EEPM1	EEPM0	EERIE	EEMPE	EEPE	EERE	
0x1E (0x3E)	GPIORO	General Purpose I/O Register 0								
0x1D (0x3D)	EIMSK	INT7	INT6	INT5	INT4	INT3	INT2	INT1	INTO	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
0x1C (0x3C)	EIFR	INTF7	INTF6	INTF5	INTF4	INTF3	INTF2	INTF1	INTF0	
0x1B (0x3B)	PCIFR	-	-	-	-	-	PCIF2	PCIF1	PCIF0	
$0 \times 1 \mathrm{~A}(0 \times 3 \mathrm{~A})$	TIFR5	-	-	ICF5	-	OCF5C	OCF5B	OCF5A	TOV5	
0×19 (0x39)	TIFR4	-	-	ICF4	-	OCF4C	OCF4B	OCF4A	TOV4	
0×18 (0x38)	TIFR3	-	-	ICF3	-	OCF3C	OCF3B	OCF3A	TOV3	
0×17 (0x37)	TIFR2	-	-	-	-	-	OCF2B	OCF2A	TOV2	
0×16 (0x36)	TIFR1	-	-	ICF1	-	OCF1C	OCF1B	OCF1A	TOV1	
0×15 (0x35)	TIFR0	-	-	-	-	-	OCFOB	OCFOA	TOV0	
0×14 (0x34)	PORTG	-	-	PORTG5	PORTG4	PORTG3	PORTG2	PORTG1	PORTG0	
0×13 (0x33)	DDRG	-	-	DDG5	DDG4	DDG3	DDG2	DDG1	DDG0	
0×12 (0x32)	PING	-	-	PING5	PING4	PING3	PING2	PING1	PING0	
0×11 (0x31)	PORTF	PORTF7	PORTF6	PORTF5	PORTF4	PORTF3	PORTF2	PORTF1	PORTF0	
0×10 (0x30)	DDRF	DDF7	DDF6	DDF5	DDF4	DDF3	DDF2	DDF1	DDF0	
0x0F (0x2F)	PINF	PINF7	PINF6	PINF5	PINF4	PINF3	PINF2	PINF1	PINF0	
0x0E (0x2E)	PORTE	PORTE7	PORTE6	PORTE5	PORTE4	PORTE3	PORTE2	PORTE1	PORTE0	
0x0D (0x2D)	DDRE	DDE7	DDE6	DDE5	DDE4	DDE3	DDE2	DDE1	DDE0	
0x0C (0x2C)	PINE	PINE7	PINE6	PINE5	PINE4	PINE3	PINE2	PINE1	PINE0	
0x0B (0x2B)	PORTD	PORTD7	PORTD6	PORTD5	PORTD4	PORTD3	PORTD2	PORTD1	PORTD0	
$0 \times 0 \mathrm{~A}$ (0x2A)	DDRD	DDD7	DDD6	DDD5	DDD4	DDD3	DDD2	DDD1	DDD0	
0×09 (0x29)	PIND	PIND7	PIND6	PIND5	PIND4	PIND3	PIND2	PIND1	PIND0	
0x08 (0x28)	PORTC	PORTC7	PORTC6	PORTC5	PORTC4	PORTC3	PORTC2	PORTC1	PORTC0	
0×07 (0x27)	DDRC	DDC7	DDC6	DDC5	DDC4	DDC3	DDC2	DDC1	DDC0	
0x06 (0x26)	PINC	PINC7	PINC6	PINC5	PINC4	PINC3	PINC2	PINC1	PINC0	
0x05 (0x25)	PORTB	PORTB7	PORTB6	PORTB5	PORTB4	PORTB3	PORTB2	PORTB1	PORTB0	
0x04 (0x24)	DDRB	DDB7	DDB6	DDB5	DDB4	DDB3	DDB2	DDB1	DDB0	
0×03 (0x23)	PINB	PINB7	PINB6	PINB5	PINB4	PINB3	PINB2	PINB1	PINB0	
0×02 (0x22)	PORTA	PORTA7	PORTA6	PORTA5	PORTA4	PORTA3	PORTA2	PORTA1	PORTA0	
0×01 (0x21)	DDRA	DDA7	DDA6	DDA5	DDA4	DDA3	DDA2	DDA1	DDA0	
0x00 (0x20)	PINA	PINA7	PINA6	PINA5	PINA4	PINA3	PINA2	PINA1	PINAO	

Note: 1. For compatibility with future devices, reserved bits should be written to zero if accessed. Reserved I/O memory addresses should never be written.
2. I/O registers within the address range $\$ 00-\$ 1 \mathrm{~F}$ are directly bit-accessible using the SBI and CBI instructions. In these registers, the value of single bits can be checked by using the SBIS and SBIC instructions.
3. Some of the status flags are cleared by writing a logical one to them. Note that the CBI and SBI instructions will operate on all bits in the I/O register, writing a one back into any flag read as set, thus clearing the flag. The CBI and SBI instructions work with registers 0×00 to $0 \times 1 \mathrm{~F}$ only.
4. When using the I/O specific commands IN and OUT, the I/O addresses $\$ 00-\$ 3 F$ must be used. When addressing I/O registers as data space using LD and ST instructions, $\$ 20$ must be added to these addresses. The ATmega640/1280/1281/2560/2561 is a complex microcontroller with more peripheral units than can be supported within the 64 location reserved in Opcode for the IN and OUT instructions. For the Extended I/O space from $\$ 60$ - $\$ 1$ FF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

Instruction Set Summary

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ARITHMETIC AND LOGIC INSTRUCTIONS					
ADD	Rd, Rr	Add two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}$	Z,C,N,V,H	1
ADC	Rd, Rr	Add with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}+\mathrm{Rr}+\mathrm{C}$	Z,C,N,V,H	1
ADIW	Rdi, K	Add Immediate to Word	Rdh:Rdl \leftarrow Rdh:Rdl + K	Z,C,N,V,S	2
SUB	Rd, Rr	Subtract two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}$	Z,C,N,V,H	1
SUBI	Rd, K	Subtract Constant from Register	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}$	Z,C,N,V,H	1
SBC	Rd, Rr	Subtract with Carry two Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	Z,C,N,V,H	1
SBCI	Rd, K	Subtract with Carry Constant from Reg.	$\mathrm{Rd} \leftarrow \mathrm{Rd}-\mathrm{K}-\mathrm{C}$	Z,C,N,V,H	1
SBIW	Rdi, K	Subtract Immediate from Word	Rdh:RdI \leftarrow Rdh:Rdl - K	Z,C,N,V,S	2
AND	Rd, Rr	Logical AND Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rr}$	Z,N,V	1
ANDI	Rd, K	Logical AND Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{K}$	Z,N,V	1
OR	Rd, Rr	Logical OR Registers	$\mathrm{Rd} \leftarrow \mathrm{RdvRr}$	Z,N,V	1
ORI	Rd, K	Logical OR Register and Constant	$\mathrm{Rd} \leftarrow \mathrm{Rd}$ v K	Z,N,V	1
EOR	Rd, Rr	Exclusive OR Registers	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rr}$	Z,N,V	1
COM	Rd	One's Complement	Rd $\leftarrow 0 \times \mathrm{FFF}-\mathrm{Rd}$	Z,C,N,V	1
NEG	Rd	Two's Complement	$\mathrm{Rd} \leftarrow 0 \times 00-\mathrm{Rd}$	Z,C,N,V,H	1
SBR	Rd,K	Set Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rdv} \mathrm{K}$	Z,N,V	1
CBR	Rd,K	Clear Bit(s) in Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet(0 x F F-K)$	Z,N,V	1
INC	Rd	Increment	$\mathrm{Rd} \leftarrow \mathrm{Rd}+1$	Z,N,V	1
DEC	Rd	Decrement	$\mathrm{Rd} \leftarrow \mathrm{Rd}-1$	Z,N,V	1
TST	Rd	Test for Zero or Minus	$\mathrm{Rd} \leftarrow \mathrm{Rd} \bullet \mathrm{Rd}$	Z,N,V	1
CLR	Rd	Clear Register	$\mathrm{Rd} \leftarrow \mathrm{Rd} \oplus \mathrm{Rd}$	Z,N,V	1
SER	Rd	Set Register	$\mathrm{Rd} \leftarrow 0 \mathrm{xFF}$	None	1
MUL	Rd, Rr	Multiply Unsigned	$\mathrm{R} 1: \mathrm{R} 0 \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
MULS	Rd, Rr	Multiply Signed	$\mathrm{R} 1: \mathrm{R0} 0 \leftarrow \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
MULSU	Rd, Rr	Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{R0} 5 \mathrm{Rd} \times \mathrm{Rr}$	Z,C	2
FMUL	Rd, Rr	Fractional Multiply Unsigned	$\mathrm{R} 1: \mathrm{RO} \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULS	Rd, Rr	Fractional Multiply Signed	$\mathrm{R} 1: \mathrm{RO} \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
FMULSU	Rd, Rr	Fractional Multiply Signed with Unsigned	$\mathrm{R} 1: \mathrm{RO} \leftarrow(\mathrm{Rd} \times \mathrm{Rr}) \ll 1$	Z,C	2
BRANCH INSTRUCTIONS					
RJMP	k	Relative Jump	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	2
IJMP		Indirect Jump to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	2
EIJMP		Extended Indirect Jump to (Z)	PC $\leftarrow(E I N D: Z)$	None	2
JMP	k	Direct Jump	$\mathrm{PC} \leftarrow \mathrm{k}$	None	3
RCALL	k	Relative Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	4
ICALL		Indirect Call to (Z)	$\mathrm{PC} \leftarrow \mathrm{Z}$	None	4
EICALL		Extended Indirect Call to (Z)	PC $\leftarrow(E I N D: Z)$	None	4
CALL	k	Direct Subroutine Call	$\mathrm{PC} \leftarrow \mathrm{k}$	None	5
RET		Subroutine Return	$\mathrm{PC} \leftarrow$ STACK	None	5
RETI		Interrupt Return	$\mathrm{PC} \leftarrow$ STACK	1	5
CPSE	Rd, Rr	Compare, Skip if Equal	if ($\mathrm{Rd}=\mathrm{Rr}$) $\mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
CP	Rd, Rr	Compare	Rd - Rr	Z, N, V, C, H	1
CPC	Rd, Rr	Compare with Carry	$\mathrm{Rd}-\mathrm{Rr}-\mathrm{C}$	$\mathrm{Z}, \mathrm{N}, \mathrm{V}, \mathrm{C}, \mathrm{H}$	1
CPI	Rd, K	Compare Register with Immediate	Rd-K	$\mathrm{Z}, \mathrm{N}, \mathrm{V}, \mathrm{C}, \mathrm{H}$	1
SBRC	Rr, b	Skip if Bit in Register Cleared	if $(\operatorname{Rr}(\mathrm{b})=0) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBRS	Rr, b	Skip if Bit in Register is Set	if $(\operatorname{Rr}(\mathrm{b})=1) \mathrm{PC} \leftarrow \mathrm{PC}+2$ or 3	None	1/2/3
SBIC	P, b	Skip if Bit in I/O Register Cleared	if $(P(b)=0) P C \leftarrow P C+2$ or 3	None	1/2/3
SBIS	P, b	Skip if Bit in I/O Register is Set	if $(P(b)=1) P C \leftarrow P C+2$ or 3	None	1/2/3
BRBS	s, k	Branch if Status Flag Set	if (SREG(s) $=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRBC	s, k	Branch if Status Flag Cleared	if (SREG(s) $=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BREQ	k	Branch if Equal	if $(\mathrm{Z}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRNE	k	Branch if Not Equal	if $(Z=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCS	k	Branch if Carry Set	if ($\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRCC	k	Branch if Carry Cleared	if ($\mathrm{C}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRSH	k	Branch if Same or Higher	if ($\mathrm{C}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLO	k	Branch if Lower	if $(\mathrm{C}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRMI	k	Branch if Minus	if ($\mathrm{N}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRPL	k	Branch if Plus	if ($\mathrm{N}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRGE	k	Branch if Greater or Equal, Signed	if ($\mathrm{N} \oplus \mathrm{V}=0$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRLT	k	Branch if Less Than Zero, Signed	if ($\mathrm{N} \oplus \mathrm{V}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHS	k	Branch if Half Carry Flag Set	if $(\mathrm{H}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRHC	k	Branch if Half Carry Flag Cleared	if ($\mathrm{H}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTS	k	Branch if T Flag Set	if $(T=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRTC	k	Branch if T Flag Cleared	if ($\mathrm{T}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
BRVS	k	Branch if Overflow Flag is Set	if ($\mathrm{V}=1$) then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if ($V=0)$ then $P C \leftarrow P C+k+1$	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(\mathrm{I}=1)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BRID	k	Branch if Interrupt Disabled	if $(\mathrm{I}=0)$ then $\mathrm{PC} \leftarrow \mathrm{PC}+\mathrm{k}+1$	None	1/2
BIT AND BIT-TEST INSTRUCTIONS					
SBI	P, b	Set Bit in I/O Register	$1 / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 1$	None	2
CBI	P, b	Clear Bit in I/O Register	$\mathrm{I} / \mathrm{O}(\mathrm{P}, \mathrm{b}) \leftarrow 0$	None	2
LSL	Rd	Logical Shift Left	$\mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{Rd}(0) \leftarrow 0$	Z,C,N, V	1
LSR	Rd	Logical Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \operatorname{Rd}(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$\operatorname{Rd}(0) \leftarrow \mathrm{C}, \mathrm{Rd}(\mathrm{n}+1) \leftarrow \operatorname{Rd}(\mathrm{n}), \mathrm{C} \leftarrow \operatorname{Rd}(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$\operatorname{Rd}(7) \leftarrow C, \operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{C} \leftarrow \operatorname{Rd}(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	$\operatorname{Rd}(\mathrm{n}) \leftarrow \operatorname{Rd}(\mathrm{n}+1), \mathrm{n}=0 . .6$	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	$\operatorname{Rd}(3.0) \leftarrow \operatorname{Rd}(7 . .4), \operatorname{Rd}(7 . .4) \leftarrow \operatorname{Rd}(3 . .0)$	None	1
BSET	s	Flag Set	SREG(s) $\leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	SREG(s) $\leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$\mathrm{T} \leftarrow \operatorname{Rr}$ (b)	T	1
BLD	Rd, b	Bit load from T to Register	$\operatorname{Rd}(\mathrm{b}) \leftarrow \mathrm{T}$	None	1
SEC		Set Carry	$\mathrm{C} \leftarrow 1$	C	1
CLC		Clear Carry	$\mathrm{C} \leftarrow 0$	C	1
SEN		Set Negative Flag	$\mathrm{N} \leftarrow 1$	N	1
CLN		Clear Negative Flag	$\mathrm{N} \leftarrow 0$	N	1
SEZ		Set Zero Flag	$\mathrm{Z} \leftarrow 1$	Z	1
CLZ		Clear Zero Flag	$\mathrm{Z} \leftarrow 0$	z	1
SEI		Global Interrupt Enable	$1 \leftarrow 1$	1	1
CLI		Global Interrupt Disable	$1 \leftarrow 0$	1	1
SES		Set Signed Test Flag	$\mathrm{S} \leftarrow 1$	S	1
CLS		Clear Signed Test Flag	$\mathrm{S} \leftarrow 0$	S	1
SEV		Set Twos Complement Overflow.	$V \leftarrow 1$	V	1
CLV		Clear Twos Complement Overflow	$\mathrm{V} \leftarrow 0$	V	1
SET		Set T in SREG	$\mathrm{T} \leftarrow 1$	T	1
CLT		Clear T in SREG	$\mathrm{T} \leftarrow 0$	T	1
SEH		Set Half Carry Flag in SREG	$\mathrm{H} \leftarrow 1$	H	1
CLH		Clear Half Carry Flag in SREG	$\mathrm{H} \leftarrow 0$	H	1
DATA TRANSFER INSTRUCTIONS					
MOV	Rd, Rr	Move Between Registers	$\mathrm{Rd} \leftarrow \mathrm{Rr}$	None	1
MOVW	Rd, Rr	Copy Register Word	$\mathrm{Rd}+1: \mathrm{Rd} \leftarrow \mathrm{Rr}+1: \mathrm{Rr}$	None	1
LDI	Rd, K	Load Immediate	$\mathrm{Rd} \leftarrow \mathrm{K}$	None	1
LD	Rd, X	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, X_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{X}), \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1, \mathrm{Rd} \leftarrow(\mathrm{X})$	None	2
LD	Rd, Y	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LD	Rd, $\mathrm{Y}+$	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Y}), \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1, \mathrm{Rd} \leftarrow(\mathrm{Y})$	None	2
LDD	Rd, $\mathrm{Y}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Y}+\mathrm{q})$	None	2
LD	Rd, Z	Load Indirect	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LD	Rd, Z_{+}	Load Indirect and Post-Inc.	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1, \mathrm{Rd} \leftarrow(\mathrm{Z})$	None	2
LDD	Rd, $\mathrm{Z}+\mathrm{q}$	Load Indirect with Displacement	$\mathrm{Rd} \leftarrow(\mathrm{Z}+\mathrm{q})$	None	2
LDS	Rd, k	Load Direct from SRAM	$\mathrm{Rd} \leftarrow \mathrm{L}$)	None	2
ST	X, Rr	Store Indirect	$(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	$\mathrm{X}+\mathrm{Rr}$	Store Indirect and Post-Inc.	$(\mathrm{X}) \leftarrow \mathrm{Rr}, \mathrm{X} \leftarrow \mathrm{X}+1$	None	2
ST	$-\mathrm{X}, \mathrm{Rr}$	Store Indirect and Pre-Dec.	$\mathrm{X} \leftarrow \mathrm{X}-1,(\mathrm{X}) \leftarrow \mathrm{Rr}$	None	2
ST	Y, Rr	Store Indirect	$(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
ST	Y + , Rr	Store Indirect and Post-Inc.	$(\mathrm{Y}) \leftarrow \mathrm{Rr}, \mathrm{Y} \leftarrow \mathrm{Y}+1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$\mathrm{Y} \leftarrow \mathrm{Y}-1,(\mathrm{Y}) \leftarrow \mathrm{Rr}$	None	2
STD	$\mathrm{Y}+\mathrm{q}, \mathrm{Rr}$	Store Indirect with Displacement	$(\mathrm{Y}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
ST	Z, Rr	Store Indirect	$(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
ST	Z + , Rr	Store Indirect and Post-Inc.	$(\mathrm{Z}) \leftarrow \mathrm{Rr}, \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$\mathrm{Z} \leftarrow \mathrm{Z}-1,(\mathrm{Z}) \leftarrow \mathrm{Rr}$	None	2
STD	Z q, Rr	Store Indirect with Displacement	$(\mathrm{Z}+\mathrm{q}) \leftarrow \mathrm{Rr}$	None	2
STS	k, Rr	Store Direct to SRAM	$(\mathrm{k}) \leftarrow \mathrm{Rr}$	None	2
LPM		Load Program Memory	$\mathrm{R} 0 \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z	Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3
LPM	Rd, Z_{+}	Load Program Memory and Post-Inc	$\mathrm{Rd} \leftarrow(\mathrm{Z}), \mathrm{Z} \leftarrow \mathrm{Z}+1$	None	3
ELPM		Extended Load Program Memory	R0 $\leftarrow($ RAMPZ:Z)	None	3
ELPM	Rd, Z	Extended Load Program Memory	$\mathrm{Rd} \leftarrow(\mathrm{Z})$	None	3

Mnemonics	Operands	Description	Operation	Flags	\#Clocks
ELPM	Rd, Z_{+}	Extended Load Program Memory	Rd \leftarrow (RAMPZ:Z), RAMPZ: $\mathrm{Z} \leftarrow$ RAMPZ:Z +1	None	3
SPM		Store Program Memory	$(\mathrm{Z}) \leftarrow \mathrm{R} 1: \mathrm{RO}$	None	-
IN	Rd, P	In Port	$\mathrm{Rd} \leftarrow \mathrm{P}$	None	1
OUT	P, Rr	Out Port	$\mathrm{P} \leftarrow \mathrm{Rr}$	None	1
PUSH	Rr	Push Register on Stack	STACK $\leftarrow \mathrm{Rr}$	None	2
POP	Rd	Pop Register from Stack	$\mathrm{Rd} \leftarrow$ STACK	None	2
MCU CONTROL INSTRUCTIONS					
NOP		No Operation		None	1
SLEEP		Sleep	(see specific descr. for Sleep function)	None	1
WDR		Watchdog Reset	(see specific descr. for WDR/timer)	None	1
BREAK		Break	For On-chip Debug Only	None	N/A

EICALL and EIJMP do not exist in ATmega640/1280/1281.
ELPM does not exist in ATmega640.

Ordering Information

ATmega1281/2561

Speed (MHz) ${ }^{(2)}$	Power Supply	Ordering Code	Package ${ }^{(1)}$	Operation Range
8	1.8-5.5V	ATmega1281/2561V-8AI ATmega1281/2561V-8AU ${ }^{(3)}$ ATmega1281/2561V-8MI ATmega1281/2561V-8MU ${ }^{(3)}$	$\begin{aligned} & \text { 64A } \\ & 64 \mathrm{~A} \\ & 64 \mathrm{M} 1 \\ & 64 \mathrm{M} 1 \end{aligned}$	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$
16	4.5-5.5V	ATmega1281/2561-16AI ATmega1281/2561-16AU ${ }^{(3)}$ ATmega1281/2561-16MI ATmega1281/2561-16MU ${ }^{(3)}$	64A 64M1 64A 64M1	Industrial $\left(-40^{\circ} \mathrm{C}\right.$ to $\left.85^{\circ} \mathrm{C}\right)$

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. See "Maximum speed vs. V_{CC} " on page 370.
3. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type	
64A	64-Lead, Thin $(1.0 \mathrm{~mm})$ Plastic Gull Wing Quad Flat Package (TQFP)
64M1	64-pad, $9 \times 9 \times 1.0 \mathrm{~mm}$ body, lead pitch 0.50 mm , Micro Lead Frame Package (QFN/MLF)
100A	100-Lead, Thin $(1.0 \mathrm{~mm})$ Plastic Gull Wing Quad Flat Package (TQFP)

ATmega640/1280/2560

Speed (MHz) ${ }^{(2)}$	Power Supply	Ordering Code	Package ${ }^{(1)}$	Operation Range
8	1.8-5.5V	ATmega640/1280/2560V-8AI ATmega640/1280/2560V-8AU ${ }^{(3)}$	$\begin{aligned} & 100 \mathrm{~A} \\ & 100 \mathrm{~A} \end{aligned}$	Industrial ($-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)
16	4.5-5.5V	ATmega640/1280/2560-16AI ATmega640/1280/2560-16AU ${ }^{(3)}$	$\begin{aligned} & \text { 100A } \\ & 100 \mathrm{~A} \end{aligned}$	Industrial ($-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.
2. See "Maximum speed vs. V_{CC} " on page 370 .
3. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

Package Type	
64A	64-Lead, Thin $(1.0 \mathrm{~mm})$ Plastic Gull Wing Quad Flat Package (TQFP)
64M1	64-pad, $9 \times 9 \times 1.0 \mathrm{~mm}$ body, lead pitch 0.50 mm , Micro Lead Frame Package (QFN/MLF)
100A	100-Lead, Thin $(1.0 \mathrm{~mm})$ Plastic Gull Wing Quad Flat Package (TQFP)

Packaging Information

100A

64A

Errata

ATmega640 rev. A

No errata.

ATmega1280 rev. A

No errata.
ATmega1280 rev. A
No errata.

ATmega2560 rev. A

- Non-Read-While-Write area of flash not functional
- Part does not work under 2.0 Volts

1. Non-Read-While-Write area of flash not functional

The Non-Read-While-Write area of the flash is not working as expected. The problem is related to the speed of the part when reading the flash of this area.

Problem Fix/Workaround

- Only use the first 248 K of the flash.
- If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum $1 / 4$ th of the maximum frequency of the device at any given voltage. This is done by writing the CLKPR register before entering the boot section of the code

2. Part does not work under 2.0 Volts

The part does not execute code correctly below 2.0 Volts
Problem Fix/Workaround
Do not use the part at voltages below 2.0 Volts.

ATmega2561 rev. A

- Non-Read-While-Write area of flash not functional
- Part does not work under 2.0 Volts

1. Non-Read-While-Write area of flash not functional

The Non-Read-While-Write area of the flash is not working as expected. The problem is related to the speed of the part when reading the flash of this area.

Problem Fix/Workaround

- Only use the first 248 K of the flash.
- If boot functionality is needed, run the code in the Non-Read-While-Write area at maximum 1/4th of the maximum frequency of the device at any given voltage. This is done by writing the CLKPR register before entering the boot section of the code

2. Part does not work under 2.0 Volts

The part does not execute code correctly below 2.0 Volts
Problem Fix/Workaround
Do not use the part at voltages below 2.0 Volts.

Datasheet Revision History

Rev. 2549A-12/04
Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

1. Initial version.

Atmel Corporation

2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl
Route des Arsenaux 41
Case Postale 80
CH-1705 Fribourg
Switzerland
Tel: (41) 26-426-5555
Fax: (41) 26-426-5500
Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369
Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Atmel Operations

Memory
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314

Microcontrollers
2325 Orchard Parkway
San Jose, CA 95131, USA
Tel: 1(408) 441-0311
Fax: 1(408) 436-4314
La Chantrerie
BP 70602
44306 Nantes Cedex 3, France
Tel: (33) 2-40-18-18-18
Fax: (33) 2-40-18-19-60
ASIC/ASSP/Smart Cards
Zone Industrielle
13106 Rousset Cedex, France
Tel: (33) 4-42-53-60-00
Fax: (33) 4-42-53-60-01
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759
Scottish Enterprise Technology Park
Maxwell Building
East Kilbride G750QR, Scotland
Tel: (44) 1355-803-000
Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2
Postfach 3535
74025 Heilbronn, Germany
Tel: (49) 71-31-67-0
Fax: (49) 71-31-67-2340
1150 East Cheyenne Mtn. Blvd.
Colorado Springs, CO 80906, USA
Tel: 1(719) 576-3300
Fax: 1(719) 540-1759

Biometrics/Imaging/Hi-Rel MPU/
High Speed Converters/RF Datacom
Avenue de Rochepleine
BP 123
38521 Saint-Egreve Cedex, France
Tel: (33) 4-76-58-30-00
Fax: (33) 4-76-58-34-80

Literature Requests
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© Atmel Corporation 2005. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, AVR ${ }^{\circledR}$, and AVR Studio ${ }^{\circledR}$ are registered trademarks, and Everywhere You Are ${ }^{\text {SM }}$ are the trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

