
Document No. IEU-1367A
 (O. D. No. IEU-835A)
Date Published July 1995 P
Printed in Japan

µPD17120

µPD17121

µPD17132

µPD17133

µPD17P132

µPD17P133

µPD17120 SUBSERIES

4-BIT SINGLE-CHIP MICROCONTROLLER

1993©

NOTES FOR CMOS DEVICES

1 PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note:

Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide

and ultimately degrade the device operation. Steps must be taken to stop generation of static

electricity as much as possible, and quickly dissipate it once, when it has occurred. Environ-

mental control must be adequate. When it is dry, humidifier should be used. It is recommended

to avoid using insulators that easily build static electricity. Semiconductor devices must be

stored and transported in an anti-static container, static shielding bag or conductive material.

All test and measurement tools including work bench and floor should be grounded. The

operator should be grounded using wrist strap. Semiconductor devices must not be touched

with bare hands. Similar precautions need to be taken for PW boards with semiconductor

devices on it.

2 HANDLING OF UNUSED INPUT PINS FOR CMOS

Note:

No connection for CMOS device inputs can be cause of malfunction. If no connection is

provided to the input pins, it is possible that an internal input level may be generated due to

noise, etc., hence causing malfunction. CMOS devices behave differently than Bipolar or NMOS

devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down

circuitry. Each unused pin should be connected to VDD or GND with a resistor, if it is considered

to have a possibility of being an output pin. All handling related to the unused pins must be

judged device by device and related specifications governing the devices.

3 STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note:

Power-on does not necessarily define initial status of MOS device. Production process of MOS

does not define the initial operation status of the device. Immediately after the power source

is turned ON, the devices with reset function have not yet been initialized. Hence, power-on

does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized

until the reset signal is received. Reset operation must be executed immediately after power-

on for devices having reset function.

SIMPLEHOST is a trademark of NEC Corporation.

MS-DOSTM and WINDOWSTM are trademarks of Microsoft Corporation.

PC/AT and PC DOS are trademarks of IBM Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be
prohibited without governmental license, the need for which must be judged by the customer. The export or re-
export of this product from a country other than Japan may also be prohibited without a license from that country.
Please call an NEC sales representative.

The information in this document is subject to change without notice.

No part of this document may be copied or reproduced in any form or by any means without the prior written
consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in
this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual
property rights of third parties by or arising from use of a device described herein or any other liability arising
from use of such device. No license, either express, implied or otherwise, is granted under any patents,
copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices,
the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or
property arising from a defect in an NEC semiconductor device, customer must incorporate sufficient safety
measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
“Standard“, “Special“, and “Specific“. The Specific quality grade applies only to devices developed based on
a customer designated “quality assurance program“ for a specific application. The recommended applications
of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each
device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment,
audio and visual equipment, home electronic appliances, machine tools, personal electronic
equipment and industrial robots

Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster
systems, anti-crime systems, safety equipment and medical equipment (not specifically designed
for life support)

Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life
support systems or medical equipment for life support, etc.

The quality grade of NEC devices in “Standard“ unless otherwise specified in NEC's Data Sheets or Data Books.
If customers intend to use NEC devices for applications other than those specified for Standard quality grade,
they should contact NEC Sales Representative in advance.
Anti-radioactive design is not implemented in this product.

M7 94.11

INTRODUCTION

Targeted Reader This manual is intended for the user engineers who understand functions of the

µPD17120 subseries and design their application systems using the µPD17120 sub-

series

Purpose The purpose of this manual is for the user to understand the hardware functions of

the µPD17120 subseries.

Use The manual assumes that the reader has a general knowledge of electricity, logic

circuits, microcontrollers.

• To understand the functions of the µPD17120 subseries in a general way;

→ Read the manual from CHAPTER 1.

• To look up instruction functions in detail when you know the mnemonic of

an instruction;

→ Use APPENDIX D INSTRUCTION LIST.

• To look up an instruction when you do not know its mnemonic but know

outlines of the function;

→ Refer to 18.3 LIST OF THE INSTRUCTION SET for search for the mnemonic

of the instruction, then see 18.5 INSTRUCTIONS for the function.

• To look up electrical characteristics of the µPD17120 subseries;

→ Refer to DATA SHEET.

Legend Data representation weight : High-order and low-order digits are indicated from

left to right.

Active low representation : ××× (pin or signal name is overlined)

Address of memory map : Top: low, Bottom: high

Note : Explanation of Note in the text

Caution : Caution to which you should pay attention

Remark : Supplementary explanation to the text

Number representation : Binary number ... ×××× or ××××B

Decimal number ... ×××× or ××××D

Hexadecimal number ... ××××H

EEU-847 [EEU-1412]

EEU-603 [EEU-1287]

EEU-907 [EEU-1464]

Relevant Documents The following documents are provided for the µPD17120 subseries.

The numbers listed in the table are the document numbers.

Some related documents are preliminary versions. This document, however, is not

indicated as "Preliminary".

Part Number

µPD17120 µPD17121 µPD17132 µPD17133 µPD17P132 µPD17P133

Document Name

Data sheet IC-8407 IC-8399 IC-8412 IC-8411 ID-8419 ID-8426

[IC-2972] [IC-2976] [IC-2973] [IC-2974] [ID-2971] [ID-2983]

User's manual This manual [IEU-1367]

IE-17K

CLICE Ver.1.6 EEU-929 [EEU-1467]

User's manual

IE-17K-ET

CLICE-ET Ver.1.6 EEU-931 [EEU-1466]

User's manual

SE board

User's manual

SIMPLEHOSTTM EEU-723 [EEU-1336] (Introduction)

User's manual EEU-724 [EEU-1337] (Reference)

AS17K (Ver.1.11)

User's manual

Device file

User's manual

Remark The numbers inside [] indicate English document number.

The µPD17120 subseries has different pin names and signal names depending on the system clock type, as

shown in the table below.

System Clock RC Oscillation Ceramic Oscillation

µPD17120 µPD17121

µPD17132 µPD17133

Pin/Signal Names µPD17P132 µPD17P133

OSC1 XIN

OSC0 XOUT

System Clock Frequency fCC fX

Unless otherwise specified, this manual uses XIN, XOUT, and fX for descriptions. When using the µPD17120,

17132, and 17P132, please change the readings to OSC1, OSC0 and fCC.

System Clock

Oscillation Pin

– i –

TABLE OF CONTENTS

CHAPTER 1 GENERAL... 1

1.1 FUNCTION LIST .. 2

1.2 ORDERING INFORMATION ... 3

1.3 BLOCK DIAGRAM ... 4

1.4 PIN CONFIGURATION (Top View) ... 6

CHAPTER 2 PIN FUNCTIONS ... 9

2.1 PIN FUNCTIONS ... 9

2.1.1 Pins in Normal Operation Mode ... 9

2.1.2 Pins in Program Memory Write/Verify Mode ... µPD17P132, 17P133 only 11

2.2 PIN INPUT/OUTPUT CIRCUIT ... 12

2.3 HANDLING UNUSED PINS .. 17

2.4 CAUTIONS ON USE OF THE RESET AND INT PINS

(in Normal Operation Mode only) ... 18

CHAPTER 3 PROGRAM COUNTER (PC) ... 19

3.1 PROGRAM COUNTER CONFIGURATION .. 19

3.2 PROGRAM COUNTER OPERATION.. 19

3.2.1 Program Counter at Reset .. 20

3.2.2 Program Counter during Execution of the Branch Instruction (BR) 20

3.2.3 Program Counter during Execution of Subroutine Calls (CALL) 21

3.2.4 Program Counter during Execution of Return Instructions (RET, RETSK, RETI) 22

3.2.5 Program Counter during Table Reference (MOVT) .. 22

3.2.6 Program Counter during Execution of Skip Instructions

(SKE, SKGE, SKLT, SKNE, SKT SKF) .. 22

3.2.7 Program Counter When an Interrupt Is Received ... 22

3.3 CAUTIONS ON PROGRAM COUNTER OPERATION .. 22

CHAPTER 4 PROGRAM MEMORY (ROM) .. 23

4.1 PROGRAM MEMORY CONFIGURATION ... 23

4.2 PROGRAM MEMORY USAGE ... 24

4.2.1 Flow of the Program ... 24

4.2.2 Table Reference .. 27

CHAPTER 5 DATA MEMORY (RAM) ... 31

5.1 DATA MEMORY CONFIGURATION .. 31

5.1.1 System Register (SYSREG) ... 32

5.1.2 Data Buffer (DBF) .. 32

5.1.3 General Register (GR) ... 32

5.1.4 Port Registers .. 33

– ii –

5.1.5 General Data Memory ... 33

5.1.6 Uninstalled Data Memory ... 33

CHAPTER 6 STACK .. 35

6.1 STACK CONFIGURATION .. 35

6.2 FUNCTIONS OF THE STACK ... 35

6.3 ADDRESS STACK REGISTER .. 36

6.4 INTERRUPT STACK REGISTER ... 36

6.5 STACK POINTER (SP) AND INTERRUPT STACK REGISTER 36

6.6 STACK OPERATION DURING SUBROUTINES, TABLE REFERENCES,

AND INTERRUPTS .. 37

6.6.1 Stack Operation during Subroutine Calls (CALL) and Returns (RET, RETSK) 37

6.6.2 Stack Operation during Table Reference (MOVT DBF, @AR) ... 38

6.6.3 Executing RETI Instruction.. 39

6.7 STACK NESTING LEVELS AND THE PUSH AND POP INSTRUCTIONS 39

CHAPTER 7 SYSTEM REGISTER (SYSREG) ... 41

7.1 SYSTEM REGISTER CONFIGURATION.. 41

7.2 ADDRESS REGISTER (AR) ... 43

7.2.1 Address Register Configuration .. 43

7.2.2 Address Register Functions .. 43

7.3 WINDOW REGISTER (WR)... 45

7.3.1 Window Register Configuration .. 45

7.3.2 Window Register Functions .. 45

7.4 BANK REGISTER (BANK) ... 46

7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER

(Memory Pointer: MP) .. 47

7.5.1 Index Register (IX) ... 47

7.5.2 Data Memory Row Address Pointer (Memory Pointer: MP) ... 47

7.5.3 MPE=0 and IXE=0 (No Data Memory Modification) ... 50

7.5.4 MPE=1 and IXE=0 (Diagonal Indirect Data Transfer) .. 52

7.5.5 MPE=0 and IXE=1 (Index Modification) ... 54

7.6 GENERAL REGISTER POINTER (RP) .. 59

7.6.1 General Register Pointer Configuration .. 59

7.6.2 Functions of the General Register Pointer ... 60

7.7 PROGRAM STATUS WORD (PSWORD) .. 61

7.7.1 Program Status Word Configuration .. 61

7.7.2 Functions of the Program Status Word ... 62

7.7.3 Index Enable Flag (IXE) ... 63

7.7.4 Zero Flag (Z) and Compare Flag (CMP) .. 63

7.7.5 Carry Flag (CY) ... 64

7.7.6 Binary-Coded Decimal Flag (BCD) .. 64

7.7.7 Caution on Use of Arithmetic Operations on the Program Status Word 64

7.8 CAUTIONS ON USE OF THE SYSTEM REGISTER ... 65

7.8.1 Reserved Words for Use with the System Register ... 65

7.8.2 Handling of System Register Addresses Fixed at 0 .. 67

– iii –

CHAPTER 8 GENERAL REGISTER (GR) .. 69

8.1 GENERAL REGISTER CONFIGURATION.. 69

8.2 FUNCTIONS OF THE GENERAL REGISTER .. 69

CHAPTER 9 REGISTER FILE (RF) ... 71

9.1 REGISTER FILE CONFIGURATION ... 71

9.1.1 Configuration of the Register File .. 71

9.1.2 Relationship between the Register File and Data Memory .. 71

9.2 FUNCTIONS OF THE REGISTER FILE .. 72

9.2.1 Functions of the Register File .. 72

9.2.2 Control Register Functions ... 72

9.2.3 Register File Manipulation Instructions .. 73

9.3 CONTROL REGISTER ... 75

9.4 CAUTIONS ON USING THE REGISTER FILE... 75

9.4.1 Concerning Operation of the Control Register (Read-Only and Unused Registers) 75

9.4.2 Register File Symbol Definitions and Reserved Words .. 76

CHAPTER 10 DATA BUFFER (DBF).. 79

10.1 DATA BUFFER CONFIGURATION... 79

10.2 FUNCTIONS OF THE DATA BUFFER.. 80

10.2.1 Data Buffer and Peripheral Hardware .. 81

10.2.2 Data Transfer with Peripheral Hardware .. 82

10.2.3 Table Reference .. 83

CHAPTER 11 ARITHMETIC AND LOGIC UNIT ... 85

11.1 ALU BLOCK CONFIGURATION ... 85

11.2 FUNCTIONS OF THE ALU BLOCK .. 85

11.2.1 Functions of the ALU .. 85

11.2.2 Functions of Temporary Registers A and B ... 90

11.2.3 Functions of the Status Flip-flop... 90

11.2.4 Performing Operations in 4-Bit Binary.. 91

11.2.5 Performing Operations in BCD ... 91

11.2.6 Performing Operations in the ALU Block ... 93

11.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN 4-BIT

BINARY AND BCD) ... 94

11.3.1 Addition and Subtraction When CMP=0 and BCD=0 ... 95

11.3.2 Addition and Subtraction When CMP=1 and BCD=0 ... 95

11.3.3 Addition and Subtraction When CMP=0 and BCD=1 ... 95

11.3.4 Addition and Subtraction When CMP=1 and BCD=1 ... 96

11.3.5 Cautions on Use of Arithmetic Operations .. 96

11.4 LOGICAL OPERATIONS ... 96

11.5 BIT JUDGEMENT .. 97

11.5.1 TRUE (1) Bit Judgement ... 98

11.5.2 FALSE (0) Bit Judgement .. 98

– iv –

11.6 COMPARISON JUDGEMENT .. 99

11.6.1 “Equal to” Judgement .. 100

11.6.2 “Not Equal to” Judgement ... 100

11.6.3 “Greater Than or Equal to” Judgement ... 101

11.6.4 “Less Than” Judgement ... 101

11.7 ROTATIONS ... 102

11.7.1 Rotation to the Right ... 102

11.7.2 Rotation to the Left ... 103

CHAPTER 12 PORTS.. 105

12.1 PORT 0A (P0A0, P0A1, P0A2, P0A3) ... 105

12.2 PORT 0B (P0B0, P0B1, P0B2, P0B3) .. 106

12.3 PORT 0C (P0C0, P0C1, P0C2, P0C3) ... in the case of the µPD17120 and 17121 107

12.4 PORT 0C (P0C0/Cin0, P0C1/Cin1, P0C2/Cin2, P0C3/Cin3) in the case of the µPD17132,

17133, 17P132, and 17P133.. 108

12.5 PORT 0D (P0D0/SCK, P0D1/SO, P0D2/SI, P0D3/TMOUT) .. 109

12.6 PORT 0E (P0E0, P0E1/Vref) ... Vref, µPD17132, 17133, 17P132, and

17P133 only ... 111

12.6.1 Cautions when Operating Port Registers .. 112

12.7 PORT CONTROL REGISTER .. 113

12.7.1 Input/Output Switching by Group I/O ... 113

12.7.2 Input/Output Switching by Bit I/O .. 114

CHAPTER 13 PERIPHERAL HARDWARE ... 117

13.1 8-BIT TIMER COUNTER (TM) .. 117

13.1.1 8-Bit Timer Counter Configuration .. 117

13.1.2 8-bit Timer Counter Control Register ... 119

13.1.3 Operation of 8-bit Timer Counters ... 120

13.1.4 Selecting Count Pulse ... 120

13.1.5 Setting a Count Value in Modulo Register and Calculation Method 121

13.1.6 Margin of Error of Interval Time ... 124

13.1.7 Reading Count Register Values .. 126

13.1.8 Timer Output ... 129

13.1.9 Timer Resolution and Maximum Setting Time .. 130

13.2 COMPARATOR (mPD17132, 17133, 17P132, AND 17P133 ONLY) 131

13.2.1 Configuration of Comparator... 131

13.2.2 Functions of Comparator... 132

13.3 SERIAL INTERFACE (SIO) .. 135

13.3.1 Functions of the Serial Interface .. 135

13.3.2 3-wire Serial Interface Operation Modes ... 137

13.3.3 Setting Values in the Shift Register ... 141

13.3.4 Reading Values from the Shift Register ... 142

13.3.5 Program Example of Serial Interface .. 143

– v –

CHAPTER 14 INTERRUPT FUNCTIONS .. 145

14.1 INTERRUPT SOURCES AND VECTOR ADDRESS... 146

14.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT 147

14.2.1 Interrupt Request Flag (IRQ×××) and the Interrupt Enable Flag (IP×××) 147

14.2.2 EI/DI Instruction ... 147

14.3 INTERRUPT SEQUENCE .. 152

14.3.1 Acceptance of Interrupts .. 152

14.3.2 Return from the Interrupt Routine ... 154

14.3.3 Interrupt Acceptance Timing... 155

14.4 PROGRAM EXAMPLE OF INTERRUPT ... 158

CHAPTER 15 STANDBY FUNCTIONS ... 161

15.1 OUTLINE OF STANDBY FUNCTION ... 161

15.2 HALT MODE .. 163

15.2.1 HALT Mode Setting ... 163

15.2.2 Start Address after HALT Mode is Canceled ... 163

15.2.3 HALT Setting Condition ... 165

15.3 STOP MODE .. 167

15.3.1 STOP Mode Setting .. 167

15.3.2 Start Address after STOP Mode Cancellation.. 167

15.3.3 STOP Setting Condition .. 169

CHAPTER 16 RESET .. 171

16.1 RESET FUNCTIONS .. 171

16.2 RESETTING .. 172

16.3 POWER-ON/POWER-DOWN RESET FUNCTION .. 173

16.3.1 Conditions Required to Enable the Power-On Reset Function ... 173

16.3.2 Description and Operation of the Power-On Reset Function ... 174

16.3.3 Condition Required for Use of the Power-Down Reset Function 176

16.3.4 Description and Operation of the Power-Down Reset Function 176

CHAPTER 17 ONE-TIME PROM WRITING/VERIFYING ... 179

17.1 DIFFERENCES BETWEEN MASK ROM VERSION AND

ONE-TIME PROM VERSION .. 179

17.2 OPERATING MODE IN PROGRAM MEMORY WRITING/VERIFYING......................... 180

17.3 WRITING PROCEDURE OF PROGRAM MEMORY .. 181

17.4 READING PROCEDURE OF PROGRAM MEMORY.. 182

CHAPTER 18 INSTRUCTION SET .. 185

18.1 OVERVIEW OF THE INSTRUCTION SET ... 185

18.2 LEGEND ... 186

18.3 LIST OF THE INSTRUCTION SET ... 187

18.4 ASSEMBLER (AS17K) MACRO INSTRUCTIONS .. 188

– vi –

18.5 INSTRUCTIONS... 189

18.5.1 Addition Instructions ... 189

18.5.2 Subtraction Instructions .. 202

18.5.3 Logical Operation Instructions .. 211

18.5.4 Judgment Instruction .. 216

18.5.5 Comparison Instructions ... 218

18.5.6 Rotation Instructions ... 221

18.5.7 Transfer Instructions ... 222

18.5.8 Branch Instructions ... 239

18.5.9 Subroutine Instructions ... 241

18.5.10 Interrupt Instructions ... 247

18.5.11 Other Instructions.. 249

CHAPTER 19 ASSEMBLER RESERVED WORDS.. 251

19.1 MASK OPTION PSEUDO INSTRUCTIONS... 251

19.1.1 OPTION and ENDOP Pseudo Instructions ... 251

19.1.2 Mask Option Definition Pseudo Instructions ... 252

19.2 RESERVED SYMBOLS.. 254

19.2.1 List of Reserved Symbols (µPD17120, 17121) .. 254

19.2.2 List of Reserved Symbols (µPD17132, 17133, 17P132, 17P133) 260

APPENDIX A DEVELOPMENT TOOLS .. 267

APPENDIX B ORDERING MASK ROM .. 269

APPENDIX C CAUTIONS TO TAKE IN SYSTEM CLOCK OSCILLATION CIRCUIT

 CONFIGURATIONS .. 271

APPENDIX D INSTRUCTION LIST ... 273

APPENDIX E REVISION HISTORY ... 275

– vii –

LIST OF FIGURES (1/2)

Figure No. Title Page

3-1 Program Counter ... 19
3-2 Value of the Program Counter after an Instruction Is Executed .. 20
3-3 Value in the Program Counter after Reset ... 20
3-4 Value in the Program Counter during Execution of a Direct Branch Instruction 20
3-5 Value in the Program Counter during Execution of an Indirect Branch Instruction................ 21
3-6 Value in the Program Counter during Execution of a Direct Subroutine Call 21
3-7 Value in the Program Counter during Execution of an Indirect Subroutine Call 21
3-8 Value in the Program Counter during Execution of a Return Instruction 22

4-1 Program Memory Map for the µPD17120 Subseries .. 23
4-2 Direct Subroutine Call (CALL addr) .. 26
4-3 Table Reference (MOVT DBF, @AR) ... 27

5-1 Configuration of Data Memory .. 31
5-2 System Register Configuration .. 32
5-3 Data Buffer Configuration .. 32
5-4 General Register (GR) Configuration ... 33
5-5 Port Register Configuration ... 33

6-1 Stack Configuration.. 35

7-1 Allocation of System Register in Data Memory... 41
7-2 System Register Configuration .. 42
7-3 Address Register Configuration ... 43
7-4 Address Register Used as a Peripheral Register ... 44
7-5 Window Register Configuration... 45
7-6 Bank Register Configuration .. 46
7-7 Index Register and Memory Pointer Configuration ... 48
7-8 Data Memory Address Modification by Index Register and Memory Pointer 48
7-9 Example of Operation When MPE=0 and IXE=0... 51
7-10 Example of Operation When MPE=1 and IXE=0... 53
7-11 Example of Operation When MPE=0 and IXE=1... 55
7-12 Example of Operation When MPE=0 and IXE=1... 57
7-13 Example of Operation When MPE=0 and IXE=1 (Array Processing) 58
7-14 General Register Pointer Configuration ... 59
7-15 General Register Configuration.. 60
7-16 Program Status Word Configuration .. 61
7-17 Outline of Functions of the Program Status Word .. 62

8-1 General Register Configuration.. 70

9-1 Register File Configuration .. 71
9-2 Relationship Between the Register File and Data Memory... 72
9-3 Accessing the Register File Using the PEEK and POKE Instructions 74

10-1 Allocation of the Data Buffer ... 79
10-2 Data Buffer Configuration .. 80
10-3 Relationship Between the Data Buffer and Peripheral Hardware.. 80

11-1 Configuration of the ALU ... 86

12-1 Changes in port register due to execution of the CLR1 P0E1 instruction 112
12-2 Input/Output Switching by Group I/O .. 113
12-3 Bit I/O Port Control Register .. 114

– viii –

LIST OF FIGURES (2/2)

Figure No. Title Page

13-1 Configuration of the 8-bit Timer Counter ... 118
13-2 Timer Mode Register ... 119
13-3 Setting the Count Value in a Modulo Register ... 122
13-4 Error in Zero-Clearing the Count Registe during Counting .. 124
13-5 Error in Starting Counting from the Count Halt State .. 125
13-6 Reading 8-Bit Counter Count Values ... 127
13-7 Timer Output Control Mode Register .. 129
13-8 Configuration of Comparator ... 131
13-9 Comparator Input Channel Selection Register ... 133
13-10 Reference Voltage Selection Register ... 133
13-11 Comparator Operation Control Register .. 134
13-12 Block Diagram of the Serial Interface .. 136
13-13 Timing of 8-Bit Transmission and Reception Mode

(Simultaneous Transmission Reception) .. 137
13-14 Timing of the 8-Bit Reception Mode ... 138
13-15 Serial Interface Control Register .. 139
13-16 Setting a Value in the Shift Register .. 141
13-17 Reading a Value from the Shift Register .. 142

14-1 Interrupt Control Register .. 148
14-2 Interrupt Handling Procedure... 153
14-3 Return from Interrupt Handling.. 154
14-4 Interrupt Acceptance Timing Chart (when INTE=1 and IP×××=1) ... 155

15-1 Cancellation of HALT Mode ... 164
15-2 Cancellation of STOP Mode... 168

16-1 Reset Block Configuration ... 172
16-2 Resetting ... 172
16-3 Example of the Power-On Reset Operation .. 175
16-4 Example of the Power-Down Reset Operation ... 177
16-5 Example of Reset Operation during the Period from Power-Down Reset to

Power Recovery .. 178

17-1 Procedure of program Memory Writing... 182
17-2 Procedure of Program Memory Reading ... 183
19-1 Configuration of Control Register (µPD17120, 17121) .. 258
19-2 Configuration of Control Register (µPD17132, 17133, 17P132, 17P133) 264

C-1 Externally Installed System Clock Oscillation Circuit ... 271
C-2 Unsatisfactory Oscillation Circuit Examples .. 272

– ix –

LIST OF TABLES (1/1)

Table No. Title Page

2-1 Handling Unused Pins .. 17

4-1 Vector Address for the µPD17120 Subseries .. 25

6-1 Operation of the Stack Pointer .. 37
6-2 Operation of the Stack Pointer during Execution .. 38
6-3 Stack Operation during Table Reference ... 38
6-4 Stack Operation during Interrupt Receipt and Return.. 39
6-5 Stack Operation during the PUSH and POP Instructions .. 39

7-1 Address-modified Instruction Statements ... 49
7-2 Zero Flag (Z) and Compare Flag (CMP) .. 63

10-1 Peripheral Hardware .. 81

11-1 List of ALU Instructions ... 88
11-2 Results of Arithmetic Operations Performed in 4-Bit Binary and BCD 92
11-3 Types of Arithmetic Operations ... 94
11-4 Logical Operations ... 97
11-5 Table of True Values for Logical Operations .. 97
11-6 Bit Judgement Instructions ... 97
11-7 Comparison Judgement Instructions... 99

12-1 Writing into and Reading from the Port Register (0.70H) .. 105
12-2 Writing into and Reading from the Port Register (0.71H) .. 106
12-3 Writing/reading to/from Port Register (0.72H) (µPD17120, 17121) 107
12-4 Writing into and Reading from the Port Register (0.72H) and Pin Function Selection........... 108
12-5 Register File Contents and Pin Functions .. 110
12-6 Contents Read from the Port Register (0.73H).. 110
12-7 Writing into and Reading from the Port Registers (0.6FH.0, 0.6FH.1) 111

13-1 Timer Resolution and Maximum Setting Time .. 130
13-2 List of Serial Clock ... 135
13-3 Serial Interface’s Operation Mode ... 137

14-1 Interrupt Source Types .. 146
14-2 Interrupt Request Flag and Interrupt Enable Flag .. 147

15-1 States during Standby Mode ... 162
15-2 HALT Mode Cancellation Condition ... 163
15-3 Start Address After HALT Mode Cancellation ... 163
15-4 STOP Mode Cancellation Condition... 167
15-5 Start Address After STOP Mode Cancellation ... 167

16-1 State of Each Hardware Unit When Reset .. 171

17-1 Pins Used for Writing/Verifying Program Memory .. 179
17-2 Differences Between Mask ROM Version and One-Time PROM Version 180
17-3 Operating Mode Setting .. 180

19-1 Mask Option Definition Pseudo Instructions ... 252

– x –

[MEMO]

CHAPTER 1 GENERAL

The µPD17120, 17121, 17132 and 17133 are 4-bit single-chip microcontrollers employing the 17K architecture

and containing 8-bit timer (1 channel), 3-wire serial interface, and power-on/power-down reset circuit.

The µPD17P132 and 17P133 are the one-time PROM version of the µPD17132 and 17133, respectively, and are

suitable for program evaluation at system development and for small-scale production.

The following are features of the µPD17120 subseries.

• Comparator input (µPD17132, 17133, 17P132, 17P133 only)
. Comparison function with external reference voltage (Vref)
. Can be used as 4-bit A/D converter by using 15 types of internal reference voltage (1/16 to 15/16 VDD) depending

on the software

• 3-wire serial interface: 1 channel

• Power-on/power-down reset circuit (reducing external circuits)

• µPD17P132 and 17P133 can operate in the same way as mask ROM version
. VDD = 2.7 to 5.5 V

These features of the µPD17120 subseries are suitable for use as a controller or a sub-microcomputer device in

the following application fields;

• Electric fan

• Hot plate

• Audio equipment

• Mouse

• Printer

• Plain paper copier

1

CHAPTER 1 GENERAL

2

Operating Supply Voltage

1.1 FUNCTION LIST

Item

µPD17120 µPD17132 µPD17P132 µPD17121 µPD17133 µPD17P133

Product Name

Masked ROM One-time PROM Masked ROM One-time PROM

ROM Capacity 1.5K bytes 2K bytes 1.5K bytes 2K bytes

(768 × 16 bits) (1024 × 16 bits) (768 × 16 bits) (1024 × 16 bits)

RAM Capacity 64 × 4 bits 111 × 4 bits 64 × 4 bits 111 × 4 bits

Stack 5 address stacks; 1 interrupt stack

• 18 input/output ports
Input/output port count 19 ports

• 1 sense input (INT pinNote)

Comparator 4-channel 4-channel

(Supply voltage) (VDD = 2.7 to 5.5 V) (VDD = 2.7 to 5.5 V)

Timer 1-channel (8-bit timer)

Serial Interface 1-channel (3-wire)

Detection of the rising edge

• 1 external interrupt (INT): Detection of the trailing edge Selectable

Interrupt Detection of both rising and trailing edges

• Timer (TM)

• Serial interface (SIO)

System clock RC oscillation Ceramic oscillation

Instruction Execution Time 8 µs (when fCC = 2 MHz) 2 µs (when fX = 8 MHz)

Standby Function HALT, STOP

Power-on/Power-down Incorporated Incorporated

Reset Circuit (Can be used on an applied circuit (Can be used on an applied circuit

of VDD=5 V±10%) of VDD=5 V±10%; fX = 400 kHz to 4 MHz)

• 2.7 to 5.5 V

• 4.5 to 5.5 V (When using the power-on power/down reset function)

• 24-pin plastic shrink DIP (300 mil)

• 24-pin plastic SOP (375 mil)

One-time PROM Product µPD17P132 – µPD17P133 –

Note When not using the external interrupt function, the INT pin can be used as an input-only pin (sense input).

As a sense input, the pin status is read not by the port register but by the control register's INT flag.

Caution Despite a high level of functional compatibility with the masked ROM product, the PROM product

is different in terms of the internal ROM circuit and some electric features. When switching from

a PROM to a masked ROM product, be sure to sufficiently evaluate the application of the masked

ROM product based on its sample.

None None

• 2 internal interrupts

Package

CHAPTER 1 GENERAL

3

1.2 ORDERING INFORMATION

Part Number Package Internal ROM

µPD17120CS-××× 24-pin plastic shrink DIP (300 mil) Mask ROM

µPD17120GT-××× 24-pin plastic SOP (375 mil) Mask ROM

µPD17121CS-××× 24-pin plastic shrink DIP (300 mil) Mask ROM

µPD17121GT-××× 24-pin plastic SOP (375 mil) Mask ROM

µPD17132CS-××× 24-pin plastic shrink DIP (300 mil) Mask ROM

µPD17132GT-××× 24-pin plastic SOP (375 mil) Mask ROM

µPD17133CS-××× 24-pin plastic shrink DIP (300 mil) Mask ROM

µPD17133GT-××× 24-pin plastic SOP (375 mil) Mask ROM

µPD17P132CS 24-pin plastic shrink DIP (300 mil) One-time PROM

µPD17P132GT 24-pin plastic SOP (375 mil) One-time PROM

µPD17P133CS 24-pin plastic shrink DIP (300 mil) One-time PROM

µPD17P133GT 24-pin plastic SOP (375 mil) One-time PROM

Remark ×××: ROM code number

CHAPTER 1 GENERAL

4

1.3 BLOCK DIAGRAM

 • Block diagram of the µPD17120 and 17121

Remark The terms CMOS and N-ch in parentheses indicate the output form of the port.

CMOS: CMOS push-pull output

N-ch: N-channel open-drain output (Each pin can contain pull-up resistor as specified using a mask

option.)

P0B0

P0B1

P0B2

P0B3

P0B
(CMOS)

P0A0

P0A1

P0A2

P0A3

P0A
(CMOS)

P0C0

P0C1

P0C2

P0C3

P0C
(CMOS)

P0E0

P0E1

P0E
(N-ch)

ALU

Instruction
Decoder

ROM
768 × 16 bits

Program Counter

Stack 5 × 10 bits

Interrupt
Controller

Timer

IRQTM
IRQSIO

fX /2N

Clock
Divider

System Clock
Generator

XIN

XOUT

P0D0/SCK
P0D1/SO
P0D2/SI
P0D3/TMOUT

INT

fX /2N CPU CLK CLK STOP

VDD

Power On/
Power-Down
Reset

RESET

GND

RF

RAM
64 × 4 bits

SYSTEM REG.

IRQTM

P0D
(N-ch)

IRQSIO

Serial
I/O

TM

CHAPTER 1 GENERAL

5

 • Block diagram of µPD17132, 17133, 17P132, and 17P133

Remark The terms CMOS and N-ch in parentheses indicate the output form of the port.

CMOS: CMOS push-pull output

N-ch: N-channel open-drain output (Each pin can contain pull-up resistor as specified using a mask

option.)

Note The devices in parentheses are effective only in the case of program memory write/verify mode of the

µPD17P132 and µPD17P133.

P0B0

P0B1

P0B2

P0B3

P0B
(CMOS)

P0A0

P0A1

P0A2

P0A3

P0A
(CMOS)

P0C0/Cin0

P0C1/Cin1

P0C2/Cin2

P0C3/Cin3

P0C
(CMOS)

Compa-
rator

ALU

Instruction
Decoder

ROM
1024 × 16 bits

Program Counter

Stack 5 × 10 bits

Interrupt
Controller

Timer

IRQTM
IRQSIO

fX /2N

Clock
Divider

System Clock
Generator

XIN (CLK)Note

XOUT

P0D0/SCK
P0D1/SO
P0D2/SI
P0D3/TMOUT

INT (VPP)Note

fX /2N CPU CLK CLK STOP

VDD

Power On/
Power-Down
Reset

RESET

GND

RF

RAM
111 × 4 bits

SYSTEM REG.

IRQTM

P0D
(N-ch)

IRQSIO

Serial
Interface

TM

P0E
(N-ch)

P0E0

P0E1/Vref

CHAPTER 1 GENERAL

6

1.4 PIN CONFIGURATION (Top View)

(1) Normal operating mode

24-pin plastic shrink DIP

24-pin plastic SOP

Notes 1. There is no Vref pin for the µPD17120 and 17121.

2. Pins Cin0 to Cin3 do not exist in the µPD17120 and 17121.

GND

XIN

XOUT

RESET

P0A0

P0A1

P0A2

P0A3

P0B0

P0B1

P0B2

P0B3

VDD

P0E1/Vref
Note 1

P0E0

P0D3/TMOUT

P0D2/SI

P0D1/SO

P0D0/SCK

INT

P0C3/Cin3 Note 2

P0C2/Cin2 Note 2

P0C1/Cin1 Note 2

P0C0/Cin0 Note 2

µ
P

D
1
7
1
2
0
C

S
-×××

, P
D

1
7
1
2
0
G

T
-×××

P
D

1
7
1
2
1
C

S
-×××

, P
D

1
7
1
2
1
G

T
-×××

P
D

1
7
1
3
2
C

S
-×××

, P
D

1
7
1
3
2
G

T
-×××

P
D

1
7
1
3
3
C

S
-×××

, P
D

1
7
1
3
3
G

T
-×××

P
D

1
7
P

1
3
2
C

S
, P

D
1
7
P

1
3
2
G

T

P
D

1
7
P

1
3
3
C

S
, P

D
1
7
P

1
3
3
G

T

1

2

3

4

5

6

7

8

9

10

11

12

24

23

22

21

20

19

18

17

16

15

14

13

µ
µ

µ
µ

µ
µ

µ
µ

µ
µ

µ

CHAPTER 1 GENERAL

7

(2) Program memory write/verify mode

Caution () represents processing of the pins which are not used in program memory write/verify mode.

L : Connect to GND via pull-down resistor one by one.

Open : This pin should not be connected.

(3) Pin name

Cin0 to Cin3 : Comparator input

CLK : Clock input for address verification

D0 to D7 : Data input/output

GND : Ground

INT : External interrupt input

MD0 to MD3 : Operating mode selection

P0A0 to P0A3 : Port 0A

P0B0 to P0B3 : Port 0B

P0C0 to P0C3 : Port 0C

P0D0 to P0D3 : Port 0D

P0E0 to P0E3 : Port 0E

RESET : Reset input

SCK : Serial clock input/output

SI : Serial data input

SO : Serial data output

TMOUT : Timer output

VDD : Power supply

VPP : Programming voltage supply

Vref : External reference voltage

XIN, XOUT : System clock oscillation

GND

CLK

Open

(L)

MD0

MD1

MD2

MD3

D0

D1

D2

D3

VDD

VPP

D7

D6

D5

D4

µ
P

D
1
7
P

1
3
2
C

S

P
D

1
7
P

1
3
2
G

T

P
D

1
7
P

1
3
3
C

S

P
D

1
7
P

1
3
3
G

T

1

2

3

4

5

6

7

8

9

10

11

12

24

23

22

21

20

19

18

17

16

15

14

13

µµµ













(L)

[MEMO]

8

– –

CHAPTER 2 PIN FUNCTIONS

2.1 PIN FUNCTIONS

2.1.1 Pins in Normal Operation Mode

Output At Power-
Pin No. Symbol Function

Format on/Reset

1 GND Grounded – –

2 XIN µPD17121, 17133, 17P133

3 XOUT • XIN, XOUT

. Pins for system clock resonator oscillation

. Connected to ceramic resonator

2 OSC1 µPD17120, 17132, 17P132

3 OSC0 • OSC0, OSC1

. Pins for system clock oscillation

. Resistor is connected between OSC0 and OSC1

4 RESET System reset input – Input

Pull-up resistor can be incorporated by mask optionNote

5 P0A0 Port 0A CMOS Input

| | . 4-bit I/O port Push-pull

8 P0A3 . Input/output can be set by each bit

9 P0B0 Port 0B CMOS Input

| | . 4-bit I/O port Push-pull

12 P0B3 . Input/output can be set by 4-bit unit

13 P0C0/Cin0 Port 0C and analog voltage input of comparator CMOS Input

| | • P0C0 to P0C3 Push-pull (P0C)

16 P0C3/Cin3 . 4-bit I/O port
. Input/output can be set by each bit

• Cin0 to Cin3 (µPD17132, 17133, 17P132, 17P133 only)
. Analog input of comparator

17 INT External interrupt request signal input and sense input – Input

Note The µPD17P132 and 17P133 have no pull-up resistor by mask option.

9

CHAPTER 2 PIN FUNCTIONS

10

Output At Power-
Pin No. Symbol Function

Format on/Reset

18 P0D0/SCK Port 0D, output of timer, serial data input, serial data N-ch Input

output, serial clock input/output Open drain (P0D)

• P0D0 to P0D3

. 4-bit I/O port

. Input/output can be set per bit

. Pull-up resistor can be incorporated by each bit by

mask optionNote

• SCK
. Serial clock input/output

19 P0D1/SO • SO
. Serial data output

20 P0D2/SI • SI
. Serial data input

21 P0D3/TMOUT • TMOUT
. Output of timer

22 P0E0 Port 0E and reference voltage input of comparator N-ch Input

23 P0E1/Vref • P0E0, P0E1 open drain (P0E)
. 2-bit I/O port
. Input/output can be set by each bit
. Pull-up resistor can be incorporated per bit by mask

optionNote

• Vref (µPD17132,17133, 17P132, 17P133 only)
. External reference voltage input of comparator

24 VDD Positive power supply – –

Note The µPD17P132 and 17P133 have no pull-up resistor by mask option.

CHAPTER 2 PIN FUNCTIONS

11

2.1.2 Pins in Program Memory Write/Verify Mode ... µPD17P132, 17P133 only

Pin No. Symbol Function I/O

1 GND Grounded –

2 CLK Clock input for address updating in program memory writing/verifying Input

5 MD0

| | Input for selecting operation mode in program memory writing/verifying Input

8 MD3

9 D0

| | 8-bit data input/output in program memory writing/verifying Input/Output

12 D7

17 VPP Pin for applying programming voltage in program memory –

writing/verifying

Apply +12.5 V

24 VDD Positive power supply –

Apply +6 V in program memory writing/verifying.

CHAPTER 2 PIN FUNCTIONS

12

2.2 PIN INPUT/OUTPUT CIRCUIT

Below are simplified diagrams of the input/output circuits for each pin of the µPD17120 subseries.

(1) P0A0-P0A3, P0B0-P0B3

Data

Output
disable

Selector

P-ch

N-ch

VDD

Input buffer

Output
latch

CHAPTER 2 PIN FUNCTIONS

13

(2) P0C0/Cin0-P0C3/Cin3
Note

Note Pins Cin0 to Cin3 are not included in the µPD17120 and 17121.

Data

Output
disable

Selector

P-ch

N-ch

VDD

Input buffer

Output
latch

Input
disable

Analog
(comparator)
input

CHAPTER 2 PIN FUNCTIONS

14

(3) P0D0-P0D3

Note The µPD17P132 and 17P133 have no pull-up resistor by mask option, and are always open.

(4) P0E0

Note The µPD17P132 and 17P133 have no pull-up resistor by mask option, and are always open.

Data

Output
disable

Selector

N-ch

VDD

Input buffer

Output
latch

Mask option Note

Data

Output
disable

N-ch

VDD

Input buffer

Output
latch

Mask option Note

CHAPTER 2 PIN FUNCTIONS

15

(5) P0E1/Vref
Note1

Notes 1. The µPD17120 and 17121 have no Vref pin function.

2. The µPD17P132 and 17P133 have no pull-up resistor by mask option, and are always open.

(6) INT

Data

Vref

enable

N-ch

VDD

Output
latch

Mask option Note 2

Selector

Input buffer

Vref

Output
disable

Input buffer

CHAPTER 2 PIN FUNCTIONS

16

(7) RESET

Note The µPD17P132 and 17P133 have no pull-up resistor by mask option, and are always open.

Input buffer

VDD

Mask option Note

CHAPTER 2 PIN FUNCTIONS

17

2.3 HANDLING UNUSED PINS

In normal operation mode, it is recommended to process the unused pins as follows:

Table 2-1. Handling Unused Pins

Recommended Measures

Inside Microcontroller Outside Microcontroller

P0A, P0B, P0C –

Does not incorporate a pull-up

resistor by the mask option

Incorporates a pull-up resistor

by the mask option.

P0A, P0BP0C

(CMOS port)

Outputs low level without

incorporating pull-up resistor by

the mask option.

Outputs high level with a pull-up

resistor incorporated by the

mask option.

External Interrupt (INT)Note2 – Directly connected to GND

Does not incorporate a pull-up

resistor by the mask option

Incorporates a pull-up resistor

by the mask option.

Notes 1. When externally pulling up (connecting to VDD through a resistor) or pulling down (connecting to the

GND through a resistor), make sure to pay attention to the port's driving ability and current

consumption. When pulling up or pulling down at a high resistance value, be careful to ensure that

no noise is caused in the relevant pin. Although it depends on the applied circuit as well, it is usual

to choose several tens of kΩ as the resistance value for pull-up or pull-down.

2. The INT pin is for the test mode setting function as well; connect it directly to the GND when unused.

3. If the applied circuit requires a high level of reliability, be sure to design it so that the RESET signal

is input externally. Also, since the RESET pin is for the test mode setting function as well, connect

it directly to the VDD when unused.

Caution The output levels of the input/output mode and pins are recommended to be fixed by being set

repeatedly in their respective loops in the program.

Remark The µPD17P132 and 17P133 do not contain pull-up resistors by the mask option.

Each pin is connected to VDD or

GND through the resistor.Note1

Open

Pin Name

Input mode

P0D, P0E

–

P
or

t

Output mode
OpenP0D and P0E (N-ch

open drain port)

RESETNote3

when using only the built-in

power-ON/power-DOWN reset

Directly connected to VDD

CHAPTER 2 PIN FUNCTIONS

18

2.4 CAUTIONS ON USE OF THE RESET AND INT PINS (in Normal Operation Mode only)

In addition to the function described in 2.1 PIN FUNCTIONS, the RESET pin and the INT pin have the function

(for IC testing only) of setting test mode for testing the internal operation of the µPD17120 subseries.

If a voltage exceeding the VDD is applied to either of these pins, test mode is set. Therefore, adding a noise

exceeding VDD even in normal operation may result in placing the pin in test mode, thus impeding normal operation.

For example, if the RESET or INT pin wires are laid out too long, wiring noise is added to these pins, thus causing

the above problem. Therefore, make sure that the wires are laid down in such a manner that such inter-wire noises

are suppressed as much as possible. If noise is still a problem, take noise countermeasures based on external parts

as shown in the illustrations below.

• Connecting a Diode of Small VF between VDDs • Connecting a Capacitor between VDDs

VDD

RESET, INT

VDD
Diode whose
VF is small

VDD

RESET, INT

VDD

CHAPTER 3 PROGRAM COUNTER (PC)

The program counter is used to specify an address in program memory.

3.1 PROGRAM COUNTER CONFIGURATION

Figure 3-1 shows the configuration of the program counter.

The program counters are 10-bit binary counters.

This program counter is incremented whenever an instruction is executed.

Figure 3-1. Program Counter

3.2 PROGRAM COUNTER OPERATION

Normally, the program counter is automatically incremented each time a command is executed. The memory

address at which the next instruction to be executed is stored is assigned to the program counter under the following

conditions: At reset; when a branch, subroutine call, return, or table referencing instruction is executed; or when

an interrupt is received.

Sections 3.2.1 to 3.2.7 explain program counter operating during execution of each instruction.

MSB

PC9

PC

PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

LSB

19

CHAPTER 3 PROGRAM COUNTER (PC)

20

Figure 3-2. Value of the Program Counter after an Instruction Is Executed

Program Counter Bit Program Counter Value

Instruction PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

During reset 0 0 0 0 0 0 0 0 0 0

BR addr

CALL addr

BR @AR

CALL @AR Value in the address register (AR)

(MOVT DBF, @AR)

RET

RETSK

RETI

During interrupt Each interrupted vector address

3.2.1 Program Counter at Reset

By setting the RESET terminals to low, the program counter is set to 000H.

Figure 3-3. Value in the Program Counter after Reset

Value set by addr

Value in the address stack register location pointed to the

stack pointer (return address)

MSB

0

All bits are set to 0

0 0 0 0 0 0 0 0 0

LSB

3.2.2 Program Counter during Execution of the Branch Instruction (BR)

There are two ways to specify branching using the branch instruction. One is to specify the branch address in

the operand using the direct branch instruction (BR addr). The other is to branch to the address specified by the

address register using the indirect branch instruction (BR @AR).

The address specified by a direct branch instruction is placed in the program counter.

Figure 3-4. Value in the Program Counter during Execution of a Direct Branch Instruction

MSB

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

LSB

Address specified by addr

An indirect branch instruction causes the address in the address counter to be placed in the program counter.

CHAPTER 3 PROGRAM COUNTER (PC)

21

Figure 3-5. Value in the Program Counter during Execution of an Indirect Branch Instruction

MSB

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

LSB

AR9 AR8 AR7 AR6 AR5 AR4 AR3 AR2 AR1 AR0

3.2.3 Program Counter during Execution of Subroutine Calls (CALL)

There are two ways to specify branching using subroutine calls. One is to specify the branch address in the operand

using the direct subroutine call (CALL addr). The other is to branch to the address specified by the address register

using the indirect subroutine call (CALL @AR).

A direct subroutine call causes the value in the program counter to be saved in the stack and then the address

specified in the operand to be placed in the program counter. Direct subroutine calls can specify any address in

program memory.

Figure 3-6. Value in the Program Counter during Execution of a Direct Subroutine Call

An indirect subroutine call causes the value in the program counter to be saved in the stack and then the value

in the address register to be placed in the program counter.

Figure 3-7. Value in the Program Counter during Execution of an Indirect Subroutine Call

MSB

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

LSB

Address specified by addr

MSB

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

LSB

AR9 AR8 AR7 AR6 AR5 AR4 AR3 AR2 AR1 AR0

Address stack register n (n = 0 to 4)

CHAPTER 3 PROGRAM COUNTER (PC)

22

3.2.4 Program Counter during Execution of Return Instructions (RET, RETSK, RETI)

During execution of a return instruction (RET, RETSK, RETI), the program counter is restored to the value saved

in the address stack register.

Figure 3-8. Value in the Program Counter during Execution of a Return Instruction

3.2.5 Program Counter during Table Reference (MOVT)

During execution of table reference (MOVT DBF, @AR), the value in the program counter is saved in the stack,

the address register is set by the program counter, then the contents stored at that program memory location is read

into the data buffer (DBF). After the program memory contents are read into DBF, the program counter is restored

to the value saved in the address stack register.

Caution One level of the address stack is temporarily used during execution of table reference. Be careful

of the stack level.

3.2.6 Program Counter during Execution of Skip Instructions (SKE, SKGE, SKLT, SKNE, SKT SKF)

When skip conditions are met and a skip instruction (SKE, SKGE, SKLT, SKNE, SKT, SKF) is executed, the

instruction immediately following the skip instruction is treated as a no operation instruction (NOP). Therefore,

whether skip conditions are met or not, the number of instructions executed and instruction execution time remain

the same.

3.2.7 Program Counter When an Interrupt Is Received

When an interrupt is received, the value in the program counter is saved in the address stack. Next, the vector

address for the interrupt received is placed in the program counter.

3.3 CAUTIONS ON PROGRAM COUNTER OPERATION

Consisting of 10 bits, the µPD17120/17121's program counter (PC) can specify a program of up to 1024 steps.

As opposed to this, the ROM size is only 768 steps (addresses 0000H-02FFH). If the program counter's value exceeds

300H, the contents of the program are equivalent to reading FFFFH and executing the "SKF PSW, #0FH" instruction.

Therefore, be careful about the following point:

(1) When the instruction at the 768th step (address 02FFH) is executed, it does not automatically happen that

the program counter goes to 0000H. If the instruction up to the 768th step (address 02FFH) is other than

a branch (BR) or (RET) instruction, it will result in specifying a program counter not contained in a ROM. Be

careful about this.

(2) In the same manner as (1), please avoid using an instruction that will branch to after the 768th step (address

02FFH).

MSB

PC9 PC8 PC7 PC6 PC5 PC4 PC3 PC2 PC1 PC0

LSB

Address stack register n (n = 0 to 4)

CHAPTER 4 PROGRAM MEMORY (ROM)

The program configuration of the µPD17120 subseries is as follows.

Product Name Program Memory Capacity Program Memory Address

µPD17120

µPD17121

µPD17132

µPD17133

µPD17P132

µPD17P133

Program memory stores the program, and the constant data table. The top of the program memory is allocated

to the reset start address and the interrupted vector address. The program memory address is specified by the

program counter.

4.1 PROGRAM MEMORY CONFIGURATION

Figure 4-1 shows the program memory map. Branch instructions, subroutine calls, and table references can

specify any address in program memory (0000H - 07FFH).

Figure 4-1. Program Memory Map for the µPD17120 Subseries

1.5K bytes (768 × 16 bits) 0000H-02FFH

2K bytes (1024 × 16 bits) 0000H-03FFH

Reset start address

Serial interface interrupt vector

Timer interrupt vector

External (INT) interrupt vector

(PD17120/17121)

(PD17132/17133/17P132/17P133)

µ

µ

16 bits

0000H

0001H

0002H

0003H

Address

02FFH

03FFH

Subroutine entry
address for the CALL
addr instruction

Branch address for
the BR addr instruction

Branch address for
the BR @AR instruction

Subroutine entry
address for the CALL
@AR instruction

Table reference address
for the MOVT DBF,
@AR instruction

23

CHAPTER 4 PROGRAM MEMORY (ROM)

24

4.2 PROGRAM MEMORY USAGE

Program memory has the following two main functions:

(1) Storage of the program

(2) Storage of constant data

The program is made up of the instructions which operate the CPU (Central Processing Unit). The CPU executes

sequential processing according to the instructions stored in the program. In other words, the CPU reads each

instruction in the order stored by the program in program memory and executes it.

Since all instructions are 16-bit long words, each instruction is stored in a single location in program memory.

Constant data, such as display output patterns, are set beforehand. The MOVT instruction is used to transfer data

from program memory to the data buffer (DBF) in data memory. Reading the constant data in program memory is

called table reference.

Program memory is read-only (ROM: Read Only Memory) and therefore cannot be changed by any instructions.

4.2.1 Flow of the Program

The program is usually stored in program memory starting from memory location 0000H and executed sequentially

one memory location at a time. However, if for some reason a different kind of program is to be executed, it will

be necessary to change the flow of the program. In this case, the branch instruction (BR instruction) is used.

If the same section of program code is going to appear in a number of places, reproducing the code each time

it needs to be used will decrease the efficiency of the program. In this case, this section of program code should

be stored in only one place in memory. Then, by using the CALL instruction, this piece of code can be executed

or read as many times as needed within the program. Such a piece of code is called a subroutine. As opposed to

a subroutine, code used during normal operation is called the main routine.

For cases completely unrelated to the flow of the program (in which a section of code is to be executed when

a certain condition arises), the interrupt function is used. Whenever a condition arises that is unrelated to the flow

of the program, the interrupt function can be used to branch the program to a prechosen memory location (called

a vector address).

Items (1) to (5) explain branching of the program using the interrupt function and CPU instructions.

(1) Vector Address

Table 4-1 shows the address to which the program is branched (vector address) when a reset or interrupt

occurs.

CHAPTER 4 PROGRAM MEMORY (ROM)

25

Table 4-1. Vector Address for the µPD17120 Subseries

Vector Address Interrupt Sources

0000H Reset

0001H Serial interface interrupt

0002H Timer interrupt

0003H External interrupt (INT pin)

(2) Direct branch

When executing a direct branch (BR addr), the 11-bit instruction operand is used to specify an address in

program memory. (However, the most significant bit must be 0. If an address is specified outside of this

range, an error will occur in the assembler.) A direct branch instruction can be used to branch to any address

in program memory.

(3) Indirect branch

When executing an indirect branch (BR @AR), the program branches to the address specified by the value

stored in the address register (AR). An indirect branch can be used to branch to any address in program

memory.

Also refer to 7.2 ADDRESS REGISTER (AR).

(4) Direct subroutine call

When using a direct subroutine call (CALL addr), the 11-bit instruction operand is used to specify a program

memory address of the called subroutine. (However, the most significant bit must be 0. If an address is

specified outside of this range, an error will occur in the assembler).

CHAPTER 4 PROGRAM MEMORY (ROM)

26

Example

Figure 4-2. Direct Subroutine Call (CALL addr)

CALL SUB1

Program memory

RET

SUB1:

Adddress
0000H

03FFH Note

Note The last address of the program memory of the µPD17120 and µPD17121 is 02FFH.

(5) Indirect subroutine call

When using an indirect subroutine call (CALL @AR), the value in the address register (AR) should be an address

of the called subroutine. This instruction can be used to call any address in program memory.

Also refer to 7.2 ADDRESS REGISTER (AR).

CHAPTER 4 PROGRAM MEMORY (ROM)

27

4.2.2 Table Reference

Table reference is used to reference constant data in program memory.

The table reference instruction (MOVT DBF, @AF) is used to store the contents of the program memory address

specified by the address register in the data buffer.

Since each location in program memory contains 16 bits of information, the MOVT instruction causes 16 bits of

data to be stored in the data buffer. The address register can be used to table reference any location in program

memory.

Caution Note that one level of the stack is temporarily used when performing table reference.

Also refer to 7.2 ADDRESS REGISTER (AR) and CHAPTER 10 DATA BUFFER (DBF).

Remark As an exception, execution of table reference instructions requires two instruction cycle.

Figure 4-3. Table Reference (MOVT DBF, @AR)

b3 b2 b1 b0

DBF3

b3 b2 b1 b0

DBF2

b3 b2 b1 b0

DBF1

b3 b2 b1 b0

DBF0

Data buffer

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

Program memory

b3 b2 b1 b0

AR3

b3 b2 b1 b0

AR2

b3 b2 b1 b0

AR1

b3 b2 b1 b0

AR0

Address register

16-bit data read

0 0 0 0 0 0

Table addressing

Constant data

CHAPTER 4 PROGRAM MEMORY (ROM)

28

(1) Constant data table

Example 1 shows an example of code used to reference a constant data table.

Example 1. Code used for reading the values recorded in a constant data table. The value specified

by an OFFSET value is read.

OFFSET MEM 0.00H ; Storing area for the offset address.

; BANK0

MOV RPH,#0 ; Register pointer 7 is used to specify that

MOV RPL,#7 SHL 1 ; operation results be stored in row address 7.

ROMREF:

; BANK0

; Stores the start address of the constant data

; table in the address register (AR).

MOV AR3, #.DL.TABLE SHR 12 AND 0FH

MOV AR2, #.DL.TABLE SHR 8 AND 0FH

MOV AR1, #.DL.TABLE SHR 4 AND 0FH

MOV AR0, #.DL.TABLE AND 0FH

ADD AR0, OFFSET ; Adds the offset address.

ADDC AR1, #0

ADDC AR2, #0

ADDC AR3, #0

MOVT DBF, @AR ; Executes the table reference instruction.

TABLE:

DW 0001H

DW 0002H

DW 0004H

DW 0008H

DW 0010H

DW 0020H

DW 0040H

DW 0080H

DW 0100H

DW 0200H

DW 0400H

DW 0800H

DW 1000H

DW 2000H

DW 4000H

DW 8000H

END

CHAPTER 4 PROGRAM MEMORY (ROM)

29

(2) Branch table

Example 2 shows an example of code used to reference a branch table.

Example 2. Code used for reading the values recorded in a branch table. The value specified by

an OFFSET value is read.

OFFSET MEM 0.00H ; Storing area for the offset address.

; BANK0

MOV RPH,#0 ; Sets the register pointer to row

MOV RPL,#7 SHL 1 ; address 7.

ROMREF:

; BANK0 ; Stores the start address of the constant data

; table in the address register (AR).

MOV AR3, #.DL.TABLE SHR 12 AND 0FH

MOV AR2, #.DL.TABLE SHR 8 AND 0FH

MOV AR1, #.DL.TABLE SHR 4 AND 0FH

MOV AR0, #.DL.TABLE AND 0FH

ADD AR0, OFFSET ; Adds the offset address.

ADDC AR1, #0

MOVT DBF, @AR ; Executes the table reference instruction.

PUT AR, DBF

BR @AR

TABLE:

DW 0001H

DW 0002H

DW 0004H

DW 0008H

DW 0010H

DW 0020H

DW 0040H

DW 0080H

DW 0100H

DW 0200H

END

[MEMO]

30

CHAPTER 5 DATA MEMORY (RAM)

Data memory stores data such as operation and control data. Data can be read from or written to data memory

with an instruction during normal operation.

5.1 DATA MEMORY CONFIGURATION

Figure 5-1 shows the configuration of data memory.

Data memory is controlled by the concept called banks. The µPD17120 subseries has BANK0 only.

An address is allocated to the data memory for each bank.

An address consists of four bits of memory called "a nibble".

The address of data memory consists of 7 bits. The three high-order bits are called "the row address", and the

four low-order bits are called "the column address". For example, when the address of data memory is 1AH

(0011010B), the row address is 1H (001B), and the column address is AH (1010B).

In the case of the µPD17120 and 17121, addresses 40H to 6EH should not be used because they are non-mounted

areas.

Sections 5.1.1 to 5.1.6 describe functions of data memory other than its use as address space.

Figure 5-1. Configuration of Data Memory

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

DBF3 DBF2 DBF1 DBF0

P0E
(2 bits)

P0A
4 bits

P0B
4 bits

P0C
4 bits

P0D
4 bits System register

Example:
Address 1AH
of BANK0

BANK0

Remark The shaded parts represent the non-mounted area in the case of the µPD17120 and 17121.

31

CHAPTER 5 DATA MEMORY (RAM)

32

5.1.1 System Register (SYSREG)

The system register (SYSREG) consists of the 12 nibbles allocated at addresses 74H to 7FH in data memory. The

system register (SYSREG) is allocated independently of the banks. This means that each bank has the same system

register at addresses 74H to 7FH.

Figure 5-2 shows the configuration of the system register.

Figure 5-2. System Register Configuration

System Register (SYSREG)

Address 74H 75H 76H 77H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH

Index register

(IX)
Data memory

row address

pointer (MP)

Name

(Symbol)
Address register

(AR)

Window

register

(WR)

Bank

register

(BANK)

General

register

pointer (RP)

Program

status word

(PSWORD)

5.1.2 Data Buffer (DBF)

The data buffer consists of four nibbles allocated at addresses 0CH to 0FH in BANK0 of data memory. Figure

5-3 shows the configuration of the data buffer.

Figure 5-3. Data Buffer Configuration

Data Buffer (DBF)

Address 0CH 0DH 0EH 0FH

Symbol DBF3 DBF2 DBF1 DBF0

5.1.3 General Register (GR)

The general register consists of 16 nibbles specified by an arbitrary row address in a bank in data memory.

This arbitrary row address in a bank is pointed to by the register pointer (RP) in the system register (SYSREG).

In the case of the µPD17120 and 17121, addresses 40H to 6EH are non-mounted areas. These areas should not

be specified as a general register.

Figure 5-4 shows the configuration of the general register (GR).

CHAPTER 5 DATA MEMORY (RAM)

33

5.1.4 Port Registers

A port register consists of five nibbles allocated at addresses 6FH to 73H in Bank0 of the data memory. As shown

in Figure 5-5, the two high-order bits of address 6FH are always set to 0.

Figure 5-5 shows the configuration of the port registers.

Figure 5-5. Port Register Configuration

Port Register

Address 6FH 70H 71H 72H 73H

P0E P0A P0B P0C P0D

P P P P P P P P P P P P P P P P P P

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

E E A A A A B B B B C C C C D D D D

1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

5.1.5 General Data Memory

General data memory is all the data memory not used by the port and system registers (SYSREG). In other words,

general data memory consists of 64 nibbles (µPD17120 and 17121) or 111 nibbles (µPD17132, 17133, 17P132, and

17P133).

5.1.6 Uninstalled Data Memory

There is no hardware installed at addresses 40H to 6EH of the µPD17120 and 17121. Any attempt to read this

area will yield unpredictable results. Writing data to this area is invalid and should therefore not be attempted.

Figure 5-4. General Register (GR) Configuration

S
ym

bo
l

0 0
BANK0

Area specifiable as general register
0
1
2
3
4
5
6
7

0 1 2 3 4 5 6 7 8 9 A B C D E F

BANK0

Port register

R
ow

 a
dd

re
ss

Column address

SYSREG

General register

Pointed to by general register
pointer (RP) in system register.
Note that row addresses 4 to 6
in the case of the PD17120
and 17121 are uninstalled mem-
ory locations. The register
pointer (RP) should therefore
not specify a row address in this
area.

µ

[MEMO]

34

CHAPTER 6 STACK

The stack is a register used to save information such as the program return address and the contents of the system

register during execution of subroutine calls, interrupts and similar operations.

6.1 STACK CONFIGURATION

Figure 6-1 shows the stack configuration.

The stack consists of the following parts: one 3-bit binary counter stack pointer, five 10-bit address stack registers,

and one 5-bit interrupt stack registers.

Figure 6-1. Stack Configuration

b9

Address Stack Register
(ASR)

b8 b7 b6 b5 b4 b3 b2 b1 b0b10

Address stack register 0

Address stack register 1

Address stack register 2

Address stack register 3

Address stack register 4

0H

1H

2H

3H

4H

b2

SPb2

b1

SPb1

b0

SPb0

Stack Pointer
(SP)

BCDSK

Interrupt Stack Register
(INTSK)

CMPSK CYSK ZSK IXESK0H

6.2 FUNCTIONS OF THE STACK

The stack is used to save the return address during execution of subroutine calls and table reference instructions.

When an interrupt occurs, the program return address and the program status word (PSWORD) are automatically

saved in the stack.

Remark All the 5 bits of PSWORD are automatically cleared to zero after being saved in the interrupt stack

register.

35

CHAPTER 6 STACK

36

6.3 ADDRESS STACK REGISTER

As shown in Figure 6-1, the address stack register consists of five consecutive 10-bit registers.

A value equal to the program counter (PC)+1 (return address) is stored during execution of subroutine calls (CALL

addr, CALL @AR), the first cycle of a table reference (MOVT DBF, @AR), and upon receipt of an interrupt in the address

stack register. The contents of the address register (AR) is also stored when a stack push (PUSH AR) is executed.

The address register holding data is pointed to by the address in the stack pointer at execution time less one (address

in stack pointer (SP) – 1).

When a subroutine return (RET, RETSK), an interrupt return (RETI), or the second cycle of a table reference (MOVT

DBF, @AR) is executed, the contents of the address pointed to by the stack pointer is restored to the program counter

and the stack pointer is incremented. When a stack pop (POP AR) is executed, the value in the address stack register

pointed to by the stack pointer is transferred to the address to the address register and the stack pointer is

incremented.

If more than five subroutine calls or interrupts are executed, an internal reset signal is generated, and the

address stack register initializes hardware for start at address 0000H (to prevent a software crash).

6.4 INTERRUPT STACK REGISTER

As shown in Figure 6-1, the interrupt stack register consists of one 5-bit register.

When an interrupt is received five bits in the system register (SYSREG) (mentioned later) that is, each flag (BCD,

CMP, CY, Z, IXE) of the program status word (PSWORD), are saved. When the interrupt return (RETI) is executed,

the program status word is restored from the interrupt stack register.

In the interrupt stack register, every time an interrupt is received, necessary data is saved.

When more than three interrupts are received, the data from the first interrupt is lost.

Remark All the 5 bits of PSWORD are automatically cleared to zero after being saved in the interrupt stack

register.

6.5 STACK POINTER (SP) AND INTERRUPT STACK REGISTER

As shown in Figure 6-1, the stack pointer (SP) is a 3-bit binary counter used to point to addresses in the five address

stack registers. The stack pointer is located at address 01H in the register file. At reset, the stack pointer is set

to 5.

As shown in Table 6-1, the stack pointer is decremented when subroutine calls (CALL addr, CALL @AR), the first

cycle of a table reference (MOVT DBF, @AR), stack push (PUSH AR), and an interrupt are accepted. The stack pointer

is incremented at the following times: subroutine returns (RET, RETSK), the second instruction cycle of a table

reference (MOVT DBF, @AR), stack pop (POP AR), and an interrupt return (RETI). The interrupt stack counter as

well as the stack pointer is decremented when an interrupt is accepted. The interrupt stack counter is incremented

by an interrupt return (RETI) only.

CHAPTER 6 STACK

37

Table 6-1. Operation of the Stack Pointer

Instruction Stack Pointer Value Counter of Interrupt Stack Register

CALL addr

CALL @AR

MOVT DBF, @AR –1 Not changed

(1st instruction cycle)

PUSH AR

Interrupt receipt –1 –1

RET

RETSK

MOVT DBF, @AR +1 Not changed

(2nd instruction cycle)

POP AR

RETI +1 +1

As mentioned above, the stack pointer is a 3-bit counter and therefore can conceivably store any of the eight values

from 0H to 7H. Since there are only five address stack registers, however, a stack pointer value that is greater than

five will cause an internal reset signal to be generated (to prevent a software crash).

Since the stack pointer is located in the register file, it can be read and written to directly by using the PEEK and

POKE instructions to manipulate the register file. When this is done, the stack pointer value will change but the values

in the address stack register will not be affected.

6.6 STACK OPERATION DURING SUBROUTINES, TABLE REFERENCES, AND INTERRUPTS

Stack operation during execution of each command is explained in 6.6.1 to 6.6.3.

6.6.1 Stack Operation during Subroutine Calls (CALL) and Returns (RET, RETSK)

Table 6-2 shows operation of the stack pointer (SP), address stack register, and the program counter (PC) during

execution of subroutine calls and returns.

CHAPTER 6 STACK

38

Table 6-2. Operation of the Stack Pointer during Execution

Instruction Operation

CALL addr <1> Stack pointer (SP) is decremented.

<2> Program counter (PC) is saved in the address stack register pointed to by the stack

pointer (SP).

<3> Value specified by the instruction operand (addr) is transferred to the program

counter.

RET <1> Value in the address stack register pointed to by the stack pointer (SP) is restored

to the program counter (PC).

<2> Stack pointer (SP) is incremented.

When the RETSK instruction is executed, the first command after data restoration becomes a no operation

instruction (NOP).

6.6.2 Stack Operation during Table Reference (MOVT DBF, @AR)

Table 6-3 shows stack operation during table reference.

Table 6-3. Stack Operation during Table Reference

Instruction Instruction Cycle Operation

MOVT DBF, @AR First <1> Stack pointer (SP) is decremented.

<2> Program counter (PC) is saved in the address stack register

pointed to by the stack pointer (SP).

<3> Value in the address register (AR) is transferred to the program

counter (PC).

Second <1> Contents of the program memory (ROM) pointed to by the pro-

gram counter (PC) is transferred to the data buffer (DBF).

<2> Value in the address stack register pointed to by the stack pointer

(SP) is restored to the program counter (PC).

<3> Stack pointer (SP) is incremented.

Remark As an exception, execution of MOVT DBF and @AR instructions require two instruction cycle.

RETSK

CHAPTER 6 STACK

39

6.6.3 Executing RETI Instruction

Table 6-4 shows stack operation during interrupt receipt and RETI instruction execution.

Table 6-4. Stack Operation during Interrupt Receipt and Return

Instruction Operation

Receipt of interrupt <1> Stack pointer (SP) is decremented.

<2> Value in the program counter (PC) is saved in the address stack register pointed to

by the stack pointer (SP).

<3> Values in the PSWORD flags (BCD, CMP, CY, Z, IXE) are saved in the interrupt stack.

<4> Vector address is transferred to the program counter (PC)

RETI <1> Values in the interrupt stack register are restored to the PSWORD (BCD, CMP, CY

Z, IXE).

<2> Values in the address stack register pointed to by the stack pointer (SP) is restored

to the program counter (PC).

<3> Stack pointer (SP) is incremented.

6.7 STACK NESTING LEVELS AND THE PUSH AND POP INSTRUCTIONS

During execution of operations such as subroutine calls and returns, the stack pointer (SP) simply functions as

a 3-bit counter which is incremented and decremented. When the value in the stack pointer is 0H and a CALL or

MOVT instruction is executed or an interrupt is received, the stack pointer is decremented to 7H. The µPD17120

subseries treats this condition as a fault and generates an internal reset signal.

In order to avoid this condition, when the address stack register is being used frequently, the PUSH and POP

instructions are used as necessary to save/return the address stack register.

Table 6-5 shows stack operation during the PUSH and POP instructions.

Table 6-5. Stack Operation during the PUSH and POP Instructions

Instruction Operation

PUSH <1> Stack pointer (SP) is decremented.

<2> Value in the address register (AR) is transferred to the address stack register pointed

to by the stack pointer (SP).

POP <1> Value in the address stack register pointed to by the stack pointer (SP) is transferred

to the address register (AR).

<2> Stack pointer (SP) is incremented.

[MEMO]

40

CHAPTER 7 SYSTEM REGISTER (SYSREG)

The system register (SYSREG), located in data memory, is used for direct control of the CPU.

7.1 SYSTEM REGISTER CONFIGURATION

Figure 7-1 shows the allocation address of the system register in data memory. As shown in Figure 7-1, the system

register is allocated in addresses 74H to 7FH of data memory.

Because the system register is allocated in data memory, it can be manipulated using any of the instructions

available for manipulating data memory. Therefore, it is also possible to put the system register in the general register.

Figure 7-1. Allocation of System Register in Data Memory

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address

Data memory
(BANK0)

0 1 2 3
4 5 6 7 8 9 A B C D E F

R
ow

 a
dd

re
ss

Port register
System register (SYSREG)

41

CHAPTER 7 SYSTEM REGISTER (SYSREG)

42

Figure 7-2 shows the configuration of the system register. As shown in Figure 7-2, the system register consists

of the following seven registers.

• Address register (AR)

• Window register (WR)

• Bank register (BANK)

• Index register (IX)

• Data memory row address pointer (MP)

• General register pointer (RP)

• Program status word (PSWORD)

Figure 7-2. System Register Configuration

Note Zeros in the columns indicates "0 fixed".

74HAddress 77H75H 76H 78H 79H 7AH 7BH 7CH 7DH 7EH 7FH

b3 b2 b1 b0

AR3

0 0 0 0

b3 b2 b1 b0

AR2

0 0 0 0

b3 b2 b1 b0

AR1

0 0 0 0

b3 b2 b1 b0

AR0

0 0 0 0

b3 b2 b1 b0

WR

b3 b2 b1 b0

BANK

0 0 0 0

b3 b2 b1 b0

IXH

MPH

0 0 0 0

b3 b2 b1 b0

IXM

MPL

0 0 0 0

b3 b2 b1 b0

IXL

0 0 0 0

b3 b2 b1 b0

RPH

0 0 0 0

b3 b2 b1 b0

RPL

0 0 0 0

b3 b2 b1 b0

PSW

0 0 0 0

0 0 0 0 0 0 0 0 0 0
M
P
E

0 0 0 0 0 0 0 0
B
C
D

C
M
P

C
Y Z

I
X
E

Name

Bit

Symbol

Data Note

Initial value

when reset

Address register
(AR)

Window
register
(WR)

Data memory
row address
pointer (MP)

Index register
(IX)

General
register
pointer
(RP)

Program
status
word
(PSWORD)

Not
defined

(AR)

Bank
register
(BANK)

(BANK) (MP) (RP)

(IX)

CHAPTER 7 SYSTEM REGISTER (SYSREG)

43

7.2 ADDRESS REGISTER (AR)

7.2.1 Address Register Configuration

Figure 7-3 shows the configuration of the address register.

As shown in Figure 7-3, the address register consists of the sixteen bits in address 74H to 77H (AR3 to AR0) of

the system register. However, because the six high-order bits are always set to 0, the address register is actually

10 bits. When the system is reset, all sixteen bits of the address register are reset to 0.

Figure 7-3. Address Register Configuration

74HAddress 77H75H 76H

AR3 AR2 AR1 AR0

Name

Bit

Symbol

Data

Initial value
when reset

Address register (AR)

(AR)

b3 b2 b1 b0

0 0 0 0 0 0

0 0 0 0

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0

7.2.2 Address Register Functions

The address register is used to specify an address in program memory when executing an indirect branch

instruction (BR @AR), indirect subroutine call (CALL @AR) or table reference (MOVT DBF, @AR). The address register

can also be put on and taken off the stack by using the stack manipulation instructions (PUSH AR, POP AR).

Items (1) to (4) explain address register operation during execution of each instruction.

The address register can be incremented by using the dedicated increment instruction (INC AR).

(1) Table reference (MOVT DBF, @AR)

When the MOVT DBF, @AR instruction is executed, the data in program memory (16-bit data) located at the

address specified by the value in the address register is read into the data buffer (addresses 0CH to 0FH of

BANK0).

CHAPTER 7 SYSTEM REGISTER (SYSREG)

44

(2) Stack manipulation instructions (PUSH AR, POP AR)

When the PUSH AR instruction is executed, the stack pointer (SP) is first decremented and then the address

register is stored in the address stack pointed to by the stack pointer.

When the POP AR instruction is executed, the contents of the address stack pointed to by the stack pointer

is transferred to the address register and then the stack pointer is incremented.

Also refer to CHAPTER 6.

(3) Indirect branch instruction (BR @AR)

When the BR @AR instruction is executed, the program branches to the address in program memory specified

by the value in the address register.

(4) Indirect subroutine call (CALL @AR)

When the CALL @AR instruction is executed, the subroutine located at the address in program memory

specified by the value in the address register is called.

(5) Address register used as peripheral register

The address register can be manipulated four bits at a time by using data memory manipulation instructions.

The address register can also be used as a peripheral register for transferring 16-bit data to the data buffer.

In other words, by using the PUT AR, DBF and GET DBF, AR instructions in addition to the data memory

manipulation instructions, the address register can be used to transfer 16-bit data to the data buffer.

Note that the data buffer is allocated in addresses 0CH to 0FH of BANK0 in data memory.

Figure 7-4. Address Register Used as a Peripheral Register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

Column address(BANK0)

Address register

R
ow

 a
dd

re
ss

System register

DBF3 DBF2 DBF1 DBF0

AR3 AR2 AR1 AR0

16-bit data transfer available


Data buffer

CHAPTER 7 SYSTEM REGISTER (SYSREG)

45

7.3 WINDOW REGISTER (WR)

7.3.1 Window Register Configuration

Figure 7-5 shows the configuration of the window register.

As shown in Figure 7-5, the window register (WR) consists of four bits allocated at address 78H of the system

register. The contents of the window register is undefined after a system reset. However, when RESET input is

used to release the system from HALT or STOP mode, the previous state of the window register is maintained.

Figure 7-5. Window Register Configuration

7.3.2 Window Register Functions

The window register is used to transfer data to and from the register file (RF).

Data is transferred to and from the register file using the instructions PEEK WR, rf and POKE rf, WR. For details,

refer to 9.2.3 Register File Manipulation Instructions.

78H

Window register

WR

Not defined

Address

Name

Bit

Symbol

Data

Initial value when reset

b3 b2 b1 b0

CHAPTER 7 SYSTEM REGISTER (SYSREG)

46

7.4 BANK REGISTER (BANK)

Figure 7-6 shows the configuration of the bank register.

The bank register consists of four bits at address 79H (BANK) of the system register.

Bank register is a register for switching the banks of RAM. However, since the µPD17120 subseries has only

one bank, every bank register bit is fixed to 0.

Figure 7-6. Bank Register Configuration

79H

Bank register

Address

Name

Bit

Symbol

Data

Initial value when reset

b3 b2 b1 b0

0 0 0 0

0

(BANK)

BANK

CHAPTER 7 SYSTEM REGISTER (SYSREG)

47

7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS POINTER (Memory Pointer: MP)

7.5.1 Index Register (IX)

IX is used for address modification to data memory. It differs from MP in that its modification object is an address

that is specified as the bank or operand m.

As shown in Figure 7-7, IX is mapped to a total of 12 bits of system registers: 7AH (IXH), 7BH (IXM), and 7CH

(IXL). The index register enable flag (IXE) which enables address modification by IX is allocated to the lowest bit

of the PSW.

When IXE=1, an address in data memory specified with operand m is not m but the address indicated by the OR

of m, IXM and IXL. The bank specified at this time is that indicated by the OR of BANK and IXH.

Remark The IXH of the µPD17120 subseries is "fixed to 0" and therefore the bank is modified even when IXE=1

(thus preventing the bank from becoming other than 0).

7.5.2 Data Memory Row Address Pointer (Memory Pointer: MP)

MP is used for address modification to data memory. It differs from IX in that its modification object is the row

address of the address that is indirectly specified with the bank and operand @r.

As shown in Figure 7-7, MPH and IXH, and MPL and IXM, are respectively mapped to the same addresses (system

registers 7AH and 7BH). It is MPH's lower 3 bits and MPL's full 7 bits that are actually functioning as the MP. To

MPH's most significant bit is allocated the memory pointer enable flag (MPE) which enables address modification

by the MP.

When MPE=1, the bank and row address of the data memory indirectly specified with operand @r is not BANK

and mR but the address specified by the MP. (The column address is specified with the contents of r regardless

of the MPE.) At this time, MPH's lower 3 bits and MPL's most significant 4 bits point to BANK; and MPL's lower

3 bits point to the row address.

Remark The MPH's lower 3 bits and MPL's most significant bit in the µPD17120 subseries are "fixed to 0" and

therefore the bank is cleared to 0 even when MPE=1 (thus preventing the bank from becoming other

than 0).

CHAPTER 7 SYSTEM REGISTER (SYSREG)

48

Figure 7-7. Index Register and Memory Pointer Configuration

Figure 7-8. Data Memory Address Modification by Index Register and Memory Pointer

BANK : Bank register MP : Memory pointer

IX : Index register MPE : Memory pointer enable flag

IXE : Index enable flag MPH : Memory pointer's upper 3 bits

IXH : Index register's bits 10-8 MPL : Memory pointer's lower 4 bits

IXM : Index register's bits 7-4 r : General register column address

IXL : Index register's bits 3-0 RP : General register pointer

m : Data memory address indicated by mR, mC (×) : Contents addressed with ×
mR : Data memory row address × : Direct address such as r

mC : Data memory column address

7AHAddress

Name

Bit

Symbol
name

Data

Reset-time value

b3 b2 b1 b0b3 b2 b1 b2 b1 b1b0b0

Index register (IX)

Memory pointer (MP)

IXH

MPH

IXM

MPL

IXL

0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

(IX)

(MP)

Flag name
M
P
E

7BH 7CH

b1b2b3

0000

7FH

PSW

I
X
E

0

Program status
word
(PSWORD)'S
lower 4 bits

b3

Data Memory Address Specified with m

IXE

0

0

1

1

b3 b2 b1 b0

Bank

BANK

BANK

IXH

b3 b2 b1 b0 b3 b2 b1 b0 b3 b2 b1 b0b2 b1 b0b2 b1 b0

Row address Column address Bank Row address Column address

Indirect Transfer Address Specified with @m

m BANK mR (r)

MPH MPL (r)

BANK mR

(r)

IXM IXL IXH IXM

MPE

0

1

0

1

m

Setting disabled

Logical OR Logical OR

Same as
above

CHAPTER 7 SYSTEM REGISTER (SYSREG)

49

Table 7-1. Address-modified Instruction Statements

ADD

ADDC

SUB

SUBC

AND

OR r, m

XOR

m, #n4

SKT

SKF

SKE

SKGE

SKLT

SKNE

LD r, m

ST m, r

MOV m, #n4

@r, m

m, @r

r, m

m, #n4

m, #n

m, #n4

A
rit

hm
et

ic
op

er
at

io
n

Lo
gi

ca
l

op
er

at
io

n
Ju

dg
e-

m
en

t
C

om
pa

ris
on

Tr
an

sf
er

--

--

--

CHAPTER 7 SYSTEM REGISTER (SYSREG)

50

7.5.3 MPE=0 and IXE=0 (No Data Memory Modification)

As shown in Figure 7-8, data memory addresses are not affected by the index register and the data memory row

address pointer.

(1) Data memory manipulation instructions

Example 1. General register is in row address 0

R003 MEM 0.03H

M061 MEM 0.61H

ADD R003, M061

As shown in Figure 7-9, when the above instructions are executed, the data in general register

address R003 and data memory address M061 are added together and the result is stored

in general address R003.

(2) Indirect transfer of data in the general register (horizontal indirect transfer)

Example 2. General register is in row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV R005, #8 ; R005 ← 8

MOV @R005, M034 ; Indirect transfer of data in the register

As shown in Figure 7-9, when the above instructions are executed, the data stored in data

memory address M034 is transferred to data memory location 38H.

In other words, the MOV @r, m instruction causes the contents in the data memory address

specified by m to be transferred to the data memory location specified by @r (which by

definition has the same row address as m).

The indirect data transfer address has the same row address as m (example above uses row

address 3) and the column address is the value contained in the general register address

specified by r (example above uses column address 8). Therefore the address in the above

example is 38H.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

51

Example 3. General register is in row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV R00B, #0EH ; R00B ← 0EH

MOV M034, @R00B ; Indirect transfer of data in the register

As shown in Figure 7-9, when the above instructions are executed, the contents of data

memory stored at address 3EH is transferred to data memory location M034.

In other words, the MOV m, @r instruction causes the contents of the data memory location

specified by @r (which by definition has the same row address as m) to be transferred to the

data memory location specified by m.

The indirect data transfer address has the same row address as m (example above uses row

address is 3) and the column address is the value contained in the general register address

specified by r (example above uses column address 0EH). Therefore the address in the above

example is 3EH.

The data transfer memory address source and destination in this example are the opposite

of those shown in Example 2 (source and destination are switched).

Figure 7-9. Example of Operation When MPE=0 and IXE=0

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

System register

General
register

8 E

R
ow

 a
dd

re
ss

Example 2. MOV @R005, M034

Example 1. ADD R003, M061

Column address specified
as transfer destination

Column address specified
as transfer source

Example 3. MOV M034, @R00B

Column address

Data memory address M

General register address R

0000

0000

110

000

0001

0011

Column
Address

Row
AddressBank

Addresses in Example 1

ADD R003, M061

Data memory address M

General register address R

Indirect transfer address @R

0000

0000

0000

011

000

011

0100

0101

1000

Column
Address

Row
AddressBank

Same as M
Contents

of R

Addresses in Example 2

MOV @R005, M034

CHAPTER 7 SYSTEM REGISTER (SYSREG)

52

7.5.4 MPE=1 and IXE=0 (Diagonal Indirect Data Transfer)

As shown in Figure 7-8, the indirect data transfer bank and row address specified by @r become the data memory

row address pointer value only when general register indirect data transfer instructions (MOV @r, m and MOV m,

@r) are used.

Example 1. When the general register is in row address 0

R005 MEM 0.05H

M034 MEM 0.34H

MOV MPL, #0110B ; MP ← 6

MOV R005, #8 ; R005 ← 8

MOV MPH, #1000B ; MPE ← 1

MOV @R005, M034 ; Indirect transfer of data in the register

As shown in Figure 7-10, when the above instructions are executed, the contents of data

memory address M034 is transferred to data memory location 68H.

When the MOV @r, m instruction is executed when MPE=1, the contents of the data memory

address specified by m is transferred to the column address pointed to by the row address

@r being pointed to by the memory pointer.

In this case, the indirect address specified by @r becomes the value used for the bank and

row address data memory pointer (above example uses row address 6). The column address

is the value in the general register address specified by r (above example uses column address

8).

Therefore the address in the above example is 68H.

This example is different from Example 2 in 7.5.3 when MPE=0 for the following reasons:

In this example, the data memory row address pointer is used to point to the indirect address

bank and row address specified by @r. (In Example 2 in 7.5.3 the indirect address bank and

row address are the same as m.)

By setting MPE=1, diagonal indirect data transfer can be performed using the general

register.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

53

Example 2. General register is in row address 0

R00B MEM 0.0BH

M034 MEM 0.34H

MOV MPL, #0110B ; MP ← 6

MOV MPH, #1000B ; MPE ← 1

MOV R00B, #0EH ; R00B ← 0EH

MOV M034, @R00B ; Indirect transfer of data in the register

As shown in Figure 7-10, when the above instructions are executed, the data stored in address

6EH is transferred to data memory location M034.

Figure 7-10. Example of Operation When MPE=1 and IXE=0

0

1

2

3

4

5

6

7

0

System register

R
ow

 a
dd

re
ss

Example 1. MOV @R005, M034

Column address specified
as transfer destination

Column address specified
as transfer source

Column address

1 2 3 4 5 6 7 8 9 A B C D E F

8 E
General
register

Memory
pointer
=00110B

Example 2. MOV M034, @R00B

Data memory address M

General register address R

Indirect transfer address @R

0000

0000

0000

011

000

110

0100

0101

1000

Column
Address

Row
AddressBank

Contents
of R

Addresses in Example 1

MOV @R005, M034

Data memory address M

General register address R

Indirect transfer address @R

0000

0000

0000

011

000

110

0100

1011

1110

Column
Address

Row
AddressBank

Contents
of R

Addresses in Example 2

MOV, M034 @R00B

Contents of MPContents of MP

CHAPTER 7 SYSTEM REGISTER (SYSREG)

54

7.5.5 MPE=0 and IXE=1 (Index Modification)

As shown in Figure 7-8, when a data memory manipulation instruction is executed, any bank or address in data

memory specified by m can be modified using the index register.

When indirect data transfer using the general register (MOV @r, m or MOV m, @r) is executed, the indirect transfer

bank and address specified by @r can be modified using the index register.

Address modification is done by performing an OR operation on the data memory address and the index register.

The data memory manipulation instruction being executed manipulates data in the memory location pointed to by

the result of the operation (called the real address).

Examples are shown below.

Example 1. When the general register is in row address 0

R003 MEM 0.03H

M061 MEM 0.61H

MOV IXL, #0010B ; IX ← 00000010010B

MOV IXM, #0001B ;

MOV IXH, #0000B ; MPE ← 0

OR PSW, #.DF.IXE AND 0FH ; IXE← 1

ADD R003, M061

As shown in Figure 7-11, when the instructions of Example 1 are executed, the value in data

memory address 73H (real address) and the value in general register address R003 (address

location 03H) are added together and the result is stored in general register address R003.

When the ADD r, m instruction is executed, the data memory address specified by m (address

61H in above example) is index modified.

Modification is done by performing an OR operation on data memory location M061 (address

61H, binary 00001100001B) and the index register (00000010010B in the above example).

The result of the operation (00001110011B) is used as a real address (address location 73H)

by the instruction being executed.

As compared to when IXE=0 (Examples in 7.5.3), in this example the data memory address

being directly specified by m is modified by performing an OR operation on m and the index

register.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

55

Figure 7-11. Example of Operation When MPE=0 and IXE=1

0

1

2

3

4

5

6

7

0

System register

R
ow

 a
dd

re
ss

Example 1. ADD @R003, M061

Index modification

Column address

1 2 3 4 5 6 7 8 9 A B C D E F

R003
General
register

Data memory address M

General register address R

Index modification

0000

0000

0000

BANK

0000

IXH

0000

110

000

110

001

IXM

111

0001

0011

0001

0010

IXL

0011

Column
Address

Row
AddressBank

Addresses in Example 1

ADD R003, M061

M061 : 00001100001B
IX : 00000010010BOR)

Real address 00001110011B

M061

M061

IX

Real address
(OR operation)

m

Instruction is executed using this address.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

56

Example 2. Indirect data transfer using the general register

Assume that the general register is row address 0.

R005 MEM 0.05H

M034 MEM 0.34H

MOV IXL, #0001B ; IX ← 00000000001B

MOV IXM, #0000B ;

MOV IXH, #0000B ; MPE ← 0

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

MOV R005, #8 ; R005 ← 8

MOV @R005, M034 ; Indirect data transfer using the

register

As shown in Figure 7-12, when the above instructions are executed, the contents of data

memory address 35H is transferred to data memory location 38H.

When the MOV @r, m instruction is executed when IXE=1, the data memory address

specified by m (direct address) is modified using the contents of the index register. The bank

and row address of the indirect address specified by @r are also modified using the index

register.

The bank, row address, and column address specified by m (direct address) are all modified,

and the bank and row address specified by @r (indirect address) are modified. Therefore,

in the above example the direct address is 35H and the indirect address is 38H. This example

is different from Example 3 in 7.5.3 when IXE=0 for the following reasons: In this example,

the bank, row address and column address of the direct address specified by m are modified

using the index register. The general register is transferred to the address specified by the

column address of the modified data memory address and the same row address. (In

Example 3 in 7.5.3 the direct address is not modified.)

CHAPTER 7 SYSTEM REGISTER (SYSREG)

57

Figure 7-12. Example of Operation When MPE=0 and IXE=1

0

1

2

3

4

5

6

7

0

System register

R
ow

 a
dd

re
ss

Example 2.
MOV @R005, M034

Index modification

Column address

1 2 3 4 5 6 7 8 9 A B C D E F
General
register

M034 : 00000110100B
IX : 00000000001BOR)

Real address 00000110101B

M034

8

Indirect address

Column address specified
as transfer destination

Direct
address

R005

Example 3. Clearing all data memory (setting to 0)

M000 MEM 0.00H

MOV IXL, #0 ; IX ← 0

MOV IXM, #0 ;

MOV IXH, #0 ; MPE ← 0

LOOP:

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

MOV M000, #0 ; Set data memory specified by IX to 0

INC IX ; IX ← IX+1

AND PSW, #1110B ; IXE ← 0: IXE is set to 0 so that

; address 7FH is not modified by IX.

SKE IXM, #0111B ; Row address 7?

BR LOOP ; If not 7 then LOOP (row address is

; not cleared)

CHAPTER 7 SYSTEM REGISTER (SYSREG)

58

Example 4. Processing an array

As shown in Figure 7-13, to perform the operation:

A(N) = A(N) + 4 (0 ≤ N ≤ 15)

on the element A(N) of a one-dimensional array in which an element is 8 bits, the following

instructions are executed:

M000 MEM 0.00H

M001 MEM 0.01H

MOV IXH, #0

MOV IXM, #N SHR 3 ; Set the offset of the row address.

MOV IXL, #N SHL 1 AND 0FH ; Set the offset of the column address.

OR PSW, #.DF.IXE AND 0FH ; IXE ← 1

ADD M000, #4 ;

ADDC M001, #0 ; A(N) ← A(N) + 4

In the example above, because an element is 8 bits, the value resulting from left-shifting the

N's value by 1 bit is set for the index register.

Figure 7-13. Example of Operation When MPE=0 and IXE=1 (Array Processing)

0

1

2

3

4

5

6

7

0

System register

R
ow

 a
dd

re
ss

Column address

A (0)

1 2 3 4 5 6 7 8 9 A B C D E F

A (0)

A (8)

A (1)

A (9)

A (2)

A (10)

A (3)

A (11)

A (4)

A (12)

A (5)

A (13)

A (6)

A (14)

A (7)

A (15)

00H 01H

b3 b2 b1 b0 b7 b6 b5 b4

CHAPTER 7 SYSTEM REGISTER (SYSREG)

59

7.6 GENERAL REGISTER POINTER (RP)

7.6.1 General Register Pointer Configuration

Figure 7-14 shows the configuration of the general register pointer.

Figure 7-14. General Register Pointer Configuration

As shows in Figure 7-14, the general register pointer consists of seven bits; four bits in system register address

7DH (RPH) and the three high-order bits of system register address 7EH (RPL). However, because the four bits of

address 7DH are always set to 0, the register effectively consists of the three high-order bits of address 7EH.

All register bits are cleared to 0 at reset.

7DHAddress

Name

Bit

Symbol

Data

Initial value when reset

b3 b2 b1 b0

0 0 0 0

0

(RP)

RPH

7EH

General register
pointer (RP)

b3 b2 b1 b0

B
C
D

0

RPL

Flag

CHAPTER 7 SYSTEM REGISTER (SYSREG)

60

7.6.2 Functions of the General Register Pointer

The general register pointer is used to specify the location of the general register in data memory. For a more

detailed explanation, refer to CHAPTER 8 GENERAL REGISTER (GR).

The general register consists of sixteen nibbles in any single row of data memory. As shown in Figure 7-15, the

general register pointer is used to indicate which row address is being used as the general register.

Since the general register pointer effectively consists of three bits, the data memory row addresses in which the

general register can be placed are address locations 0H to 7H of BANK0. In other words, any row in data memory

can be specified as the general register.

With the general register allocated in data memory, data can be transferred to and from, and arithmetic/logical

operations can be performed on the general register and data memory.

Note that addresses 40H to 6EH are uninstalled memory locations and should therefore not be specified as

locations for the general register.

For example, when instructions such as

ADD r,m and LD r,m

are executed, instruction operand r can specify an address in the general register and m specifies an address in data

memory. In this way, operations like addition and data transfer can be performed on and between data memory

and the general register.

Figure 7-15. General Register Configuration

Notes 1. These bits should not be specified in the case of the µPD17120 and 17121.

2. This bit is allocated to BCD flag.

b1

0

1

0

1

0

1

0

1

b2

0

0

1

1

0

0

1

1

b3

0

0

0

0

1

1

1

1

b0b1b2b3 b0

Fi
xe

d
to

 0

Fi
xe

d
to

 0

Fi
xe

d
to

 0

Fi
xe

d
to

 0

Note

2

RPH RPL







Note 1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

BP

General register (16 nibbles)

System register

BANK0

General register pointer
(RP)

Example :
General
register
with
RPH=0000B
RPL=010×B

Area in which
general register
can be specified

Column address

CHAPTER 7 SYSTEM REGISTER (SYSREG)

61

7.7 PROGRAM STATUS WORD (PSWORD)

7.7.1 Program Status Word Configuration

Figure 7-16 shows the configuration of the program status word.

Figure 7-16. Program Status Word Configuration

7EHAddress

Name

Bit

Symbol

Initial value when reset

b3 b2 b1 b0

0

RPL

7FH

Program status
word (PSWORD)

b3 b2 b1 b0

I
X
E

0

PSW

Data

ZC
Y

C
M
P

B
C
D

(RP)

As shown in Figure 7-16, the program status word consists of five bits; the least significant bit of system register

address 7EH (RPL) and all four bits of system register address 7FH (PSW).

The program status word is divided into the following 1-bit flags: Binary coded decimal flag (BCD), compare flag

(CMP), carry flag (CY), zero flag (Z), and the index enable flag (IXE).

All register bits are cleared to 0 at reset and at saved at interrupt stack register.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

62

7.7.2 Functions of the Program Status Word

The flags of the program status word are used for setting conditions for arithmetic/logical operations and data

transfer instructions and for reflecting the status of operation results. Figure 7-17 shows an outline of the functions

of the program status word.

Figure 7-17. Outline of Functions of the Program Status Word

7FH

b0

7EH

PSWRPL

Address

Symbol

Flag

b1b2b3b0b1b2b3

I

X

E

ZC

Y

C

M

P

B

C

D

Used to specify that index modification be performed on the data
memory address used when a data memory manipulation instruction is
executed.
0: Index modification disabled.
1: Index modification enabled.

Set when the result of an arithmetic operation is 0.
0: Indicates that the result of the arithmetic operation is a value other

than 0.
1: Indicates that the result of the arithmetic operation is 0.

Set when there is a carry in the result of an addition operation or a
borrow in the result of a subtraction operation.
0: Indicates there was no carry or borrow.
1: Indicates there was a carry or borrow.

Used to specify that the result of an arithmetic operation not be stored
in data memory or the general register but just be reflected in the CY
and Z flags.
0: Results of arithmetic operations are stored.
1: Results of arithmetic operations are not stored.

Used to specify how arithmetic operations are performed.
0: Arithmetic operations are performed in 4-bit binary.
1: Arithmetic operations are performed in BCD.

Flag Function of PSWORD

IXE

Z

CY

CMP

BCD

Bit

CHAPTER 7 SYSTEM REGISTER (SYSREG)

63

7.7.3 Index Enable Flag (IXE)

The IXE flag is used to enable to modify index of the data memory address, whether index modification is to be

performed on the data memory address used.

For a more detailed explanation, refer to 7.5 INDEX REGISTER (IX) AND DATA MEMORY ROW ADDRESS

POINTER (MEMORY POINTER: MP).

7.7.4 Zero Flag (Z) and Compare Flag (CMP)

The Z flag indicates whether the result of an arithmetic operation is 0. The CMP flag is used to specify that the

result of an arithmetic operation not be stored in data memory or the general register.

Table 7-2 shows how the CMP flag affects the setting and resetting of the Z flag.

Table 7-2. Zero Flag (Z) and Compare Flag (CMP)

Condition When CMP=0 When CMP=1

When the result of the arithmatical operation is 0 Z ← 1 Z remains unchanged

When the result of the arithmetic operation is other than 0 Z ← 0 Z ← 0

The Z and CMP flags are used to compare the contents of the general register with those of the data memory.

The Z flag does not change other than in arithmetic operations; the CMP flag does not change other than in bit

decisions.

Example of 12-bit data comparision

; Is the 12-bit data stored in M001, M002, and M003 equivalent to 456H?

CMP456:

SET2 CMP, Z

SUB M001, #4 ; Data stored in M001, M002, and M003 are not

SUB M002, #5 ; damaged

SUB M003, #6 ;

; CLR1 CMP

SKT Z ; CMP is automatically cleared by the bit decision instruction

BR DIFFER ; ≠ 456H

BR AGREE ; =456H

CHAPTER 7 SYSTEM REGISTER (SYSREG)

64

7.7.5 Carry Flag (CY)

The CY flag shows whether there is a carry in the result of an addition operation or a borrow in the result of a

subtraction operation.

The CY flag is set (CY=1) when there is a carry or borrow in the result and reset (CY=0) when there is no carry

or borrow in the result.

When the RORC r instruction (contents in the general register pointed to by r is shifted right one bit) is executed,

the following occurs: the value in the CY flag just before execution of the instruction is shifted to the most significant

bit of the general register and the least significant bit is shifted to the CY flag.

The CY flag is also useful for when the user wants to skip the next instruction when there is a carry or borrow

in the result of an operation.

The CY flag is only affected by arithmetic operations and rotations. Also, it is not affected by CMP flag.

7.7.6 Binary-Coded Decimal Flag (BCD)

The BCD flag is used to specify BCD operations.

When the BCD flag is set (BCD=1), all arithmetic operations will be performed in BCD. When the BCD flag is

reset (BCD=0), arithmetic operations are performed in 4-bit binary.

The BCD flag does not affect logical operations, bit evaluation, comparison evaluations or rotations.

7.7.7 Caution on Use of Arithmetic Operations on the Program Status Word

When performing arithmetic operations (addition and subtraction) on the program status word (PSWORD), the

following point should be kept in mind.

When an arithmetic operation is performed on the program status word and the result is stored in the program

status word.

Below is an example.

Example

MOV PSW, #0001B

ADD PSW, #1111B

When the above instructions are executed, a carry is generated which should cause bit 2 (CY flag)

of PSW to be set. However, the result of the operation (0000B) is stored in PSW, meaning that

CY does not get set.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

65

7.8 CAUTIONS ON USE OF THE SYSTEM REGISTER

7.8.1 Reserved Words for Use with the System Register

Because the system register is allocated in data memory, it can be used in any of the data memory manipulation

instructions. As shown in Example 1 (using a 17K Series Assembler - AS17K), because a data memory address can

not be directly specified in an instruction operand, it needs to be defined as a symbol beforehand.

The system register is data memory, but has specialized functions which make it different from general-purpose

data memory. Because of this, the system register is used by defining it beforehand with symbols (used as reserved

words) in the assembler (AS17K).

Reserved words for use with the system register are allocated in address locations 74H to 7FH. They are defined

by the symbols (AR3, AR2, ..., PSW) shown in Figure 7-2.

As shown in Example 2, if these reserved words are used, it is not necessary to define symbols.

For information concerning reserved words, refer to CHAPTER 19 ASSEMBLER RESERVED WORDS.

Example 1. MOV 34H, #0101B ; Using a data memory address like 34H or 76H will

MOV 76H, #1010B ; cause an error in the assembler.

M037 MEM 0.37H ; Addresses in general data memory need to be

MOV M037, #0101B ; defined as symbols using the MEM pseudo instruction.

2. MOV AR1, #1010B ; By using the reserved word AR1 (address 76H),

; there is no need to define the address as a symbol.

; Reserved word AR1 is defined in a device file with

; the pseudo instruction "AR1 MEM 0.76H".

Assembler AS17K has the below flag symbol handling instructions defined as macros.

SETn: Set a flag to 1

CLRn: Rest a flag to 0

SKTn: Skip when all flags are 1

SKFn: Skip when all flags are 0

NOTn: Invert a flag

INITFLG: Initialize a flag

CHAPTER 7 SYSTEM REGISTER (SYSREG)

66

By using these macro instructions, data memory can be handled as flags as shown below in Example 3.

The functions of the program status word and the memory pointer enable flag are defined in bit units (flag units)

and each bit has a reserved word MPE, BCD, CMP, CY, Z and IXE defined for it.

If these flag reserved words are used, the incorporated macro instructions can be used as shown in Example

4.

Example 3. F0003 FLG 0.00.3 ; Flag symbol definition

SET1 F0003 ; Incorporated macro

Expanded macro

OR .MF.F0003 SHR 4, #.DF.F0003 AND 0FH

; Set bit 3 of address 00H of BANK0

Example 4. SET1 BCD ; Incorporated macro

Expanded macro

OR .MF.BCD SHR 4, #.DF.BCD AND 0FH

; Set the BCD flag

; BCD is defined as "BCD FLG 0.7EH.0"

CLR2 Z, CY ; Identical address flag

Expanded macro

AND .MF.Z SHR 4, #.DF. (NOT (Z OR CY) AND 0FH)

CLR2 Z, BCD ; Different address flag

Expanded macro

AND .MF.Z SHR 4, #.DF. (NOT Z AND 0FH)

AND .MF.BCD SHR 4, #.DF. (NOT BCD AND 0FH)

CHAPTER 7 SYSTEM REGISTER (SYSREG)

67

7.8.2 Handling of System Register Addresses Fixed at 0

In dealing with system register addresses fixed at 0 (refer to Figure 7-2), there are a few points for which caution

should be taken with regard to device, emulator and assembler operation.

Items (1), (2) and (3) explain these points.

(1) Concerning device operation

Trying to write data to an address fixed at 0 will not change the value (0) at that address. Any attempt to

read an address fixed at 0 will result in the value 0 being read.

(2) When using a 17K series in-circuit emulator (IE-17K or IE-17K-ET)

An error will be generated if a write instruction attempts to write the value 1 to an address fixed at 0.

Below is an example of the type of instructions that will cause the in-circuit emulator to generate an error.

Example 1. MOV BAMK, #0100B ; Attempts to write the value 1 to bit 3 (an address fixed at 0).

2. MOV IXL, #1111B ;

MOV IXM, #1111B ;

MOV IXH, #0001B ;

ADD IXL, #1 ;

ADDC IXM, #0 ;

ADDC IXH, #0 ;

However, when all valid bits are set to 1 as shown in Example 2, executing the instructions INC AR or INC IX

will not cause an error to be generated by the in-circuit emulator. This is because when all valid bits of the address

register and index register are set to 1, executing the INC instruction causes all bits to be set to 0.

The only time the in-circuit emulator will not generate an error when an attempt is made to write the value 1 to

a bit fixed at 0 is when the address being written to is in the address register.

CHAPTER 7 SYSTEM REGISTER (SYSREG)

68

(3) When using a 17K series assembler (AS17K)

No error is output when an attempt is made to write the value 1 to a bit fixed at 0. The instruction shown

in Example 1

MOV BANK, #0100B

will not cause an assembler error. However, when the instruction is executed in the in-circuit emulator, an

error is generated.

The assembler (AS17K) does not generate errors because it does not check the correspondence between

the symbol (including reserved words) and the data memory address which are the objects of the data memory

operation instruction. However, in the following case, the assembler generates an error:

When a value of 1 or more is given to "n" in the incorporation macro instruction "BANKn".

This is so because the assembler determine that no incorporation macro instructions other than BANK0 can

be used on the µPD17120 subseries.

CHAPTER 8 GENERAL REGISTER (GR)

The general register (GR) is allocated in data memory. It can therefore be used directly in performing arithmetic/

logical operations with and in transferring data to and from general data memory.

8.1 GENERAL REGISTER CONFIGURATION

Figure 8-1 shows the configuration of the general register.

As shown in Figure 8-1, sixteen nibbles in a single row address in data memory (16 × 4 bits) are used as the general

register.

The general register pointer (RP) in the system register is used to indicate which row address is to be used as

the general register. Because the RP effectively has three valid bits, the data memory row addresses in which the

general register can be allocated are address locations 0H to 7H. However, note that addresses 40H to 6EH are

uninstalled memory locations and should therefore not be specified as locations for the general register.

8.2 FUNCTIONS OF THE GENERAL REGISTER

The general register can be used in transferring data to and from data memory within an instruction. It can also

be used in performing arithmetic/logical operations with data memory within an instruction. In effect, since the

general register is data memory, this just means that operations such as arithmetic/logical operations and data transfer

can be performed on and between locations in data memory. In addition, because the general register is allocated

in data memory, it can be controlled in the same manner as other areas in data memory through the use of data

memory manipulation instructions.

69

CHAPTER 8 GENERAL REGISTER (GR)

70

Figure 8-1. General Register Configuration

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

RP

General register (16 nibbles)

System register

BANK0

General
register
when
RPH=0000B
RPL=010×B

7DHAddress

Name

Bits

Symbol

Data

b3 b2 b1 b0

0

b3 b2 b1 b0

7EH

B
C
D

RPH RPL

General register pointer
(RP)

0 0 0 0 0 0Reset

0 0 0 0

R
ow

 a
dd

re
ss

The general register
pointer (RP) can be used
to specify any row
address in address
locations 0H to 7H

Column address

CHAPTER 9 REGISTER FILE (RF)

The register file is a register used mainly for specifying conditions for peripheral hardware.

9.1 REGISTER FILE CONFIGURATION

9.1.1 Configuration of the Register File

Figure 9-1 shows the configuration of the register file.

As shown in Figure 9-1, the register file is a register consisting of 128 nibbles (128 words × 4 bits).

In the same way as with data memory, the register file is divided into address in units of four bits. It has a total

of 128 nibbles specified in row addresses from 0H to 7H and column address from 0H to 0FH.

Address locations 00H to 3FH define an area the control register.

Figure 9-1. Register File Configuration

0

1

2

3

4

5

6

7

General register

0

R
ow

 a
dd

re
ss

Column address

1 2 3 4 5 6 7 8 9 A B C D E F

9.1.2 Relationship between the Register File and Data Memory

Figure 9-2 shows the relationship between the register file and data memory.

As shown in Figure 9-2, the register file overlaps with data memory in addresses 40H to 7FH.

This means that the same memory exists in register file addresses 40H to 7FH and in data memory bank addresses

40H to 7FH.

71

CHAPTER 9 REGISTER FILE (RF)

72

Figure 9-2. Relationship Between the Register File and Data Memory

0

1

2

3

4

5

6

7

Data memory

0

R
ow

 a
dd

re
ss

Column address
1 2 3 4 5 6 7 8 9 A B C D E F

BANK0

System register

Control register

Port register

0

1

2

3

Register file

9.2 FUNCTIONS OF THE REGISTER FILE

9.2.1 Functions of the Register File

The register file is mainly used as a control register (a register called the control register is allocated in the register

file) for specifying conditions for peripheral hardware.

This control register is allocated within the register file at address location 00H to 3FH.

The rest of the register file (40H to 7FH) overlaps with data memory. As shown in 9.2.3, because of this overlap,

this area of the register file is the same as normal memory with one exception: The register file manipulation

instructions PEEK and POKE can be used with this area of memory but not with normal data memory.

9.2.2 Control Register Functions

The peripheral hardware whose conditions can be controlled by control registers is listed below.

For details concerning peripheral hardware and the control register, refer to the section for the peripheral hardware

concerned.

• Stack • INT pin

• Power-on/power-down reset • Comparator

• Timer • General ports

• Serial interface • Interrupts

CHAPTER 9 REGISTER FILE (RF)

73

9.2.3 Register File Manipulation Instructions

Reading and writing data to and from the register file is done using the window register (WR: address 78H) located

in the system register.

Reading and writing of data is performed using the following dedicated instructions:

PEEK WR, rf: Read the data in the address specified by rf and put it into WR.

POKE rf, WR: Write the data in WR into the address specified by rf.

Below is an example using the PEEK and POKE instructions.

Example M030 MEM 0.30H ; Address 30H of the data memory is used as save area of WR.

M032 MEM 0.32H ; Address 32H of the data memory is used as operation area of WR.

RF11 MEM 0.91H ; Symbol definition

RF33 MEM 0.B3H ; Register file addresses 00H to 3FH must be defined with

RF70 MEM 0.70H ; symbols as BANK0 address 80H to BFH.

RF73 MEM 0.73H ; Refer to 9.4 NOTES ON USING THE REGISTER FILE for details.

; BANK0

<1> PEEK WR, RF11 ;

CLR1 MPE ; Shows the example of saving WR contents to the general data

CLR1 IXE ; memory (addresses 00H to 3FH). For example, it shows the

OR RPL, #0110B ; case of saving WR contents to address 30H of the data memory

<2> LD M030, WR ; without address modification.

<3> POKE RF73, WR ; Data memory of addresses 40H to 7FH and control register can

<4> PEEK WR, RF70 ; transmit/receive data to/from WR directly by PEEK and POKE

<5> POKE RF33, WR ; instruction.

<6> ST WR, M032 ;

CHAPTER 9 REGISTER FILE (RF)

74

Figure 9-3 shows an example of register file operation.

As shown in Figure 9-3, reading and writing of data to and from the control register (address locations 00H to 3FH)

is performed using the "PEEK WR, rf" and "POKE rf, WR" instructions. Data within the control register specified using

rf can be read from and written to the control register, only by using these instructions with the window register.

The fact that the register file overlaps with data memory in addresses 40H to 7FH has the following effect: When

a "PEEK WR, rf" or "POKE rf, WR" instruction is executed, the effect is the same as if they were being executed on

the data memory address (in the current bank) specified by rf.

Addresses 40H to 7FH of the register file can be operated by normal memory manipulation instructions.

Control registers can be manipulated in 1-bit unit by using built-in macro instruction.

Figure 9-3. Accessing the Register File Using the PEEK and POKE Instructions

0

1

2

3

4

5

6

7

0

System register

<6> ST

Column address

1 2 3 4 5 6 7 8 9 A B C D E F

Data memory

<2> LD M030, WR

<3> POKE RF73, WR

<4> PEEK WR, RF70

BANK0

0

1

2

3

R
ow

 a
dd

re
ss

<1> PEEK WR, RF11

<5> POKE RF33, WR Control register

WR, M032

WR

Register file

CHAPTER 9 REGISTER FILE (RF)

75

9.3 CONTROL REGISTER

The control register consists of 64 nibbles (64 × 4 bits) allocated in register file address locations 00H to 3FH.

Of these nibbles, only 17 nibbles are actually used in the µPD17120 and 17121, and 20 nibbles are used in the

µPD17132, 17133, 17P132, and 17P133.

There are two types of registers, both of which occupy one nibble of memory. One type is read/write (R/W), and

the other is read-only (R).

Note that within the read/write (R/W) flags, there exists a flag that will always be read as 0.

The following read/write (R/W) flags are those flags which will always be read as 0:

• TMRES (RF: 11H, bit 2)

Within the four bits of data in a nibble, there are bits which are fixed at 0 and will therefore always be read as

0. These bits remain fixed at 0 even when an attempt is made to write to them.

Attempting to read data in the unused register address area will yield unpredictable values. In addition, attempting

to write to this area has no effect.

Concerning the configuration of control register, refer to Figures 19-1 and 19-2.

9.4 CAUTIONS ON USING THE REGISTER FILE

9.4.1 Concerning Operation of the Control Register (Read-Only and Unused Registers)

It is necessary to take note of the following notes concerning device operation and use of the 17K Series assembler

(AS17K) and in-circuit emulator (IE-17K or IE-17K-ET) with regard to the read-only (R) and unused registers in the

control register (register file address locations 00H to 3FH).

(1) Device operation

Writing to a read-only register has no effect.

Attempting to read data from an address in the unused data area will yield an unpredictable value. Attempting

to write to an address in the unused data area has no effect.

(2) During use of the assembler (AS17K)

An error will be generated if an attempt is made to write to a read-only register.

An error will also be generated if an attempt is made to read from or write to an address in the unused data

area.

CHAPTER 9 REGISTER FILE (RF)

76

(3) During use of the in-circuit emulator (IE-17K or IE-17K-ET) (operation during patch processing and

similar operations)

Attempting to write to a read-only register has no effect and no error is generated.

Attempting to read data from an address in the unused data area will yield an unpredictable value.

Attempting to write to an address in the unused data area has no effect and no error is generated.

9.4.2 Register File Symbol Definitions and Reserved Words

Attempting to use a numerical value in a 17K Series assembler (AS17K) to specify a register file address in the

rf operand of the PEEK WR, rf or POKE rf, WR instructions will cause an error to be generated.

Therefore, as shown in Example 1, register file addresses need to be defined beforehand as symbols.

Example 1. Case which causes and error to be generated

PEEK WR, 02H ;

POKE 21H, WR ;

Case in which no error is generated

RF71 MEM 0.71H ; Symbol definition

PEEK WR, RF71 ;

Caution should especially be taken with regard to the following point:

• When using a symbol to define the control register as an address in data memory, it needs to be defined as

addresses 80H to BFH of BANK0.

Since the control register is manipulated using the window register, any attempt to manipulate the control register

other than by using the PEEK and POKE commands needs to cause an error to be generated in the assembler (AS17K).

However, note that any address in the area of the register file overlapping with data memory (address locations

40H to 7FH) can be defined as a symbol in the same manner as with normal data memory.

An example is given below.

Example 2. RF71 MEM 0.71H ; Address in register file overlapping with data memory

RF02 MEM 0.82H ; Control register

PEEK WR, RF71 ; RF71 becomes address 71H

PEEK WR, RF02 ; RF02 becomes address 02H in the control register.

CHAPTER 9 REGISTER FILE (RF)

77

The assembler (AS17K) has the below flag symbol handling instructions defined internally as macros.

SETn: Set a flag to 1

CLRn: Reset a flag to 0

SKTn: Skip when all flags are 1

SKFn: Skip when all flags are 0

NOTn: Invert a flag

INITFLG: Initialize a flag (data setting per 4 bits)

By using these incorporated macro instructions, the contents of the register file can be manipulated one bit at

a time.

Due to the fact that most of control register consists of 1-bit flags, the assembler (AS17K) has reserved words

(predefined symbols) for use with these flags.

However, note that there is no reserved word for the stack pointer for its use as a flag. The reserved word used

for the stack pointer is "SP", for its use as data memory. For this reason, none of the above flag manipulation

instructions using reserved words can be used for the stack pointer.

[MEMO]

78

CHAPTER 10 DATA BUFFER (DBF)

The data buffer consists of four nibbles allocated in addresses 0CH to 0FH in BANK0.

The data buffer is used as a data storage area when data is transferred to/from the CPU peripheral circuit (address

register, serial interface, and timer) by the GET and PUT instructions. By using the MOVT DBF, and @AR instructions,

fixed data in program memory can be read into the data buffer.

10.1 DATA BUFFER CONFIGURATION

Figure 10-1 shows the allocation of the data buffer in data memory.

As shown in Figure 10-1, the data buffer is allocated in address locations 0CH to 0FH in BANK0 and consists of

a total of 16 bits (4 × 4 bits).

Figure 10-1. Allocation of the Data Buffer

0

1

2

3

4

5

6

7

0

BANK0

Column address

1 2 3 4 5 6 7 8 9 A B C D E F

Data memory

Data buffer
(DBF)

System register (SYSREG)

R
ow

 a
dd

re
ss

Figure 10-2 shows the configuration of the data buffer. As shown in Figure 10-2, the data buffer is made up of

sixteen bits with its least significant bit in bit 0 of address 0FH and its most significant bit in bit 3 of address 0CH.

79

CHAPTER 10 DATA BUFFER (DBF)

80

Figure 10-2. Data Buffer Configuration

Address

Bit

Data

b3 b2 b1 b0

DBF3Symbol

Bit

b15 b14 b13 b12

b3 b2 b1 b0

DBF2

b11 b10 b9 b8

b3 b2 b1 b0

DBF1

b7 b6 b5 b4

b3 b2 b1 b0

DBF0

b3 b2 b1 b0

0CH 0DH 0EH 0FH

M
S
B

<
 >

<
 >

L
S
B

Data memory
BANK0

Data buffer

Data

Because the data buffer is allocated in data memory, it can be used in any of the data memory manipulation

instructions.

10.2 FUNCTIONS OF THE DATA BUFFER

The data buffer has two separate functions.

The data buffer is used for data transfer with peripheral hardware. The data buffer is also used for reading constant

data in program memory. Figure 10-3 shows the relationship between the data buffer and peripheral hardware.

Figure 10-3. Relationship Between the Data Buffer and Peripheral Hardware

01H Shift register (SIOSFR)

Peripheral hardware

02H

03H Timer modulo register
(TMM)

40H Address register (AR)

Data buffer
(DBF)

Constant data

Program memory (ROM)

Internal bus

Peripheral
address

Timer count register
(TMC)

CHAPTER 10 DATA BUFFER (DBF)

81

10.2.1 Data Buffer and Peripheral Hardware

Table 10-1 shows data transfer with peripheral hardware using the data buffer.

Each unit of peripheral hardware has an individual address (called its peripheral address). By using this peripheral

address and the dedicated instructions GET and PUT, data can be transferred between each unit of peripheral

hardware and the data buffer.

GET DBF, p : Read the data in the peripheral hardware address specified by p into the data buffer (DBF).

PUT p, DBF: Write the data in the data buffer to the peripheral hardware address specified by p.

There are three types of peripheral hardware units: read/write (PUT/GET), write-only (PUT) and read-only (GET).

The following describes what happens when a GET instruction is used with write-only hardware (PUT only) and

when a PUT instruction is used with read-only hardware (GET only).

• Reading (GET) from write-only (PUT only) peripheral hardware will yield an unpredictable value.

• Writing (PUT) to read-only (GET only) peripheral hardware has no effect (regarded as a NOP instruction).

Table 10-1. Peripheral Hardware

(1) Peripheral hardware with input/output in 8-bit units

Direction of Data

PUT GET

01H SIOSFR Shift register ●● ●● 8 bits

02H TMC Timer count register × ●● 8 bits

03H TMM Timer modulo register ●● × 8 bits

(2) Peripheral hardware with input/output in 16-bit units

Direction of Data

PUT GET

40H AR Address register ●● ●● 10 bits

Peripheral

Address
Name Peripheral Hardware

Peripheral

Address
Name Peripheral Hardware

Effective Bit

Length

Effective Bit

Length

CHAPTER 10 DATA BUFFER (DBF)

82

10.2.2 Data Transfer with Peripheral Hardware

Data can be transferred between the data buffer and peripheral hardware in 8- or 16-bit units. Instruction cycle

for a single PUT or GET instruction is the same regardless of whether eight or sixteen bits are being transferred.

Example 1. PUT instruction (when the effective bits in peripheral hardware are the 8 bits from 7 to 0)

DBF0
b0b1b2b3

Data in peripheral
hardware

b4b5b6b7

DBF2
Don't care

DBF3
Don't care

b0

Effective bits
b7

PUT

DBF1Data buffer

When only eight bits of data are being written from the data buffer, the upper eight bits of the data

buffer (DBF3, DBF2) are irrelevant.

Example 2. GET instruction (when the effective bits in peripheral hardware are the 8 bits from 7 to 0)

When only eight bits of data are being read into the data buffer, the values in the upper eight bits

of the data buffer (DBF3, DBF2) remain unchanged.

DBF0
b0b1b2b3

Data in peripheral
hardware

b4b5b6b7

DBF2
Retained

DBF3
Retained

b0

Effective bits
b7

GET

DBF1Data buffer

CHAPTER 10 DATA BUFFER (DBF)

83

10.2.3 Table Reference

By using the MOVT instruction, constant data in program memory (ROM) can be read into the data buffer.

The MOVT instruction is explained below.

MOVT DBF, @AR: The contents of the program memory being pointed to by the address register (AR) is read

into the data buffer (DBF).

DBF3 DBF2 DBF1 DBF0

16 bits

Date buffer

MOVT DBF, @AR
Program memory (ROM)

b15 b0

[MEMO]

84

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

The ALU is used for performing arithmetic operations, logical operations, bit evaluations, comparison evaluations,

and rotations on 4-bit data.

11.1 ALU BLOCK CONFIGURATION

Figure 11-1 shows the configuration of the ALU block.

As shown in Figure 11-1, the ALU block consists of the main 4-bit data processor, temporary registers A and B,

the status flip-flop for controlling the status of the ALU, and the decimal conversion circuit for use during arithmetic

operations in BCD.

As shown in Figure 11-1, the status flip-flop consists of the following flags: Zero flag FF, carry flag FF, compare

flag FF, and the BCD flag FF.

Each flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD: addresses

7EH, 7FH) located in the system register. The flags in the program status word are the following: Zero flag (Z), carry

flag (CY), compare flag (CMP), and the BCD flag (BCD).

11.2 FUNCTIONS OF THE ALU BLOCK

Arithmetic operations, logical operations, bit evaluations, comparison evaluations, and rotations are performed

using the instructions in the ALU block. Table 11-1 lists each arithmetic/logical instruction, evaluation instruction,

and rotation instruction.

By using the instructions listed in Table 11-1, 4-bit arithmetic/logical operations, evaluations and rotations can be

performed in a single instruction. Arithmetic operations in decimal can also be performed in a single instruction.

11.2.1 Functions of the ALU

The arithmetic operations consists of addition and subtraction. Arithmetic operations can be performed on the

contents of the general register and data memory or on immediate data and the contents of data memory. Operations

in binary are performed on four bits of data operations in decimal are performed on one place (BCD operation).

Logical operations include ANDing, ORing, and XORing. Their operands can be general register contents and data

memory contents, or data memory contents and immediate data.

Bit evaluation is used to determine whether bits in 4-bit data in data memory are 0 or 1.

Comparison evaluation is used to compare contents of data memory with immediate data. It is used to determine

whether one value is equal to or greater than the other, less than the other, or if both values are equal or not equal.

Rotation is used to shift 4-bit data in the general register one bit in the direction of its least significant bit (rotation

to the right).

85

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

86

Figure 11-1. Configuration of the ALU

Data bus

Temporary
register A

Temporary
register B

Status
flip-flop

ALU
• Arithmetic operations
• Logical operations
• Bit evaluations
•Comparison
 evaluations
•Rotations

Decimal con-
version circuit

7EH 7FH

Program status word
(PSWORD)

b0

BCD

b3

CMP

b2

CY

b1

Z

b0

IXE

Status flip-flop

CMP
flag
FF

CY
flag
FF

Z
flag
FF

BCD
flag
FF

Function outline

Indicates when the result of an arithmetic
operation is 0.

Stores the borrow or carry from an arithmetic
operation.

Used to indicate whether to store the result
of an arithmetic operation.

Used to indicate whether to perform
decimal correction for arithmetic operations.

Address

Name

Bit

Flag

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

87

[MEMO]

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

88

Table 11-1. List of ALU Instructions (1/2)

ALU Functions Instruction Operation Explanation

ADD r, m (r) ← (r) + (m) Adds contents of general register and data memory.
Result is stored in general register.

ADD m, #n4 (m) ← (m) + n4 Adds immediate data to contents of data memory.
Result is stored in data memory.

ADDC r, m (r) ← (r) + (m) + CY Adds contents of general register, data memory and
carry flag. Result is stored in general register.

ADDC m, #n4 (m) ← (m) + n4 + CY Adds immediate data, contents of data memory and
carry flag. Result is stored in data memory.

SUB r, m (r) ← (r) – (m) Subtracts contents of data memory from contents of
general register. Result is stored in general register.

SUB m, #n4 (m) ← (m) – n4 Subtracts immediate data from data memory. Result
is stored in data memory.

SUBC r, m (r) ← (r) – (m) – CY Subtracts contents of data memory and carry flag from
contents of general register. Result is stored in general
register.

SUBC m, #n4 (m) ← (m) – n4 – CY Subtracts immediate data and carry flag from data
memory. Result is stored in data memory.

OR r, m (r) ← (r) (m) OR operation is performed on contents of general
register and data memory. Result is stored in general
register.

OR m, #n4 (m) ← (m) n4 OR operation is performed on immediate data and
contents of data memory. Result is stored in data
memory.

AND r, m (r) ← (r) (m) AND operation is performed on contents of general
register and data memory. Result is stored in general
register.

AND m, #n4 (m) ← (m) n4 AND operation is performed on immediate data and
contents of data memory. Result is stored in data
memory.

XOR r, m (r) ← (r) (m) XOR operation is performed on contents of general
register and data memory. Result is stored in general
register.

XOR m, #n4 (m) ← (m) n4 XOR operation is performed on immediate data and
contents of data memory. Result is stored in data
memory.

TRUE SKT m, #n CMP ← 0, if (m) n=n, Skips next instruction if all bits in data memory
then skip specified by n are TRUE (1). Result is not stored.

FALSE SKF m, #n CMP ← 0, if (m) n=0, Skips next instruction if all bits in data memory
then skip specified by n are FALSE (0). Result is not stored.

Equal SKE m, #n4 (m) – n4, skip if zero Skips next instruction if immediate data equals
contents of data memory. Result is not stored.

Not SKNE m, #n4 (m) – n4, skip if not zero Skips next instruction if immediate data is not equal
equal to contents of data memory. Result is not stored.

≥ SKGE m, #n4 (m) – n4, skip if not borrow Skips next instruction if contents of data memory is
greater than or equal to immediate data. Result is
not stored.

< SKLT m, #n4 (m) – n4, skip if borrow Skips next instruction if contents of data memory is
less than immediate data. Result is not stored.

Rotation RORC r Rotate contents of the general register along with
the CY flag to the right. Result is stored in general
register.

Bit
judge-
ment

Rotate
to the
right

Arith-
metic
opera-
tions

Addi-
tion

Sub-
traction

Logical
opera-
tions

Logical
OR

Logical
AND

Logical
XOR

CY→(r)b3→(r)b2→(r)b1→(r)b0

Com-
parison
judge-
ment

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

89

Set if the operation result is

0000B; reset otherwise.

The status is retained if the

operation result is 0000B;

reset otherwise.

Set if the operation result is

0000B; reset otherwise.

The status is retained if the

operation result is 0000B;

reset otherwise.

Don't care Don't care Don't care Don't care

(Held) (Held) (Held) (Held)

Don't care Don't care Don't care

(Held) (Held) (Held)

Don't care Don't care Don't care Don't care

(Held) (Held) (Held) (Held)

Don't care Don't care Don't care

(Held) (Held) (Held)

Table 11-1. List of ALU Instructions (2/2)

ALU Function Operational Variance Depending on Program Status Word (PSWORD)

CY flag Z flag
BCD flag's

value
CMP flag's

value
Operating

action

Modifica-
tion by
IXE=1

The binary
operation result
is stored.

The BCD
operation result
is stored.

The binary

operation result

is not stored.

The BCD

operation result

is not stored.

0 0

0 1

1 0

1 1

Set if a

carry or

borrow is

generated;

reset

otherwise.
Yes

Arithmetic

Operation

Unchanged Yes

Is reset Unchanged Yes

Unchanged Yes

Unchanged Yes

Logical

Operation

Bit

Judgement

Comparison

Judgement

Rotation

General
register
b0's value

...
...

...
...

..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
.

...
...

...
...

..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
.

...
...

...
...

..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
.

...
...

...
...

..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

.
...

...
...

...
...

...
...

.
...

...
...

...
..

...
...

...
...

..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
.

...
...

...
...

..
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
.

...
...

...
...

...
...

...
.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

90

11.2.2 Functions of Temporary Registers A and B

Temporary registers A and B are needed for processing of 4-bit data. These registers are used for temporary

storage of the first and second data operands of an instruction.

11.2.3 Functions of the Status Flip-flop

The status flip-flop is used for controlling operation of the ALU and for storing data which has been processed.

Each flag in the status flip-flop corresponds directly to a flag in the program status word (PSWORD) located in the

system register. This means that when a flag in the system register is manipulated it is the same as manipulating

a flag in the status flip-flop. Each flag in the program status word is described below.

(1) Z flag

This flag is set (1) when the result of an arithmetic operation is 0000B, otherwise it is reset (0). However,

as described below, depending on the status of the CMP flag, the conditions which cause this flag to be set

(1) can be changed.

(i) When CMP=0

Z flag is set (1) when the result of an arithmetic operation is 0000B, otherwise it is reset (0).

(ii) When CMP=1

The previous state of the Z flag is maintained when the result of an arithmetic operation is 0000B,

otherwise it is reset (0). Only affected by arithmetic operations.

(2) CY flag

This flag is set (1) when a carry or borrow is generated in the result of an arithmetic operation, otherwise

it is reset (0).

When an arithmetic operation is being performed using a carry or borrow, the operation is performed using

the CY flag as the least significant bit. When a rotation (RORC instruction) is performed, the contents of the

CY flag becomes the most significant bit (bit b3) of the general register and the least significant bit of the

general register is stored in the CY flag.

Only affected by arithmetic operations and rotations.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

91

(3) CMP flag

When the CMP flag is set (1), the result of an arithmetic operation is not stored in either the general register

or data memory.

When the bit evaluation instruction is performed, the CMP flag is reset (0).

The CMP flag does not affect comparison evaluations, logical operations, or rotations.

(4) BCD flag

When the BCD flag is set (1), decimal correction is performed for all arithmetic operations. When the flag

is reset (0), decimal correction is not performed.

The BCD flag does not affect logical operations, bit evaluations, comparison evaluations, or rotations.

These flags can also be set through direct manipulation of the values in the program status word. When the flags

in the program status word are manipulated, the corresponding flag in the status flip-flop is also manipulated.

11.2.4 Performing Operations in 4-Bit Binary

When the BCD flag is set to 0, arithmetic operations are performed in 4-bit binary.

11.2.5 Performing Operations in BCD

When the BCD flag is set to 1, decimal correction is performed for arithmetic operations performed in 4-bit binary.

Table 11-2 shows the differences in the results of operations performed in 4-bit binary and in BCD. When the result

of an addition after decimal correction is equal to or greater than 20, or the result of a subtraction after decimal

correction is outside of the range –10 to +9, a value of 1010B (0AH) or higher is stored as the result (shaded area

in Table 11-2).

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

92

Operation
Result

Addition in
4-bit Binary

Addition in
BCD

Operation
ResultCY Operation

ResultCY

0 0 0000 0 0000

1 0 0001 0 0001

2 0 0010 0 0010

3 0 0011 0 0011

4 0 0100 0 0100

5 0 0101 0 0101

6 0 0110 0 0110

7 0 0111 0 0111

8 0 1000 0 1000

9 0 1001 0 1001

10 0 1010 1 0000

11 0 1011 1 0001

12 0 1100 1 0010

13 0 1101 1 0011

14 0 1110 1 0100

15 0 1111 1 0101

16 1 0000 1 0110

17 1 0001 1 0111

18 1 0010 1 1000

19 1 0011 1 1001

20 1 0100 1 1110

21 1 0101 1 1111

22 1 0110 1 1100

23 1 0111 1 1101

24 1 1000 1 1110

25 1 1001 1 1111

26 1 1010 1 1100

27 1 1011 1 1101

28 1 1100 1 1010

29 1 1101 1 1011

30 1 1110 1 1100

31 1 1111 1 1101

Table 11-2. Results of Arithmetic Operations Performed in 4-Bit Binary and BCD

Operation
Result

Subtraction in
4-bit Binary

Subtraction in
BCD

Operation
ResultCY Operation

ResultCY

0 0 0000 0 0000

1 0 0001 0 0001

2 0 0010 0 0010

3 0 0011 0 0011

4 0 0100 0 0100

5 0 0101 0 0101

6 0 0110 0 0110

7 0 0111 0 0111

8 0 1000 0 1000

9 0 1001 0 1001

10 0 1010 1 1100

11 0 1011 1 1101

12 0 1100 1 1110

13 0 1101 1 1111

14 0 1110 1 1100

15 0 1111 1 1101

–16 1 0000 1 1110

–15 1 0001 1 1111

–14 1 0010 1 1100

–13 1 0011 1 1101

–12 1 0100 1 1110

–11 1 0101 1 1111

–10 1 0110 1 0000

–9 1 0111 1 0001

–8 1 1000 1 0010

–7 1 1001 1 0011

–6 1 1010 1 0100

–5 1 1011 1 0101

–4 1 1100 1 0110

–3 1 1101 1 0111

–2 1 1110 1 1000

–1 1 1111 1 1001

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

93

11.2.6 Performing Operations in the ALU Block

When arithmetic operations, logical operations, bit evaluations, comparison evaluations or rotations in a program

are executed, the first data operand is stored in temporary register A and the second data operand is stored in

temporary register B.

The first data operand is four bits of data used to specify the contents of an address in the general register or

data memory. The second data operand is four bits of data used to either specify the contents of an address in data

memory or to be used as an immediate value. For example, in the instruction

ADD r, m

Second data operand

First data operand

the first data operand, r, is used to specify the contents of an address in the general register. The second data operand,

m, is used to specify the contents of an address in data memory. In the instruction

ADD m, #n4

the first data operand, m, is used to specify an address in data memory. The second operand, #n4, is immediate

data. In the rotation instruction

RORC r

only the first data operand, r (used to specify the contents of an address in the general register) is used.

Next, using the data stored in temporary registers A and B, the ALU executes the operation specified by the

instruction (arithmetic operation, logical operation, bit evaluation, comparison evaluation, or rotation). When the

instruction being executed is an arithmetic operation, logical operation, or rotation, the data processed by the ALU

is stored in the location specified by the first data operand (general register address or data memory address) and

the operation terminates. When the instruction being executed is a bit evaluation or comparison evaluation, the result

processed by the ALU is used to determine whether or not to skip the next instruction (whether to treat next

instruction as a no operation instruction: NOP) and the operation terminates.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

94

Caution should be taken with regard to the following points:

(1) Arithmetic operations are affected by the CMP and BCD flags in the program status word.

(2) Logical operations are not affected by the CMP or BCD flag in the program status word. Logical operations

do not affect the Z or CY flags.

(3) Bit evaluation causes the CMP flag in the program status word to be reset.

(4) When an arithmetic operation, logical operation, bit evaluation, comparison evaluation, or rotation is being

executed and the IXE flag in the program status word is set (1), address modification is performed using the

index register.

11.3 ARITHMETIC OPERATIONS (ADDITION AND SUBTRACTION IN 4-BIT BINARY AND BCD)

As shown in Table 11-3, arithmetic operations consist of addition, subtraction, addition with carry, and subtraction

with borrow. These instructions are ADD, ADDC, SUB, and SUBC.

The ADD, ADDC, SUB, and SUBC instructions are further divided into addition and subtraction of the general

register and data memory and addition and subtraction of data memory and immediate data. When the operands

r and m are used, addition or subtraction is performed using the general register and data memory. When the

operands m and #n4 are used, addition or subtraction is performed using data memory and immediate data.

Arithmetic operations are affected by the status flip-flop and the program status word (PSWORD) in the system

register. The BCD flag in the program status word is used to specify whether arithmetic operations are to be

performed in 4-bit binary or in BCD. The CMP flag is used to specify whether or not the results of arithmetic operations

are to be stored.

11.3.1 to 11.3.4 explain the relationship between each command and the program status word.

Table 11-3. Types of Arithmetic Operations

Arithmetic Addition Without carry ADD General register and data memory ADD r, m

operation Data memory and immediate data ADD m, #n4

With carry ADDC General register and data memory ADDC r, m

Data memory and immediate data ADDC m, #n4

Subtraction Without borrow SUB General register and data memory SUB r, m

Data memory and immediate data SUB m, #n4

With borrow SUBC General register and data memory SUBC r, m

Data memory and immediate data SUBC m, #n4

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

95

11.3.1 Addition and Subtraction When CMP=0 and BCD=0

Addition and subtraction are performed in 4-bit binary and the result is stored in the general register or data

memory.

When the result of the operation is greater than 1111B (carry generated) or less than 0000B (borrow generated),

the CY flag is set (1); otherwise it is reset (0).

When the result of the operation is 0000B, the Z flag is set (1) regardless of whether there is carry or borrow;

otherwise it is reset (0).

11.3.2 Addition and Subtraction When CMP=1 and BCD=0

Addition and subtraction are performed in 4-bit binary.

However, because the CMP flag is set (1), the result of the operation is not stored in either the general register

or data memory.

When there is a carry or borrow in the result of the operation, the CY flag is set (1); otherwise it is reset (0).

When the result of the operation is 0000B, the previous state of the Z flag is maintained; otherwise it is reset

(0).

11.3.3 Addition and Subtraction When CMP=0 and BCD=1

BCD operations are performed.

The result of the operation is stored in the general register or data memory. When the result of the operation

is greater than 1001B (9D) or less than 0000B (0D), the carry flag is set (1), otherwise it is reset (0).

When the result of the operation is 0000B (0D), the Z flag is set (1), otherwise it is reset (0).

Operations in BCD are performed by first computing the result in binary and then by using the decimal conversion

circuit to convert the result to decimal. For information concerning the binary to decimal conversion, refer to Table

11-2.

In order for operations in BCD to be performed properly, note the following:

(1) Result of an addition must be in the range 0D to 19D.

(2) Result of a subtraction must be in the range 0D to 9D, or in the range –10D to –1D.

The following shows which value is considered the CY flag in the range 0D to 19D (shown in 4-bit binary):

0, 0000B to 1, 0011B

CY CY

The following shows which value is considered the CY flag in the range –10D to –1D (shown in 4-bit binary):

1, 0110B to 1, 1111B

CY CY

When operations in BCD are performed outside of the limits of (1) and (2) stated above, the CY flag is set

(1) and the result of operation is output as a value greater than or equal to 1010B (0AH).

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

96

11.3.4 Addition and Subtraction When CMP=1 and BCD=1

BCD operations are performed.

The result is not stored in either the general register or data memory.

In other words, the operations specified by CMP=1 and BCD=1 are both performed at the same time.

Example MOV RPL, #0001B ; Sets the BCD flag (BCD=1).

MOV PSW, #1010B ; Sets the CMP and Z flag (CMP=1, Z=1) and resets the CY flag

; (CY=0).

SUB M1, #0001B ; <1>

SUBC M2, #0010B ; <2>

SUBC M3, #0011B ; <3>

By executing the instructions in steps numbered <1>, <2>, and <3>, the twelve bits in memory

locations M1, M2, and M3 and the immediate data (321) can be compared in decimal.

11.3.5 Cautions on Use of Arithmetic Operations

When performing arithmetic operations with the program status word (PSWORD), caution should be taken with

regard to the result of the operation being stored in the program status word.

Normally, the CY and Z flags in the program status word are set (1) or reset (0) according to the result of the

arithmetic operation being executed. However, when an arithmetic operation is performed on the program status

word itself, the result is stored in the program status word. This means that there is no way to determine if there

is a carry or borrow in the result of the operation nor if the result of the operation is zero.

However, when the CMP flag is set (1), results of arithmetic operations are not stored. Therefore, even in the

above case, the CY and Z flags will be properly set (1) or reset (0) according to the result of the operation.

11.4 LOGICAL OPERATIONS

As shown in Table 11-4, logical operations consist of logical OR, logical AND, and logical XOR. Accordingly, the

logical operation instructions are OR, AND, and XOR.

The OR, AND, and XOR instructions can be performed on either the general register and data memory, or on data

memory and immediate data. The operands of these instructions are specified in the same way as for arithmetic

operations ("r, m" or "m, #n4").

Logical operations are not affected by the BCD or CMP flags in the program status word (PSWORD). Logical

operations do not cause either the CY or Z flag in the program status word (PSWORD) to be set. However, when

the index enable flag (IXE) is set (1), index modification is performed using the index register.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

97

Table 11-4. Logical Operations

Logical Logical OR General register and data memory OR r, m

operation Data memory and immediate data OR m, #n4

Logical AND General register and data memory AND r, m

Data memory and immediate data AND m, #n4

Logical XOR General register and data memory XOR r, m

Data memory and immediate data XOR m, #n4

Table 11-5. Table of True Values for Logical Operations

Logical AND Logical OR Logical XOR

C=A AND B C=A OR B C=A XOR B

A B C A B C A B C

0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 0 1 1

1 0 0 1 0 1 1 0 1

1 1 1 1 1 1 1 1 0

11.5 BIT JUDGEMENT

As shown in Table 11-6, there are both TRUE (1) and FALSE (0) bit judgement instructions.

The SKT instruction skips the next instruction when a bit is judged as TRUE (1) and the SKF instruction skips the

next instruction when a bit is judged as FALSE (0).

The SKT and SKF instructions can only be used with data memory.

Bit judgement are not affected by the BCD flag in the program status word (PSWORD) and bit judgements do

not cause either the CY or Z flag in the program status word (PSWORD) to be set. However, when an SKT or SKF

instruction is executed, the CMP flag is reset (0). When the index enable flag (IXE) is set (1), index modification is

performed using the index register. For information concerning index modification using the index register, refer

to CHAPTER 7 SYSTEM REGISTER (SYS REG).

11.5.1 and 11.5.2 explain TRUE (1) and FALSE (0) bit judgements.

Table 11-6. Bit Judgement Instructions

Bit judgement TRUE (1) bit judgement

SKT m, #n

FALSE (0) bit judgement

SKF m, #n

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

98

11.5.1 TRUE (1) Bit Judgement

The TRUE (1) bit judgement instruction (SKT m, #n) is used to determine whether or not the bits specified by n

in the four bits of data memory m are TRUE (1). When all bits specified by n are TRUE (1), this instruction causes

the next instruction to be skipped.

Example MOV M1, #1011B

SKT M1, #1011B ; <1>

BR A

BR B

SKT M1, #1101B ; <2>

BR C

BR D

In this example, bit 3, 1, and 0 of data memory M1 are judged in step number <1>. Because all the

bits are TRUE (1), the program branches to B. In step number <2>, bits 3, 2 and 0 of data memory

M1 are judged. Since bit 2 of data memory M1 is FALSE (0), the program branches to C.

11.5.2 FALSE (0) Bit Judgement

The FALSE (0) bit judgement instruction (SKF m, #n) is used to determine whether or not the bits specified by

n in the four bits of data memory m are FALSE (0). When all bits specified by n are FALSE (0), this instruction causes

the next instruction to be skipped.

Example MOV M1, #1011B

SKT M1, #0110B ; <1>

BR A

BR B

SKT M1, #1101B ; <2>

BR C

BR D

In this example, bits 2 and 1 of data memory M1 are judged in step number <1>. Because both bits

are FALSE (0), the program branches to B. In step number <2> bits 3, 2, and 1 of data memory M1

are judged. Since bit 3 of data memory M1 is TRUE (1), the program branches to C.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

99

11.6 COMPARISON JUDGEMENT

As shown in Table 11-7, there are comparison judgement instructions for determining if one value is "equal to",

"not equal to", "greater than or equal to", or "less than" another.

The SKE instruction is used to determine if two values are equal. The SKNE instruction is used to determine two

values are not equal. The SKGE instruction is used to determine if one value is greater than or equal to another and

the SKLT instruction is used to determine if one value is less than another.

The SKE, SKNE, SKGE, and SKLT instructions perform comparisons between a value in data memory and

immediate data. In order to compare values in the general register and data memory, a subtraction instruction is

performed according to the values in the CMP and Z flags in the program status word (PSWORD). For more

information concerning comparison of the general register and data memory, refer to 11.3.

Comparison judgements are not affected by the BCD or CMP flags in the program status word (PSWORD) and

comparison judgements do not cause either the CY or Z flags in the program status word (PSWORD) to be set.

11.6.1 to 11.6.4 explain the "equal to", "not equal to", "greater than or equal to", and "less than" comparison

judgements.

Table 11-7. Comparison Judgement Instructions

Comparison Equal to

judgement SKE m, #n4

Not equal to

SKNE m, #n4

Greater than or equal to

SKGE m, #n4

Less than

SKLT m, #n4

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

100

11.6.1 "Equal to" Judgement

The "equal to" judgement instruction (SKE m, #n4) is used to determine if immediate data and the contents of

a location in data memory are equal.

This instruction causes the next instruction to be skipped when the immediate data and the contents of data

memory are equal.

Example MOV M1, #1010B

SKE M1, #1010B ; <1>

BR A

BR B

;

SKE M1, #1000B ; <2>

BR C

BR D

In this example, because the contents of data memory M1 and immediate data 1010B in step number

<1> are equal, the program branches to B. In step number <2>, because the contents of data memory

M1 and immediate data 1000B are not equal, the program branches to C.

11.6.2 "Not Equal to" Judgement

The "not equal to" judgement instruction (SKNE m, #n4) is used to determine if immediate data and the contents

of a location in data memory are not equal.

This instruction causes the next instruction to be skipped when the immediate data and the contents of data

memory are not equal.

Example MOV M1, #1010B

SKNE M1, #1000B ; <1>

BR A

BR B

;

SKNE M1, #1010B ; <2>

BR C

BR D

In this example, because the contents of data memory M1 and immediate data 1000B in step number

<1> are not equal, the program branches to B. In step number <2>, because the contents of data

memory M1 and immediate data 1010B are equal, the program branches to C.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

101

11.6.3 "Greater Than or Equal to" Judgement

The "greater than or equal to" judgement instruction (SKGE m, #n4) is used to determine if the contents of a location

in data memory is a value greater than or equal to the value of the immediate data operand. If the value in data memory

is greater than or equal to that of the immediate data, this instruction causes the next instruction to be skipped.

Example MOV M1, #1000B

SKGE M1, #0111B ; <1>

BR A

BR B

;

SKGE M1, #1000B ; <2>

BR C

BR D

;

SKGE M1, #1001B ; <3>

BR E

BR F

In this example, the program will first branch to B since the value in data memory is larger than that

of the immediate data. Next, it will branch to D since the value in data memory is equal to that of

the immediate data. Lastly it will branch to E since the value in data memory is less than that of the

immediate data.

11.6.4 "Less Than" Judgement

The "less than" judgement instruction (SKLT m, #n4) is used to determine if the contents of a location in data

memory is a value less than that of the immediate data operand. If the value in data memory is less than that of

the immediate data, this instruction causes the next instruction to be skipped.

Example MOV M1, #1000B

SKLT M1, #1001B ; <1>

BR A

BR B

;

SKLT M1, #1000B ; <2>

BR C

BR D

;

SKLT M1, #0111B ; <3>

BR E

BR F

In this example, the program will first branch to B since the value in data memory is less than that

of the immediate data. Next, it will branch to C since the value in data memory is equal to that of

the immediate data. Lastly it will branch to E since the value in data memory is greater than that of

the immediate data.

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

102

11.7 ROTATIONS

There are rotation instructions for rotation to the right and for rotation to the left.

The RORC instruction is used for rotation to the right.

The RORC instruction can only be used with the general register.

Rotation using the RORC instruction is not affected by the BCD or CMP flags in the program status word (PSWORD)

and does not affect the Z flag in the program status word (PSWORD).

Rotation to the left is performed by using the addition instruction ADDC.

11.7.1 and 11.7.2 explain rotation.

11.7.1 Rotation to the Right

The instruction used for rotation to the right (RORC r) rotates the contents of the general register in the direction

of its least significant bit.

When this instruction is executed, the contents of the CY flag becomes the most significant bit of the general

register (bit 3) and the least significant bit of the general register is placed in the CY flag.

Example 1. MOV PSW, #0100B ; Sets CY flag to 1.

MOV R1, #1100B

RORC R1

When these instructions are executed, the following operation is performed.

Basically, when rotation to the right is performed, the following operation is executed:

CY flag → b3, b3 → b2, b2 → b1, b1 → b0, b∞ → CY flag.

2. MOV PSW, #0000B ; Resets CY flag to 0.

MOV R1, #1000B

MOV R2, #0100B

MOV R3, #0010B

RORC R1

RORC R2

RORC R3

The program code above rotates the 13 bits in CY, R1, R2 and R3 to the right.

CY flag b3 b2 b1 b0

1 1 1 0 0

CHAPTER 11 ARITHMETIC AND LOGIC UNIT

103

11.7.2 Rotation to the Left

Rotation to the left is performed by using the addition instruction, "ADDC r, m".

Example MOV PSW #0000B ; Resets CY flag to 0.

MOV R1, #1000B

MOV R2, #0100B

MOV R3, #0010B

ADDC R3, R3

ADDC R2, R2

ADDC R1, R1

The program code above rotates the 13 bits in CY, R1, R2 and R3 to the left.

[MEMO]

104

CHAPTER 12 PORTS

12.1 PORT 0A (P0A0, P0A1, P0A2, P0A3)

Port 0A is a 4-bit input/output port with an output latch. It is mapped into address 70H of BANK0 in data memory.

The output format is CMOS push-pull output.

Input or output can be specified in each bit. Input/output is specified by P0ABIO0 to P0ABIO3 (address 35H) in

the register file.

When P0ABIOn is 0 (n=0 to 3), each pin of port 0A is used as input port. If a read instruction is executed for the

port register, pin statuses are read.

When P0ABIOn is 1 (n=0 to 3), each pin of port 0A is used as output port and the contents written in the output

latch are output to pins. If a read instruction is executed when pins are output ports, the contents of the output latch,

rather than pin statuses, are fetched.

At reset, P0ABIOn is set to 0 and all P0A pins become input ports. The contents of the port output latch are 0.

Table 12-1. Writing into and Reading from the Port Register (0.70H)

BANK0 70H

Write Read

0 Input P0A pin status

1 Output P0A latch contents

P0ABIOn

RF: 35H
Pin Input/Output

Possible
Write to the P0A
latch

105

CHAPTER 12 PORTS

106

12.2 PORT 0B (P0B0, P0B1, P0B2, P0B3)

Port 0B is a 4-bit input/output port with an output latch. It is mapped into address 71H of BANK0 in data memory.

The output format is CMOS push-pull output.

Input or output can be specified in 4-bit units. Input/output is specified by P0BGIO (bit 0 at address 24H) in the

register file.

When P0BGIO is 0, all pins of port 0B are used as input ports. If a read instruction is executed for the port register,

pin statuses are read.

When P0BGIO is 1, all pins of port 0B are used as output ports. The contents written in the output latch are output

to pins. If a read instruction is executed when pins are used as output ports, the contents of the output latch, rather

than pin statuses, are fetched.

At reset, P0BGIO is 0 and all P0B pins are input ports. The value of the port 0B output latch is 0.

Table 12-2. Writing into and Reading from the Port Register (0.71H)

BANK0 71H

Write Read

0 Input P0B pin status

1 Output P0B latch contents

P0BGIO

RF: 24H, bit 0
Pin Input/Output

Possible
Write to the P0B
latch

CHAPTER 12 PORTS

107

12.3 PORT 0C (P0C0, P0C1, P0C2, P0C3) ... in the case of the µPD17120 and 17121

Port 0C is a 4-bit input/output port with an output latch. It is mapped into address 72H of BANK0 in data memory.

The output format is CMOS push-pull output.

Input or output can be specified bit-by-bit. Input/output can be specified by P0CBIO0 to P0CBIO3 (address 34H)

in the register file.

If P0CBIOn is 0 (n=0 to 3), the P0Cn pins are used as input port. If a data read instruction is executed for the

port register, the pin statuses are read. If P0CBIOn is 1 (n=0 to 3), the P0Cn pins are used as output port and the

contents written in the output latch are output to pins. If a read instruction is executed when pins are used as output

ports, the contents of the latch, rather than pin statuses, are fetched.

At reset, P0CBIO0 to P0CBIO3 are 0 and all P0C pins are input ports. The contents of the port output latch are

0.

Table 12-3. Writing/reading to/from Port Register (0.72H) (µPD17120, 17121)

(n=0 to 3)

BANK0 72H

Write Read

0 Input Status of P0C pin

1 Output Contents of P0C latch

P0CBIOn

RF: 34H
Pin Input/Output

Possible
Write to the P0C
latch

CHAPTER 12 PORTS

108

12.4 PORT 0C (P0C0/Cin0, P0C1/Cin1, P0C2/Cin2, P0C3/Cin3)

 ... in the case of the µPD17132, 17133, 17P132, and 17P133

Port 0C is a 4-bit input/output port with an output latch. It is mapped into address 72H of BANK0 in data memory.

The output format is CMOS push-pull output.

Input or output can be specified bit-by-bit. Input/output is specified with P0CBIO0 to P0CBIO3 (address 34H) in

the register file.

If P0CNIOn is 0 (n=0 to 3), the each pin of P0C is used as input port. If a data read instruction is executed for

the port register, the pin statuses are read.

If P0CNIOn is 1 (n=0 to 3), the each pin of P0C is used as output port and the value written in the output latch

are output to pins. If a data read instruction is executed when pins are used as output ports, the output latch value,

rather than pin statuses, is fetched.

Port 0C can also be used as an analog input to the comparator. P0C0IDI to P0C3IDI (address 23H) in the register

file are used to switch the port and analog input pin.

If P0CnIDI is 0 (n=0 to 3), the P0Cn/Cinn pin functions as a port. If P0CnIDI is 1 (n=0 to 3), the P0Cn/Cinn pin functions

as the analog input pin of the comparator.

Therefore, when using pins as analog inputs, 1 should be set to P0CnIDI at the initial setting of the program.

Switching of the analog input pins to be compared is executed by CMPCH0 and CMPCH1 (RF: address 1CH). To

use the pins as analog input pins of the comparator, set P0CBIOn=0 so that they are set as input ports (Refer to

13.2 COMPARATOR). At reset, P0CBIOn and P0CnIDI are set to 0 (n=0 to 3) and all of port 0C pins become input

ports. The contents of the port output latch become 0.

Table 12-4. Writing into and Reading from the Port Register (0.72H) and Pin Function Selection

(n=0 to 3)

BANK0 72H

Write Read

0 Input port Pin state of P0C

1 Output port Contents of P0C latch

0 Comparator analog

inputNote 1

1 Analog inputs of

comparator and output Contents of P0C

portNote 2

Notes 1. This setting is ordinally selected when the pins are used as analog inputs of the comparator.

2. These pins function as an output port. At this time, the analog input voltage is changed by the effect

of the output from the port. When using the pin as the analog input, be sure to set it to P0CBIOn=0.

Pin state of P0C
Write in the P0C latch

Function
P0CnIDI

RF: 23H
P0CBIOn

RF: 34H

0

1

CHAPTER 12 PORTS

109

12.5 PORT 0D (P0D0/SCK, P0D1/SO, P0D2/SI, P0D3/TMOUT)

Port 0D is a 4-bit input/output port with an output latch. It is mapped into address 73H of BANK0 in data memory.

The output format is N-ch open-drain output. The mask option can be used to specify that a pin contain a pull-up

resistor bit-by-bit Note.

Input or output can be specified bit-by bit. Input/output is specified with P0DBIO0 to P0DBIO3 (address 33H)

in the register file.

If P0DBIOn is 0 (n=0 to 3), the P0Dn pins are used as input port. Pin statuses are read if a data read instruction

is executed for the port register. If P0DBIOn is 1, the P0Dn pins are used as output port and the value written in

the output latch are output to pins. If a data read instruction is executed when pins are used as output ports, the

output latch value, rather than pin statuses, is fetched.

At reset, P0DBIOn is set to 0 and all P0D pins become input ports. The contents of the port output latch become

0. The output latch contents remain unchanged even if P0DBIOn changes from 1 to 0.

Port 0D can also be used for serial interface input/output or timer output. SIOEN (0AH bit 0) in the register file

is used to switch ports (P0D0 to P0D2) to serial interface input/output (SCK, SO, SI) and vice versa. TMOSEL (bit

0 at address 12H) in the register file is used to switch a port (P0D3) to timer output (TMOUT) and vice versa. If

TMOSEL=1 is selected, 1 is output at timer reset. This output is inverted every time a timer count value matches

the modulo register contents.

Note The µPD17P132 and 17P133 have no pull-up resistor by mask option.

CHAPTER 12 PORTS

110

Table 12-5. Register File Contents and Pin Functions

(n=0 to 3)

Register File Value Pin Function

TMOSEL SIOEN P0DBIOn

RF: 12H RF: 0AH RF: 33H P0D0/SCK P0D1/SO P0D2/SI P0D3/TMOUT

Bit 0 Bit 0 Bit n

0 Input port

1 Output port

0 Input port

1 Output port

0 Input port

1 Output port

0

1

Table 12-6. Contents Read from the Port Register (0.73H)

Port Mode Contents Read from the Port Register (0.73H)

Input port Pin status

Output port Output latch contents

An internal clock is selected as a serial clock. Output latch contents

An external clock is selected as a serial clock. Pin status

SI Pin status

SO Not defined

TMOUT Output latch contents

Caution Using the serial interface causes the output latch for the P0D1/SO pin to be affected by the

contents of the SIOSFR (shift register). So, reset the output latch before using the pin as output

port.

0

1

0

1

0

1

SCK SO SI

SCK SO SI

TMOUT

SCK

CHAPTER 12 PORTS

111

12.6 PORT 0E (P0E0, P0E1/Vref) ... Vref; µPD17132, 17133, 17P132, and 17P133 only

Port 0E is a 2-bit input/output port with an output latch. It is mapped into bits 0 and 1 of address 6FH in data

memory. The output format is N-ch open-drain output. The mask option can be used to specify that a pin contain

a pull-up resistor bit-by-bit.

P0E1/Vref pin is also used as external reference voltage input of the comparator (incorporated only in the µPD17132,

17133, 17P132, and 17P133), and its function is changed from port to external reference voltage input depending

on the value of the reference voltage selection resister. (CMPVREF0 to CMPVREF3) (Refer to 13.2 COMPARATOR.)

Input or output can be specified bit-by-bit. Input/output is specified with P0EBIO0 and P0EBIO1 (bits 0 and 1 at

address 32H) in the register file.

If P0EBIOn is 0 (n=0, 1), the each pin of P0E is used as input port. If a data read instruction is executed for the

port register, the pin statuses are read.

If P0EBIOn is 1 (n=0, 1), the each pin of P0E is used as output port and the value written in the output latch are

output pins.

If a data read instruction is executed regardless of the mode, the pin statuses, rather than output latch value, are

fetched.

At reset, P0EBIOn is set to 0 (n=0, 1) and each of port 0E pin become input port. The contents of the port output

latch become 0.

The write instruction to bits 2 and 3 at address 6FH becomes invalid. If the value is read, 0 is output.

Remark The µPD17P132 and 17P133 have no pull-up resistor by mask option.

Table 12-7. Writing into and Reading from the Port Registers (0.6FH.0, 0.6FH.1)

(n=0, 1)

BANK01 6FH

Write Read

0 Input PossibleNote

Write to the output latch P0E pin status

of P0E

Note Port register 6FH is a write only register. The data which is written during input mode (P0EBIOn=0) will

be ignored.

P0EBIOn

RF: 32H

Pin Input/

Output

1 Output

CHAPTER 12 PORTS

112

12.6.1 Cautions when Operating Port Registers

Among the input/output ports in the µPD17120 series, only port 0E is such that, even when in output mode, doing

a read causes the status of the pins to be read.

Consequently, when executing port register read macro instructions (SETn/CLRn, etc.) or bit manipulation

instructions such as AND/OR/XOR, etc., you may inadvertently change the status of the pins.

Be particularly careful when port 0E is being externally forced down to low level.

Figure 12-1 shows an example of the changes in the port register and microcontroller internal status when the

CLR1 P0E1 instruction (equivalent to the AND 6F, #1101B instruction) is executed.

For example, consider the case where both the P0E1 and P0E0 pins of port 0E are used for output, high level is

output from pins P0E1 and P0E0, and the P0E0 pin is being externally forced down to a low level; then the status

of each pin of port 0E is as shown in Figure 12-1 <1>. The (P0E3 and P0E2 pins do not exist in the µPD17120 subseries,

but are handled as if they exist in the program.)

If the CLR1 P0E1 instruction is executed to bring the P0E1 pin to low level, the status of each pin of port 0E changes

as shown in Figure 12-1 <2>. In this case, the P0E1 pin naturally changes to output low level, but the value of the

port register changes so that pin P0E0, which should output high level, also outputs low level. This result comes

about because the CLR1 P0E1 instruction is executed not on the port register, but on the state of the pins.

To avoid this phenomenon, use a MOV or other instruction to set the state of all the pins, not just the pins that

are to be changed. In this example, to set just the P0E1 pin to a low level, you can use the MOV 6FH, #1101 instruction,

and the problem will not occur.

For the same reason, when using port 0E for mixed input and output, be sure to put the pins that are being used

for input into input mode (P0EBI0n = 0).

Figure 12-1. Changes in Port Register Due to Execution of the CLR1 P0E1 Instruction

P0E3

–

–

Does not exist

P0E2

–

–

P0E1

1

H output

H

P0E0

1

H output

L (forced)

Execution of the CLR1 P0E1
instruction

[AND 6FH, #1101B]

Port register

Microcomputer state

Pin state

<1> Before executing instructions

P0E3

–

–

Does not exist

P0E2

–

–

P0E1

0

L output

L

P0E0

0

L output

L

Port register

Microcomputer state

Pin state

H: high level L: low level

<2> After executing instructions

CHAPTER 12 PORTS

113

12.7 PORT CONTROL REGISTER

12.7.1 Input/Output Switching by Group I/O

Ports which switch input/output in units of four bits are called group I/O. Port 0B is used as group I/O. The register

shown in the figure below is used for input/output switching.

Figure 12-2. Input/Output Switching by Group I/O

RF: 24H

Read/write

Initial value when reset

Bit 3

0

0

R/W Read=R, write=W

P0BGIO

0

1

Function

Sets Port 0B to input mode.

Sets Port 0B to output mode.

Bit 2

0

0

Bit 1

0

0

Bit 0

P0BGIO

0

CHAPTER 12 PORTS

114

12.7.2 Input/Output Switching by Bit I/O

Ports which switch input/output bit-by-bit are called bit I/O. Port 0A, port 0C, port 0D, and port 0E are used as

bit I/O. The register shown in the figure below is used for input/output switching.

Figure 12-3. Bit I/O Port Control Register (1/4)

RF: 35H

Read/write

Initial value when reset

Bit 3

P0ABIO3

0

R/W Read=R, write=W

P0ABIO0

0

1

Function

Sets P0A0 to input mode.

Sets P0A0 to output mode.

Bit 2

P0ABIO2

0

Bit 1

P0ABIO1

0

Bit 0

P0ABIO0

0

P0ABIO1

0

1

Function

Sets P0A1 to input mode.

Sets P0A1 to output mode.

P0ABIO2

0

1

Function

Sets P0A2 to input mode.

Sets P0A2 to output mode.

P0ABIO3

0

1

Function

Sets P0A3 to input mode.

Sets P0A3 to output mode.

CHAPTER 12 PORTS

115

Figure 12-3. Bit I/O Port Control Register (2/4)

RF: 34H

Read/write

Initial value when reset

Bit 3

P0CBIO3

0

R/W Read=R, write=W

P0CBIO0

0

1

 Function

Sets P0C0 to input mode.

Sets P0C0 to output mode.

Bit 2

P0CBIO2

0

Bit 1

P0CBIO1

0

Bit 0

P0CBIO0

0

P0CBIO1

0

1

Function

Sets P0C1 to input mode.

Sets P0C1 to output mode.

P0CBIO2

0

1

Function

Sets P0C2 to input mode.

Sets P0C2 to output mode.

P0CBIO3

0

1

Function

Sets P0C3 to input mode.

Sets P0C3 to output mode.

CHAPTER 12 PORTS

116

Figure 12-3. Bit I/O Port Control Register (3/4)

RF: 33H

Read/write

Initial value when reset

Bit 3

P0DBIO3

0

R/W Read=R, write=W

P0DBIO0

0

1

 Function

Sets P0D0 to input mode.

Sets P0D0 to output mode.

Bit 2

P0DBIO2

0

Bit 1

P0DBIO1

0

Bit 0

P0DBIO0

0

P0DBIO1

0

1

Function

Sets P0D1 to input mode.

Sets P0D1 to output mode.

P0DBIO2

0

1

Function

Sets P0D2 to input mode.

Sets P0D2 to output mode.

P0DBIO3

0

1

Function

Sets P0D3 to input mode.

Sets P0D3 to output mode.

Figure 12-3. Bit I/O Port Control Register (4/4)

RF: 32H

Read/write

Initial value when reset

Bit 3

0

0

R/W Read=R, write=W

P0EBIO0

0

1

 Function

Sets P0E0 to input mode.

Sets P0E0 to output mode.

Bit 2

0

0

Bit 1

P0EBIO1

0

Bit 0

P0EBIO0

0

P0EBIO1

0

1

 Function

Sets P0E1 to input mode.

Sets P0E1 to output mode.

CHAPTER 13 PERIPHERAL HARDWARE

13.1 8-BIT TIMER COUNTER (TM)

The µPD17120 subseries contains an 8-bit timer counter system. Control of the 8-bit timer counter is performed

through hardware manipulation using the PUT/GET instruction or through register manipulation on the register file

using the PEEK/POKE instruction.

13.1.1 8-Bit Timer Counter Configuration

Figure 13-1 shows the configuration of the 8-bit timer counter. The 8-bit timer counter consists of the comparator,

which compares the 8-bit count register, 8-bit modulo register, count register, and modulo register values; and the

separator, which selects the count pulse.

Caution The modulo register is for writing only. The count register is for reading only.

117

C
H

A
P

T
E

R
 1

3
 P

E
R

IP
H

E
R

A
L

 H
A

R
D

W
A

R
E

1
1

8 Figure 13-1. Configuration of the 8-bit Timer Counter

TMOSEL P0DBIO3

Timer
modulo register (8)

(TMM)

Timer
comparator (8)

P0D3 output
latch

Interrupt control
register (RF : 0FH)

INT

Timer mode register
(RF : 11H)

TMRESTMEN TMCK1 TMCK0

Internal bus

Timer carry
output control
mode register
(RF : 12H)

Bit I/O port
control register
(RF : 33H)

Match

Reset

Clear

P0D3/
TMOUT

IRQTM set signal

IRQTM clear signal

Latch fX/32

fX/256

fX /2048
Selector

D

CLK
 R

Reset
INT

Internal
RESET

2

Timer count
register (8)

(TMC)

Data buffer
(DBF)

TMOUT
FF

Q

CHAPTER 13 PERIPHERAL HARDWARE

119

13.1.2 8-bit Timer Counter Control Register

There are two types of 8-bit timer counter control registers; timer mode register and timer carry output control

mode register.

Figures 13-2 and 13-3 show the configuration of 8-bit timer counter control registers.

Figure 13-2. Timer Mode Register

RF: 11H

Read/write

Initial value when reset

Bit 3

TMEN

1

Bit 2

TMRES

0

Bit 1

TMCK1

0

Bit 0

TMCK0

0

R/W Read=R, write=W

TMCK1

0

0

1

1

 Source Clock Selection

fx /256

fx /32

fx /2048

External clock from INT pin

TMRES

0

1

TMCK0

0

1

0

1

 Timer Reset

No influence to timer

Reset count register (TMC) and IRQTM

Remark TMRES is automatically cleared (0) when set (1).
When reading it, 0 is always read.

TMEN

0

1

 Timer Start Instruction

Stop timer counting.

Start timer counting.

Remark TMEN can be used as the status flag which detects
the count state of the timer (0 : count stop, 1 : counting).

CHAPTER 13 PERIPHERAL HARDWARE

120

13.1.3 Operation of 8-bit Timer Counters

(1) Count Register

Count register are 8-bit up counters whose initial values are 00H. They are incremented each time a count

pulse is entered.

The counter register is initialized in the following situations:

• when the microcontroller is reset (refer to CHAPTER 6 RESET);

• when the content of the 8-bit modulo register coincides with the count register value, thus causing the

comparator to generate the relevant signal; and

• when "1" is written in the TMRES of the register file.

(2) Modulo register

The modulo registers determine the count value of count register. They are initialized to FFH.

A value is set in a modulo register via the data buffer (DBF) using the PUT instruction.

(3) Comparator

The comparators output match signals when the value of the count register and modulo register match and

when the next count pulse is input. That is, if the value of the modulo register is initial value FFH, the

comparator outputs a match signal when 256 is counted.

The match signal from the comparator clears the contents of the count register to 0 and automatically sets

the interrupt request flag (IRQTM) to 1. At this time interrupt handling occurs if the EI instruction (interrupt

acceptance enable instruction) is executed and also the interrupt enable flag (IPTM) is set. When an interrupt

is accepted, the interrupt request flag (IRQTM) is set to 0 and program control transfers to the interrupt

handling routine.

13.1.4 Selecting Count Pulse

A count pulse is selected with TMCK0 or TMCK1.

One system clock fX can be selected from four types: a 2048-count pulse, 256-count pulse, 32-count pulse, and

an external count pulse input from the INT pin.

At reset, TMCK0 and TMCK1 are 0 and fX/256 is selected.

At power start-up or reset, timer is used to generate stabilization wait time. For this purpose, the initial values

are TMCK0=0 and TMCK1=0 and fX/256 is selected. Since the initial value is set to TMEN=1, the system starts at

address 0000H after 8 ms after reset at fX=8 MHz (32 ms at fX=2 MHz). (Refer to CHAPTER 16 RESET.)

CHAPTER 13 PERIPHERAL HARDWARE

121

13.1.5 Setting a Count Value in Modulo Register and Calculation Method

Count value is set in the module register via the data buffer (DBF).

(1) Setting the count value in modulo register

A count value is set in the modulo register via the data buffer using the PUT instruction. The peripheral address

of the modulo register is 03H.

When a value is sent by the PUT instruction, data in the eight low-order bits (DBF1 and DBF0) of data buffer

is sent to the modulo register. Figure 13-3 shows an example of count value setting.

CHAPTER 13 PERIPHERAL HARDWARE

122

Figure 13-3. Setting the Count Value in a Modulo Register

Example of setting count value 64H in timer modulo register

CONTDATL DAT 4H ; CONTDATL is assigned to 4H using the symbol definition instruction.

CONTDATH DAT 6H ; CONTDATH is assigned to 6H using the symbol definition instruction.

MOV DBF0, #CONTDATL;

MOV DBF1, #CONTDATH;

PUT TMM, DBF ; The value is transferred with reserved word TMM.

Caution The range of values that can be set in the module register is 01H to FFH. If 00H is set, normal

counting operation is not performed.

The modulo register is for writing only. If is not possible to read a value from the modulo register. Neither is

it possible, while the 8-bit timer counter is in operation, to stop the counting operation even by executing the PUT

TMM and DBF instructions.

Data Buffer

DBF3

Don't care

8-bit data

PUT TMM, DBF

TMM (Peripheral Address 03H)

b7

0

b5

1

b4

0

b3

0

b2

1

b1

0

b0

0

b6

1

b0

0

b1

0

b2

1

b3

0

b0

0

b1

1

b2

1

b3

0

b0b1b2b3b0b1b2b3

DBF2

Don't care

DBF1 DBF0

CHAPTER 13 PERIPHERAL HARDWARE

123

(2) Calculation method of count value

The time interval of the identity signal being emitted from the comparator is determined by the value that

is set in the modulo register. The formula for finding the value N of the modulo register from the time interval

T [sec] is shown below:

T= = (N+1) × TCP

N=T × fCP –1 or N= –1 (N=1 to 255)

fCP : Count pulse's frequency [Hz]

TCP : Count pulse's frequency [sec] (1/fCP = resolution)

(3) Calculation example and program example when calculating count value by interval time

• Example of assuming 7 ms as interval time for timer (System clock: fX=8 MHz)

Assuming 7 ms as interval time, it is impossible to set 7 ms interval time from the resolution of the timer.

Therefore, count value should be calculated by selecting the source clock the resolution of which is

maximum (fX/256, resolution: 32 µs) to set the nearest interval time.

Example t=7 ms, resolution: 32 µs

N = –1

= – 1

= 217.75=218 (: DAH)

The value of modulo register the interval time of which becomes nearest to 7 ms is DAH, and the interval

time at that time becomes 7.008 ms.

fCP

N+1

T
TCP

t

(Resolution)

7 × 10–3

32 × 10–5

CHAPTER 13 PERIPHERAL HARDWARE

124

(Program example)

MOV DBF0, #0AH ; Stores DAH to DBF by using

MOV DBF1, #0DH ; reserved words "DBF0" and "DBF1"

PUT TMM, DBF ; Transfers the contents of DBF by using reserved word "TMM"

INITFLG TMEN, TMRES, NOT TMCK1, NOT TMCK0

; Sets TMEN and TMRES by using built-in macro instruction "INITFLG".

; Sets source clock of timer to "fX/256", and starts counting.

13.1.6 Margin of Error of Interval Time

It is possible for the interval time to generate a margin of error of up to –1.5 counts. Be careful if set value of

the modulo register is small.

(1) Error (up to –1 count) when the count register is cleared to 0 during counting

The count register of the 8-bit timer counter is cleared to 0 by setting (to 1) the TMRES flag. However, the

scaler for generating the count pulse from the system clock is not reset.

Therefore, if, during counting, the TMRES flag is set (to 1) to clear the count to 0, an error margin of one cycle

of the count pulse is generated in the timing of the first count. A count example when setting the modulo

register to 2 is shown below:

Figure 13-4. Error in Zero-Clearing the Count Register during Counting

In the example above, the identity signal is generated every three counts. However, only for the first time

after the count is cleared, the identity signal is generated for the minimal 2 counts.

The above error occurs not only when TMEN=1 ← 0 but when TMRES ← 1.

Count clear (TMRES←0)

Count pulse

Count register

2 to 3 counts

Match signal output

1 1 202

CHAPTER 13 PERIPHERAL HARDWARE

125

(2) Error in Starting Counting from the Count Halt State

The count register of the 8-bit timer counter is cleared to zero by setting (to 1) the TMRES flag; however,

the scaler for generating the count pulse from the system clock is not reset. When the TMEN flag is set (to

1) to start the counting from the count halt status, the timing of the first count varies as follows depending

on whether the count pulse is started from the low level or from the high level.

When started from the high level: the next rising edge is the first count

When started from the low level: the count starting point is the first count

Therefore, only the first count after the counting is started generates an error of –0.5 to –1.5 counts during

the time until the identity signal is issued. An example of counting when 1 is set for the modulo register is

shown below.

Figure 13-5. Error in Starting Counting from the Count Halt State

(a) When the count pulse is stated from the high level (error: –0.5 to –1 count)

Counting start (TMEN = 1←0)

Match signal output

1 to 1.5 count 2 counts

Match signal output

Count pulse

Count register 0 0 11

CHAPTER 13 PERIPHERAL HARDWARE

126

(b) When the count pulse is started from the low level (error: –1 to –1.5 counts)

In the example above, the identity signal is generated every 2 counts; however, only for the first count, the

identity signal is issued for 1.5 counts maximum and for 0.5 count minimum (error: –0.5 to –1.5 counts).

As the timer is in use even for generation of the oscillation stability wait time, the error margin above occurs

even to this oscillation stability wait time.

13.1.7 Reading Count Register Values

(1) Reading Counter values

The counter values of count register are read at the same time via DBF (data buffer) using the GET instruction.

The count register values of timer are assigned to peripheral address 02H.

Count register values of timer can be read into DBF by using the GET instruction. During execution of the

GET instruction, timer count register stops count operation and a count value is retained. When a count pulse

enters the timer in use during execution of the GET instruction, the count is retained.

After execution of the GET instruction, the count register increments by one and continues counting.

The scheme prevents miscounting as long as two or more count pulses are not input in one instruction cycle,

even when the GET instruction is executed during timer operation.

Counting start (TMEN = 1←0)

Match signal output

2 counts

Match signal output

0.5 to 1count

Count pulse

Count register 0 0 11 0

CHAPTER 13 PERIPHERAL HARDWARE

127

Figure 13-6. Reading 8-Bit Counter Count Values

The timer counter value is F0H.

GET DBF, TMC; Example of using reserved words DBF and TMC

Data Buffer

DBF3

Retained

8-bit data

GET DBF, TMC

b7

1

b5

1

b4

1

b3

0

b2

0

b1

0

b0

0

b6

1

b0

0

b1

0

b2

0

b3

0

b0

1

b1

1

b2

1

b3

1

b0b1b2b3b0b1b2b3

DBF2

Retained

DBF1 DBF0

TMC (Peripheral Address 02H)

Count value

(2) Program example

• Measuring pulse width input from INT pin (system clock: fX=8 MHz)

The following is an example of measuring generation interval of external interrupt from INT pin by using

timer. At this time the pulse width from INT pin should be within the count-up time of timer.

(Program example)

CNTTMH MEM 0.30H ; Symbol definition of save area of count value

CNTTML MEM 0.31H ;

ORG 00H ; Specifies vector address of interrupt

BR MAIN ;

ORG 03H ;

BR INTJOB ;

:

:

:

:

INITIAL:

INITFLG IP, NOT IPTM, NOT IPSIO

; Prohibits interrupts other than external interrupt

CHAPTER 13 PERIPHERAL HARDWARE

128

INITFLG NOT IEGMD1, IEGMD0

; Sets input from INT pin to falling edge

CLR1 IRQ ; Clears interrupt request signal from INT pin

INITFLG TMEM, TMRES, NOT TMCK1, TMCK0

; Sets source clock of timer to "fX/32"

; Clears timer count register and IRQTM,

; and starts timer

EI

LOOP:

BR LOOP

BR TMRESTART

INTJOB: ; Vector interrupt becomes interrupt prohibit

GET DBF, TMC ; state automatically immediately after accepting

; interrupt

MOV RPH, #.DM. (CNTTMH SHR 7) AND 0EH

; Sets general register pointer by using

; symbol-defined "CNTTMH" and "CNTTML"

AND RPL, #0001B ;

OR RPL, # .DM. (CNTTMH SHR 3) AND 0EH

; At this time, BCD flag retains the previous state

LD CNTTMH, DBF1 ; Stores count value to count save area

LD CNTTML, DBF0 ;

EI ; Makes interrupt permit state when executing

; main processing program

RETI ; Returns to main processing program

CHAPTER 13 PERIPHERAL HARDWARE

129

13.1.8 Timer Output

The P0D3/TMOUT pin functions as a timer match signal output pin when the TMOSEL flag is set to 1. The P0DBIO3

value has nothing to do with this setting.

Timer contains a match signal output flip-flop. It reverses the output each time the comparator outputs a match

signal. When the TMOSEL flag is set to 1, the contents of this flip-flop are output to the P0D3/TMOUT pin.

The P0D3/TMOUT pin is an N-ch open-drain output pin. The mask option enables this pin to contain a pull-up

resistor. If this pin does not contain a pull-up resistor, its initial status is high impedance.

An internal timer output flip-flop starts operating when TMEN is set to 1. To make the flip-flop start output

beginning at an initial value, set 1 in TMRES and reset the flip-flop.

Remark The µPD17P132 and 17P133 have no mask option resistor.

Figure 13-7. Timer Output Control Mode Register

RF: 12H

Read/write

Initial value when reset

Bit 3

0

0

Bit 2

0

0

Bit 1

0

0

Bit 0

TMOSEL

0

R/W Read=R, write=W

 Timer Output Control

P0D3 /TMOUT pin functions as port.

P0D3 /TMOUT pin functions as timer match
signal output.

TMOSEL

0

1

CHAPTER 13 PERIPHERAL HARDWARE

130

13.1.9 Timer Resolution and Maximum Setting Time

Table 13-1 shows the timer resolution in each source clock and maximum setting time.

Table 13-1. Timer Resolution and Maximum Setting Time

Mode Register Timer

TMCK1 TMCK0 Resolution Maximum Setting Time

0 0 32 µs 8.192 ms

0 1 4 µs 1.024 ms

1 0 256 µs 65.536 ms

1 1 INT pin Note 2

0 0 approx. 61.1 µs approx. 15.6 ms

0 1 approx. 7.64 µs approx. 1.9 ms

1 0 approx. 489 µs approx. 125 ms

1 1 INT pin Note 2

0 0 128 µs 32.768 ms

0 1 16 µs 4.096 ms

1 0 1.024 ms 262.144 ms

1 1 INT pin Note 2

0 0 512 µs 131.072 ms

0 1 64 µs 16.384 ms

1 0 4.096 ms 1.048576 s

1 1 INT pin Note 2

Notes 1. The guaranteed frequency range of oscillation for the µPD17120/17132/17P132 is fCC=400 kHz to

2.4 MHz.

2. High/low level width of INT pin is 10 µs (MIN.) when VDD=4.5 to 5.5 V, and 50 µs (MIN.) when VDD=2.7

to 5.5 V. Refer to Data Sheet for detailed information.

System Clock

At 8 MHz Note1

At 4.19 MHz Note1

At 2 MHz

At 500 kHz

CHAPTER 13 PERIPHERAL HARDWARE

131

13.2 COMPARATOR (µPD17132, 17133, 17P132, AND 17P133 ONLY)

The comparator of the µPD17132, 17133, 17P132, and 17P133 compares the analog input (Cin0 to Cin3) and reference

voltage (external: 1 type, internal: 15 types) and stores the comparison result to CMPRSLT (RF: 1EH, bit 0).

The comparator can also be used as a 4-bit A/D converter by software using 15 types of internal reference voltage.

13.2.1 Configuration of Comparator

Figure 13-8. Configuration of Comparator

Remark The sampling time of an analog input is as follows:

µPD17132, 17P132: 8/fCC (4 µs, at 2 MHz)

µPD17133, 17P133: 28/fX (3.5 µs, at 8 MHz)

RF : 1CH

CMPCH1 CMPCH100

RF : 1DH

CMPVREF1 CMPVREF2

RF : 1EH

CMPSTRT CMPRSLT00

S
el

ec
to

r

Control
circuit

S
el

ec
to

r

POC0/Cin0

POC1/Cin1

POC2/Cin2

POC3/Cin3

Comparator

CMPVREF0 CMPVREF3

Internal bus

R

R × 16

R

POE1/Vref

100pF MAX.

–

+

CHAPTER 13 PERIPHERAL HARDWARE

132

13.2.2 Functions of Comparator

The comparator has a 4-channel analog input.

Concerning the pins used as analog input of the comparator, set 1 to P0CnIDI (n=0 to 3) at initial setting of the

program (refer to CHAPTER 12 PORTS).

One of analog inputs (Cin0 to Cin3) can be selected by the comparator input channel selection flag (CMPCH1,

CMPCH0 RF: 1CH, bits 1 and 0). One of the 16 types of reference voltages (external: 1, internal: 15) can be selected

by the comparator reference voltage selection flag (CMPVREF0 to CMPVREF3 RF: 1DH).

After setting the comparator start flag to 1 (CMPSTRT RF: 1EH, bit 1), comparison takes 2 instruction execution

cycles in the µPD17132 and 17P132, and 6 cycles in the µPD17133 and 17P133.

A comparison result is stored to the comparator comparison result flag (CMPRSLT RF: 1EH, bit 0).

Whether the comparator is operating or comparison is completed can be known by reading comparator start flag.

CMPSTRT=1...Comparator is operating (during analog voltage comparison)

CMPSTRT=0...Comparator is stopped (comparison is completed)

When comparing comparator analog voltage (CMPSTRT=1), manipulating comparator input channel selection flag

(CMPCH1 CMPCH0) or comparator reference voltage selection flag (CMPVREF0 to CMPVREF3) is ignored and the

data in these registers remain unchanged. Therefore, changing comparator operation modes are disabled.

CMPSTRT is cleared only when the voltage comparison operation of comparator is completed or when STOP

instruction is executed.

Caution When using the standby function, be sure to wait for the comparator operation to stop before

executing a standby instruction (HALT/STOP). If a STOP or HALT instruction is executed while

the comparator is in operation, the comparator operation is halted. If the internal reference

voltage has been selected at this time, current will keep flowing into the internal resistor ladder,

thus resulting in increased current consumption during standby mode.

Comparator input channel selection register, reference voltage selection register, and comparator operation

control register are shown in the Figures 13-9, 13-10, and 13-11, respectively.

CHAPTER 13 PERIPHERAL HARDWARE

133

Figure 13-9. Comparator Input Channel Selection Register

RF: 1CH

Read/write

Initial value when reset

Bit 3

0

0

Bit 2

0

0

Bit 1

CMPCH1

0

Bit 0

CMPCH0

0

R/W Read=R, write=W

CMPCH1

0

0

1

1

Comparator Input Channel Selection

Select Cin0

Select Cin1

Select Cin2

Select Cin3

CMPCH0

0

1

0

1

 Figure 13-10. Reference Voltage Selection Register

RF: 1DH

Read/write

Initial value when reset

Bit 3

CMPVREF3

1

Bit 2

CMPVREF2

0

Bit 1

CMPVREF1

0

Bit 0

CMPVREF0

0

R/W Read=R, write=W

Selected Reference Voltage

Voltage applied to Vref pin

1/16 VDD

2/16 VDD (1/8 VDD)

3/16 VDD

4/16 VDD (1/4 VDD)

5/16 VDD

6/16 VDD (3/8 VDD)

7/16 VDD

8/16 VDD (1/2 VDD)

9/16 VDD

10/16 VDD (5/8 VDD)

11/16 VDD

12/16 VDD (3/4 VDD)

13/16 VDD

14/16 VDD (7/8 VDD)

15/16 VDD

CMPVREF2

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

CMPVREF3

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

CMPVREF1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

CMPVREF0

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Caution When CMPSTRT =1, a write instruction to

this register is ignored (the data in the

register remains unchanged).

CHAPTER 13 PERIPHERAL HARDWARE

134

Figure 13-11. Comparator Operation Control Register

RF: 1EH

Read/write

Initial value when reset

Read = R, write = W

Comparator Operation Comparison Result

When the voltage from analog input (Cin0 to Cin3) is lower
than the external/internal reference voltage

When the voltage from analog input (Cin0 to Cin3) is
higher than the external/internal reference voltage

CMPSTRT

0

1

CMPRSLT

0

1

Comparator Operation Check (at Reading)

Comparator Operation Start (at Writing)

During comparator operation is stopped or comparator voltage
comparison operation is completed

During comparator is operating

Invalid

Start comparator operation

Remark CMPSTRT is cleared to 0 only when the comparator voltage com-
parison operation is completed or STOP instruction is executed.

CMPSTRT

0

1

Bit 3

0

0

Bit 2

0

R/W

0

Bit 1

CMPSTRT

0

Bit 0

CMPRSLT

R

1

CHAPTER 13 PERIPHERAL HARDWARE

135

13.3 SERIAL INTERFACE (SIO)

The serial interfaces of the µPD17120 subseries consists of a shift register (SIOSFR, 8 bits), serial mode register,

and serial clock counter. It is used for serial data input/output.

13.3.1 Functions of the Serial Interface

This serial interface provides three signal lines: serial clock input pin (SCK), serial data output pin (SO), and serial

data input pin (SI). It allows 8 bits to be sent or received in synchronization with clocks. It can be connected to

peripheral input/output devices using any method with a mode compatible to that used by the µPD7500 or 75X series.

(1) Serial clock

Three types of internal clocks and one type of external clock can be selected. If an internal clock is selected

as a serial clock, it is automatically output to the P0D0/SCK pin.

Table 13-2. List of Serial Clock

SIOCK1 SIOCK0 Serial clock to be selected

0 0 External clock from the SCK pin

0 1 fX/16

1 0 fX/128

1 1 fX/1024

(2) Transmission operation

By setting (to 1) SIOEN, each pin of port 0D (P0D0/SCK, P0D1/SO, P0D2/SI) functions as a pin for serial

interfacing. At this time, if SIOTS is set (to 1), the operation is started synchronously with the falling edge

of the serial clock. Also, setting SIOTS will result in automatically clearing IRQSIO.

The transfer is started from the most significant bit of the shift register synchronously with the falling edge

of the serial clock. And, the information on the SI pin is stored in the shift register from the most significant

bit, synchronously with the rising edge of the clock.

If the 8-bit data transfer is terminated, SIOTS is automatically cleared and IRQSIO is set.

Remark Serial transmission starts only from the most significant bit of the shift register contents. It is not

possible to transmit from the least significant bit. SI pin status is always stored in the shift register

in synchronization with the rising edge of the serial clock.

CHAPTER 13 PERIPHERAL HARDWARE

136

Figure 13-12. Block Diagram of the Serial Interface

Note The output latch of the shift register is common with the output latch of P0D1. Therefore, if an output

instruction is executed for P0D1, the output latch state of the shift register is also changed.

P0D2/SI LSB MSB

P0D1/SO

S
er

ia
l s

ta
rt

SIOTS SIOCK1 SIOCK0SIOHIZ

IRQSIO
clear signal

IRQSIO
set signalCarry

Clear

Serial clock counter

Clock

P0D0/SCK
fX

/1
02

4

fX
/1

28

fX
/1

6

SIOEN

P0DBIO0

P0DBIO1

Shift register (SIOSFR)

Q
S

R

Selector

S
el

ec
to

r

Output
latch

Output
latch

Note

One
shot

CHAPTER 13 PERIPHERAL HARDWARE

137

13.3.2 3-wire Serial Interface Operation Modes

Two modes can be used for the serial interface. If the serial interface function is selected, the P0D2/SI pin always

takes in data in synchronization with the serial clock.

• 8-bit send/receive mode (concurrent send/receive)

• 8-bit receive mode (SO pin: high-impedance state)

Table 13-3. Serial Interface's Operation Mode

SIOEN SIOHIZ P0D2/SI pin P0D1/SO pin Serial Interface Operation Mode

1 0 SI SO 8-bit send/receive mode

1 1 SI P0D1 (input) 8-bit receive mode

0 × P0D2 (input/output) P0D1 (input/output) General-purpose port mode

×: Don't care

(1) 8-bit transmission and reception mode (simultaneous transmission and reception)

Serial data input/output is controlled by a serial clock. The MSB of the shift register is output from the SO

line with a falling edge of the serial clock (SCK). The contents of the shift register is shifted one bit and at

the same time, data on the SI line is loaded into the LSB of the shift register.

The serial clock counter counts serial clock pulses. Every time it counts eight clocks, the interrupt request

flag is set (IRQSIO ← 1).

Figure 13-13. Timing of 8-Bit Transmission and Reception Mode

 (Simultaneous Transmission Reception)

1 2 3 4 5 6 7 8

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

DO7 DO6 DO5 DO4 DO3 DO2 DO1 DO0

SCK pin

SO pin

IRQSIO

SI pin

Transmission starts in synchronization with the SCK pin falling edge.

An instruction which writes 1 into SIOTS is executed.
(Transmission start indication)

Transmission
completion

Remark DIn : Serial input data

DOn : Serial output data

CHAPTER 13 PERIPHERAL HARDWARE

138

(2) 8-bit receive mode (SO pin: high impedance state)

When SIOHIZ=1, the P0D1/SO pin is placed in the high-impedance state. At this time, if "1" is written into

SIOTS to start supply of the serial clock, the serial interface operates only the receiving function.

Because the P0D1/SO pin is placed in the high-impedance state, it can be used as an input port (P0D1).

Figure 13-14. Timing of the 8-Bit Reception Mode

High impedance

1 2 3 4 5 6 7 8

DI7 DI6 DI5 DI4 DI3 DI2 DI1 DI0

SCK pin

SO pin

IRQSIO

SI pin

Transmission starts in synchronization with the SCK pin falling edge.

An instruction which writes 1 into SIOTS is executed.
(Transmission start indication)

Transmission
completion

Remark DIn: Serial input data

(3) Operation stop mode

If the value in SIOTS (RF: address 1AH, bit 3) is 0, the serial interface enters operation stop mode. In this

mode, no serial transfer occurs.

In this mode, the shift register does not perform shifting and can be used as an ordinary 8-bit register.

CHAPTER 13 PERIPHERAL HARDWARE

139

Figure 13-15. Serial Interface Control Register (1/2)

RF: 1AH

Read = R, write = W

SIOCK1

0

0

1

1

SIOCK0

0

1

0

1

Serial Clock Selection

External clock (SCK pin)

fX/16

fX/128

fX/1024

Function Selection of the P0D1/SO pin

Serial data output (SO pin)

Input port (P0D1 pin)

Confirmation of Shift Register Operation Status
(at Reading)

The shift register is in the stop status.

The shift register is operating.

 Start and Stop of Serial Transmission (at Writing)

Forced termination of the shift register.
Disables intermediate restart.

Start of shift register operation
• At internal clock selection
 Starts operating internal devided signal of a
 system clock (fX) as a serial clock
• At external clock selection
 Starts operation in synchronization with an SCK
 pin falling edge.

SIOHIZ

0

1

SIOTS

0

1

Remark SIOTS is automatically cleared to 0 when serial
transmission is completed.

Read/write

Initial value when reset

Bit 3

SIOTS

0

Bit 2

SIOHIZ

0

Bit 1

SIOCK1

0

Bit 0

SIOCK0

0

R/W

SIOTS

0

1

CHAPTER 13 PERIPHERAL HARDWARE

140

Figure 13-15. Serial Interface Control Register (2/2)

RF: 0AH

Read/write

Initial value when reset

Bit 3

0

0

R/W Read = R, write = W

Bit 2

0

0

Bit 1

0

0

Bit 0

SIOEN

0

SIOEN

0

1

Serial Interface Enable

The pins of port 0D (P0D0/SCK, P0D1/SO, P0D2/SI)
function as the serial interface.

The pins of port 0D (P0D0/SCK, P0D1/SO, P0D2/SI)
function as ports.

Remark Refer to CHAPTER 12 PORTS

CHAPTER 13 PERIPHERAL HARDWARE

141

13.3.3 Setting Values in the Shift Register

Values are set in the shift register via the data buffer (DBF) using the PUT instruction.

The peripheral address of the shift register is 01H. When sending a value to the shift register using the PUT

instruction, only the low-order eight bits (DBF1, DBF0) of DBF are valid. The DBF3 and DBF2 values do not affect

the shift register.

Figure 13-16. Setting a Value in the Shift Register

Example of setting value 64H in the shift register

SIODATL DAT 4H ; SIODATL is assigned to 4H using symbol definition.

SIODATH DAT 6H ; SIODATH is assigned to 6H using symbol definition.

MOV DBF0, #SIODATL ;

MOV DBF1, #SIODATH ;

PUT SIOSFR, DBF ; Value is transmitted using reserved word SIOSFR.

PUT SIOSFR,DBF

SIOSFR (Peripheral Address 01H)

Data Buffer

DBF3

Don't care

8-bit data

b7

0

b5

1

b4

0

b3

0

b2

1

b1

0

b0

0

b6

1

b0

0

b1

0

b2

1

b3

0

b0

0

b1

1

b2

1

b3

0

b0b1b2b3b0b1b2b3

DBF2

Don't care

DBF1 DBF0

CHAPTER 13 PERIPHERAL HARDWARE

142

13.3.4 Reading Values from the Shift Register

A value is read from the shift register via the data buffer (DBF) using the GET instruction. The shift register has

peripheral address 01H and only the eight low-order bits (DBF1, DBF0) are valid. Executing the GET instruction does

not affect the eight high-order bits of DBF.

Figure 13-17. Reading a Value from the Shift Register

GET DBF, SIOSFR; Example of using reserved words DBF and SIOSFR

GET DBF, SIOSFR

SIOSFR (Peripheral Address 01H)

Data Buffer

DBF3

Retained

8-bit data

b7

0

b5

1

b4

0

b3

0

b2

1

b1

0

b0

0

b6

1

b0

0

b1

0

b2

1

b3

0

b0

0

b1

1

b2

1

b3

0

b0b1b2b3b0b1b2b3

DBF2

Retained

DBF1 DBF0

CHAPTER 13 PERIPHERAL HARDWARE

143

13.3.5 Program Example of Serial Interface

(1) Program example of data transmission/reception by 8-bit transmission/reception mode (synchronous

transmission/reception)

This program executes data transmission/reception synchronizing with fX/128. Judgment of finishing serial

data transmission/reception is executed by checking interrupt request flag.

Example

MAIN:

CALL SIOJOB

BR MAIN

SIOJOB:

DI ; Prohibits interrupt in SIOJOB

CLR1 IRQSIO ; Clears interrupt request flag of SIO

SET1 SIOEN ; Enables SIO

MOV DBF0, #SIODATL ; Sets transmitted data

MOV DBF1, #SIODATH

PUT SIOSFR, DBF

INITFLG SIOTS, NOT SIOHIZ, SIOCK1, NOT SIOCK0

; Sets serial clock to "fX/128", starts shift

; register operation, and outputs serial data

LOOP:

SKT1 IRQSIO ; Transmission/reception finish judgment

BR LOOP ; Waits finishing transmission/reception

GET DBF, SIOSFR ; Reads reception data

EI ; Permits interrupt and returns to main processing

RET ;

. .
 .

.
. .

 .
.

CHAPTER 13 PERIPHERAL HARDWARE

144

(2) Program example of data reception by 8-bit reception mode

This program executes data reception synchronizing with external clock, and reads reception data by using

interrupt processing.

Example

SIODATH MEM 0.50H

SIODATL MEM 0.51H

ORG 0H

BR SIO_INIT

ORG 01H

BR SIOJOB

SIO_INIT:

MOV SIODATH, #0H

MOV SIODATL, #0H

CLR1 IRQSIO ; Clears interrupt request flag of SIO

SET1 SIOEN ; Enables SIO

INITFLG SIOTS, SIOHIZ, NOT SIOCK1, NOT SIOCK0

; Sets serial clock to external clock, starts receiving

; serial data, and sets P0D1/SO pins to input port

; (output high impedance)

EI ; Permits all interrupts

; Main processing

MAIN:

CALL ××JOB

CALL ××JOB

BR MAIN

SIOJOB:

GET DBF, SIOSFR ; Reads reception data

MOV RPH, #0000B ; Sets general register to low address 5H of BANK0

MOV RPL, #1010B ; BCD ← 0

LD SIODATH, DBF1 ; Stores reception data on RAM

LD SIODATL, DBF0 ;

EI

RETI

. .
 .

.

CHAPTER 14 INTERRUPT FUNCTIONS

The µPD17120 subseries has two internal interrupt functions and one external interrupt function. It can be used

in various applications.

The interrupt control circuit of this product has the features listed below. This circuit enables very high-speed

interrupt handling.

(a) Used to determine whether an interrupt can be accepted with the interrupt mask enable flag (INTE) and

interrupt enable flag (IP×××).

(b) The interrupt request flag (IRQ×××) can be tested or cleared. (Interrupt generation can be checked by

software).

(c) Standby mode (STOP, HALT) can be released by an interrupt request. (Release source can be selected by

the interrupt enable flag.)

Cautions 1. In interrupt handling, the BCD, CMP, CY, Z, and IXE flags are saved in the stack automatically

by the hardware for one level of multiple interrupts. The DBF and WR are not saved by the

hardware when peripheral hardware such as the timers or serial interface is accessed in

interrupt handling. It is recommended that the DBF and WR be saved in RAM by the software

at the beginning of interrupt handling. Saved data can be loaded back into the DBF and WR

immediately before the end of interrupt handling.

2. Because the interrupt stack is only one level, multi-interrupt by hardware cannot be executed.

If the interrupt over one level is accepted, the first data is lost.

145

CHAPTER 14 INTERRUPT FUNCTIONS

146

14.1 INTERRUPT SOURCES AND VECTOR ADDRESS

For every interrupt in the µPD17120 subseries, when the interrupt is accepted, a branch occurs to the vector

address associated with the interrupt source. This method is called the vectored interrupt method. Table 14-1 lists

the interrupt sources and vector addresses.

If two or more interrupt requests occur or the retained interrupt requests are enabled at the same time, they are

handled according to priorities shown in Table 14-1.

Table 14-1. Interrupt Source Types

Vector Internal/
Address External

INT pin (RF: 0FH, bit 0) 1 0003H IRQ IP IEGMD0, 1 External Rising edge or falling
RF: 3FH, RF: 2FH, RF: 1FH Edge can be selected.
bit 0 bit 0

Timer 2 0002H IRQTM IPTM Internal
RF: 3EH, RF: 2FH, –
bit 0 bit 1

SIO 3 0001H IRQSIO IPSIO Internal
RF: 3DH, RF: 2FH, –
bit 0 bit 2

Interrupt Source Priority IRQ Flag IP Flag IEG Flag Remarks

CHAPTER 14 INTERRUPT FUNCTIONS

147

14.2 HARDWARE COMPONENTS OF THE INTERRUPT CONTROL CIRCUIT

The flags of the interrupt control circuit are explained below.

14.2.1 Interrupt Request Flag (IRQ×××) and the Interrupt Enable Flag (IP×××)

The interrupt request flag (IRQ×××) is set to 1 when an interrupt request occurs. When interrupt handling is

executed, the flag is automatically cleared to 0.

An interrupt enable flag (IP×××) is provided for each interrupt request flag. If the flag is 1, an interrupt is enabled.

If it is 0, the interrupt is disabled.

14.2.2 EI/DI Instruction

The EI/DI instruction is used to determine whether an accepted interrupt is to be executed.

If the EI instruction is executed, INTE for enabling interrupt reception is set. Since the INTE flag is not registered

in the register file, flag status cannot be checked by instructions.

The DI instruction clears the INTE flag to 0 and disables all interrupts.

At reset the INTE flag is cleared to 0 and all interrupts are disabled.

Table 14-2. Interrupt Request Flag and Interrupt Enable Flag

Interrupt Interrupt
Request Flag Enagle Flag

IRQ Set by edge detection of an INT pin input signal. IP
A detection edge is selected by IEGMD0 or
IEGMD1.

IRQTM Set by a match signal from timer. IPTM

IRQSIO Set by a serial data transmission end signal from IPSIO
the serial interface.

Signal for Setting the Interrupt Request Flag

CHAPTER 14 INTERRUPT FUNCTIONS

148

Figure 14-1. Interrupt Control Register (1/4)

RF: 0FH

Read/write

Initial value when reset

Bit 3

0

0

Bit 2

0

0

Bit 1

0

0

Bit 0

INT

Note

R Read=R, write=W

INT

0

1

State of INT Pin

INT pin noise elimination circuit sets logical status
to 0 during PEEK instruction execution.

INT pin noise elimination circuit sets logical status
to 1 during PEEK instruction execution.

Note Since the INT flags are not latched, they change all the
time in response to the logical state of the pin, However,
once the IRQ flag is set, it stays set until an interrupt is
accepted. The POKE instruction to address 0FH is invalid.

RF: 1FH

Read/write

Initial value when reset

Bit 3

0

0

Bit 2

0

0

Bit 1

IEGMD1

0

Bit 0

IEGMD0

0

R/W Read=R, write=W

IEGMD1 IEGMD0

0

0

1

1

0

1

0

1

Selection of the Interrupt Detection Edge
of the INT Pin

Interrupt at the rising edge

Interrupt at the falling edge

Interrupt at both edges

CHAPTER 14 INTERRUPT FUNCTIONS

149

Figure 14-1. Interrupt Control Register (2/4)

RF: 3FH

Read/write

Initial value when reset

Bit 3

0

0

Bit 2

0

0

Bit 1

0

0

Bit 0

IRQ

0

R/W Read=R, write=W

IRQ

0

1

INT Pin Interrupt Request (at Reading)

No interrupt request has been issued from the INT
pin or an INT pin interrupt is being handled.

An interrupt request from the INT pin occurs or an
INT pin interrupt is being held.

IRQ

0

1

INT Pin Interrupt Request (at Writing)

An interrupt request from the INT pin is forcibly
released.

An interrupt request from the INT pin is forced to
occur.

RF: 3FH

Read/write

Initial value when reset

Bit 3

0

0

Bit 2

0

0

Bit 1

0

0

Bit 0

IRQTM

1

R/W Read=R, write=W

IRQTM

0

TM Interrupt Request (at Reading)

1

No interrupt request has been issued from
timer or a timer interrupt is being handled.

The contents of the timer count register matches
that of the timer modulo register and an interrupt
request occurs. Or a timer interrupt request is
being held.

IRQTM

0

TM Interrupt Request (at Writing)

1

An interrupt request from timer is forcibly released.

An interrupt request from timer is forced to occur.

Remark If TMRES is set to 1, IRQTM is cleared to 0.
IRQTM is cleared to 0 immediately after STOP
instruction is executed.

CHAPTER 14 INTERRUPT FUNCTIONS

150

Figure 14-1. Interrupt Control Register (3/4)

RF: 3DH

Read/write

Initial value when reset

Bit 3

0

0

Bit 2

0

0

Bit 1

0

0

Bit 0

IRQSIO

0

R/W Read=R, write=W

IRQSIO

0

1

SIO Interrupt Request (at Reding)

No interrupt request has been issued from the
serial interface or a serial interface interrupt is
being handled.

Serial interrupt transmission is completed and an
interrupt request occurs. Or, a serial interface
intrrupt request is being held.

IRQSIO

0

SIO Interrupt Request (at Writing)

An interrupt request from the serial interface is
forcibly released.

An interrupt request from the serial interface is
forced to occur.

1

CHAPTER 14 INTERRUPT FUNCTIONS

151

Figure 14-1. Interrupt Control Register (4/4)

RF: 2FH

Read/write

Initial value when reset

Bit 3

0

0

Bit 2

IPSIO

0

Bit 1

IPTM

0

Bit 0

IP

0

R/W Read=R, write=W

IP

0

INT Pin Interrupt Enable

Disables an interrupt from the INT pin.
Holds interrupt handling when the IRQ flag is set
to 1.

1
Enables an interrupt from the INT pin.
Executes the EI instruction. If the IRQ flag is set
to 1, executes interrupt handling.

IPTM

0

TM Interrupt Enable

Disables an interrupt from timer.
Holds an interrupt if the IRQTM flag is set to 1.

1
Enables an interrupt from timer.
Executed the EI instruction. If the IRQTM flag is
set to 1, executes interrupt handling.

IPSIO

0

SIO Interrupt Enable

Disables an interrupt from serial interface.
Holds an interrupt if the IRQSIO flag is set to 1.

1
Enables an interrupt from serial interface.
Executed the EI instruction. If the IRQSIO flag is
set to 1, executes interrupt handling.

CHAPTER 14 INTERRUPT FUNCTIONS

152

14.3 INTERRUPT SEQUENCE

14.3.1 Acceptance of Interrupts

The moment an interrupt is accepted, the instruction cycle of the instruction which has been executed is

terminated, and the interrupt operation is started thus altering the flow of the program to the vector address.

However, if the interrupt occurs during execution of the MOVT instruction, the EI instruction or an instruction which

has satisfied the skip condition, the processing of this interrupt is started after two instruction cycles are completed.

If interrupt operation is started, one level of the address stack register is consumed to store the return address

of the program, and also a level of the interrupt stack register is used to save the PSWORD in the system register.

If multiple interrupts are enabled and occure simultaneously, the interrupts are processed in order of higher priority.

In this case, an interrupt with a lower priority is put on hold until the interrupts with higher priority are processed.

For details of the priority levels, refer to Table 14-1. Types of Interrupt Factors.

Caution The PSWORD is automatically reset to 00000B after being saved in the interrupt stack register.

CHAPTER 14 INTERRUPT FUNCTIONS

153

Figure 14-2. Interrupt Handling Procedure

Interrupt request generation

Set IRQ×××

IP××× set?

EI instruction executed?
(INTE=1?)

NO

NO

YES

YES

Clear INTE flat and IRQ××× associated with
accepted interrupt to 0

Decrement stack pointer by 1 (SP-1)

Save contents of program counter in stack
pointed to by stack pointer

Load vector address into program counter

Save PSWORD content in interrupt stack
register

Hold interrupt until IP××× is set

Hold interrupt until EI instruction
is executed

CHAPTER 14 INTERRUPT FUNCTIONS

154

14.3.2 Return from the Interrupt Routine

Execute the RETI instruction to return from the interrupt handling routine. During the RETI instruction cycle,

processing in the figure below occurs.

Figure 14-3. Return from Interrupt Handling

Execute RETI instruction

Load contents of stack pointed to by stack
pointer into program counter

Load contents of interrupt-dedicated stack
register into PSWORD

Increment stack pointer value by one

Cautions1. The INTE flag is not set for the RETI instruction.

Interrupt handling is completed. To handle a pending interrupt successively, execute the EI

instruction immediately before the RETI instruction and set the INTE flag to 1.

2. To execute the RETI instruction following the EI instruction, no interrupt is accepted between

EI instruction execution and RETI instruction execution. This is because the EI instruction

sets the INTE flag to 1 after the execution of the subsequent instruction is completed.

Example

EI instruction execution

Timer 0 interrupt generation

Timer 1 interrupt generation (held)

Timer 0 interrupt generation (held) RETI

Timer 1 interrupt handling

EI
RETI

Timer 0 interrupt handling

Single interrupt

CHAPTER 14 INTERRUPT FUNCTIONS

155

14.3.3 Interrupt Acceptance Timing

Figure 14-4 shows the interrupt acceptance timing chart. The µPD17120 subseries executes an instruction with

16 clocks, which is one instruction cycle. One instruction cycle is subdivided into M0-M3 in terms of 4 clocks as

a unit.

 The timing of the program recognizing the interrupt occurrence coincides with the edge preceding the M2.

Figure 14-4. Interrupt Acceptance Timing Chart (when INTE=1 and IP×××=1) (1/3)

<1> When an interrupt has occurred before M2 of an instruction other than MOVT or EI

Machine cycle

Instruction

IRQ×××

M0

An instruction other than MOVT or EI INT cycle

M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Vector address instruction

Interrupt occurrence recognized

<2> When the skip condition for the skip instruction is materialized in <1>

<3> When an interrupt has occurred after M2 of an instruction other than MOVT or EI

Machine cycle

Instruction

IRQ×××

M0 M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

INT cycle Vector address
instruction

Interrupt occurrence recognized

An instruction other than MOVT or EI An instruction other than MOVT or EI

Machine cycle

Instruction

IRQ×××

M0

Skip instruction Handled as NOP

M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

INT cycle

Interrupt occurrence recognized

Vector address
instruction

CHAPTER 14 INTERRUPT FUNCTIONS

156

Figure 14-4. Interrupt Acceptance Timing Chart (when INTE=1, IP×××=1) (2/3)

<4> When an interrupt has occurred before M2 of a MOVT instruction

Machine cycle

Instruction

IRQ×××

M0

MOVT instruction INT cycle

M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Vector address
instruction

Interrupt occurrence recognized

<5> When an interrupt has occurred before M2' of a MOVT instruction

Machine cycle

Instruction

IRQ×××

M0

MOVT instruction INT cycle

M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Vector address
instruction

Interrupt occurrence recognized

<6> When an interrupt has occurred before M2 of an EI instruction

Machine cycle

Instruction

IRQ×××

M0

EI instruction INT cycle

M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Vector address
instruction

Interrupt occurrence recognized

An instruction other than MOVT or EI

<7> When an interrupt has occurred after M2 of an EI instruction

Machine cycle

Instruction

IRQ×××

M0

EI instruction INT cycle

M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Vector address
instruction

Interrupt occurrence recognized

An instruction other than MOVT or EI

CHAPTER 14 INTERRUPT FUNCTIONS

157

Figure 14-4. Interrupt Acceptance Timing Chart (INTE=1 and IP×××=1) (3/3)

<8> When an interrupt has occurred during skipping (NOP handling) by a skip instruction

Remarks 1. The INT cycle is for preparing interrupts. During this cycle, PC and PSWORD saving and IRQ clearing

are performed.

2. For execution of the MOVT instruction, two instruction cycles are exceptionally required.

3. The EI instruction is considered to prevent multiple interrupts from occurring when returning from

the interrupt operation.

Machine cycle

Instruction

IRQ×××

M0

Skip instruction INT cycle

M1 M2 M3 M0 M1 M2 M3 M0 M1 M2 M3 M0 M1

Vector address
instruction

Interrupt occurrence recognized

Handled as NOP

CHAPTER 14 INTERRUPT FUNCTIONS

158

14.4 PROGRAM EXAMPLE OF INTERRUPT

• Program example of contermeasure for noise reduction of external interrupt (INT pin)

This example assumes the case of assigning INT pin for key input, etc.

When taking into the microcontroller data in kind of switch such as key input processing, it takes some time

for the level of input voltage to be stabilized after pushing the key or switch. Accordingly, the countermeasures

for removing the noise generated by key, etc. should be executed by software.

In the following program, after generating external interrupt, the signal from INT pin becomes effective after

confirming that there is not change in the level of INT pin two times in every 100 µs.

Example

WAITCNT MEM 0.00H ; Counter of wait processing

KEYON FLG 0.01H.3 ; If key ON is determined (even just once), KEYON=1

SECOND FLG 0.01H.0 ; A flag describing key-checking for the second time.

ORG 0H

BR JOB_INIT

ORG 3H

BR INT_JOB
.....

JOB_INIT:

MOV WAITCNT, #0 ; Clears RAM and the flag on RAM

CLR2 KEYON, SECOND ;

INITFLG NOT IEGMD1, IEGMD0

; Rising edge is effective for the interrupt from INT pin

CLR1 IRQ

SET1 IP

EI
.....

MAIN:

CALL ××JOB ; arbitrary processing

CALL ××JOB ; arbitrary processing
.....

BR MAIN

CHAPTER 14 INTERRUPT FUNCTIONS

159

INT_JOB:

NOP ; Loop which executes waiting for 100 µs at 8 MHz

NOP ; 2 µs (1 instruction) × 5 instructions × 10 times

; (count value at WAIT)

ADD WAITCNT, #01 ;

SKE WAITCNT, #0AH ;

BR INT_JOB ;

SKF1 INT ; Check the level of INT pin

BR KEY_OFF ; If INT pin is high level, interrupt is invalid, and returns

; to main processing

SKF1 SECOND ; First wait?

BR WAIT_END ; If it is the first time, wait again after setting SECOND.

; In the case of the second time, finish wait processing

SET1 SECOND ;

MOV WAITCNT, #0

BR INT_JOB

WAIT_END:

SET1 KEYON ; Judges that there is key input

BR INT_JOB_END

KEY_OFF:

CLR1 SECOND ; SECOND←0

INT_JOB_END:

MOV WAITCNT, #0

EI

RETI

[MEMO]

160

CHAPTER 15 STANDBY FUNCTIONS

15.1 OUTLINE OF STANDBY FUNCTION

The µPD17120 subseries reduces current consumption by using a standby function. In standby mode, the series

uses STOP mode or HALT mode depending on the application.

STOP mode is a mode that stops the system clock. In this mode, the CPU's current consumption is mostly limited

to the leakage current. Therefore, this is useful for retaining the contents of the data memory without operating

the CPU.

HALT mode is a mode that halts CPU operation because the clock supplying the CPU is stopped even when the

system clock's oscillation continues. Although, compared with STOP mode, this mode does not reduce the current

consumption, operation can start immediately after HALT is canceled because the system clock is oscillating. Also,

in either the STOP mode or HALT mode, the status of items such as the data memory, registers, the output port's

output latch, etc. immediately before being set to standby mode are retained (STOP 0000B excluded).

Therefore, before placing the system in standby mode, please set the port's status in a way that the current

consumption of the whole system is reduced.

161

CHAPTER 15 STANDBY FUNCTIONS

162

Table 15-1. States during Standby Mode

STOP mode HALT Mode

Instruction to set STOP instruction HALT instruction

Clock Oscillation Circuit Oscillation stopped Oscillation continued

Operation CPU • Operation stopped

Statuses RAM • Immediately-preceding status retained

Port • Immediately-preceding status retainedNote 1

TM • Operation stopped • Operable
(The count value is reset to "0".)
(The count up is also disabled.)

SIO • Operable only when an external • Operable
clock has been selected for the
shift clockNote 1

ComparatorNote 2 • Operation stoppedNote 1 • Operation stopped (The result after
resumption of the operation is
"undefined".)

INT • Operable

Notes 1. At the point where STOP 0000B has been executed, the pin's status is placed in input port mode even

when the pin is used with its dual function.

2. Limited to µPD17132, 17133, 17P132, and 17P133.

Cautions 1. Be sure to place a NOP instruction immediately before the STOP instruction or the HALT

instruction.

2. Both the interrupt request flag and the interrupt enable flag are set and are not placed in

standby mode if their interruption is specified in the condition for canceling the standby

mode.

CHAPTER 15 STANDBY FUNCTIONS

163

15.2 HALT MODE

15.2.1 HALT Mode Setting

The system is placed in HALT mode by executing the HALT instruction. The HALT instruction's operands b3b2b1b0

are the conditions for canceling HALT mode.

Table 15-2. HALT Mode Cancellation Condition

Format: HALT b3b2b1b0B

Bit Condition for Canceling HALT ModeNote 1

b3 At 1, cancellation by IRQ××× is enabled.Notes 2, 4

b2 "Fixed to 0"

b1 At 1, forced cancellation by IRQTM is enabled.Note 3, 4

b0 "Fixed to 0"

Notes 1. At HALT 0000B, only the resets (RESET input; power-ON/power-DOWN reset) are valid.

2. It is required that IP×××=1.

3. Regardless of the PITM's state, HALT mode is canceled.

4. Even if the HALT instruction is executed when IRQ×××=1, the HALT instruction is ignored (handled

as the NOP instruction) thus failing to place the system in HALT mode.

15.2.2 Start Address after HALT Mode is Canceled

The start address varies depending on the cancellation condition and the interrupt enable condition.

Table 15-3. Start Address After HALT Mode Cancellation

Cancellation Condition Start Address After Cancellation

ResetNote 1 Address 0

IRQ××Note 2 If DI, the start address is the one following the HALT instruction

If EI, the start address is the interrupt vector.

(If more than one IRQ××× have been set, the start address is the interrupt
vector with a higher priority.)

Notes 1. Valid resets include the RESET input and power-ON/power-DOWN resets.

2. Except for forced cancellation by IRQTM, it is required that IP×××=1.

CHAPTER 15 STANDBY FUNCTIONS

164

Figure 15-1. Cancellation of HALT Mode

(a) HALT cancellation by RESET input

(b) HALT cancellation by IRQ××× (if DI)

Execution of the
HALT instruction

IRQ×××

Operation
mode

HALT mode Operation mode

(c) HALT cancellation by IRQ××× (if EI)

Execution of the
HALT instruction

Interrupt operation
acceptance

IRQ×××

Operation
mode

HALT mode Operation mode

Execution of the
HALT instruction TM count up

RESET

Operation
mode

HALT mode System reset srtate WAIT a Operation mode
(Start of address 0)

WAIT a: This refers to the wait time until TM counts the divide-by-256 clock up to 256.
256 × 256/fX (when approximately 32 ms and fX=2MHz)

CHAPTER 15 STANDBY FUNCTIONS

165

15.2.3 HALT Setting Condition

(1) Forced cancellation by IRQTM

• The timer is in the operable state (TMEN=1)

• The timer's interrupt request flag is cleared (IRQTM=0).

(2) Cancellation by the interrupt request flag (IRQ×××)

• Setting in a way that places beforehand the peripheral hardware used for HALT cancellation in an operable

state.

Timer Operable state (TMEN=1)

Serial Interface Serial interface circuit placed in operable state (SIOTS=1, SIOEN=1)

INT Pin Setting the edge selection

• The interrupt request flag (IRQ×××) of the peripheral hardware used for HALT cancellation is cleared (to

0).

• The interrupt enable flag (IP×××) of the peripheral hardware used for HALT cancellation is set (to 1).

Caution Be sure to code a NOP instruction immediately before the HALT instruction. The time of one

instruction is generated between the IRQ××× operation instruction and the HALT instruction by

coding the NOP instruction immediately before the HALT instruction. Therefore, in the case of

the CLR1 IRQ××× instruction, for example, the clearance of the IRQ××× is correctly reflected in

the HALT instruction (Example 1). If a NOP instruction is not coded immediately before the HALT

instruction, the CLR1 IRQ××× instruction is not reflected in the HALT instruction thus failing to

place the system in HALT mode (Example 2).

CHAPTER 15 STANDBY FUNCTIONS

166

Example 1. A correct program example

......
(Setting of IRQ×××)

......

CLR1 IRQ×××
NOP ; Codes a NOP instruction immediately before the HALT instruction

; (Clearance of IRQ××× is reflected correctly to the HALT instruction.

HALT 1000B ; Executes the HALT instruction correctly (placing the system in HALT mode).
............

2. An incorrect program example

......
(Setting of IRQ×××)

......

CLR1 IRQ××× ; Clearance of IRQ××× is not reflected as to the HALT instruction.

; (It is the instruction following the HALT instruction that is reflected.)

HALT 1000B ; The HALT instruction is ignored (not placing the system in HALT mode.)
............

CHAPTER 15 STANDBY FUNCTIONS

167

15.3 STOP MODE

15.3.1 STOP Mode Setting

Executing the STOP instruction places the system in STOP mode.

Operand b3b2b1b0 of the STOP instruction is the condition for canceling STOP mode.

Table 15-4. STOP Mode Cancellation Condition

Format: STOP b3b2b1b0B

Bit STOP Mode Cancellation ConditionNote 1

b3 At 1, this bit enables cancellation by IRQ×××.Note 2, 3

b2 "Fixed to 0"

b1 "Fixed to 0"

b0 "Fixed to 0"

Notes 1. At STOP 0000B, only the resets (RESET input; power-ON/power-DOWN reset) are valid.

The microcontroller is internally initialized to the state immediately following the resetting when STOP

0000B is executed.

2. It is required that IP×××=1. Cancellation by IRQTM is not possible.

3. Even if the STOP instruction is executed when IRQ×××=1, the STOP instruction is ignored (handled

as a NOP instruction) thus failing to place the system in STOP mode.

15.3.2 Start Address after STOP Mode Cancellation

The start address varies depending on the cancellation condition and the interrupt enable condition.

Table 15-5. Start Address After STOP Mode Cancellation

Cancellation Condition Start Address after Cancellation

ResetNote 1 Address 0

IRQ×××Note 2 If DI, the start address is the one following the STOP instruction

If EI, the start address is the interrupt vector.

(If more than one IRQ××× have been set, the start address is the interrupt
vector with highest priority.)

Notes 1. Valid resets include the RESET input and power-ON/power-DOWN resets.

2. It is required that IP×××=1. Cancellation by IRQTM is not possible.

CHAPTER 15 STANDBY FUNCTIONS

168

Figure 15-2. Cancellation of STOP Mode

(a) STOP cancellation by RESET input

(b) STOP cancellation by IRQ××× (if DI)

(c) STOP cancellation by IRQ××× (if EI)

Execution of the
STOP instruction TM count up

RESET

Operation
mode STOP mode System reset state WAIT b Operation mode

(Start of address 0)

WAIT b: This refers to the wait time until TM counts the divide-by-256 clock up to 256.
256 × 256/fX+α (when approximately 32 ms+α and fX=2MHz)

α: Oscillation growth time (Varies depending on the resonator)

Execution of the
STOP instruction TM count up

IPQ×××

Operation
mode STOP mode WAIT c Operation mode

WAIT c: This refers to the wait time until TM counts the divide-by-m clock up to (n+1).
(n+1) × m/fX+α (n and m: values immediately before the system is placed in STOP mode)

α: Oscillation growth time (Varies depending on the resonator)

Execution of the
STOP instruction Interrupt operation acceptance, TM count up

IPQ×××

Operation
mode STOP mode WAIT c Operation mode

WAIT c: This refers to the wait time until TM counts the divide-by-m clock up to (n+1).
(n+1) × m/fX+α (n and m: values immediately before the system is placed in STOP mode)

α: Oscillation growth time (Varies depending on the resonator)

CHAPTER 15 STANDBY FUNCTIONS

169

15.3.3 STOP Setting Condition

Cancellation by IRQ×××

Cancellation by IRQ • Sets the edge selection (IEGMD1, IEGMD0) for the signal that is input from the INT

pin.

• Sets the modulo register value of the timer (wait time for generation of oscillation

stability).

• Clears the interrupt request flag (IRQ) of the INT pin (to 0).

• Sets the interrupt enable flag (IP) of the INT pin (to 1.)

Cancellation by IRQSIO • Sets the source clock to the external clock (SIOCK1=0, SIOCK0=0) that is input from

the SCK pin.

• Sets the serial interface to the operable state (SIOTS=1).

• Sets the modulo register value of the timer (wait time for generation of oscillation

stability).

• Clears the interrupt request flag (IRQSIO) of the serial interface (to 0).

• Sets the interrupt enable flag (IPSIO) of the serial interface (to 1).

Caution Be sure to code a NOP instruction immediately before the STOP instruction. The time of one

instruction is generated between the IRQ××× operation instruction and the STOP instruction by

coding the NOP instruction immediately before the STOP instruction. Therefore, in the case of

the CLR1 IRQ××× instruction, for example, the clearance of IRQ××× is correctly reflected in the

STOP instruction (Example 1). If a NOP instruction is not coded immediately before the STOP

instruction, the CLR1 IRQ××× instruction is not reflected in the STOP instruction thus failing to

place the system in STOP mode (Example 2).

CHAPTER 15 STANDBY FUNCTIONS

170

Example 1. A correct program example

......
(Setting of IRQ×××)

......

CLR1 IRQ×××
NOP ; Codes a NOP instruction immediately before the STOP instruction.

; (Clearance of IRQ××× is reflected correctly to the STOP instruction.

STOP 1000B ; Executes the STOP instruction correctly (placing the system in STOP mode).
............

2. An incorrect program example

......
(Setting of IRQ×××)

......

CLR1 IRQ××× ; Clearance of IRQ××× is not reflected to the STOP instruction.

; (It is the instruction following the STOP instruction that is reflected.)

STOP 1000B ; The STOP instruction is ignored (not placing the system in STOP mode.)
............

CHAPTER 16 RESET

The following 3 types of resets are provided in the µPD17120 series.

<1> Reset by input to RESET.

<2> The power-on/power-down reset function when power is turned on or supply voltage drops.

<3> The address stack overflow/underflow reset function.

16.1 RESET FUNCTIONS

The reset functions are used to initialize device operations. The state to be initialized depends on the type of reset.

Table 16-1. State of Each Hardware Unit When Reset

Reset Type • RESET Input during • RESET Input during
Operation Standby Mode • Stack Overflow or

• Built-in Power-ON/Power- • Built-in Power-ON/Power- Underflow
DOWN Reset during DOWN Reset during

Hardware Operation Standby Mode

Program Counter 0000H 0000H 0000H

Port Input/Output mode Input Input Input

Output latch 0 0 Undefined

General-Purpose Other than DBF Undefined Retains the status immedi- Undefined
Data Memory ately preceding the resetting.

DBF Undefined Undefined Undefined

System Register Other than WR 0 0 0

WR Undefined Retains the status immedi- Undefined
ately preceding the resetting.

Control Register SP=5H; IRQTM1=1; TMEN=1; CMPVREF23=1Note; SP=5H; INT retains the
CMPRSLT=1Note; INT retains the status of the INT pin at status of the INT pin at the
the time; all the others go to 0. time; all the others go to 0.
Refer to 19.2 RESERVED SYMBOLS.

Timer Count register 00H 00H Undefined

Modulo register FFH FFH FFH

Serial Interface's Shift Register Undefined Retains the status immedi- Undefined
(SIOSFR) ately preceding the resetting.

Note µPD17132, 17133, 17P132, and 17P133 only.

171

CHAPTER 16 RESET

172

Figure 16-1. Reset Block Configuration

Note The µPD17P132 and 17P133 have no pull-up resistor by mask option, and are always open.

16.2 RESETTING

Operation when reset is caused by the RESET input is shown in the figure below.

If the RESET pin is set from low to high, system clock generation starts and an oscillation stabilization wait occurs

with the timer. Program execution starts from address 0000H.

If power-on reset function is used, the reset signals shown in Figure 16-2 are internally generated. Operation

is the same as that when reset is caused externally by the RESET input.

At address stack overflow and underflow reset, oscillation stabilization wait time (WAIT a) does not occur.

Operation starts from address 0000H after initial statuses are internally set.

Figure 16-2. Resetting

RESET

TMEN

TMRES

Operationg mode RESET WAIT aNote Operating mode

Note This is oscillation stabilization wait time. Operating mode is set when timer counts system clocks 256 ×
256 time (approx. 8ms, at fX=8 MHz/approx. 32 ms, at fCC=2 MHz)

Internal bus

RF : 10H

0 0 0 PDRESEN

VDD Clear signal

Mask optionNote

Low-voltage detection circuit
Power-on reset circuit

Internal reset signal

Oscillation
disabled

RESET

CHAPTER 16 RESET

173

16.3 POWER-ON/POWER-DOWN RESET FUNCTION

The µPD17120 subseries is provided with two reset functions to prevent malfunctions from occurring in the

microcontroller. They are the power-on reset function and power-down reset function. The power-on reset function

resets the microcontroller when it detects that power was turned on. The power-down reset function resets the

microcontroller when it detects drops in the power voltage.

These functions are implemented by the power-voltage monitoring circuit whose operating voltage has a different

range from the logic circuits in the microcontroller and the oscillation circuit (which stops oscillation at reset to put

the microcontroller in a temporary stop state). Conditions required to enable these functions and their operations

will be described next.

Caution When designing an applied circuit requiring a high level of reliability, make sure that its resetting

relies on the built-in power-on/power-down reset function only. Also, design the circuit in such

a way that the RESET signal is input externally.

16.3.1 Conditions Required to Enable the Power-On Reset Function

This function is effective when used together with the power-down reset function.

The following conditions are required to validate the power-on reset function:

<1> The power voltage must be 4.5 to 5.5 V during normal operation, including the standby state.

<2> The frequency of the system clock oscillator must be 400 kHz to 4 MHz.Note

<3> The power-down reset function must be enabled during normal operation, including the standby state.

<4> The power voltage must rise from 0 V to the specified voltage.

<5> The time it takes for the power voltage to rise from 0 to 2.7 V must be shorter than the oscillation stabilization

wait time counted in timer of the µPD17120 subseries. (System clock 256 × 256 counts: approx. 16 ms,

at fX=4 MHz/approx. 32 ms, at fCC=2 MHz)

Note µPD17121/17133/17P133 only

Cautions 1. If the above conditions are not satisfied, the power-on reset function will not operate

effectively. In this case, an external reset circuit needs to be added.

2. In the standby state, even if the power-down reset function operates normally, general-

purpose data memory (except for DBF) retains data up to VDD=2.7 V. If, however, data is

changed due to an external error, the data in memory is not guaranteed.

CHAPTER 16 RESET

174

16.3.2 Description and Operation of the Power-On Reset Function

The power-on reset function resets the microcontroller when it detects that power was turned on in the hardware,

regardless of the software state.

The power-on reset circuit operates under a lower voltage than the other internal circuits in the µPD17120 subseries.

It initializes the microcontroller regardless whether the oscillation circuit is operating. When the reset operation is

terminated, timer counts the number of oscillation pulses sent from the oscillator until it reaches the specified value.

Within this period, oscillation becomes stable and the power voltage applied to the microcontroller enters the range

(VDD=2.7 to 5.5 V at 400 kHz to 4 MHzNote) in which the microcontroller is guaranteed to operate.

When this period elapses, the microcontroller enters normal operation mode. Figure 16-3 shows an example of

the power-on reset operation.

Note µPD17121/17133/17P133 only

Operation of the power-on reset circuit

<1> This circuit always monitors the voltage applied to the VDD pin.

<2> This circuit resets the microcontroller Note until power reaches a particular voltage (typically 1.5 V), regardless

whether the oscillation circuit is operating.

<3> This circuit stops oscillation during the reset operation.

<4> When reset is terminated, timer counts oscillation pulses. The microcontroller waits until oscillation becomes

stable and the power voltage becomes VDD=2.7 V or higher.

Note It is from the point when the supply voltage has reached a level allowing the internal circuit to be operable

(accepting the internal reset signal) that the resetting takes effect within the microcontroller.

CHAPTER 16 RESET

175

Figure 16-3. Example of the Power-On Reset Operation

Notes 1. During the operation-undefined period, certain operations on the µPD17120 subseries are not

guaranteed. However, the power-on reset function is guaranteed in this period.

2. The operation-guaranteed period refers to the time in which all the operations specified for the

µPD17120 subseries are guaranteed.

3. An operation stop state refers to the state in which all of the functions of the microcontroller are

stopped.

A : Voltage at which
oscillation starts

B : Voltage at which the
power-on reset operation
terminates

VDD

(V)

5.0

2.7

A

B

0 Time (t)

State of
oscillation

Period in which
the microcon-
troller is guar-

anteed to
operate

Power-on
reset signal

Operation state
of the micro-

controller

Oscillation stop

Oscillation start

Undefined
periodNote1

Operation
stopNote 3

Oscillating

Timer finishes counting

Guaranteed periodNote 2

Operating mode

Power-on reset termination

Waiting until
oscillation
becomes stable

VDD

GND

RESET PD17120
Subseries
µ

CHAPTER 16 RESET

176

16.3.3 Condition Required for Use of the Power-Down Reset Function

The power-down reset function can be enabled or disabled using software. The following conditions are required

to use this function:

• The power voltage must be 4.5 to 5.5 V during normal operation, including the standby state.

• The frequency of the system clock oscillator must be 400 kHz to 4 MHz.Note

Note µPD17121/17133/17P133 only

Caution When the microcontroller is used with a power voltage of 2.7 to 4.5 V, add an external reset circuit

instead of using the internal power-down reset circuit. If the internal power-down reset circuit

is used with a power voltage of 2.7 to 4.5 V, reset operation may not terminate.

16.3.4 Description and Operation of the Power-Down Reset Function

This function is enabled by setting the power-down reset enable flag (PDRESEN) using software.

When this function detects a power voltage drop, it issues the reset signal to the microcontroller. It then initializes

the microcontroller. Stopping oscillation during reset prevents the power voltage in the microcontroller from

fluctuating out of control. When the specified power voltage recovers and the power-down reset operation is

terminated, the microcontroller waits the time required for stable oscillation using the timer. The microcontroller

then enters normal operation (starts from the top of memory).

Figure 16-4 shows an example of the power-down operation. Figure 16-5 shows an example of reset operation

during the period from power-down reset to power recovery.

Operation of the power-down reset circuit

<1> This circuit always monitors the voltage applied to the VDD pin.

<2> When this circuit detects a power voltage drop, it issues a reset signal to the other parts of the microcontroller.

It continues to send this reset signal until the power voltage recovers or all the functions in the microcontroller

stop.

<3> This circuit stops oscillation during the reset operation to prevent software crashes.

When the power voltage recovers to the low-voltage detection level (typically 3.5 V, 4.5 V maximum) before

the power-down reset function stops, the microcontroller waits the time required for stable oscillation using

timer, then enters normal operation mode.

<4> When the power voltage recovers from 0 V, the power-on reset function has priority.

<5> After the power-down reset function stops and the power voltage recovers before it reaches 0 V, the

microcontroller waits using timer until oscillation becomes stable and the power voltage (VDD) reaches

2.7 V. The microcontroller then enters normal operation mode.

CHAPTER 16 RESET

177

Figure 16-4. Example of the Power-Down Reset Operation

Note The undefined operation area refers to the area in which operation specified for the µPD17120 subseries

is not assured. However, even in this area, the power-down reset function operates, thus continuing to

generate resets until all the other functions within the microcontroller are stopped.

VDD

(V)

5.0

4.5

2.7

C

State of
oscillation

Period in which
the microcon-
troller is guar-

anteed to
operate

Power-down
reset signal

Operation state
of the micro-

controller

3.5

0

Oscillating

Guaranteed period

Power-on
reset signal

Oscillating
mode

Reset state

Power-down reset

Oscillation stop

Undefined periodNote

Time (t)

Maximum voltage detected by the
power-down reset function: 4.5V

Typical voltage detected by the
power-down reset function: 3.5V

Voltage at which the power-down
reset function terminates=
power-on reset voltage (B): C

VDD

GND

RESET PD17120
Subseries
µ

CHAPTER 16 RESET

178

Figure 16-5. Example of Reset Operation during the Period from Power-Down Reset to Power Recovery

Note The undefined operation area refers to the area in which operation specified for the µPD17120 subseries

is not assured. However, even in this area, the power-down reset function operates, thus continuing to

generate resets until all the other functions within the microcontroller are stopped.

VDD

(V)

5.0

4.5

2.7

C

State of
oscillation

Period in which
the microcon-
troller is guar-

anteed to
operate

Power-down
reset signal

Operation state
of the micro-

controller

3.5

0

Oscillating

Power-on
reset signal

Oscillating
mode Reset state

Power-down reset

Time (t)

Maximum voltage detected by the
power-down reset function: 4.5V

Typical voltage detected by the
power-down reset function: 3.5V

Voltage at which the power-down
reset function terminates=
power-on reset voltage (B): C

VDD

GND

RESET PD17120
Subseries
µ

Oscillation stop

Undefined periodNote

Oscillating

Guaranteed period
Timer finishes counting

Operating mode

Waiting until oscillation
becomes stable

Guaranteed period

CHAPTER 17 ONE-TIME PROM WRITING/VERIFYING

The on-chip program memory of the µPD17P132 and 17P133 is a 1024 × 16-bit one-time PROM.

Pins listed in Table 17-1 are used for one-time PROM writing/verifying. The address is updated by the clock signal

input from the CLK pin.

Caution INT/VPP pin is used as VPP pin in program writing/verifying mode. Therefore, there is a possibility

of overrunning of the microcontroller when voltage higher than VDD + 0.3 V is applied to INT/

VPP pin in normal operation mode. Pay careful attention to ESD protection.

Table 17-1. Pins Used for Writing/Verifying Program Memory

Pin Function

VPP Applies program voltage. Apply 12.5 V to this pin.

VDD Power supply pin. Apply 6 V to this pin.

CLK Clock input for updating address. Updates program memory address

by inputting four pulses.

MD0-MD3 Select operation mode.

D0-D7 8-bit data I/O pins.

17.1 DIFFERENCES BETWEEN MASK ROM VERSION AND ONE-TIME PROM VERSION

The µPD17P132 and 17P133 are microcontrollers replacing the program memory of the on-chip mask ROM version

µPD17132 and 17133 to one-time PROM. Table 17-2 shows the differences between mask ROM version and one-

time PROM version.

Differences between each products are only its capacity of ROM/RAM, and whether it can specify mask option

or not. The CPU function and internal peripheral hardware of each product (excluding comparator) are the same.

Therefore, at system designing, the µPD17P132 can be used for evaluating program of the µPD17120/17132 . Also,

the µPD17P133 can be used for evaluating the µPD17121/17133 in the same way.

179

CHAPTER 17 ONE-TIME PROM WRITING/VERIFYING

180

Table 17-2. Differences Between Mask ROM Version and One-Time PROM Version

Item µPD17120 µPD17132 µPD17P132 µPD17121 µPD17133 µPD17P133

ROM Mask ROM One-time PROM Mask ROM One-time PROM

768 × 16 bit 1024 × 16 bit 768 × 16 bit 1024 × 16 bit

(0000H-02FFH) (0000H-03FFH) (0000H-02FFH) (0000H-03FFH)

RAM 64 × 4 bit 111 × 4 bit 64 × 4 bit 111 × 4 bit

P0D and P0E pins and pull- Mask option Not available Mask option Not available
up resistor of RESET pin

VPP pin, operating mode Not available Available Not available Available
selection pin

Operating frequency fCC=400 kHz to 2.4 MHz fX=400 KHz to 4 MHz (VDD=2.7 to 5.5 V)
fX=400 kHz to 8 MHz (VDD=4.5 to 5.5 V)

Comparator Not available Available Not available Available

Caution Although, functionally, the PROM product is highly compatible with the masked ROM product,

they still differ from each other in terms of their internal ROM circuits and some electrical

features. When switching from a PROM product to a ROM product, ensure to make sufficient

application evaluations based on masked-ROM product samples.

17.2 OPERATING MODE IN PROGRAM MEMORY WRITING/VERIFYING

The µPD17P132 and 17P133 become program memory writing/verifying mode by applying +6V to VDD pin and

+12.5 V to VPP pin after reset state for a fixed time (VDD=5 V, RESET=0 V). This mode becomes the following operating

mode by the setting of pins MD0 to MD3. Regarding pins other than those shown in Table 17-1, connect them all

individually to the GND through pull-down resistors.

For details, refer to 1.4 (2).

Table 17-3. Operating Mode Setting

Operating Mode Setting

VPP VDD MD0 MD1 MD2 MD3

H L H L Clear program memory address to 0.

L H H H Write mode

L L H H Verify mode

Remark ×: don't care (L or H)

Operating Mode

+12.5 V +6 V

H × H H Program inhibit mode

CHAPTER 17 ONE-TIME PROM WRITING/VERIFYING

181

17.3 WRITING PROCEDURE OF PROGRAM MEMORY

The program memory can be written at high speeds in the following procedure.

(1) Pull down the unused pins to GND. (XOUT pin is open.) Mask the CLK pin low.

(2) Apply 5 V to the VDD pin. Make VPP pin low.

(3) Wait for 10 µs. Then, apply 5 V to VPP pin.

(4) Set the program memory address 0 clear mode using mode selector pins.

(5) Apply 6 V to VDD and 12.5 V to VPP.

(6) Set the program inhibit mode.

(7) Write data in mode for 1 ms writing.

(8) Set the program inhibit mode.

(9) Set the verify mode (MD0-MD3=LLHH). If the program has been correctly written, proceed to (10).

If not, repeat (7) through (9).

(10) Additional writing of (number of times (×) the program has been written in (7) through (9)) × 1ms.

(11) Set the program inhibit mode.

(12) Input four pulses to the CLK pin to update the program memory address by one.

(13) Repeat (7) through (12) until the last address in programmed.

(14) Set the program memory address 0 clear mode.

(15) Change the voltage of VDD and VPP pins to 5 V.

(16) Turn off the power.

Figure 17-1 shows the procedures of (2) through (12).

CHAPTER 17 ONE-TIME PROM WRITING/VERIFYING

182

Figure 17-1. Procedure of program Memory Writing

17.4 READING PROCEDURE OF PROGRAM MEMORY

(1) Pull down the unused pins to GND. (XOUT pin is open.) Make the CLK pin low.

(2) Apply 5 V to the VDD pin. Make VPP pin low.

(3) Wait for 10 µs. Then, apply 5 V to VPP pin.

(4) Set the program memory address 0 clear mode using mode selector pins.

(5) Apply 6 V to VDD and 12.5 V to VPP.

(6) Set mode selector pins to the program inhibit mode.

(7) Set the verify mode. When clock pulses are input to the CLK pin, data for each address can be sequentially

output with four clocks as one cycle.

(8) Set the program inhibit mode.

(9) Set the program memory address 0 clear mode.

(10) Change the voltage of VDD and VPP pins to 5 V.

(11) Turn off the power.

Repeat × times

Write Verify Additional
writing

Address
increment

Reset

VDD+1
VDD

GND
VDD

VPP

VDD

GND
VPP

CLK

D0–D7

MD0

MD1

MD2

MD3

Hi-Z
Input data Output data Input data

Hi-Z Hi-Z Hi-Z

CHAPTER 17 ONE-TIME PROM WRITING/VERIFYING

183

Figure 17-2 shows the program reading procedure (2) through (9).

Figure 17-2. Procedure of Program Memory Reading

Reset

VDD+1
VDD

GND
VDD

VPP

VDD

GND
VPP

CLK

MD0

MD1

D0–D7

Hi-Z
Output data Output data

Hi-Z

MD2

MD3

"L"

[MEMO]

184

CHAPTER 18 INSTRUCTION SET

18.1 OVERVIEW OF THE INSTRUCTION SET

b15

b14-b11 0 1

BIN HEX

0000 0 ADD r, m ADD m, #n4

0001 1 SUB r, m SUB m, #n4

0010 2 ADDC r, m ADDC m, #n4

0011 3 SUBC r, m SUBC m, #n4

0100 4 AND r, m AND m, #n4

0101 5 XOR r, m XOR m, #n4

0110 6 OR r, m OR m, #n4

INC AR

INC IX

MOVT DBF, @AR

BR @AR

CALL @AR

RET

RETSK

EI

DI

0111 7 RETI

PUSH AR

POP AR

GET DBF, p

PUT p, DBF

PEEK WR, rf

POKE rf, WR

RORC r

STOP s

HALT h

NOP

1000 8 LD r, m ST m, r

1001 9 SKE m, #n4 SKGE m, #n4

1010 A MOV @r, m MOV m, @r

1011 B SKNE m, #n4 SKLT m, #n4

1100 C BR addr CALL addr

1101 D MOV m, #n4

1110 E SKT m, #n

1111 F SKF m, #n

185

CHAPTER 18 INSTRUCTION SET

186

18.2 LEGEND

AR : Address register

ASR : Address stack register indicated by stack pointer

addr : Program memory address (11 bits, the most-significant bit is fixed to 0)

BANK : Bank register

CMP : Compare flag

CY : Carry flag

DBF : Data buffer

h : Halt release condition

INTEF : Interrupt enable flag

INTR : Register saved automatically to stack when interrupt occurs

INTSK : Interrupt stack register

IX : Index register

MP : Data memory row address pointer

MPE : Memory pointer enable flag

m : Data memory address indicated by mR and mC

mR : Data memory row address (upper)

mC : Data memory column address (lower)

n : Bit position (4 bits)

n4 : Immediate data (4 bits)

PC : Program counter

p : Peripheral address

pH : Peripheral address (upper 3 bits)

pL : Peripheral address (lower 4 bits)

r : General register column address

rf : Register file address

rfR : Register file row address (upper 3 bits)

rfC : Register file column address (lower 4 bits)

SP : Stack pointer

s : Stop release condition

WR : Window register

(×) : Contents addressed by ×

CHAPTER 18 INSTRUCTION SET

187

18.3 LIST OF THE INSTRUCTION SET

Group Mnemonic Operand Operation

Add ADD r, m (r) ← (r) + (m) 00000 mR mC r

m, #n4 (m) ← (m) + n4 10000 mR mC n4

ADDC r, m (r) ← (r) + (m) + CY 00010 mR mC r

m, #n4 (m) ← (m) + n4 + CY 10010 mR mC n4

INC AR AR ← AR + 1 00111 000 1001 0000

IX IX ← IX + 1 00111 000 1000 0000

Subtract SUB r, m (r) ← (r) – (m) 00001 mR mC r

m, #n4 (m) ← (m) – n4 10001 mR mC n4

SUBC r, m (r) ← (r) – (m) –CY 00011 mR mC r

m, #n4 (m) ← (m) – n4 –CY 10011 mR mC n4

Logical OR r, m (r) ← (r) (m) 00110 mR mC r

Operation m, #n4 (m) ← (m) n4 10110 mR mC n4

AND r, m (r) ← (r) (m) 00100 mR mC r

m, #n4 (m) ← (m) n4 10100 mR mC n4

XOR r, m (r) ← (r) (m) 00101 mR mC r

m, #n4 (m) ← (m) n4 10101 mR mC n4

Test SKT m, #n CMP ← 0, if (m) n=n, then skip 11110 mR mC n

SKF m, #n CMP ← 0, if (m) n=0, then skip 11111 mR mC n

Compare SKE m, #n4 (m) –n4, skip if zero 01001 mR mC n4

SKNE m, #n4 (m) –n4, skip if not zero 01011 mR mC n4

SKGE m, #n4 (m) –n4, skip if not borrow 11001 mR mC n4

SKLT m, #n4 (m) –n4, skip if borrow 11011 mR mC n4

Rotate RORC r CY → (r)b3 → (r)b2 → (r)b1 → (r)b0 00111 000 0111 r

Transfer LD r, m (r) ← (m) 01000 mR mC r

ST m, r (m) ← (r) 11000 mR mC r

MOV @r, m if MPE = 1: (MP, (r)) ← (m) 01010 mR mC r
if MPE = 0: (BANK, mR, (r)) ← (m)

m, @r if MPE = 1: (m) ← (MP, (r)) 11010 mR mC r
if MPE = 0: (m) ← (BANK, mR, (r))

m, #n4 (m) ← n4 11101 mR mC n4

MOVTNote DBF, @AR SP ← SP–1, ASR ← PC, PC ← AR, 00111 000 0001 0000
DBF ← (PC), PC ← ASR,
SP ← SP+1

Note As an exception, execution of MOVT instruction requires two instruction cycles.

Machine Code

OP Code Operand

CHAPTER 18 INSTRUCTION SET

188

Group Mnemonic Operand Operation

Transfer PUSH AR SP ← SP – 1, ASR ← AR 00111 000 1101 0000

POP AR AR ← ASR, SP ← SP + 1 00111 000 1100 0000

PEEK WR, rf WR ← (rf) 00111 rfR 0011 rfC

POKE rf, WR (rf) ← WR 00111 rfR 0010 rfC

GET DBF, p DBF ← (p) 00111 PH 1011 PL

PUT p, DBF (p) ← DBF 00111 PH 1010 PL

Branch BR addr PC ← addr 01100 addr

@AR PC ← AR 00111 000 0100 0000

Sub- CALL addr SP ← SP – 1, ASR ← PC, 11100 addr

routine PC ← addr

@AR SP ← SP – 1, ASR ← PC, 00111 000 0101 0000

PC ← AR

RET PC ← ASR, SP ← SP+1 00111 000 1110 0000

RETSK PC ← ASR, SP ← SP+1 and skip 00111 001 1110 0000

RETI PC ← ASR, INTR ← INTSK, SP ← SP+1 00111 100 1110 0000

Interrupt EI INTEF ← 1 00111 000 1111 0000

DI INTEF ← 0 00111 001 1111 0000

Others STOP s STOP 00111 010 1111 s

HALT h HALT 00111 011 1111 h

NOP No operation 00111 100 1111 0000

18.4 ASSEMBLER (AS17K) MACRO INSTRUCTIONS

Legend

flag n : FLG symbol

< > : Can be omitted

Mnemonic Operand Operation n

Macro SKTn flag 1, …flag n if (flag 1) ~ (flag n)=all "1" then skip 1≤n≤4

Instructions SKFn flag 1, …flag n if (flag 1) ~ (flag n)=all "0", then skip 1≤n≤4

SETn flag 1, …flag n (flag 1) ~ (flag n) ← 1 1≤n≤4

CLRn flag 1, …flag n (flag 1) ~ (flag n) ← 0 1≤n≤4

NOTn flag 1, …flag n if (flag n)="0", then (flag n) ← 1 1≤n≤4

if (flag n)="1", then (flag n) ← 0

INITFLG <NOT> flag 1, if description=NOT flag n, then (flag n) ← 0 1≤n≤4

… <<NOT> flag n> if description=flag n, then (flag n) ← 1

BANKn (BANK) ← n n=0

Machine Code

OP Code Operand

CHAPTER 18 INSTRUCTION SET

189

18.5 INSTRUCTIONS

18.5.1 Addition Instructions

(1) Add r, m Add data memory to general register

<1> OP code

10 8 7 4 3 0

00000 mR mC r

<2> Function

When CMP=0, (r) ← (r) + (m)

Adds the data memory contents to the general register contents, and stores the result in general register.

When CMP=1, (r) + (m)

The result is not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a carry occurs as a result of the addition. Resets the carry flag CY, if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

CHAPTER 18 INSTRUCTION SET

190

If the addition result is zero, with the compare flag reset (CMP=0), the zero flag Z is set.

If the addition result is zero, with the compare flag set (CMP=1), the zero flag Z is not changed.

Addition can be executed in binary 4-bit or BCD. The BCD flag for the PSWORD specifies which kind of

addition is to be executed.

<3> Example 1

Adds the address 0.2FH contents to the address 0.03H contents, when row address 0 (0.00H-0.0FH) in bank

0 is specified as the general register (RPH=0, RPL=0), and stores the result in address 0.03H:

(0.03H) ← (0.03H) + (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ADD MEM003, MEM02F

Example 2

Adds the address 0.2FH contents to the address 0.23H contents, when row address 2 (0.20H-0.2FH) in bank

0 is specified as the general register (RPH=0, RPL=4), and stores the result in address 0.23H:

(0.23H) ← (0.23H) + (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0Note

MOV RPL, #04H ; General register row address 2

ADD MEM023, MEM02F

RP

RPH RPL

Register

Bit

Data

Note

b3

0

b2

0

b1

0

b0

0

b3 b2 b1 b0

Bank

Row
Address

B

C

D

CHAPTER 18 INSTRUCTION SET

191

RP (general register pointer) is assigned in the system register, as shown above.

Therefore, to set bank 0 and row address 2 in a general register, 00H must be stored in RPH and 04H,

in RPL.

In this case, the subsequent arithmetic operation is executed in binary 4-bit operation, because the BCD

flag is reset.

Example 3

Adds the address 0.6FH contents to the address 0.03H contents and stores the result in address 0.03H. At

this time, data memory address 0.6FH can be specified, by selecting data memory address 2FH, if IXE=1,

IXH=0, IXM=4, and IXL=0, i.e., IX=0.40H.

(0.03H) ← (0.03H) + (0.6FH)

Address obtained as result of ORing index register con-

tents, 0.40H, and data memory address 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

ADD MEM003, MEM02F ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 4

Adds the address 0.3FH contents to the address 0.03H contents and stores the result in address 0.03H. At

this time, data memory address 0.3FH can be specified by specifying data memory address 2FH, if IXE=1,

IXH=0, IXM=1, and IXL=0, i.e., IX=0.10H.

(0.03H) ← (0.03H) + (0.3FH)

Address obtained as result of ORing index register contents,

0.10H, and data memory address 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

CHAPTER 18 INSTRUCTION SET

192

MOV BANK, #00H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00000010000B (0.10H)Note

MOV IXM, #01H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM003, MEM02F ; IX 00000010000B (0.10H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00100111111B (0.3FH)

IX (index register) is assigned in the system register, as shown above.

Therefore, to specify IX=0.10H, 00H must be stored in IXH. 01H in IXM, and 00H in IXL.

In this case, MP (memory pointer) for general register indirect transfer is invalid, because the MPE flag

(memory pointer enable) is reset.

<4> Note

The first operand for the ADD r, m instruction is a column address in general register. Therefore, if the

instruction is described as follows, the column address for the general register is 03H.

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

ADD MEM013, MEM02F

Indicates the general register column address.

The lower 4 bits (in this case, 03H) are valid

When CMP flag=1, the addition result is not stored.

When BCD flag=1, the BCD result is stored.

IX

IXH IXM

Register

Bit

Data

Note

b3

P

b2

0

b1

0

b0

0

b3 b2 b1 b0

Bank

Row
Address

IXL

b3 b2 b1 b0

M

E

0

Column
address

CHAPTER 18 INSTRUCTION SET

193

(2) ADD m, #n4 Add immediate data to data memory

<1> OP code

10 8 7 4 3 0

10000 mR mC n4

<2> Function

When CMP=0, (m) ← (m) + n4

Adds immediate data to the data memory contents, and stores the result in data memory.

When CMP=1, (m) + n4

The result is not stored in the data memory. Carry flag CY and zero flag Z are changed, according to the

result.

Sets carry flag CY, if a carry occurs as a result of the addition; resets the carry flag CY if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the addition result is zero with the compare flag reset (CMP=0), the zero flag Z is set.

If the addition result is zero with the compare flag set (CMP=1), the zero flag Z is not changed.

Addition can be executed in binary 4-bit or BCD. The BCD flag for the PSWORD specifies which kind of

addition is to be executed.

<3> Example 1

Adds 5 to the address 0.2FH contents, and stores the result in address 0.2FH:

(0.2FH) ← (0.2FH) + 5

MEM02F MEM 0.2FH

ADD MEM02F, #05H

Example 2

Adds 5 to the address 0.6FH contents and stores the result in address 0.6FH. At this time, data memory

address 0.6FH can be specified by selecting data memory address 2FH, if IXE=1, IXH=0, IXM=4, and IXL=0,

i.e., IX=0.40H.

CHAPTER 18 INSTRUCTION SET

194

(0.6FH) ← (0.6FH) + 05H

Address obtained as result of ORing index register contents,

0.40H, and data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

ADD MEM02F, #05H ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 3

Adds 5 to the address 0.2FH contents and stores the result in address 0.2FH. At this time, data memory

address 0.2FH can be specified by selecting data memory address 2FH, if IXE=1, IXH=0, IXM=0, and IXL=0,

i.e., IX=0.00H.

(2.2FH) ← (0.2FH) + 05H

Address obtained as result of ORing index register contents,

0.00H, and data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00000000000B

MOV IXM, #00H

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

ADD MEM02F, #05H ; IX 00000000000B (0.00H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00000101111B (0.2FH)

<4> Note

When the CMP flag=1, the addition result is not stored.

When the BCD flag=1, the BCD result is stored.

CHAPTER 18 INSTRUCTION SET

195

(3) ADDC r, m Add data memory to general register with carry flag

<1> OP code

10 8 7 4 3 0

00010 mR mC r

<2> Function

When CMP=0, (r) ← (r) + (m) +CY

Adds the data memory contents to the general register contents with carry flag CY, and stores the result

in general register indentified as r.

When CMP=1, (r) + (m) + CY

The result is not stored in the register. Carry flag CY and zero flag Z are changed according to the result.

By using this ADDC instruction, two or more words can be easily added.

Sets carry flag CY, if a carry occurs as a result of the addition; resets the carry flag CY if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the addition result is zero, with the compare flag reset (CMP=0), the zero flag Z is set.

If the addition result is zero, with the compare flag set (CMP=1), the zero flag Z is not changed.

Addition can be executed in binary 4-bit or BCD. The BCD flag for program status word PSWORD specifies

which kind of addition is to be executed.

<3> Example 1

Adds the 12-bit contents for addresses 0.0DH through 0.0FH to the 12-bit contents for addresses 0.2DH

through 0.2FH, and stores the result in the 12-bit contents for address 0.0DH to 0.0FH, when row address

0 (0.00H-0.0FH) of bank 0 is specified as a general register:

(0.0FH) ← (0.0FH) + (0.2FH)

(0.0EH) ← (0.0EH) + (0.2EH) + CY

(0.0DH) ← (0.0DH) + (0.2DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

CHAPTER 18 INSTRUCTION SET

196

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

ADD MEM00F, MEM02F

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D

Example 2

Shifts the 12-bit contents for addresses 0.2DH through 0.2FH and the carry flag by 1 bit to the left, when

row address 2 in bank 0 (0.20H-0.2FH) is specified as a general register.

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #04H ; General register row address 2

MOV BANK, #00H ; Data memory bank 0

ADDC MEM00F, MEM02F

ADDC MEM00E, MEM02E

ADDC MEM00D, MEM02D

Example 3

Adds the address 0.0FH contents to the addresses 0.40H through 0.4FH contents, and stores the result in

address 0.0FH:

CY
(carry flag)

Bank 0
Address 0DH

Bank 0
Address 0EH

Bank 0
Address 0FH

CY
(carry flag)

CHAPTER 18 INSTRUCTION SET

197

(0.0FH) ← (0.0FH) + (0.40H) + (0.41H) + + (0.4FH)

MEM00F MEM 0.0FH

MEM000 MEM 0.00H

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

LOOP1:

SET1 IXE ; IXE flag ← 1

ADD MEM00F, MEM000

CLR1 IXE ; IXE flag ← 0

INC IX ; IX ← IX + 1

SKE IXL, #0

JMP LOOP1

Example 4

Adds the 12-bit contents for addresses 0.40H through 0.42H to the 12-bit contents for addresses 0.0DH

through 0.0FH, and stores the result in 12-bit contents for addresses 0.0DH through 0.0FH:

(0.0DH) ← (0.0DH) + (0.40H)

(0.0EH) ← (0.0EH) + (0.41H) + CY

(0.0FH) ← (0.0FH) + (0.42H) + CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000 (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM00D, MEM000 ; (0.0DH) ← (0.0DH) + (0.40H)

…

CHAPTER 18 INSTRUCTION SET

198

ADDC MEM00E, MEM001 ; (0.0EH) ← (0.0EH) + (0.41H)

ADDC MEM00F, MEM002 ; (0.0FH) ← (0.0FH) + (0.42H)

(4) ADDC m, #n4 Add immediate data to data memory with carry flag

<1> OP code

10 8 7 4 3 0

10010 mR mC n4

<2> Function

When CMP=0, (m) ← (m) + n4 + CY

Add immediate data to the data memory contents with carry flag (CY), and stores the result in data memory.

When CMP=1, (m) + n4 + CY

The result is not stored in the data memory, and carry flag CY and zero flag Z are changed, according to the

result.

Sets carry flag CY, if a carry occurs as a result of the addition. Resets the carry flag CY, if no carry occurs.

If the addition result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the addition result is zero, with the compare flag reset (CMP=0), the zero flag Z is set.

If the addition result is zero, with the compare flag set (CMP=1), the zero flag Z is not changed.

Addition can be executed in binary 4-bit or BCD. The BCD flag for PSWORD specifies which kind of addition

is to be executed.

<3> Example 1

Adds 5 to the 12-bit contents for addresses 0.0DH through 0.0FH, and stores the result in addresses 0.0DH

through 0.0FH;

(0.0FH) ← (0.0FH) + 05H

(0.0EH) ← (0.0EH) + CY

(0.0DH) ← (0.0DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

CHAPTER 18 INSTRUCTION SET

199

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

ADD MEM00F, #05H

ADDC MEM00E, #00H

ADDC MEM00D, #00H

Example 2

Adds 5 to the 12-bit contents for addresses 0.4DH through 0.4FH, and stores the result in addresses 0.4DH

through 0.4FH;

(0.4FH) ← (0.4FH) + 05H

(0.4EH) ← (0.4EH) + CY

(0.4DH) ← (0.4DH) + CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

ADD MEM00F, #5 ; (0.4FH) ← (0.4FH) + 5H

ADDC MEM00E, #0 ; (0.4EH) ← (0.4EH) + CY

ADDC MEM00D, #0 ; (0.4DH) ← (0.4DH) + CY

(5) INC AR Increment address register

<1> OP code

10 8 7 4 3 0

00111 000 1001 0000

<2> Function

AR ← AR + 1

Increments the address register AR contents.

CHAPTER 18 INSTRUCTION SET

200

<3> Example 1

Adds 1 to the 16-bit contents for AR3 through AR0 (address registers) in the system register and stores the

result in AR3 through AR0:

AR0 ← AR0 + 1

AR1 ← AR1 + CY

AR2 ← AR2 + CY

AR3 ← AR3 + CY

INC AR

This instruction can be rewritten as follows, with addition instructions:

ADD AR0, #01H

ADDC AR1, #00H

ADDC AR2, #00H

ADDC AR3, #00H

Example 2

Transfers table data, 16 bits (1 address) at a time, to DBF (data buffer), using the table reference instruction

(for details, refer to 10.2.3 Table Reference):

; Address Table data

010H DW 0F3FFH

011G DW 0A123H

012H DW 0FFF1H

013H DW 0FFF5H

014H DW 0FF11H

MOV AR3, #0H ; Sets table data address

MOV AR2, #0H ; 0010H in address register

MOV AR1, #1H ;

MOV AR0, #0H

LOOP:

MOVT @AR ; Reads table data to DBF

:

:

: ; Table data reference processing

:

…
…

…
…

CHAPTER 18 INSTRUCTION SET

201

INC AR ; Increments address register by 1

BR LOOP

<4> Note

The higher 6 bits of address register are fixed to 0. Only lower 10 bits can be used.

(6) INC IX Increment index register

<1> OP code

10 8 7 4 3 0

00111 000 1000 0000

<2> Function

IX ← IX + 1

Increments the index register IX contents.

<3> Example 1

Adds 1 to the total of 12-bit contents for IXH, IXM, and IXL (index registers) in the system register and stores

the result in IXH, IXM, and IXL;

; IXL ← IXL + 1

; IXM ← IXM + CY

; IXH ← IXH + CY

INC IX

This program can be rewritten as follows, with addition instructions:

ADD IXL, #01H

ADDC IXM, #00H

ADDC IXH, #00H

Example 2

Clears all the contents for data memory addresses 0.00H through 0.73H to 0, using the index register:

MOV IXH, #00H ; Sets index register contents in 00H in bank 0

MOV IXM, #00H

MOV IXL, #00H

RAM clear:

MEM000 MEM 0.00H

SET1 IXE ; IXE flag ← 1

CHAPTER 18 INSTRUCTION SET

202

MOV MEM000, #00H ; Writes 0 to data memory indicated by index register

CLR1 IXE ; IXE flag ← 0

INC IX

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB IXL, #03H ; Checks whether index register contents

SUBC IXM, #07H ; are 73H in bank 0

SUBC IXH, #00H ;

SKT1 Z ; Loops until contents of index register becomes

BR RAM clear ; 73H of bank 0

18.5.2 Subtraction Instructions

(1) SUB r, m Subtract data memory from general register

<1> OP code

10 8 7 4 3 0

00001 mR mC r

<2> Function

When CMP=0, (r) ← (r) – (m)

Subtracts the data memory contents from the general register contents, and stores the result in general

register.

When CMP=1, (r) – (m)

The result is not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag, if no borrow occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the subtraction result is zero, with the compare flag reset (CMP=0), the zero flag Z is set.

If the subtraction result is zero, with the compare flag set (CMP=1), the zero flag Z is not changed.

Subtraction can be executed in binary 4-bit or BCD. The BCD flag for program status word PSWORD specifies

which kind of subtraction is to be executed.

CHAPTER 18 INSTRUCTION SET

203

<3> Example 1

Subtracts the address 0.2FH contents from the address 0.03H contents, and stores the result in address

0.03H, when row address 0 (0.00H-0.0FH) in bank 0 is specified as a general register (RPH=0, RPL=0):

(0.03H) ← (0.03H) + (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

SUB MEM003, MEM02F

Example 2

Subtracts the address 0.2FH contents from the address 0.23H contents, when row address 2 (0.20H-0.2FH)

in bank 0 is specified as the general register (RPH=0, RPL=4), and stores the result in address 0.23H:

(0.23H) ← (0.23H) – (0.2FH)

MEM023 MEM 0.23H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #04H ; General register row address 2

SUB MEM023, MEM02F

Example 3

Subtracts the address 0.6FH contents from the address 0.03H contents and stores the result in address

0.03H. At this time, data memory address 0.6FH can be specified by selecting data memory address 2FH,

if IXE=1, IXH=0, IXM=4, and IXL=0, i.e., IX=0.40H.

(0.03H) ← (0.03H) + (0.6FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

CHAPTER 18 INSTRUCTION SET

204

SET1 IXE ; IXE flag ← 1

SUB MEM003, MEM02F ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 4

Subtracts the address 0.3FH contents from the address 0.03H contents and stores the result in address

0.03H. At this time, data memory address 0.3FH can be specified by selecting data memory address 2FH,

if IXE=1, IXH=0, IXM=1, and IXL=0, i.e., IX=0.10H.

(0.03H) ← (0.03H) + (0.3FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00000010000B (0.10H)

MOV IXM, #01H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM003, MEM02F ; IX 00000010000B (0.10H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00000111111B (0.3FH)

<4> Note

The first operand for the SUB r, m instruction must be a general register address. Therefore, if the instruction

is described as follows, address 03H is specified as a register:

MEM013 MEM 0.13H

MEM02F MEM 0.2FH

SUB MEM013, MEM02F

General register address must be in 00H-0FH range

(set register pointer row address other than 1).

When the CMP flag=1, the subtraction result is not stored.

When the BCD flag=1, the BCD result is stored.

CHAPTER 18 INSTRUCTION SET

205

(2) SUB m, #n4 Subtract immediate data from data memory

<1> OP code

10 8 7 4 3 0

10001 mR mC n4

<2> Function

When CMP=0, (m) ← (m) – n4

Subtracts immediate data from the data memory contents, and stores the result in data memory.

When CMP=0, (m) – n4

The result is not stored in data memory. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag CY, if no borrow

occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the subtraction result is zero, with the compare flag reset (CMP=0), the zero flag Z is set.

If the subtraction result is zero, with the compare flag set (CMP=1), the zero flag Z is not changed.

Subtraction can be executed in binary 4-bit or BCD. The BCD flag for program status word PSWORD specifies

which kind of subtraction is to be executed.

<3> Example 1

Subtracts 5 from the address 0.2FH contents, and stores the result in address 0.2FH:

(0.2FH) ← (0.2FH) – 5

MEM02F MEM 0.2FH

SUB MEM02F, #05H

Example 2

To subtract 5 from the address 0.6FH contents and store the result in address 0.6FH. At this time, data

memory address 0.6FH can be specified by selecting data memory address 2FH, if IXE=1, IXH=0, IXM=4,

and IXL=0, i.e., IX=0.40H.

CHAPTER 18 INSTRUCTION SET

206

(0.6FH) ← (0.6FH) – 5

Address obtained as a result of ORing index register contents,

0.40H, and data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM02F, #05H ; IX 00001000000B (0.40H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00001101111B (0.6FH)

Example 3

Subtracts 5 from the address 0.2FH contents and stores the result in address 0.2FH. At this time, data

memory address 0.2FH can be specified by selecting data memory address 2FH, if IXE=1, IXH=0, IXM=0,

and IXL=0, i.e., IX=0.00H.

(0.2FH) ← (0.2FH) – 5

Address obtained as a result of ORing index register contents,

0.00H, and data memory address 0.2FH

MEM02F MEM 0.2FH

MOV BANK0, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00000000000B (0.00H)

MOV IXM, #00H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM02F, #05H ; IX 00000000000B (0.00H)

; Bank operand OR) 00000101111B (0.2FH)

; Specified address 00000101111B (0.2FH)

<4> Note

When the CMP flag=1, the subtraction result is not stored.

When the BCD flag=1, the BCD result is stored.

CHAPTER 18 INSTRUCTION SET

207

(3) SUBC r, m Subtract data memory from general register with carry flag

<1> OP code

10 8 7 4 3 0

00011 mR mC r

<2> Function

When CMP=0, (r) ← (r) – (m) – CY

Subtracts the data memory contents and the value of carry flag CY from the general register contents. Stores

the result in general register. By using this SUBC instruction, 2 or more words can be easily subtracted.

When CMP=1, (r) – (m) – CY

The result is not stored in the register. Carry flag CY and zero flag Z are changed, according to the result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag CY, if no borrow

occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

If the subtraction result is zero, with the compare flag reset (CMP=0), the zero flag Z is set.

If the subtraction result is zero, with the compare flag set (CMP=1), the zero flag Z is not changed.

Subtraction can be executed in binary 4-bit or BCD. The BCD flag for program status word PSWORD specifies

which kind of subtraction is to be executed.

<3> Example 1

Subtracts the 12-bit contents for addresses 0.2DH through 0.2FH from the 12-bit contents for addresses

0.0DH through 0.0FH and stores the result in 12 bits for addresses 0.0DH through 0.0FH, when row address

0 (0.00H-0.0FH) in bank 0 is specified as a general register:

(0.0FH) ← (0.0FH) – (0.2FH)

(0.0EH) ← (0.0EH) – (0.2EH) – CY

(0.0DH) ← (0.0DH) + (0.2DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

CHAPTER 18 INSTRUCTION SET

208

MEM02D MEM 0.2DH

MEM02E MEM 0.2EH

MEM02F MEM 0.2FH

SUB MEM00F, MEM02F

SUBC MEM00E, MEM02E

SUBC MEM00D, MEM02D

Example 2

Subtracts the 12-bit contents for addresses 0.40H through 0.42H from the 12-bit contents for addresses

0.0DH through 0.0FH, and stores the result in 12 bits for addresses 0.0DH through 0.0FH.

(0.0DH) ← (0.0DH) – (0.40H)

(0.0EH) ← (0.0EH) – (0.41H) – CY

(0.0FH) ← (0.0FH) – (0.42H) – CY

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM00D, MEM000 ; (0.0DH) ← (0.0DH) – (0.40H)

SUBC MEM00E, MEM001 ; (0.0EH) ← (0.0EH) – (0.41H)

SUBC MEM00F, MEM002 ; (0.0FH) ← (0.0FH) – (0.42H)

Example 3

Compares the 12-bit contents for addresses 0.0CH through 0.0FH with the 12-bit contents for addresses

0.00H through 0.03H. Jumps to LAB1, if the contents are the same, if not, jumps to LAB2:

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM003 MEM 0.03H

CHAPTER 18 INSTRUCTION SET

209

MEM00C MEM 0.0CH

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB MEM000, MEM00C ; Contents for addresses 0.00H-0.03H do not change,

SUBC MEM001, MEM00D ; because CMP flag is set

SUBC MEM002, MEM00E ;

SUBC MEM003, MEM00F ;

SKF1 Z ; Z flag=1, if contents are the same; if not, Z flag=0

BR LAB1 ;

BR LAB2

LAB1:

LAB2:

(4) SUBC m, #n4 Subtract immediate data from data memory with carry flag

<1> OP code

10 8 7 4 3 0

10011 mR mC n4

<2> Function

When CMP=0, (m) ← (m) – n4 – CY

Subtracts immediate data and the value of carry flag CY from the data memory contents, and stores the result

in data memory.

When CMP=1, (m) – n4 – CY

The result is not stored in the data memory. Carry flag CY and zero flag Z are changed, according to the

result.

Sets carry flag CY, if a borrow occurs as a result of the subtraction. Resets the carry flag CY, if no borrow

occurs.

If the subtraction result is other than zero, zero flag Z is reset, regardless of compare flag CMP.

…
…

…
…

…
…

…
…

…
…

CHAPTER 18 INSTRUCTION SET

210

If the subtraction result is zero, with the compare flag reset (CMP=0), the zero flag Z is set.

If the subtraction result is zero, with the compare flag set (CMP=1), the zero flag Z is not changed.

Subtraction can be executed in binary or BCD. The BCD flag for program status word PSWORD specifies

which kind of subtraction is to be executed.

<3> Example 1

Subtracts 5 from the 12-bit contents for addresses 0.0DH through 0.0FH and stores the result in addresses

0.0DH through 0.0FH:

(0.0FH) ← (0.0FH) – 05H

(0.0EH) ← (0.0EH) – CY

(0.0DH) ← (0.0DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

SUB MEM00F, #05H

SUBC MEM00E, #00H

SUBC MEM00D, #00H

Example 2

To subtract 5 from the 12-bit contents for addresses 0.4DH through 0.4FH and store the result in addresses

0.4DH through 0.4FH:

(0.4FH) ← (0.4FH) – 05H

(0.4EH) ← (0.4EH) – CY

(0.4DH) ← (0.4DH) – CY

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV BANK, #00H ; Data memory bank 0

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H ;

MOV IXL, #00H ;

SET1 IXE ; IXE flag ← 1

SUB MEM00F, #5 ; (0.4FH) ← (0.4FH) – 5

SUBC MEM00E, #0 ; (0.4EH) ← (0.4EH) – CY

SUBC MEM00D, #0 ; (0.4DH) ← (0.4DH) – CY

CHAPTER 18 INSTRUCTION SET

211

Example 3

Compares the 12-bit contents for addresses 0.00H through 0.03H with immediate data 0A3FH.

Jumps to LAB1, if the contents are the same; if not, jumps to LAB2:

MEM000 MEM 0.00H

MEM001 MEM 0.01H

MEM002 MEM 0.02H

MEM003 MEM 0.03H

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB MEM000, #0H ; Contents for addresses 0.00H–0.03H do not

SUBC MEM001, #0AH ; change, because CMP flag is set

SUBC MEM002, #3H ;

SUBC MEM003, #0FH ;

SKF1 Z ; Z flag=1, if contents are the same; if not, Z flag=0

BR LAB1 ;

BR LAB2

LAB1:

LAB2:

18.5.3 Logical Operation Instructions

(1) OR r, m OR between general register and data memory

<1> OP code

10 8 7 4 3 0

00110 mR mC r

<2> Function

(r) ← (r) (m)

ORs the general register contents with data memory contents. Stores the result in general register.

…
…

…
…

…
…

…
…

…
…

CHAPTER 18 INSTRUCTION SET

212

<3> Example 1

To OR the address 0.03H contents (1010B) and the address 0.2FH contents (0111B) and store the result

(1111B) in address 0.03H:

(0.03H) ← (0.03H) (0.2FH)

1 0 1 0 Address 03H

0 1 1 1 Address 2FH

1 1 1 1 Address 03H

OR

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0111B

OR MEM003, MEM02F

(2) OR m, #n4 OR between data memory and immediate data

<1> OP code

10 8 7 4 3 0

10110 mR mC n4

<2> Function

(m) ← (m) n4

ORs the data memory contents and immediate data. Stores the result in data memory.

<3> Example 1

To set bit 3 (MSB) for address 0.03H:

(0.03H) ← (0.03H) 1000B

Address 0.03

1 × × × × : don't care

MEM003 MEM 0.03H

OR MEM003, #1000B

CHAPTER 18 INSTRUCTION SET

213

Example 2

Sets all the bits for address 0.03H:

MEM003 MEM 0.03H

OR MEM003, #1111B

or,

MEM003 MEM 0.03H

MOV MEM003, #0FH

(3) AND r, m AND between general register and data memory

<1> OP code

10 8 7 4 3 0

00100 mR mC r

<2> Function

(r) ← (r) (m)

ANDs the general register contents with data memory contents and stores the result in general register.

<3> Example 1

ANDs the address 0.03H (1010B) contents and the address 0.2FH (0110B) contents. Stores the result

(0010B) in address 0.03H:

(0.03H) ← (0.03H) (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV MEM003, #1010B

MOV MEM02F, #0110B

AND MEM003, MEM02F

1 0 1 0 Address 03H

0 1 1 0 Address 2FH

0 0 1 0 Address 03H

AND

CHAPTER 18 INSTRUCTION SET

214

(4) AND m, #n4 AND between data memory and immediate data

<1> OP code

10 8 7 4 3 0

10100 mR mC n4

<2> Function

(m) ← (m) n4

ANDs the data memory contents and immediate data. Stores the result in data memory.

<3> Example 1

To reset bit 3 (MSB) for address 0.03H.

(0.03H) ← (0.03H) 0111B

Address 0.03H

1 × × × × : don't care

MEM003 MEM 0.03H

AND MEM003, #0111B

Example 2

To reset all the bits for address 0.03H:

MEM003 MEM 0.03H

AND MEM003, #0000B

or,

MEM003 MEM 0.03H

MOV MEM003, #00H

(5) XOR r, m Exclusive OR between general register and data memory

<1> OP code

10 8 7 4 3 0

00101 mR mC r

CHAPTER 18 INSTRUCTION SET

215

<2> Function

(r) ← (r) (m)

Exclusive-ORs (XOR) the general register contents with data memory contents. Stores the result in general

register.

<3> Example 1

Compares the address 0.03H contents and the address 0.0FH contents. If different bits are found, set and

store them in address 0.03H. If all the bits in address 0.03H are reset (i.e., the address 0.03H contents are

the same as those for address 0.0FH), jumps to LBL1; otherwise, jumps to LBL2.

This example is to compare the status of an alternate switch (address 0.03H contents) with the internal status

(address 0.0FH contents) and to branch to changed switch processing.

1 0 1 0 Address 03H

0 1 1 0 Address 0FH

1 1 0 0 Address 03H

XOR

Bits changed

MEM003 MEM 0.03H

MEM00F MEM 0.0FH

XOR MEM003, MEM00F

SKNE MEM003, #00H

BR LBL1

BR LBL2

Example 2

Clears the address 0.03H contents:

0 1 0 1 Address 03H

0 1 0 1 Address 03H

0 0 0 0 Address 03H

XOR

MEM003 MEM 0.03H

XOR MEM003, MEM003

CHAPTER 18 INSTRUCTION SET

216

(6) XOR m, #n4 Exclusive OR between data memory and immediate data

<1> OP code

10 8 7 4 3 0

10101 mR mC n4

<2> Function

(m) ← (m) n4

Exclusive-ORs the data memory contents and immediate data. Stores the result in data memory.

<3> Example

Inverts bits 1 and 3 in address 0.03H and store the result in address 03H:

MEM003 MEM 0.03H

XOR MEM003, #1010B

18.5.4 Judgment Instruction

(1) SKT m, #n Skip next instruction if data memory bits are true

<1> OP code

10 8 7 4 3 0

11110 mR mC n

<2> Function

CMP ← 0, if (m) n=n, then skip

Skip the next one instruction, if the result of ANDing the data memory contents and immediate data n is

equal to n (Executes as NOP instruction)

1 1 0 0 Address 03H

1 0 1 0

0 1 1 0 Address 03H

XOR

Inverted bits

CHAPTER 18 INSTRUCTION SET

217

<3> Example 1

Jumps to AAA, if bit 0 in address 03H is 1; if it is 0, jumps to BBB:

SKT 03H, #0001B

BR BBB

BR AAA

Example 2

Skips the next instruction, if both bits 0 and 1 in address 03H are 1.

SKT 03H, #0011B

b3 b2 b1 b0

Skip condition 03H × × 1 1 × : don't care

Example 3

The results of executing the following two instructions are the same:

SKT 13H, #1111B

SKE 13H, #0FH

(2) SKF m, #n Skip next instruction if data memory bits are false

<1> OP code

10 8 7 4 3 0

11111 mR mC n

<2> Function

CMP ← 0, if (m) n=0, then skip

Skips the next one instruction, if the result of ANDing the data memory contents and immediate data n is

0 (Executes as NOP instruction).

<3> Example 1

Stores immediate data 00H to address 0FH in the data memory content, if bit 2 in address 13H is 0; if it is

1, jumps to ABC:

MEM013 MEM 0.13H

MEM00F MEM 0.0FH

SKF MEM013, #0100B

BR ABC

MOV MEM00F, #00H

CHAPTER 18 INSTRUCTION SET

218

Example 2

Skips the next instruction, if both bits 3 and 0 in address 29H are 0.

SKF 29H, #1001B

b3 b2 b1 b0

Skip condition 29H 0 × × 0 × : don't care

Example 3

The results of executing the following two instructions are the same:

SKF 34H, #1111B

SKE 34H, #00H

18.5.5 Comparison Instructions

(1) SKE m, #n4 Skip if data memory equal to immediate data

<1> OP code

10 8 7 4 3 0

01001 mR mC n4

<2> Function

(m) –n4, skip if zero

Skip the next one instruction, if the data memory contents are equal to the immediate data value (Executes

as NOP instruction).

<3> Example

To transfer 0FH to address 24H, if the address 24H contents are 0; if not, jumps to OPE1:

MEM024 MEM 0.24H

SKE MEM024, #00H

BR OPE1

MOV MEM024, #0FH

OPE1 :

CHAPTER 18 INSTRUCTION SET

219

(2) SKNE m, #n4 Skip if data memory not equal to immediate data

<1> OP code

10 8 7 4 3 0

01011 mR mC n4

<2> Function

(m) –n4, skip if not zero

Skips the next one instruction, if the data memory contents are not equal to the immediate data value

(Executes as NOP instruction).

<3> Example

Jumps to XYZ, if the address 1FH contents are 1 and the address 1EH contents are 3; otherwise, jumps to

ABC.

To compare 8-bit data, this instruction is used in the following combination:

3 1

1EH 0 0 1 1 1FH 0 0 0 1

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SKNE MEM01F, #01H

SKE MEM01E, #03H

BR ABC

BR XYZ

The above program can be rewritten as follows, using compare and zero flags:

MEM01E MEM 0.1EH

MEM01F MEM 0.1FH

SET2 CMP, Z ; CMP flag ← 1, Z flag ← 1

SUB MEM01F, #01H

SUBC MEM01E, #03H

SKT1 Z

BR ABC

BR XYZ

CHAPTER 18 INSTRUCTION SET

220

(3) SKGE m, #n4 Skip if data memory greater than or equal to immediate data

<1> OP code

10 8 7 4 3 0

11001 mR mC n4

<2> Function

(m) –n4, skip if not borrow

Skips the next one instruction, if the data memory contents are equal to or greater than the immediate data

value (Executes as NOP instruction).

<3> Example

Executes RET, if 8-bit data stored in addresses 1FH (higher) and 2FH (lower) is greater than immediate data

'17H'; if not, executes RETSK:

MEM01E MEM 0.1FH

MEM02F MEM 0.2FH

SKGE MEM01F, #1

RETSK

SKNE MEM01F, #1

SKLT MEM02F, #8 ; 7+1

RET

RETSK

(4) SKLT m, #n4 Skip if data memory less than immediate data

<1> OP code

10 8 7 4 3 0

11011 mR mC n4

<2> Function

(m) –n4, skip if borrow

Skips the next one instruction, if the data memory contents are less than the immediate data value (Executes

as NOP instruction).

<3> Example

Stores 01H in address 0FH, if the address 10H contents are greater than immediate data '6'; if not, stores

02H in address 0FH:

CHAPTER 18 INSTRUCTION SET

221

MEM00F MEM 0.0FH

MEM010 MEM 0.10H

MOV MEM00F, #02H

SKLT MEM010, #06H

MOV MEM00F, #01H

18.5.6 Rotation Instructions

(1) RORC r Rotate right general register with carry flag

<1> OP code

3 0

00111 000 0111 r

<2> Function

CY (r)b3 (r)b2 (r)b1 (r)b0

Rotates the contents of general register indicated by r including carry flag to the right by 1 bit.

<3> Example 1

When row address 0 of bank 0 (0.00H-0.0FH) is specified as general register (RPH=0, RPL=0), rotate the

value of address 0.00H (1000B) to the right by 1 bit to make it 0100B.

(0.00H) ← (0.00H)÷2

MEM000 MEM 0.00H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

CLR1 CY ; CY flag ← 0

RORC MEM000

Example 2

When row address 0 of bank 0 (0.00H-0.0FH) is specified as general register (RPH=0, RPL=0), rotate the

data buffer DBF contents 0FA52H to the right by 1 bit to make DBF contents 7D29H.

CHAPTER 18 INSTRUCTION SET

222

1 1 1 10

CY 0CH

0 1 1 1

1 0 1 0

0DH

1 1 0 1

0 1 0 1

0EH

0 0 1 0

0 0 1 0

0FH

1 0 0 1 0

CY

MEM00C MEM 0.0CH

MEM00D MEM 0.0DH

MEM00E MEM 0.0EH

MEM00F MEM 0.0FH

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

CLR1 CY ; CY flag ← 0

RORC MEM00C

RORC MEM00D

RORC MEM00E

RORC MEM00F

18.5.7 Transfer Instructions

(1) LD r, m Load data memory to general register

<1> OP code

10 8 7 4 3 0

01000 mR mC r

<2> Function

(r) ← (m)

Stores the data memory contents to general register.

<3> Example 1

To store the address 0.2FH contents to address 0.03H:

(0.03H) ← (0.2FH)

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

LD MEM003, MEM02F

CHAPTER 18 INSTRUCTION SET

223

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register

R
ow

 a
dd

re
ss

Example 2

Stores the address 0.6FH contents to address 0.03H. At this time, data memory address 0.6FH can be

specified by selecting data memory address 2FH, if IXE=1, IXH=0, IXM=4, and IXL=0, i.e., IX=0.40H.

IXH ← 00H

IXM ← 04H

IXL ← 00H

IXE flag ← 1

(0.03H) ← (0.6FH)

Address obtained as result of ORing index register contents, 040H,

and data memory contents, 0.2FH

MEM003 MEM 0.03H

MEM02F MEM 0.2FH

MOV IXH, #00H ; IX ← 00001000000B (0.40H)

MOV IXM, #04H

MOV IXL, #00H

SET1 IXE ; IXE flag ← 1

LD MEM003, MEM02F

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register

R
ow

 a
dd

re
ss

CHAPTER 18 INSTRUCTION SET

224

(2) ST m, r Store general register to data memory

<1> OP code

10 8 7 4 3 0

11000 mR mC r

<2> Function

(m) ← (r)
Stores the general register contents to data memory.

<3> Example 1

Stores the address 0.03H contents to address 0.2FH:

(0.2FH) ← (0.03H)

ST 2FH, 03H ; Transfer general register contents to data memory

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register

R
ow

 a
dd

re
ss

Example 2

Stores the address 0.00H contents to addresses 0.18H through 0.1FH. The data memory addresses (18H-

1FH) are specified by the index register.

(0.18H) ← (0.00H)

(0.19H) ← (0.00H)

(0.1FH) ← (0.00H)

MOV IXH, #00H ; IX ← 00000000000B (0.00H)

MOV IXM, #00H

MOV IXL, #00H ; Specifies data memory address 0.00H

…
…

…
…

CHAPTER 18 INSTRUCTION SET

225

MEM018 MEM 0.18H

MEM000 MEM 0.00H

LOOP1:

SET1 IXE ; IXE flag ← 1
ST MEM018, MEM000 ; (0.1×H) ← (0.00H)

CLR1 IXE ; IXE flag ← 0
INC IX ; IX ← IX+1

SKGE IXL, #08H

BR LOOP1

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register

R
ow

 a
dd

re
ss

(3) MOV @r, m Move data memory to destination indirect

<1> OP code

10 8 7 4 3 0

01010 mR mC r

<2> Function

When MPE=1

(MP, (r)) ← (m)

When MPE=0

(BANK, mR, (r)) ← (m)

Stores the data memory contents to the data memory addressed by the general register contents.

When MPE=0, transfer is performed in the same row address in the same bank.

CHAPTER 18 INSTRUCTION SET

226

<3> Example 1

Stores the address 0.20H contents to address 0.2FH with the MPE flag cleared to 0. The transfer destination

data memory address is at the same row address as the transfer source, and the column address is specified

by the general register contents at address 0.00H.

(0.2FH) ← (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag ← 0
MOV MEM000, #0FH ; Sets column address in general register

MOV @MEM000, MEM020 ; Store

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register

R
ow

 a
dd

re
ss

F

Example 2

Stores the address 0.20H contents to address 0.3FH, with the MPE flag set to 1. The row address for the

transfer destination data memory address is specified by the memory pointer MP contents. The column

address is specified by the general register contents at address 0.00H.

(0.3FH) ← (0.20H)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

MOV RPH, #00H ; General register bank 0

MOV RPL, #00H ; General register row address 0

MOV 00H, #0FH ; Sets column address in general register

MOV MPH, #00H ; Sets row address in memory pointer

MOV MPL, #03H ;

SET1 MPE ; MPE flag ← 1
MOV @MEM000, MEM020 ; Store

CHAPTER 18 INSTRUCTION SET

227

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register

R
ow

 a
dd

re
ss

F

(4) MOV m, @r Move data memory to destination indirect

<1> OP code

10 8 7 4 3 0

11010 mR mC r

<2> Function

When MPE=1

(m) ← (MP, (r))

When MPE=0

(m) ← (BANK, mR, (r))

Stores the data memory contents addressed by the general register contents to data memory.

When MPE=0, transfer is performed in the same row address in the same bank.

<3> Example 1

Stores the address 0.2FH contents to address 0.20H, with the MPE falg cleared to 0. The transfer destination

data memory address is at the same row address as the transfer source. The column address is specified

by the general register contents at address 0.00H.

(0.20H) ← (0.2FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

CLR1 MPE ; MPE flag ← 0
MOV MEM000, #0FH ; Sets column address in general register

MOV MEM020, @MEM000 ; Store

CHAPTER 18 INSTRUCTION SET

228

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register

R
ow

 a
dd

re
ss

F

Example 2

Stores the address 0.3FH contents to address 0.20H, with the MPE flag set to 1. The row address for the

transfer source data memory is specified by the memory pointer MP contents. The column address is

specified by the general register contents at address 0.00H.

(0.20H) ← (0.3FH)

MEM000 MEM 0.00H

MEM020 MEM 0.20H

MOV MEM000, #0FH ; Sets column address in general register

MOV MPH, #00H ; Sets row address in memory pointer

MOV MPL, #03H ;

SET1 MPE ; MPE flag ← 1
MOV MEM020, @MEM000 ; Store

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

General register

R
ow

 a
dd

re
ss

F

CHAPTER 18 INSTRUCTION SET

229

(5) MOV m, #n4 Move immediate data to data memory

<1> OP code

10 8 7 4 3 0

11101 mR mC n4

<2> Function

(m) ← n4

Stores immediate data to data memory.

<3> Example 1

Stores immediate data 0AH to data memory address 0.50H:

(0.50H) ← 0AH

MEM050 MEM 0.50H

MOV MEM050, #0AH

Example 2

Stores immediate data 07H to address 0.32H, when data memory address 0.00H is specified with IXH=0,

IXM=3, IXL=2, and IXE flag=1:

(0.32H) ← 07H

MEM000 MEM 0.00H

MOV IXH, #00H ; IX ← 00000110010B (0.32H)

MOV IXM, #03H

MOV IXL, #02H

SET1 IXE ; IXE flag ← 1
MOV MEM000, #07H

(6) MOVT DBF, @AR Move program memory data specified by AR to DBF

<1> OP code

10 8 7 4 3 0

00111 000 0001 0000

<2> Function

SP ← SP–1, ASR ← PC, PC ← AR,

DBF ← (PC), PC ← ASR, SP ← SP+1

CHAPTER 18 INSTRUCTION SET

230

Stores the program memory contents, addressed by address register AR, to data buffer DBF.

Since this instruction temporarily uses one stack level, pay attention to nesting such as subroutines and

interrupts.

<3> Example

To transfer 16 bits of table data, specified by the values for address registers AR3, AR2, AR1, and AR0 in

the system register, to data buffers DBF3, DBF2, DBF1, and DBF0:

; *

; ** Table data

; *

Address ORG 0010H

0010H DW 0000000000000000B ; (0000H)

0011H DW 1010101111001101B ; (0ABCDH)

; *

; ** Table reference program

; *

MOV AR3, #00H ; AR3 ← 00H Sets 0011H in address register

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #01H ; AR1 ← 01H

MOV AR0, #01H ; AR0 ← 01H

MOVT DBF, @AR ; Transfers address 0011H data to DBF

In this case, the data are stored in DBF, as follows:

DBF3=0AH

DBF2=0BH

DBF1=0CH

DBF0=0DH

(7) PUSH AR Push address register

<1> OP code

00111 000 1101 0000

…
…

…
…

CHAPTER 18 INSTRUCTION SET

231

<2> Function

SP ← SP–1,

ASR ← AR

Decrements stack pointer SP and stores the address register AR value to address stack register specified

by stack pointer.

<3> Example 1

Sets 003FH in address register and stores it in stack:

MOV AR3, #00H

MOV AR2, #00H

MOV AR1, #03H

MOV AR0, #0FH

PUSH AR

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

R
ow

 a
dd

re
ss

0 0 3 F

S T A C K

0 0 3 F

CHAPTER 18 INSTRUCTION SET

232

Example 2

Sets the return address for a subroutine in the address register. Returns execution, if a data table exists

after a subroutine:

.................
.................

.................

Address

0010H CALL SUB1

;*
;** DATA TABLE
;*

0011H DW
0012H DW
0013H DW
0014H DW

1A1FH
002FH
010AH
0555FH

002FH DW
0030H

0FFFH

SUB1:

POP AR

MOV

MOV

MOV

MOV

PUSH

RET

AR3,

AR2,

AR1,

AR0,

AR

#00H

#00H

#03H

#00H

If POP instruction is executed at
this time, the contents of address
register is "0011H" (the next address
of CALL instruction).

CHAPTER 18 INSTRUCTION SET

233

(8) POP AR Pop address register

<1> OP code

00111 000 1100 0000

<2> Function

AR ← ASR,

SP ← SP+1

Pops the contents of address stack register indicated by stack pointer to address register AR and then

increments stack pointer SP.

<3> Example

If the PSW contents are changed, while an interrupt processing routine is being executed, the PSW contents

are transferred to the address register through WR at the beginning of the interrupt processing and saved

to address stack register by the PUSH instruction. Before the execution returns from the interrupt routine,

the address register contents are restored through WR to PSW by the POP instruction.

...............
..................

..

..

EI

Genetates
interrupt factor

PEEK
POKE
PUSH

WR, PSW
AR0, WR
AR

Interrupt processing routine

POP
PEEK
POKE
RET (or RETI)

AR
WR, AR0
PSW, WR

CHAPTER 18 INSTRUCTION SET

234

(9) PEEK WR, rf Peek register file to window register

<1> OP code

00111 rfR 0011 rfC

<2> Function

WR ← (rf)
Stores the register file contents to window register WR.

<3> Example

Stores the stack pointer SP contents at address 01H in the register file to the window register:

PEEK WR, SP

SP

WR

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

R
ow

 a
dd

re
ss

Column address

0

1

2

3

0 1 2 3 4 5 6 7 8 9 A B C D E F

R
ow

 a
dd

re
ss

Register file

CHAPTER 18 INSTRUCTION SET

235

(10) POKE rf, WR Poke window register to register file

<1> OP code

10 8 7 4 3 0

00111 rfR 0010 rfC

<2> Function

(rf) ← WR

Stores the window register WR contents to register file.

<3> Example 1

Stores immediate data 0FH to P0DBIO for the register file through the window register:

MOV WR, #0FH

POKE P0DBIO, WR ; Sets all of P0D0, P0D1, P0D2, and P0D3 in output mode

WR

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

R
ow

 a
dd

re
ss

Column address

0

1

2

3

0 1 2 3 4 5 6 7 8 9 A B C D E F

R
ow

 a
dd

re
ss

Register file P0DBIO

CHAPTER 18 INSTRUCTION SET

236

<4> Note

Among register files, data memories can be seen at 40H-7FH (74H-7FH is system register). Therefore, the

PEEK and POKE instructions can access addresses 40H through 7FH in each data memory bank, in addition

to the register file. For example, these instructions can be used as follows:

MEM05F MEM 0.5FH

PEEK WR, PSW ; Stores PSW (7FH) contents in system register to WR

POKE MEM05F, WR ; Stores WR contents to address 5FH in data memory

(11) GET DBF, p Get peripheral data to data buffer

<1> OP code

10 8 7 4 3 0

00111 PH 1011 PL

<2> Function

DBF ← (p)

Stores the peripheral register contents to data buffer DBF.

<3> Example 1

Stores the 8-bit contents for shift register SIOSFR in the serial interface to data buffers DBF0 and DBF1:

GET DBF, SIOSFR

WR

Bank 0 Column address

PSW

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

R
ow

 a
dd

re
ss

Register file

Data memory

POKE 5FH, WR

PEEK WR, PSW
System register

CHAPTER 18 INSTRUCTION SET

237

<4> Note 1

The data buffer is assigned to addresses 0CH, 0DH, 0EH, and 0FH in bank 0 for the data memory, regardless

of the bank register value.

Note 2

Up to 16 bits in the data buffer are available. When a peripheral circuit is accessed by the GET instruction,

the number of bits, by which the circuit is to be accessed, differs depending on the circuit. For example,

if the GET instruction is executed to access a peripheral circuit, which should be accessed in 8-bit units, data

is stored in the lower 8 bits for the data buffer DBF (DBF1, DBF0).

Data buffer
DBF3
Retain

DBF2
Retain

DBF1
b7

DBF0
b0

GET

Actual bits

b7 b0

Data of peripheral
hardware

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

R
ow

 a
dd

re
ss

DBF

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

DBF

R
ow

 a
dd

re
ss

1 2

Peripheral
circit

12HSIOSFR

CHAPTER 18 INSTRUCTION SET

238

(12) PUT p, DBF Put data buffer to peripheral

<1> OP code

10 8 7 4 3 0

00111 PH 1010 PL

<2> Function

(p) ← DBF

Stores the data buffer DBF contents to peripheral register.

<3> Example

Sets 0AH and 05H to data buffers DBF1 and DBF0, respectively, and transfers them to a peripheral register,

shift register (SIOSFR) for serial interface:

MOV BANK, #00H ; Data memory bank 0

MOV DBF0, #05H

MOV DBF1, #0AH

PUT SIOSFR

DBF

<4> Note

Up to 16 bits in the data buffer are available. When a peripheral circuit is accessed by the PUT instruction,

the number of bits, by which the circuit is to be accessed, differs depending on the circuit. For example,

if the PUT instruction is executed to access the shift register SIO, which should be accessed in 8-bits units,

only the lower 8 bits for the data buffer DBF (DBF1, DBF0) are transferred (DBF3 and DBF2 are not

transferred).

Bank 0 Column address

System register

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 A B C D E F

DBF

R
ow

 a
dd

re
ss

A 5

Peripheral
circit

0A5HSIOSFR

CHAPTER 18 INSTRUCTION SET

239

Data buffer
DBF3

Don't care
DBF2

Don't care
DBF1

b7

DBF0
b0

PUT

Actual bits

b7 b0

Data of peripheral
hardware

b6 b5 b4 b3 b2 b1

18.5.8 Branch Instructions

(1) BR addr Branch to the address

<1> OP code

10 0

01100 addr

<2> Function

PC ← addr

Branches to an address specified by addr.

<3> Example

FLY LAB 0FH ; Defines FLY=0FH

:

:

BR FLY ; Jumps to address 0FH

:

:

BR LOOP1 ; Jumps to LOOP1

:

:

BR $+2 ; Jumps to an address 2 addresses lower than current address

:

:

BR $–3 ; Jumps to an address 3 addresses higher than current address

:

:

LOOP1:

CHAPTER 18 INSTRUCTION SET

240

(2) BR @AR Branch to the address specified by address register

<1> OP code

00111 000 0100 0000

<2> Function

PC ← AR

Branches to the program address, specified by address register AR.

<3> Example 1

Sets 003FH in address register AR (AR0-AR3) and jumps to address 003FH by using the BR @AR instruction:

MOV AR3, #00H ; AR3 ← 00H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #03H ; AR1 ← 03H

MOV AR0, #0FH ; AR0 ← 0FH

BR @AR ; Jumps to address 003FH

Example 2

Changes the branch destination according to the data memory address 0.10H contents, as follows:

0.10H contents Branch destination label

00H → AAA

01H → BBB

02H → CCC

03H → DDD

04H → EEE

05H → FFF

06H → GGG

07H → HHH

08H-0FH → ZZZ

; *

; ** Jump table

Address ; *

0010H BR AAA

0011H BR BBB

0012H BR CCC

CHAPTER 18 INSTRUCTION SET

241

0013H BR DDD

0014H BR EEE

0015H BR FFF

0016H BR GGG

0017H BR HHH

0018H BR ZZZ

:

:

:

MEM010 MEM 0.10H

MOV RPH, #00H ; General register bank 0

MOV RPL, #02H ; General register row address 1

MOV AR3, #00H ; AR3 ← 00H Sets AR to 001×H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #01H ; AR1 ← 01H

ST AR0, #MEM010 ; AR0 ← 0.10H

SKF AR0, #1000B ; Sets 08H in AR0, if AR0 contents are greater than 08H

AND AR0, #1000B ;

BR @AR

<4> Note

The higher 6 bits of address register are fixed to 0. Only lower 10 bits can be used.

18.5.9 Subroutine Instructions

(1) CALL addr Call subroutine

<1> OP code

10 0

11100 addr

<2> Function

SP ← SP–1, ASR ← PC,

PC ← addr

CHAPTER 18 INSTRUCTION SET

242

Increments the program counter PC value, stores it to stack, and branches to a subroutine specified by addr.

<3> Example 1

..................
............

..................

SUB:

RET

CALL SUB1

MAIN

Example 2

...............
............

...........

SUB1:

CALL SUB1

MAIN

CALL SUB2

RET

...........

...........

SUB2:

CALL SUB3

RET

...........

...............................

SUB3:

RET

(2) CALL @AR Call subroutine specified by address register

<1> OP code

00111 000 0101 0000

<2> Function

SP ← SP–1,

ASR ← PC,

PC ← AR

Increments and saves to the stack the program counter PC value, and branches to a subroutine that starts

from the address specified by address register AR.

CHAPTER 18 INSTRUCTION SET

243

<3> Example 1

Sets 0020H in address register AR (AR0-AR3) and calls the subroutine at address 0020H with the CALL @AR

instruction:

MOV AR3, #00H ; AR3 ← 00H

MOV AR2, #00H ; AR2 ← 00H

MOV AR1, #02H ; AR1 ← 02H

MOV AR0, #00H ; AR0 ← 00H

CALL @AR ; Calls subroutine at address 0020H

Example 2

Calls the following subroutine by the data memory address 0.10H contents:

0.10H Contents Subroutine

00H → SUB1

01H → SUB2

02H → SUB3

03H → SUB4

04H → SUB5

05H → SUB6

06H → SUB7

07H → SUB8

08H-0FH → SUB9

CHAPTER 18 INSTRUCTION SET

244

SUB4:

SET

....................................

SUB5:

RET
....................................

SUB6:

RET

....................................
SUB7:

RET

....................................

SUB8:

RET

....................................

SUB9:

RET

....................................

SUB1:

RET
....................................

SUB2:

RET

....................................
SUB3:

RET

....................................

.........
.............

 ;*

 ;**Jump table for subroutine

Address ;*

0010H BR SUB1

0011H BR SUB2

0012H BR SUB3

0013H BR SUB4

0014H BR SUB5

0015H BR SUB6

0016H BR SUB7

0017H BR SUB8

0018H BR SUB9

.............
.............

MOV

MOV

MOV

MOV

MOV

ST

SKF

AND

CALL

RPH,

RPL,

AR3,

AR2,

AR1,

AR0,

AR0,

AR0,

@AR,

#00H

#02H

#00H

#00H

#01H

10H

#1000B

#1000B

; General register bank 0

; General register row address 1

; AR3 00H address register 001× H

; AR2 00H

; AR1 01H

; AR0 0.10H

; If the content of AR0 is larger than 08H,

; set AR0 content to 08H

To jump table

Returns here when executing
RET instruction in each subroutine

<4> Note

The higher 6 bits of address register are fixed to 0. Only lower 10 bits can be used.

CHAPTER 18 INSTRUCTION SET

245

(3) RET Return to the main program from subroutine

<1> OP code

10 8 7 4 3 0

00111 000 1110 0000

<2> Function

PC ← ASR,

SP ← SP+1

Instruction to return to the main program from a subroutine.

Restores the return address, saved to the stack by the CALL instruction, to the program counter.

<3> Example

(4) RETSK Return to the main program then skip next instruction

<1> OP code

00111 001 1110 0000

<2> Function

PC ← ASR, SP ← SP+1 and skip

Instruction to return to the main program from a subroutine.

Skips the instruction next to the CALL instruction (Executes as NOP instruction).

Therefore, restores the return address, saved to the stack by the CALL instruction, to program counter PC

and then increments the program counter.

....................
............

...............................

CALL SUB1

SUB1

RET

CHAPTER 18 INSTRUCTION SET

246

<3> Example

Executes the RET instruction, if the LSB (least significant bit) content for address 25H in the data memory

(RAM) is 0. The execution is returned to the instruction next to the CALL instruction. If the LSB is 1, executes

the RETSK instruction. The execution is returned to the instruction following the one next to the CALL

instruction (in this example, ADD 03H, 16H).

..................
...................

.............................

CALL

BR

ADD

SUB1

LOOP

03H, 16H

SUB1

SKF

RETSK

RET

25H, #0001B

; LSB of 25H is "1"

; LSB of 25H is "0"

(5) RETI Return to the main program from interrupt service routine

<1> OP code

00111 100 1110 0000

<2> Function

PC ← ASR, INTR ← INTSK, SP ← SP+1

Instruction to return to the main program, from an interrupt service program.

Restores the return address, saved to the stack by a vector interrupt, to the program counter.

Part of the system register is also returned to the status before the occurrence of the vector interrupt.

<3> Note 1

The system register contents that are automatically saved (i.e., that can be restored by the RETI instruction)

when an interrupt occurs is PSWORD.

Note 2

If the RETI instruction is used, instead of the RET instruction, in an ordinary subroutine, the contents of the

bank (which are to be saved when an interrupt occurs) are changed to the contents of the interrupt stack,

when the execution has returned to the return address. Consequently, an unpredictable status may be

assumed. Therefore, use the RET (or RETSK) instruction to return from a subroutine.

CHAPTER 18 INSTRUCTION SET

247

18.5.10 Interrupt Instructions

(1) EI Enable Interrupt

<1> OP code

00111 000 1111 0000

<2> Function

INTEF ← 1

Enables a vectored interrupt.

The interrupt is enabled, after the instruction next to the EI instruction has been executed.

<3> Example 1

As shown in the following example, the interrupt request is accepted after the instruction next to that, that

has accepted the interrupt, has been completely executed (excluding an instruction that manipulates program

counter). The flow then shifts to the vector addressNote1.

Notes 1. The vector address differs, depending on the interrupt to be accepted. Refer to Table 14-

1 Interrupt Source Types.

................
.....................

Generating
interrupt request

MOV

ADD

ADD

0AH,

0BH,

0CH,

#00H

#01H

#01H

Generating
interrupt request

EI
............

DI

EI

..............

MOV

SUB

0AH,

0BH,

#01H

#01H...........

EI

RET

.....................

Note 2

Interrupt service

Routine (vecter address)

CHAPTER 18 INSTRUCTION SET

248

2. The interrupt accepted in this example (an interrupt request is generated after the EI

instruction has been executed and the execution flow shifts to an interrupt service

routine) is the interrupt, whose interrupt enable flag (IP×××) is set. The interrupt request

generation without the interrupt enable flag set does not change the program flow, after

the EI instruction has been executed (therefore, the interrupt is not accepted). However,

interrupt request flag (IRQ×××) is set, and the interrupt is accepted, as soon as the interrupt

enable flag is set.

Example 2

An example of an interrupt, which occurs in response to an interrupt request being accepted when program

counter PC is being executed:

................
.....................

Generating
interrupt request

BR ABC

EI

............
MOV

ADD

0AH,

0BH,

#00H

#01H

EI

RET

.....................

Interrupt service

routine (vecter address)

ABC:

............

(2) DI Disable interrupt

<1> OP code

00111 001 1111 0000

<2> Function

INTEF ← 0

Instruction to disable a vectored interrupt.

<3> Example

Refer to Example 1 in (1) EI.

CHAPTER 18 INSTRUCTION SET

249

18.5.11 Other Instructions

(1) STOP s Stop CPU and release by condition s

<1> OP code

3 0

00111 010 1111 s

<2> Function

Stops the system clock and places the device in the STOP mode.

In the STOP mode, the power dissipation for the device is minimized.

The condition, under which the STOP mode is to be released, is specified by operand (s).

For the stop releasing condition (s), refer to 15.3.

(2) HALT h Halt CPU and release by condition h

<1> OP code

3 0

00111 011 1111 h

<2> Function

Places the device in the halt mode.

In the halt mode, the power dissipation for the device is reduced.

The condition, under which the halt mode is to be released, is specified by operand (h).

For halt releasing condition (h), refer to 15.2 HALT MODE.

(3) NOP No operation

<1> OP code

00111 100 1111 0000

<2> Function

Performs nothing and consumes one machine cycle.

[MEMO]

250

CHAPTER 19 ASSEMBLER RESERVED WORDS

19.1 MASK OPTION PSEUDO INSTRUCTIONS

To create µPD17120, 17121, 17132, and 17133 programs, it is necessary to specify whether pins that can have

pull-up resistors have pull-up resistors. This is done in the assembler source program using mask option pseudo

instructions. To set the mask option, note that D171××.OPT file in the AS171×× (µPD171×× device file) must be in

the current directory at assembly time.

Specify mask options for the following pins:

• RESET pin

• Port 0D (P0D3, P0D2, P0D1, P0D0)

• Port 0E (P0E1, P0E0)

19.1.1 OPTION and ENDOP Pseudo Instructions

The block from the OPTION pseudo instruction to the ENDOP pseudo instruction is defined as the option definition

block.

The format for the mask option definition block is shown below. Only the three pseudo instructions listed in Table

19-1 can be described in this block.

Format:

Symbol Mnemonic Operand Comment

[label:] OPTION [;comment]
•

•

•

•

ENDOP

251

CHAPTER 19 ASSEMBLER RESERVED WORDS

252

19.1.2 Mask Option Definition Pseudo Instructions

Table 19-1 lists the pseudo instructions which define the mask options for each pin.

Table 19-1. Mask Option Definition Pseudo Instructions

Mask Option
Pseudo Instruction

RESET OPTRES 1 OPEN (without pull-up resistor)
PULLUP (with pull-up resistor)

P0D3-P0D0 OPTP0D 4 OPEN (without pull-up resistor)
PULLUP (with pull-up resistor)

P0E1, P0E0 OPTP0E 2 OPEN (without pull-up resistor)
PULLUP (with pull-up resistor)

The OPTRES format is shown below. Specify the RESET mask option in the operand field.

Symbol Mnemonic Operand Comment

[label:] OPTRES (RESET) [;comment]

The OPTP0D format is shown below. Specify mask options for all pins of port 0D. Specify the pins in the operand

field starting at the first operand in the order P0D3, P0D2, P0D1, then P0D0.

Symbol Mnemonic Operand Comment

[label:] OPTP0D (P0D3), (P0D2), (P0D1), (P0D0) [;comment]

The OPTP0E is shown below. Specify mask options for all pins of port 0E. Specify the pins in the operand field

starting at the first operand in the order P0E1, P0E0.

Symbol Mnemonic Operand Comment

[label:] OPTP0E (P0E1), (P0E0) [;comment]

Pin Number of Operands Parameter Name

CHAPTER 19 ASSEMBLER RESERVED WORDS

253

Example of describing mask options

RESET pin: Pull-up

P0D3: Open, P0D2: Open, P0D1: Pull-up, P0D0: Pull-up,

P0E1: Pull-up, P0E0: Open

Symbol Mnemonic Operand Comment

;µPD17133

Setting mask options: OPTION

;

OPTRES PULLUP

OPTP0D OPEN, OPEN, PULLUP, PULLUP

OPTP0E PULLUP, OPEN

;

ENDOP

CHAPTER 19 ASSEMBLER RESERVED WORDS

254

19.2 RESERVED SYMBOLS

The reserved symbols defined in the µPD17120 subseries device file (AS1712×, AS1713×) are listed below.

19.2.1 List of Reserved Symbols (µPD17120, 17121)

System register (SYSREG)

Symbol Name Attribute Value Read/Write Description

AR3 MEM 0.74H R Bits 15 to 12 of the address register

AR2 MEM 0.75H R/W Bits 11 to 8 of the address register

AR1 MEM 0.76H R/W Bits 7 to 4 of the address register

AR0 MEM 0.77H R/W Bits 3 to 0 of the address register

WR MEM 0.78H R/W Window register

BANK MEM 0.79H R/W Bank register

IXH MEM 0.7AH R/W Index register high

MPH MEM 0.7AH R/W Data memory row address pointer high

MPE FLG 0.7AH.3 R/W Memory pointer enable flag

IXM MEM 0.7BH R/W Index register middle

MPL MEM 0.7BH R/W Data memory row address pointer low

IXL MEM 0.7CH R/W Index register low

RPH MEM 0.7DH R/W General register pointer high

RPL MEM 0.7EH R/W General register pointer low

PSW MEM 0.7FH R/W Program status word

BCD FLG 0.7EH.0 R/W BCD flag

CMP FLG 0.7FH.3 R/W Compare flag

CY FLG 0.7FH.2 R/W Carry flag

Z FLG 0.7FH.1 R/W Zero flag

IXE FLG 0.7FH.0 R/W Index enable flag

Data buffer (DBF)

Symbol Name Attribute Value Read/Write Description

DBF3 MEM 0.0CH R/W DBF bits 15 to 12

DBF2 MEM 0.0DH R/W DBF bits 11 to 8

DBF1 MEM 0.0EH R/W DBF bits 7 to 4

DBF0 MEM 0.0FH R/W DBF bits 3 to 0

CHAPTER 19 ASSEMBLER RESERVED WORDS

255

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Port register

Symbol Name Attribute Value Read/Write Description

P0E1 FLG 0.6FH.1 R/W Port 0E bit 1

P0E0 FLG 0.6FH.0 R/W Port 0E bit 0

P0A3 FLG 0.70H.3 R/W Port 0A bit 3

P0A2 FLG 0.70H.2 R/W Port 0A bit 2

P0A1 FLG 0.70H.1 R/W Port 0A bit 1

P0A0 FLG 0.70H.0 R/W Port 0A bit 0

P0B3 FLG 0.71H.3 R/W Port 0B bit 3

P0B2 FLG 0.71H.2 R/W Port 0B bit 2

P0B1 FLG 0.71H.1 R/W Port 0B bit 1

P0B0 FLG 0.71H.0 R/W Port 0B bit 0

P0C3 FLG 0.72H.3 R/W Port 0C bit 3

P0C2 FLG 0.72H.2 R/W Port 0C bit 2

P0C1 FLG 0.72H.1 R/W Port 0C bit 1

P0C0 FLG 0.72H.0 R/W Port 0C bit 0

P0D3 FLG 0.73H.3 R/W Port 0D bit 3

P0D2 FLG 0.73H.2 R/W Port 0D bit 2

P0D1 FLG 0.73H.1 R/W Port 0D bit 1

P0D0 FLG 0.73H.0 R/W Port 0D bit 0

Register file (control register)

(1/2)

Symbol Name Attribute Value Read/Write Description

SP MEM 0.81H R/W Stack pointer

SIOEN FLG 0.8AH.0 R/W SIO enable flag

INT FLG 0.8FH.0 R INT pin status flag

PDRESEN FLG 0.90H.0 R/W Power-down reset enable flag

TMEN FLG 0.91H.3 R/W Timer enable flag

TMRES FLG 0.91H.2 R/W Timer reset flag

TMCK1 FLG 0.91H.1 R/W Timer count pulse selection flag bit 1

TMCK0 FLG 0.91H.0 R/W Timer count pulse selection flag bit 0

TMOSEL FLG 0.92H.0 R/W Timer output port/port selection flag

SIOTS FLG 0.9AH.3 R/W SIO start flag

SIOHIZ FLG 0.9AH.2 R/W SO pin status

SIOCK1 FLG 0.9AH.1 R/W Serial clock selection flag bit 1

SIOCK0 FLG 0.9AH.0 R/W Serial clock selection flag bit 0

CHAPTER 19 ASSEMBLER RESERVED WORDS

256

..

..

..

..

..

..

..

..

..

..

..

..

..

Register file (control register)

(2/2)

Symbol Name Attribute Value Read/Write Description

IEGMD1 FLG 0.9FH.1 R/W INT pin edge detection selection flag bit 1

IEGMD0 FLG 0.9FH.0 R/W INT pin edge detection selection flag bit 0

P0BGIO FLG 0.A4H.0 R/W P0B group input/output selection flag (1= all P0Bs are
output ports.)

IPSIO FLG 0.AFH.2 R/W SIO interrupt flag

IPTM FLG 0.AFH.1 R/W Timer interrupt enable flag

IP FLG 0.AFH.0 R/W INT pin interrupt enable flag

P0EBIO1 FLG 0.B2H.1 R/W P0E1 input/output selection flag (1=output port)

P0EBIO0 FLG 0.B2H.0 R/W P0E0 input/output selection flag (1=output port)

P0DBIO3 FLG 0.B3H.3 R/W P0D3 input/output selection flag (1=output port)

P0DBIO2 FLG 0.B3H.2 R/W P0D2 input/output selection flag (1=output port)

P0DBIO1 FLG 0.B3H.1 R/W P0D1 input/output selection flag (1=output port)

P0DBIO0 FLG 0.B3H.0 R/W P0D0 input/output selection flag (1=output port)

P0CBIO3 FLG 0.B4H.3 R/W P0C3 input/output selection flag (1=output port)

P0CBIO2 FLG 0.B4H.2 R/W P0C2 input/output selection flag (1=output port)

P0CBIO1 FLG 0.B4H.1 R/W P0C1 input/output selection flag (1=output port)

P0CBIO0 FLG 0.B4H.0 R/W P0C0 input/output selection flag (1=output port)

P0ABIO3 FLG 0.B5H.3 R/W P0A3 input/output selection flag (1=output port)

P0ABIO2 FLG 0.B5H.2 R/W P0A2 input/output selection flag (1=output port)

P0ABIO1 FLG 0.B5H.1 R/W P0A1 input/output selection flag (1=output port)

P0ABIO0 FLG 0.B5H.0 R/W P0A0 input/output selection flag (1=output port)

IRQSIO FLG 0.BDH.0 R/W SIO interrupt request flag

IRQTM FLG 0.BEH.0 R/W Timer interrupt request flag

IRQ FLG 0.BFH.0 R/W INT pin interrupt request flag

Peripheral hardware register

Symbol Name Attribute Value Read/Write Description

SIOSFR DAT 01H R/W Peripheral address of the shift register

TMC DAT 02H R Peripheral address of the timer count register

TMM DAT 03H W Peripheral address of the timer modulo register

AR DAT 40H R/W Peripheral address of the address register for GET, PUT,
PUSH, CALL, BR, MOVT, and INC instructions

CHAPTER 19 ASSEMBLER RESERVED WORDS

257

Others

Symbol Name Attribute Value Description

DBF DAT 0FH Fix operand value of PUT, GET, MOVT instructions

IX DAT 01H Fix operand value of INC instruction

CHAPTER 19 ASSEMBLER RESERVED WORDS

258

Column address

Row
address Item

Symbol

At reset

Read/
Write

Symbol

At reset

Read/
Write

Symbol

At reset

Read/
Write

Symbol

At reset

Read/
Write

0

0

R/W

0

0

0

0

P
D
R
E
S
E
N

0

0

0
(8)

1
(9)

2
(A)

3
(B)

1 2 3 4 5 6 7

T
M
E
N

1

R/W

T
M
R
E
S

0

T
M
C
K
1

0

T
M
C
K
0

0

0

0

R/W

0

0

0

0

T
M
O
S
E
L

0

0

0

R/W

0

S
P

0 0

0

0

R/W

0

0

0

0

P
0
B
G
I
O

0

0

0

R/W

0

0 0

P
0
E
B
I
O
0

0 0

R/W

0 0

P
0
D
B
I
O
0

0

P
0
E
B
I
O
1

P
0
D
B
I
O
2

P
0
D
B
I
O
3

P
0
D
B
I
O
1

0

R/W

0 0

P
0
C
B
I
O
0

0

P
0
C
B
I
O
2

P
0
C
B
I
O
3

P
0
C
B
I
O
1

0

R/W

0 0

P
0
A
B
I
O
0

0

P
0
A
B
I
O
2

P
0
A
B
I
O
3

P
0
A
B
I
O
1

Figure 19-1. Configuration of Control Register (µPD17120, 17121) (1/2)

Remark () means the address when using assembler (AS17K).

All flags of the control register are registered in device file as assembler reserved words. It is convenient

for program design to use the reserved words.

CHAPTER 19 ASSEMBLER RESERVED WORDS

259

8 9 A B C D E F

S
I
O
T
S

0

R/W

S
I
O
H
I
Z

0

S
I
O
C
K
1

0

S
I
O
C
K
0

0

0

0

R/W

0

0 0

I
E
G
M
D
0

0

0

0

R/W

0

S
I
O
E
N

0 0

0

0

R/W

0

0

0

0

I
R
Q

0

I
E
G
M
D
1

0 0 0

0

R

0

I
N
T

0 Note

0 0

0

0

R/W

0 0

I
P

0

I
P
T
M

I
P
S
I
O

R/W

0

0

0

0

I
R
Q
T
M

1

0

0

R/W

0

0

0

0

I
R
Q
S
I
O

0

0

0

Figure 19-1. Configuration of Control Register (µPD17120, 17121) (2/2)

Note The INT flag differs depending on the INT pin state at the time.

CHAPTER 19 ASSEMBLER RESERVED WORDS

260

19.2.2 List of Reserved Symbols (µPD17132, 17133, 17P132, 17P133)

System register (SYSREG)

Symbol Name Attribute Value Read/Write Description

AR3 MEM 0.74H R Address register bits 15 to 12

AR2 MEM 0.75H R/W Address register bits 11 to 8

AR1 MEM 0.76H R/W Address register bits 7 to 4

AR0 MEM 0.77H R/W Address register bits 3 to 0

WR MEM 0.78H R/W Window register

BANK MEM 0.79H R/W Bank register

IXH MEM 0.7AH R/W Index register high

MPH MEM 0.7AH R/W Data memory row address pointer high

MPE FLG 0.7AH.3 R/W Memory pointer enable flag

IXM MEM 0.7BH R/W Index register middle

MPL MEM 0.7BH R/W Data memory row address pointer low

IXL MEM 0.7CH R/W Index register low

RPH MEM 0.7DH R/W General register pointer high

RPL MEM 0.7EH R/W General register pointer low

PSW MEM 0.7FH R/W Program status word

BCD FLG 0.7EH.0 R/W BCD flag

CMP FLG 0.7FH.3 R/W Compare flag

CY FLG 0.7FH.2 R/W Carry flag

Z FLG 0.7FH.1 R/W Zero flag

IXE FLG 0.7FH.0 R/W Index enable flag

CHAPTER 19 ASSEMBLER RESERVED WORDS

261

..

..

..

..

..

..

..

..

..

..

..

..

..

Data buffer (DBF)

Symbol Name Attribute Value Read/Write Description

DBF3 MEM 0.0CH R/W DBF bits 15 to 12

DBF2 MEM 0.0DH R/W DBF bits 11 to 8

DBF1 MEM 0.0EH R/W DBF bits 7 to 4

DBF0 MEM 0.0FH R/W DBF bits 3 to 0

Port register

Symbol Name Attribute Value Read/Write Description

P0E1 FLG 0.6FH.1 R/W Port 0E bit 1

P0E0 FLG 0.6FH.0 R/W Port 0E bit 0

P0A3 FLG 0.70H.3 R/W Port 0A bit 3

P0A2 FLG 0.70H.2 R/W Port 0A bit 2

P0A1 FLG 0.70H.1 R/W Port 0A bit 1

P0A0 FLG 0.70H.0 R/W Port 0A bit 0

P0B3 FLG 0.71H.3 R/W Port 0B bit 3

P0B2 FLG 0.71H.2 R/W Port 0B bit 2

P0B1 FLG 0.71H.1 R/W Port 0B bit 1

P0B0 FLG 0.71H.0 R/W Port 0B bit 0

P0C3 FLG 0.72H.3 R/W Port 0C bit 3

P0C2 FLG 0.72H.2 R/W Port 0C bit 2

P0C1 FLG 0.72H.1 R/W Port 0C bit 1

P0C0 FLG 0.72H.0 R/W Port 0C bit 0

P0D3 FLG 0.73H.3 R/W Port 0D bit 3

P0D2 FLG 0.73H.2 R/W Port 0D bit 2

P0D1 FLG 0.73H.1 R/W Port 0D bit 1

P0D0 FLG 0.73H.0 R/W Port 0D bit 0

CHAPTER 19 ASSEMBLER RESERVED WORDS

262

Register file (control register)

(1/2)

Symbol Name Attribute Value Read/Write Description

SP MEM 0.81H R/W Stack pointer

SIOEN FLG 0.8AH.0 R SIO enable flag

INT FLG 0.8FH.0 R/W INT pin status flag

PDRESEN FLG 0.90H.0 R/W Power-down reset enable flag

TMEN FLG 0.91H.3 R/W Timer enable flag

TMRES FLG 0.91H.2 R/W Timer reset flag

TMCK1 FLG 0.91H.1 R/W Timer source clock selection flag bit 1

TMCK0 FLG 0.91H.0 R/W Timer source clock selection flag bit 0

TMOSEL FLG 0.92H.0 R/W Timer output port/port selection flag

SIOTS FLG 0.9AH.3 R/W SIO start flag

SIOHIZ FLG 0.9AH.2 R/W SO pin status

SIOCK1 FLG 0.9AH.1 R/W SIO source clock selection flag bit 1

SIOCK0 FLG 0.9AH.0 R/W SIO source clock selection flag bit 0

CMPCH1 FLG 0.9CH.1 R/W Comparator input channel selection flag bit 1

CMPCH0 FLG 0.9CH.0 R/W Comparator input channel selection flag bit 0

CMPVREF3 FLG 0.9DH.3 R/W Comparator reference voltage selection flag bit 3

CMPVREF2 FLG 0.9DH.2 R/W Comparator reference voltage selection flag bit 2

CMPVREF1 FLG 0.9DH.1 R/W Comparator reference voltage selection flag bit 1

CMPVREF0 FLG 0.9DH.0 R/W Comparator reference voltage selection flag bit 0

CMPSTRT FLG 0.9EH.1 R Comparator start flag

CMPRSLT FLG 0.9EH.0 R/W Comparator comparison result flag

IEGMD1 FLG 0.9FH.1 R/W INT pin edge detection selection flag bit 1

IEGMD0 FLG 0.9FH.0 R/W INT pin edge detection selection flag bit 0

P0C3IDI FLG 0.A3H.3 R/W P0C3 input port disable flag (P0C3/Cin3 selection)

P0C2IDI FLG 0.A3H.2 R/W P0C2 input port disable flag (P0C2/Cin2 selection)

P0C1IDI FLG 0.A3H.1 R/W P0C1 input port disable flag (P0C1/Cin1 selection)

P0C0IDI FLG 0.A3H.0 R/W P0C0 input port disable flag (P0C0/Cin0 selection)

P0BGIO FLG 0.A4H.0 R/W P0B group input/output selection flag (1= all P0Es are
output ports.)

IPSIO FLG 0.AFH.2 R/W SIO interrupt flag

IPTM FLG 0.AFH.1 R/W Timer interrupt enable flag

IP FLG 0.AFH.0 R/W INT pin interrupt enable flag

P0EBIO1 FLG 0.B2H.1 R/W P0E1 input/output selection flag (1=output port)

P0EBIO0 FLG 0.B2H.0 R/W P0E0 input/output selection flag (1=output port)

P0DBIO3 FLG 0.B3H.3 R/W P0D3 input/output selection flag (1=output port)

P0DBIO2 FLG 0.B3H.2 R/W P0D2 input/output selection flag (1=output port)

P0DBIO1 FLG 0.B3H.1 R/W P0D1 input/output selection flag (1=output port)

P0DBIO0 FLG 0.B3H.0 R/W P0D0 input/output selection flag (1=output port)

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

CHAPTER 19 ASSEMBLER RESERVED WORDS

263

..

..

..

..

..

..

Register file (control register)

(2/2)

Symbol Name Attribute Value Read/Write Description

P0CBIO3 FLG 0.B4H.3 R/W P0C3 input/output selection flag (1=output port)

P0CBIO2 FLG 0.B4H.2 R/W P0C2 input/output selection flag (1=output port)

P0CBIO1 FLG 0.B4H.1 R/W P0C1 input/output selection flag (1=output port)

P0CBIO0 FLG 0.B4H.0 R/W P0C0 input/output selection flag (1=output port)

P0ABIO3 FLG 0.B5H.3 R/W P0A3 input/output selection flag (1=output port)

P0ABIO2 FLG 0.B5H.2 R/W P0A2 input/output selection flag (1=output port)

P0ABIO1 FLG 0.B5H.1 R/W P0A1 input/output selection flag (1=output port)

P0ABIO0 FLG 0.B5H.0 R/W P0A0 input/output selection flag (1=output port)

IRQSIO FLG 0.BDH.0 R/W SIO interrupt request flag

IRQTM FLG 0.BEH.0 R/W Timer interrupt request flag

IRQ FLG 0.BFH.0 R/W INT pin interrupt request flag

Peripheral hardware register

Symbol Name Attribute Value Read/Write Description

SIOSFR DAT 01H R/W Peripheral address of the shift register

TMC DAT 02H R Peripheral address of the timer count register

TMM DAT 03H W Peripheral address of the timer modulo register

AR DAT 40H R/W Peripheral address of the address register for GET, PUT,
PUSH, CALL, BR, MOVT, and INC instructions

Others

Symbol Name Attribute Value Description

DBF DAT 0FH Fix operand value of PUT, GET, MOVT instructions

IX DAT 01H Fix operand value of INC instruction

CHAPTER 19 ASSEMBLER RESERVED WORDS

264

Figure 19-2. Configuration of Control Register (µPD17132, 17133, 17P132, 17P133) (1/2)

Column address

Row
address Item

Symbol

At reset

Read/
Write

Symbol

At reset

Read/
Write

Symbol

At reset

Read/
Write

Symbol

At reset

Read/
Write

0

0

R/W

0

0

0

0

P
D
R
E
S
E
N

0

0

0
(8)

1
(9)

2
(A)

3
(B)

1 2 3 4 5 6 7

T
M
E
N

0

R/W

T
M
R
E
S

0

T
M
C
K
1

0

T
M
C
K
0

0

0

0

R/W

0

0

0

0

T
M
O
S
E
L

0

0

0

R/W

1

S
P

0 1

0

0

R/W

0

0

0

0

P
0
B
G
I
O

0

0

0

R/W

0

0 0

P
0
E
B
I
O
0

0 0

R/W

0 0

P
0
D
B
I
O
0

0

P
0
E
B
I
O
1

P
0
D
B
I
O
2

P
0
D
B
I
O
3

P
0
D
B
I
O
1

0

R/W

0 0

P
0
C
B
I
O
0

0

P
0
C
B
I
O
2

P
0
C
B
I
O
3

P
0
C
B
I
O
1

0

R/W

0 0

P
0
A
B
I
O
0

0

P
0
A
B
I
O
2

P
0
A
B
I
O
3

P
0
A
B
I
O
1

0

R/W

0 0

P
0
C
0
I
D
I

0

P
0
C
2
I
D
I

P
0
C
3
I
D
I

P
0
C
1
I
D
I

Remark () means the address when using assembler (AS17K).

All flags of the control register are registered in device file as assembler reserved words. It is convenient

for program design to use the reserved words.

CHAPTER 19 ASSEMBLER RESERVED WORDS

265

8 9 A B C D E F

S
I
O
T
S

0

R/W

S
I
O
H
I
Z

0

S
I
O
C
K
1

0

S
I
O
C
K
0

0

0

0

R/W

0

0 0

I
E
G
M
D
0

0

0

0

R/W

0

S
I
O
E
N

0 0

0

0

R/W

0

0

0

0

I
R
Q

0

I
E
G
M
D
1

0 0 0

0

R

0

I
N
T

0

0 0

0

0

R/W

0 0

I
P

0

I
P
T
M

I
P
S
I
O

R/W

0

0

0

0

I
R
Q
T
M

1

0

0

R/W

0

0

0

0

I
R
Q
S
I
O

0

0

0

0

0

0

0

0 0

C
M
P
R
S
L
T

C
M
P
S
T
R
T

1

RR/WR/W

0

C
M
P
V
R
E
F
0

0

C
M
P
V
R
E
F
1

0

C
M
P
V
R
E
F
2

1

C
M
P
V
R
E
F
3

0

0

0

0 0

C
M
P
C
H
1

C
M
P
C
H
1

0

R/W

Figure 19-2. Configuration of Control Register (µPD17132, 17133, 17P132, 17P133) (2/2)

Note The INT flag differs depending on the INT pin state at the time.

266

[MEMO]

AF-9703Note 3

AF-9704Note 3

AF-9705Note 3

AF-9706Note 3

APPENDIX A DEVELOPMENT TOOLS

The following support tools are available for developing programs for the µPD17120 subseries.

Hardware

Name Outline

In-circuit Emulator IE-17K, IE-17K-ET, and EMU-17K are the in-circuit emulators common to all
IE-17K 17K-series products.
IE-17K-ETNote 1 IE-17K and IE-17K-ET are used by connecting to the host machine PC-9800
EMU-17KNote 1 series or IBM PC/ATTM through RS-232-C. EMU-17K is used by installing

in the expansion slot of the host machine PC-9800 series.
By using it in combination with the system evaluation board (SE board)
dedicated to the relevant machine type, the emulator can perform opera-
tions compatible with it. An even more advanced debugging environment
can be realized by using SIMPLEHOST, which is man-machine interface
software.
EMU-17K is equipped with the function of checking the contents of the
data memory in a real-time environment.

SE Board The SE-17120 is an SE board for the µPD17120 subseries. The board is
(SE-17120) used for evaluation of single system units as well as for debugging by

being combined with an in-circuit emulator.

Emulation Probe The EP-17120CS, which is the emulation probe for the µPD17120 sub-
(EP-17120CS) series, connects between an SE board and a target system.

PROM Programmer AF-9703, AF-9704, AF-9705, and AF-9706 are the PROM programmers

compatible with the µPD17P132 and 17P133. By connecting them to the

program adapter AF-9808M, the µPD17P132 and 17P133 are enabled for
programming.

Program Adapter The AF-9808M, which is an adapter for programming the µPD17P132CS,
(AF-9808MNote 3) 17P132GT, 17P132CS, and 17P33GT, is used in combination with the AF-

9703, AF9704, AF-9705, or AF-9706.

Notes 1. Low-price version: External-power type

2. This is a product of I.C Co., Ltd. For further details, please contact I.C Co. in Tokyo (Tel: 03-3447-

3793).

3. This is the product of the Ando Electric, Ltd. For further details, please contact Ando Electric Co.,

Ltd. in Tokyo (Tel: 03-3733-1151).

267

APPENDIX A DEVELOPMENT TOOLS

268

17K-Series AS17K is an assembler
Assembler which can be used in
(AS17K) common for the 17K

series. For program
development of the

µPD17120 series, AS17K
and device files (AS17120,
AS17121, AS17132,
AS17133) are used
together.

Device AS17120, AS17121,
Files AS17132, and AS17133
AS17120 are the device files for the

AS17121 µPD17120 subseries.
AS17132 These are used in combi-
AS17133 nation with the assembler

(AS17K) common to the
17K series.

Support This software is used for
Software machine interfacing on
(SIMPLE- WindowsTM when doing
HOST) program development by

means of an in-circuit
emulator and a personal
computer.

PC-9800 series MS-DOSTM

IBM PC/AT PC DOSTM

PC-9800 series MS-DOS

IBM PC/AT PC DOS

PC-9800 series MS-DOS

IBM PC/AT PC DOS

5-inch 2HD µS5A10AS17K

3.5-inch 2HD µS5A13AS17K

5-inch 2HC µS7B10AS17K

3.5-inch 2HC µS7B13AS17K

5-inch 2HD µS5A10AS17120Note

3.5-inch 2HD µS5A13AS17120Note

5-inch 2HC µS7B10AS17120Note

3.5-inch 2HC µS7B13AS17120Note

5-inch 2HD µS5A10IE17K

3.5-inch 2HD µS5A13IE17K

5-inch 2HC µS7B10IE17K

3.5-inch 2HC µS7B13IE17K

Software

Name Outline Host Machine OS Supply Medium Part Number

Windows

Note µS××××AS17120 contains AS17120, AS17121, AS17132, and AS17133.

Remark Compatible OS versions include the following:

OS Version

MS-DOS Ver. 3.30 to Ver. 5.00ANote

PC DOS Ver. 3.1 to Ver. 5.0Note

Windows Ver. 3.0 to Ver. 3.1

Note MS-DOS Vers. 5.00/5.00A and PC DOS

Ver. 5.0 are equipped with the task

swap function. However, this software

is not.

APPENDIX B ORDERING MASK ROM

After developing the program, place an order for the mask ROM version, according to the following procedure:

(1) Make reservation when ordering mask ROM.

Advice NEC of the schedule for placing an order for the mask ROM. If NEC is not informed in advance, on-

time delivery may not be possible.

(2) Create ordering medium.

Use UV-EPROM to place an order for the mask ROM.

Add/PROM as an assemble option of the Assembler (AS17K), and create a mask ROM ordering HEX file (with

extender for .PRO). Next, write the mask ROM ordering HEX file into the UV-EPROM. Create three UV-

EPROMs with the same contents.

(3) Prepare necessary documents.

Fill out the following forms to place an order for the mask ROM:

• Mask ROM ordering sheet

• Mask ROM ordering check sheet

(4) Ordering

Submit the media created in (2) and documents prepared in (3) to NEC by the specified date.

269

[MEMO]

270

APPENDIX C CAUTIONS TO TAKE IN SYSTEM CLOCK OSCILLATION CIRCUIT CONFIGURATIONS

The system clock oscillation circuit operates with a ceramic resonator connected to the X1 and X2 pins or with

an oscillation resistor connected to the OSC1 and OSC0 pins.

Figure C-1 shows the externally installed system clock oscillation circuit.

Figure C-1. Externally Installed System Clock Oscillation Circuit

µPD17121

µPD17133

µPD17P133

XOUT XIN GND

Ceramic Resonator

µPD17120

µPD17132

µPD17P132

OSC1 OSC0

Oscillation Resistor

Caution Regarding the system clock oscillation circuit, make sure that its ground wire's resistance

component and impedance component are minimized. Also, to avoid the effect of wiring

capacity, etc., please wire the part encircled in the dotted line in Figure C-1 in the manner

described below:

• Make the wiring as short as possible.

• Do not allow it to intersect other signal conductors. Do not let it be near lines in which a large

fluctuating current flows.

• Make sure that the grounding point of the oscillation circuit's capacitor is constantly at the

same electric potential as VSS. Do not let it be near a GND wire in which a large current flows.

• Do not extract signals from the oscillation circuit.

Figure C-2 shows unsatisfactory oscillation circuit examples.

271

APPENDIX C CAUTIONS TO TAKE IN SYSTEM CLOCK OSCILLATION CIRCUIT

272

Figure C-2. Unsatisfactory Oscillation Circuit Examples

(a) Connecting circuit whose wiring is too long (b) Signal conductors are intersecting

(c) Functuating large current located (d) Current flowing in the GND line of the

too close to the signal conductor oscillation circuit

(Points A and B's potentials change as to point C.)

(e) Signals are being extracted

XIN GNDXOUTPORT

XIN GNDXOUTPORT

A B C

Large-volume current

XIN GNDXOUT

Large
current

XIN GNDXOUT

XIN GNDXOUT

Too long

APPENDIX D INSTRUCTION LIST

[A] MOVT DBF, @AR…229

ADD m, #n4…193

ADD r, m…189 [N]

ADDC m, #n4…198 NOP…249

ADDC r, m…195

AND m, #n4…214 [O]

AND r, m…213 OR m, #n4…212

OR r, m…211

[B]

BR addr…239 [P]

BR @AR…240 PEEK WR, rf…234

POKE rf, WR…235

[C] POP AR…233

CALL addr…217 PUSH AR…230

CALL @AR:…242 PUT p, DBF…238

[D] [R]

DI…248 RET…245

RETI…246

[E] RETSK…245

EI…247 RORC r…221

[G] [S]

GET DBF, p…236 SKE m, #n4…218

SKF m, #n…217

[H] SKGE m, #n4…220

HALT h…249 SKLT m, #n4…220

SKNE m, #n4…219

[I] SKT m, #n…216

INC AR…199 ST m, r…224

INC IX…201 STOP s…249

SUB m, #n4…205

[L] SUB r, m…202

LD r, m…222 SUBC m, #n4…209

SUBC r, m…207

[M]

MOV m, #n4…229 [X]

MOV m, @r…227 XOR m, #n4…216

MOV @r, m…225 XOR r, m…214

273

