4-BIT SINGLE-CHIP MICROCONTROLLERS

The μ PD754202 is a member of the 75XL Series of 4-bit single-chip microcontrollers that enable data processing equivalent to that of an 8 -bit microcontroller.

It features expanded CPU functions compared to the 75X Series and enables high-speed, low-voltage operation at 1.8 V , making it suitable for battery-driven applications.

The μ PD754202(A) is a higher-reliability product compared to the μ PD754202.

Detailed function descriptions, etc., are provided in the following user's manual. Be sure to read it when designing.
μ PD754202 User's Manual: U11132E

FEATURES

- Key return reset function for keyless entry
- Low-voltage operation: $V_{D D}=1.8$ to 6.0 V
- On-chip memory
- Program memory (ROM): 2048×8 bits
- Data memory (RAM) : 128×4 bits
- Variable instruction execution time useful for high-speed operation and power save
- $0.95,1.91,3.81,15.3 \mu$ s (at $4.19-\mathrm{MHz}$ operation)
- $0.67,1.33,2.67,10.7 \mu \mathrm{~s}$ (at $6.0-\mathrm{MHz}$ operation)
- Compact package (20-pin plastic shrink SOP (300 mil, 0.65-mm pitch))

APPLICATIONS

Automotive electronics such as keyless entry units

The μ PD754202 and μ PD754202(A) have different quality grades. Unless otherwise specified, descriptions in this data sheet apply to the μ PD754202.

ORDERING INFORMATION

Part Number	Package	Quality Grade
μ PD754202GS- $\times \times \times$-BA5	20-pin plastic SOP (300 mil, $1.27-\mathrm{mm}$ pitch $)$	Standard
μ PD754202GS- $\times \times \times-$ GJG	20-pin plastic shrink SOP $(300 \mathrm{mil}, 0.65-\mathrm{mm}$ pitch $)$	Standard
μ PD754202GS(A)-×××-BA5	20-pin plastic SOP $(300$ mil, $1.27-\mathrm{mm}$ pitch $)$	Special
μ PD754202GS(A)-×××-GJG	20-pin plastic shrink SOP $(300 \mathrm{mil}, 0.65-\mathrm{mm}$ pitch $)$	Special

Remark $\times x \times$ indicates the ROM code suffix.
Please refer to "Quality Grades on NEC Semiconductor Devices" (Document No. C11531E) published by NEC Corporation to know the specification of quality grade on the devices and its recommended applications.

Differences between μ PD754202 and μ PD754202(A)

Item	μ PD754202	
Quality grade	Standard	SpD754202(A)

FUNCTION LIST

Parameter		Function
Instruction execution time		- $0.95,1.91,3.81,15.3 \mu$ (system clock: at $4.19-\mathrm{MHz}$ operation) - $0.67,1.33,2.67,10.7 \mu$ s (system clock: at $6.0-\mathrm{MHz}$ operation)
On-chip memory	ROM	2048×8 bits
	RAM	128×4 bits
General-purpose register		- 4-bit manipulation: 8×4 banks - 8-bit manipulation: 4×4 banks
I/O port	CMOS input	4 Mask option-specifiable on-chip pull-up resistor
	CMOS input/output	9 Software-specifiable on-chip pull-up resistor connection
	Total	13
Timer		4 channels - 8 -bit timer counter: 3 channels (Usable as 16 -bit timer counter) - Basic interval timer/watchdog timer: 1 channel
Bit sequential buffer (BSB)		16 bits
Vectored interrupt		External: 1, Internal: 4
Test input		External: 1 (key return reset function provided)
System clock oscillation circuit		Ceramic/crystal oscillation circuit
Standby function		STOP/HALT mode
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85{ }^{\circ} \mathrm{C}$
Supply voltage		$\mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V
Package		- 20-pin plastic SOP (300 mil, $1.27-\mathrm{mm}$ pitch) - 20-pin plastic shrink SOP ($300 \mathrm{mil}, 0.65-\mathrm{mm}$ pitch)

CONTENTS

1. PIN CONFIGURATION (Top View) 6
2. BLOCK DIAGRAM 7
3. PIN FUNCTION 8
3.1 Port Pins 8
3.2 Non-port Pins 9
3.3 Pin Input/Output Circuits 10
3.4 Recommended Connection of Unused Pins 11
4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE 12
4.1 Differences between Mk I Mode and Mk II Mode 12
4.2 Setting Method of Stack Bank Select Register (SBS) 13
5. MEMORY CONFIGURATION 14
6. PERIPHERAL HARDWARE FUNCTION 17
6.1 Digital I/O Port 17
6.2 Clock Generator 17
6.3 Basic Interval Timer/Watchdog Timer 19
6.4 Timer Counter 20
6.5 Bit Sequential Buffer 24
7. INTERRUPT FUNCTION AND TEST FUNCTION 25
8. STANDBY FUNCTION 27
9. RESET FUNCTION 28
9.1 Configuration and Operation Status of Reset Function 28
9.2 Watchdog Flag (WDF), Key Return Flag (KRF) 32
10. MASK OPTION 34
11. INSTRUCTION SETS 35
12. ELECTRICAL SPECIFICATIONS 44
13. CHARACTERISTIC CURVES (REFERENCE VALUES) 53
14. PACKAGE DRAWINGS 55
15. RECOMMENDED SOLDERING CONDITIONS 57
APPENDIX A. μ PD754202, 75F4264 FUNCTION LIST 58
APPENDIX B. DEVELOPMENT TOOLS 59
APPENDIX C. RELATED DOCUMENTS 62

1. PIN CONFIGURATION (Top View)

- 20-pin plastic SOP (300 mil, $1.27-\mathrm{mm}$ pitch)
μ PD754202GS-×××-BA5
μ PD754202GS(A)-×XX-BA5
- 20-pin plastic shrink SOP (300 mil, 0.65-mm pitch)
μ PD754202GS-×××-GJG
μ PD754202GS(A)-×xx-GJG

IC: Internally Connected (Connect directly to Vdd)

Pin Identification

IC	Internally Connected
INTO	External Vectored Interrupt
KR4 to KR7	Key Return 4 to 7
KRREN	Key Return Reset Enable
P30 to P33	Port 3
P60 to P63	Port 6
P70 to P73	Port 7
P80	Port 8
PTO0 to PTO2	Programmable Timer Output 0 to 2
RESET	Reset
Vdd	Positive Power Supply
Vss	Ground
X1, X2	System Clock (Ceramic/Crystal)

2. BLOCK DIAGRAM

3. PIN FUNCTION

3.1 Port Pins

Pin Name	Input/Output	Alternate Function	Function	$\begin{array}{\|c\|} \hline \text { 8-bit } \\ \text { I/O } \end{array}$	After Reset	I/O Circuit Type ${ }^{\text {Note }}$
P30	Input/Output	PTOO	Programmable 4-bit input/output port (PORT3). This port can be specified input/output bitwise. On-chip pull-up resistor can be specified by software in 4-bit units.	-	Input	E-B
P31		PTO1				
P32		PTO2				
P33		-				
P60	Input/Output	-	Programmable 4-bit input/output port (PORT6). This port can be specified input/output bit-wise. On-chip pull-up resistor can be specified by software in 4-bit units. Noise eliminator can be selected on P61/ INTO.	-	Input	(F)-A
P61		INT0				
P62		-				
P63		-				
P70	Input	KR4	4-bit input port (PORT7). On-chip pull-up resistor can be specified bit-wise (mask option).	-	Input	(B)-A
P71		KR5				
P72		KR6				
P73		KR7				
P80	Input/Output	-	1-bit input/output port (PORT8). On-chip pull-up resistor can be specified by software.	-	Input	(F)-A

Note Circled characters indicate Schmitt trigger input.

3.2 Non-port Pins

| Pin Name | Input/Output | Alternate
 Function | Function | | After Reset |
| :--- | :---: | :---: | :--- | :--- | :---: | | I/O Circuit |
| :---: |
| Type |

Note Circled characters indicate Schmitt trigger input.

3.3 Pin Input/Output Circuits

The μ PD754202 pin input/output circuits are shown schematically.
TYPE A

3.4 Recommended Connection of Unused Pins

Table 3-1. List of Recommended Connection of Unused Pins

Pin	Recommended Connecting Method
P30/PTO0	Input state : Independently connect to Vss or Vod via a resistor. Output state: Leave open.
P31/PTO1	
P32/PTO2	
P33	
P60	
P61/INT0	
P62	
P63	
P70/KR4	Connect to Vdo.
P71/KR5	
P72/KR6	
P73/KR7	
P80	Input state : Independently connect to Vss or Vdd via a resistor. Output state: Leave open.
KRREN	When this pin is connected to V_{DD}, internal reset signal is generated at the falling edge of the KRn pin in the STOP mode. When this pin is connected to Vss, internal reset signal is not generated even if the falling edge of KRn pin is detected in the STOP mode.
IC	Connect directly to Vdo.

4. SWITCHING FUNCTION BETWEEN Mk I MODE AND Mk II MODE

4.1 Differences between Mk I Mode and Mk II Mode

The μ PD754202 75XL CPU has the following two modes: Mk I and Mk II, either of which can be selected. The mode can be switched by bit 3 of the stack bank select register (SBS).

- Mk I mode : Instructions are compatible with the 75X Series. Can be used in the 75XL CPU with a ROM capacity of up to 16 Kbytes.
- Mk II mode: Incompatible with 75X Series. Can be used in all the 75XL CPU's including those products whose ROM capacity is more than 16 Kbytes.

Table 4-1. Differences between Mk I Mode and Mk II Mode

	Mk I mode	Mk II mode
Number of stack bytes for subroutine instructions	2 bytes	3 bytes
BRA !addr1 instruction CALLA !addr1 instruction	Not available	Available
CALL !addr instruction	3 machine cycles	4 machine cycles
CALLF !faddr instruction	2 machine cycles	3 machine cycles

Caution The Mk II mode supports a program area exceeding 16 Kbytes for the 75X and 75XL Series. Therefore, this mode is effective for enhancing software compatibility with products that have a program area of more than 16 Kbytes.
The number of stack bytes (usable area) during execution of subroutine call instructions increases by 1 byte per stack compared to the Mk I mode when the Mk II mode is selected.
However, when the CALL !addr and CALL !faddr instructions are used, the machine cycle becomes longer by 1 machine cycle. Therefore, if more emphasis is placed on RAM use efficiency and processing performance than on software compatibility, the Mk I mode should be used.

4.2 Setting Method of Stack Bank Select Register (SBS)

Switching between the Mk I mode and Mk II mode can be done by the SBS. Figure 4-1 shows the format. The SBS is set by a 4-bit memory manipulation instruction.
When using the Mk I mode, the SBS must be initialized to 1000B at the beginning of a program. When using the Mk II mode, it must be initialized to 0000B.

Figure 4-1. Stack Bank Select Register Format

Caution Because SBS. 3 is set to " 1 " after a RESET signal is generated, the CPU operates in the Mk I mode. When executing an instruction in the Mk II mode, set SBS. 3 to " 0 " to select the Mk II mode.

5. MEMORY CONFIGURATION

- Program Memory (ROM): 2048×8 bits (0000H-07FFH)
- Addresses 0000 H and 0001 H

Vector table wherein the program start address and the values set for the RBE and MBE at the time a RESET signal is generated are written. Reset start is possible from any address.

- Addresses 0002H to 000DH

Vector table wherein the program start address and values set for the RBE and MBE by the vectored interrupts are written. Interrupt service can start from any address.

- Addresses 0020H to 007FH

Table area referenced by the GETI instruction ${ }^{\text {Note }}$.

Note The GETI instruction realizes a 1-byte instruction on behalf of any 2-byte instruction, 3-byte instruction, or two 1-byte instructions. It is used to decrease the number of program steps.

- Data Memory (RAM)
- Data area: 128 words $\times 4$ bits ($000 \mathrm{H}-07 \mathrm{FH}$)
- Peripheral hardware area: 128 words $\times 4$ bits (F80H-FFFH)

Figure 5-1. Program Memory Map

Note Can be used in Mk II mode only.

Remark In addition to the above, a branch can be made to an address with only the low-order 8 bits of the PC changed by means of a BR PCDE or BR PCXA instruction.

Figure 5-2. Data Memory Map

6. PERIPHERAL HARDWARE FUNCTION

6.1 Digital I/O Port

The following two types of I/O ports are provided.

- CMOS Input (PORT7) : 4
- CMOS Input/Output (PORT3, 6, 8) : 9

Table 6-1. Types and Features of Digital Ports

Port Name	Function	Operation and Features	Remarks
PORT3	4-bit I/O	Can be set to input or output mode bit-wise.	Also used for PTO0 to PTO2 pins.
			Also used for INT0 pin.
PORT6	4-bit input	4-bit input only port On-chip pull-up resistor can be specified by mask option bit-wise.	Also used for KR4 to KR7 pins.
PORT7	1-bit I/O	Can be set to input or output mode bit-wise.	

6.2 Clock Generator

The clock generator provides the clock signals to the CPU and peripheral hardware. Its configuration is shown in Figure 6-1.

The operation of the clock generator is set with the processor clock control register (PCC). The instruction execution time can be changed as follows.

- $0.95,1.91,3.81,15.3 \mu$ s (system clock operating at 4.19 MHz)
- $0.67,1.33,2.67,10.7 \mu$ (system clock operating at 6.0 MHz)

Figure 6-1. Clock Generator Block Diagram

Note Instruction execution

Remarks 1. fx: System clock frequency
2. $\Phi=$ CPU clock
3. PCC: Processor Clock Control Register
4. One clock cycle (tcy) of the CPU clock is equal to one machine cycle of the instruction.

6.3 Basic Interval Timer/Watchdog Timer

The basic interval timer/watchdog timer has the following functions.
(a) Interval timer operation to generate a reference time interrupt
(b) Watchdog timer operation to detect a runaway of program and reset the CPU
(c) Selects and counts the wait time when the standby mode is released
(d) Reads the contents of counting

Figure 6-2. Basic Interval Timer/Watchdog Timer Block Diagram

Note Instruction execution

6.4 Timer Counter

The μ PD754202 incorporates three timer counters. Its configuration is shown in Figures 6-3, 6-4, and 6-5. The timer counter functions are shown below.
(a) Programmable interval timer operation
(b) Square wave output of any frequency to PTO0-PTO2 pins
(c) Count value read function

The timer counter can operate in the following four modes as set by the mode register.

Table 6-2. Mode List

Channel	Channel 0	Channel 1	Channel 2	TM11	TM10	TM21	TM20
Mode	0	\bigcirc	\bigcirc	0	0	0	0
8-bit timer counter mode	\times	\times	\bigcirc	0	0	0	1
PWM pulse generator mode	\times	\bigcirc	1	0	1	0	
16-bit timer counter mode	\times	O	0	0	1	1	
Carrier generator mode			0	0	0		

Remark \bigcirc : Available
x : Not available

Figure 6-3. Timer Counter (Channel 0) Block Diagram

Note Instruction execution

Caution Always set bits 0 and 1 to 0 when setting data to TMO.

Figure 6-4. Timer Counter (Channel 1) Block Diagram

Note Instruction execution

Figure 6-5. Timer Counter (Channel 2) Block Diagram

Caution Always set bit 7 to 0 when setting data to TC2.

6.5 Bit Sequential Buffer 16 Bits

The bit sequential buffer (BSB) is a special data memory for bit manipulation and the bit manipulation can be easily performed by changing the address specification and bit specification in sequence, therefore it is useful when processing large data bit-wise.

Figure 6-6. Bit Sequential Buffer Format

Remarks 1. In the pmem.@L addressing, the specified bit moves corresponding to the L register.
2. In the pmem.@L addressing, the BSB can be manipulated regardless of MBE/MBS specification.

7. INTERRUPT FUNCTION AND TEST FUNCTION

The μ PD754202 is provided with five types of interrupt sources and one test source to enable a variety of applications.

The interrupt control circuit of the μ PD754202 has the following functions.

(1) Interrupt function

- Vectored interrupt function for hardware control, enabling/disabling the interrupt acknowledgement by the interrupt enable flag (IE $\times \times \times$) and interrupt master enable flag (IME).
- Can set any interrupt start address.
- Multiple interrupts wherein the order of priority can be specified by the interrupt priority select register (IPS).
- Test function of interrupt request flag (IRQ×××). An interrupt generated can be checked by software.
- Release the standby mode. The interrupt to be released can be selected by the interrupt enable flag.

(2) Test function

- Test request flag (IRQ2) generation can be checked by software.
- Release the standby mode. The test source to be released can be selected by the test enable flag.

Figure 7-1. Interrupt Control Circuit Block Diagram

Notes 1. Noise eliminator (Standby release is disabled when noise eliminator is selected.)
2. The INT2 pin is not available. Interrupt request flag (IRQ2) is set at the KRn pin falling edge when $\operatorname{IM} 20=1$ and $\mathrm{IM} 21=0$.

8. STANDBY FUNCTION

In order to reduce power dissipation while a program is in standby mode, two types of standby modes (STOP mode and HALT mode) are provided for the μ PD754202.

Table 8-1. Operation Status in Standby Mode

Item Mode		STOP mode	HALT mode
Set instruction		STOP instruction	HALT instruction
Operation status	Clock generator	Operation stops.	Only the CPU clock Φ halts (oscillation continues).
	Basic interval timer/ watchdog timer	Operation stops.	Operable
	Timer counter	Operation stops.	Operable.
	External interrupt	The INTO is not operable ${ }^{\text {Note }}$. The INT2 is operable at the falling edge	KRn.
	CPU	Operation stops.	
Release signal		- Reset signal - Interrupt request signal sent from interrupt enabled hardware - System reset signal (key return reset) generated by KRn falling edge when KRREN $\mathrm{pin}=1$.	- Reset signal - Interrupt request signal sent from interrupt enabled hardware

Note Can operate only when the noise eliminator is not used $(\mathrm{IM} 02=1)$ by bit 2 of the edge detection mode register (IMO).

9. RESET FUNCTION

9.1 Configuration and Operation Status of Reset Function

There are three kinds of reset input: the external reset signal ($\overline{\text { RESET }}$), the reset signal sent from the basic interval/watchdog timer, and the reset signal generated by a falling edge signal from KRn in the STOP mode. When any of these reset signals is input, an internal reset signal is generated. The configuration is shown in Figure 9-1.

Figure 9-1. Configuration of Reset Function

The $\overline{\text { RESET }}$ signal generation initializes each hardware as listed in Table 9-1. Figure 9-2 shows the timing chart of the reset operation.

Figure 9-2. Reset Operation by RESET Signal Generation

Note The following 2 time modes can be specified with mask option.
$2^{17} / \mathrm{f}_{x}(21.8 \mathrm{~ms}$: at $6.0-\mathrm{MHz}$ operation, 31.3 ms : at $4.19-\mathrm{MHz}$ operation)
$2^{15} / \mathrm{f}_{x}(5.46 \mathrm{~ms}$: at $6.0-\mathrm{MHz}$ operation, 7.81 ms : at $4.19-\mathrm{MHz}$ operation)

Table 9-1. Hardware Status After Reset (1/3)

Hardware		$\overline{\mathrm{RESET}}$ signal generation in the standby mode	$\overline{\mathrm{RESET}}$ signal generation in operation
Program counter (PC)		Sets the low-order 3 bits of program memory's address 0000 H to the PC10-PC8 and the contents of address 0001 H to the PC7-PC0.	Sets the low-order 3 bits of program memory's address 0000 H to the PC10-PC8 and the contents of address 0001 H to the PC7-PC0.
PSW	Carry flag (CY)	Held	Undefined
	Skip flag (SK0-SK2)	0	0
	Interrupt status flag (IST0, IST1)	0	0
	Bank enable flag (MBE, RBE)	Sets the bit 6 of program memory's address 0000 H to the RBE and bit 7 to the MBE.	Sets the bit 6 of program memory's address 0000 H to the RBE and bit 7 to the MBE.
Stack pointer (SP)		Undefined	Undefined
Stack bank select register (SBS)		1000B	1000B
Data memory (RAM)		Held	Undefined
General-purpose register (X, A, H, L, D, E, B, C)		Held	Undefined
Bank select register (MBS, RBS)		0, 0	0, 0
Basic interval timer/watchdog timer	Counter (BT)	Undefined	Undefined
	Mode register (BTM)	0	0
	Watchdog timer enable flag (WDTM)	0	0
Timer counter(T0)	Counter (TO)	0	0
	Modulo register (TMODO)	FFH	FFH
	Mode register (TM0)	0	0
	TOE0, TOUT F/F	0, 0	0, 0
Timer counter (T1)	Counter (T1)	0	0
	Modulo register (TMOD1)	FFH	FFH
	Mode register (TM1)	0	0
	TOE1, TOUT F/F	0, 0	0, 0
Timer counter (T2)	Counter (T2)	0	0
	Modulo register (TMOD2)	FFH	FFH
	High-level period setting modulo register (TMOD2H)	FFH	FFH
	Mode register (TM2)	0	0
	TOE2, TOUT F/F	0, 0	0, 0
	REMC, NRZ, NRZB	0, 0, 0	0, 0, 0

Table 9-1. Hardware Status After Reset (2/3)

Hardware		$\overline{\text { RESET }}$ signal generation in the standby mode	$\overline{\mathrm{RESET}}$ signal generation in operation
Clock generator	Processor clock control register (PCC)	0	0
Interrupt function	Interrupt request flag (IRQ×××)	Reset (0)	Reset (0)
	Interrupt enable flag (IE×××)	0	0
	Interrupt master enable flag (IME)	0	0
	Interrupt priority selection register (IPS)	0	0
	INTO, 2 mode registers (IM0, IM2)	0, 0	0, 0
Digital port	Output buffer	Off	Off
	Output latch	Cleared (0)	Cleared (0)
	I/O mode registers (PMGA, PMGC)	0	0
	Pull-up resistor setting register (POGA, POGB)	0	0
Bit sequential buffer (BSB0-BSB3)		Held	Undefined

Table 9-1. Hardware Status After Reset (3/3)

Hardware	$\overline{\text { RESET signal }}$ generation by key return reset	$\overline{\mathrm{RESET}}$ signal generation in the standby mode	$\overline{\mathrm{RESET}}$ signal generation by WDT during operation	$\overline{\mathrm{RESET}}$ signal generation during operation
Watchdog flag (WDF)	Hold the previous status	0	1	0
Key return flag (KRF)	1	0	Hold the previous status	0

9.2 Watchdog Flag (WDF), Key Return Flag (KRF)

The WDF is set by a watchdog timer overflow signal, and the KRF is set by a reset signal generated by the KRn pins. As a result, by checking the contents of WDF and KRF, it is possible to know what kind of reset signal is generated.

As the WDF and KRF are cleared only by external signal or instruction execution, if once these flags are set, they are not cleared until an external signal is generated or a clear instruction is executed. Check and clear the contents of WDF and KRF after reset start operation by executing SKTCLR instruction and so on.

Table 9-2 lists the contents of WDF and KRF corresponding to each signal. Figure 9-3 shows the WDF operation in generating each signal, and Figure 9-4 shows the KRF operation in generating each signal.

Table 9-2. WDF and KRF Contents Correspond to Each Signal

Hardware	External $\overline{\text { RESET }}$ signal generation	Reset signal generation by watch- dog timer overflow	Reset signal generation by the KRn input	WDF clear instruction execution	KRF clear instruction execution
Watchdog flag (WDF)	0	1	Hold	0	Hold
Key return flag (KRF)	0	Hold	1	Hold	0

Figure 9-3. WDF Operation in Generating Each Signal

Figure 9-4. KRF Operation in Generating Each Signal

10. MASK OPTION

The μ PD754202 has the following mask options:

- Mask option of P70/KR4 through P73/KR7

Pull-up resistors can be connected to these pins.
(1) No pull-up resistor connection
(2) Connection of a $30-\mathrm{k} \Omega$ (typ.) pull-up resistor in 1-bit units.
(3) Connection of a $100-\mathrm{k} \Omega$ (typ.) pull-up resistor in 1 -bit units.

- Mask option of $\overline{\text { RESET }}$ pin

Pull-up resistors can be connected to these pins.
(1) No pull-up resistor connection
(2) Connection of a $100-\mathrm{k} \Omega$ (typ.) pull-up resistor.

- Standby function mask option

The wait time after RESET signal can be selected.
(1) $2^{17} / \mathrm{f}_{\mathrm{x}}\left(21.8 \mathrm{~ms}: \mathrm{f}_{\mathrm{x}}=6.0-\mathrm{MHz}\right.$ operation, $31.3 \mathrm{~ms}: \mathrm{f}_{\mathrm{x}}=4.19-\mathrm{MHz}$ operation)
(2) $2^{15} / \mathrm{f}_{\mathrm{x}}$ ($5.46 \mathrm{~ms}: \mathrm{f}_{\mathrm{x}}=6.0-\mathrm{MHz}$ operation, $7.81 \mathrm{~ms}: \mathrm{f}_{\mathrm{x}}=4.19-\mathrm{MHz}$ operation)

11. INSTRUCTION SETS

(1) Expression formats and description methods of operands

The operand is described in the operand column of each instruction in accordance with the description method for the operand expression format of the instruction. For details, refer to "RA75X ASSEMBLER PACKAGE USERS' MANUAL - LANGUAGE (EEU-1363)". If there are several elements, one of them is selected. Capital letters and the + and - symbols are key words and are described as they are. For immediate data, appropriate numbers and labels are described.
Instead of the labels such as mem, fmem, pmem, and bit, the symbols of the register flags can be described. However, there are restrictions in the labels that can be described for fmem and pmem. For details, see μ PD754202 User's Manual (U11132E).

Expression format	Description method
$\begin{aligned} & \text { reg } \\ & \text { reg1 } \end{aligned}$	$\begin{aligned} & \text { X, A, B, C, D, E, H, L } \\ & \text { X, B, C, D, E, H, L } \end{aligned}$
$\begin{aligned} & \text { rp } \\ & \text { rp1 } \\ & \text { rp2 } \\ & \text { rp' } \\ & \text { rp'1 } \end{aligned}$	XA, BC, DE, HL BC, DE, HL BC, DE XA, BC, DE, HL, XA', BC', DE', HL' BC, DE, HL, XA', BC', DE', HL'
rpa rpa1	$\begin{aligned} & \mathrm{HL}, \mathrm{HL}+, \mathrm{HL}-, \mathrm{DE}, \mathrm{DL} \\ & \mathrm{DE}, \mathrm{DL} \end{aligned}$
$\begin{aligned} & \text { n4 } \\ & \text { n8 } \end{aligned}$	4-bit immediate data or label 8-bit immediate data or label
mem bit	8-bit immediate data or label ${ }^{\text {Note }}$ 2-bit immediate data or label
fmem pmem	FBOH-FBFH, FFOH-FFFH immediate data or label FCOH-FFFH immediate data or label
addr addr1 (only in Mk II mode) caddr faddr	0000H-07FFH immediate data or label $0000 \mathrm{H}-07 \mathrm{FFH}$ immediate data or label 12-bit immediate data or label 11-bit immediate data or label
taddr	20H-7FH immediate data (where bit0 $=0$) or label
PORTn IE××× RBn MBn	PORT3, 6, 7, 8 IEBT, IETO-IET2, IE0, IE2 RB0-RB3 MB0, MB15

Note mem can be only used for even address in 8-bit data processing.
(2) Legend in explanation of operation

A	A register; 4-bit accumulator
B	: B register
C	: C register
D	: D register
E	: E register
H	: H register
L	: L register
X	: X register
XA	: XA register pair; 8-bit accumulator
BC	: BC register pair
DE	: DE register pair
HL	: HL register pair
XA'	: XA' extended register pair
BC'	: BC' extended register pair
DE'	: DE' extended register pair
HL'	: HL' extended register pair
PC	: Program counter
SP	: Stack pointer
CY	: Carry flag; bit accumulator
PSW	: Program status word
MBE	: Memory bank enable flag
RBE	: Register bank enable flag
PORTn	: Port n ($\mathrm{n}=3,6,7,8$)
IME	: Interrupt master enable flag
IPS	: Interrupt priority selection register
IExx×	: Interrupt enable flag
RBS	: Register bank selection register
MBS	: Memory bank selection register
PCC	: Processor clock control register
.	: Separation between address and bit
($\times \times$)	: The contents addressed by $\times \times$
$x \times H$: Hexadecimal data

(3) Explanation of symbols under addressing area column

*1	$\begin{aligned} & \text { MB }=\text { MBE } \cdot M B S \\ & (M B S=0,15) \end{aligned}$	Data memory addressing
*2	$\mathrm{MB}=0$	
*3	$\begin{aligned} \mathrm{MBE}=0: \mathrm{MB} & =0(000 \mathrm{H}-07 \mathrm{FH}) \\ \mathrm{MB} & =15(\mathrm{~F} 80 \mathrm{H}-\mathrm{FFFH}) \\ \mathrm{MBE}=1: \mathrm{MB} & =\mathrm{MBS}(\mathrm{MBS}=0,15) \end{aligned}$	
*4	$\mathrm{MB}=15$, fmem $=$ FBOH-FBFH, FFOH-FFFH	
*5	$\mathrm{MB}=15, \mathrm{pmem}=\mathrm{FCOH}-\mathrm{FFFH}$	
*6	addr $=0000 \mathrm{H}-07 \mathrm{FFH}$	Program memory addressing
*7	$\begin{aligned} \text { addr }= & (\text { Current PC) }-15 \text { to }(\text { Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to }(\text { Current PC) }+16 \end{aligned}$	
	$\begin{aligned} \text { addr1 }= & (\text { Current PC) }-15 \text { to }(\text { Current PC) }-1 \\ & (\text { Current PC) }+2 \text { to }(\text { Current PC })+16 \end{aligned}$	
*8	caddr $=0000 \mathrm{H}-07 \mathrm{FFH}$	
*9	faddr $=0000 \mathrm{H}-07 \mathrm{FFH}$	
*10	taddr $=0020 \mathrm{H}-007 \mathrm{FH}$	
*11	addr1 $=0000 \mathrm{H}-07 \mathrm{FFH}$	

Remarks 1. MB indicates memory bank that can be accessed.
2. In *2, MB $=0$ independently of how MBE and MBS are set.
3. In * 4 and ${ }^{*} 5, M B=15$ independently of how MBE and MBS are set.
4. *6 to *11 indicate the areas that can be addressed.

(4) Explanation of number of machine cycles column

S denotes the number of machine cycles required by skip operation when a skip instruction is executed. The value of S varies as follows.

- When no skip is made: $\mathrm{S}=0$
- When the skipped instruction is a 1 - or 2-byte instruction: $S=1$
- When the skipped instruction is a 3-byte instruction ${ }^{\text {Note }}: ~ S=2$

Note 3-byte instruction: BR !addr, BRA !addr1, CALL !addr, or CALLA !addr1 instruction

Caution The GETI instruction is skipped in one machine cycle.

One machine cycle is equal to one cycle of the CPU clock (= tcy); time can be selected from among four types by setting PCC.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Transfer instruction	MOV	A, \#n4	1	1	$\mathrm{A} \leftarrow \mathrm{n} 4$		String effect A
		reg1, \#n4	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{n} 4$		
		XA, \#n8	2	2	$\mathrm{XA} \leftarrow \mathrm{n} 8$		String effect A
		HL, \#n8	2	2	$\mathrm{HL} \leftarrow \mathrm{n} 8$		String effect B
		rp2, \#n8	2	2	$\mathrm{rp} 2 \leftarrow \mathrm{n} 8$		
		A, @HL	1	1	$\mathrm{A} \leftarrow(\mathrm{HL})$	*1	
		A, @HL+	1	2+S	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	$2+$ S	$\mathrm{A} \leftarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	$\mathrm{A} \leftarrow(\mathrm{rpa} 1)$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftarrow(\mathrm{HL})$	*1	
		@HL, A	1	1	$(\mathrm{HL}) \leftarrow \mathrm{A}$	*1	
		@HL, XA	2	2	$(\mathrm{HL}) \leftarrow \mathrm{XA}$	*1	
		A, mem	2	2	$\mathrm{A} \leftarrow(\mathrm{mem})$	*3	
		XA, mem	2	2	$X A \leftarrow(\mathrm{mem})$	*3	
		mem, A	2	2	$($ mem $) \leftarrow \mathrm{A}$	*3	
		mem, XA	2	2	$($ mem $) \leftarrow \mathrm{XA}$	*3	
		A, reg	2	2	$\mathrm{A} \leftarrow \mathrm{reg}$		
		XA, rp'	2	2	$\mathrm{XA} \leftarrow \mathrm{rp}{ }^{\prime}$		
		reg1, A	2	2	$\mathrm{reg} 1 \leftarrow \mathrm{~A}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{XA}$		
	XCH	A, @HL	1	1	A $\leftrightarrow(\mathrm{HL})$	*1	
		A, @HL+	1	2+S	A $\leftrightarrow(H L)$, then $L \leftarrow L+1$	*1	$\mathrm{L}=0$
		A, @HL-	1	2+S	A $\leftrightarrow(\mathrm{HL})$, then $\mathrm{L} \leftarrow \mathrm{L}-1$	*1	$\mathrm{L}=\mathrm{FH}$
		A, @rpa1	1	1	$\mathrm{A} \leftrightarrow(\mathrm{rpa} 1)$	*2	
		XA, @HL	2	2	$\mathrm{XA} \leftrightarrow(\mathrm{HL})$	*1	
		A, mem	2	2	$\mathrm{A} \leftrightarrow(\mathrm{mem})$	*3	
		XA, mem	2	2	$X A \leftrightarrow(\mathrm{mem})$	*3	
		A, reg1	1	1	$\mathrm{A} \leftrightarrow \mathrm{reg} 1$		
		XA, rp'	2	2	$X A \leftrightarrow r p^{\prime}$		
Table reference instructions	MOVT	XA, @PCDE	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{10-8+} \mathrm{DE}\right)_{\text {Roм }}$		
		XA, @PCXA	1	3	$\mathrm{XA} \leftarrow\left(\mathrm{PC}_{10-8+} \mathrm{XA}\right)_{\text {Rom }}$		
		XA, @BCDE	1	3	$\mathrm{XA} \leftarrow(\mathrm{BCDE})_{\text {rom }}{ }^{\text {Note }}$	*6	
		XA, @BCXA	1	3	$\mathrm{XA} \leftarrow(\mathrm{BCXA})_{\text {rom }}{ }^{\text {Note }}$	*6	

Note "0" must be set to the B register.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Bit transfer instructions	MOV1	CY, fmem. bit	2	2	$\mathrm{CY} \leftarrow$ (fmem. bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow\left(\mathrm{H}+\right.$ mem $\left._{3-0} . \mathrm{bit}\right)$	*1	
		fmem.bit, CY	2	2	(fmem.bit) $\leftarrow C Y$	*4	
		pmem.@L, CY	2	2	$\left(\right.$ pmem $_{\left.7-2+L_{3-2} . \operatorname{bit}\left(\mathrm{L}_{1-0}\right)\right) \leftarrow \mathrm{CY}}$	*5	
		@H+mem.bit, CY	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0 . \mathrm{bit}}$) $\leftarrow \mathrm{CY}$	*1	
Operation instructions	ADDS	A, \#n4	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}+\mathrm{n} 4$		carry
		XA, \#n8	2	2+S	$X A \leftarrow X A+n 8$		carry
		A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}+(\mathrm{HL})$	*1	carry
		XA, rp'	2	2+S	$X A \leftarrow X A+r p^{\prime}$		carry
		rp'1, XA	2	$2+$ S	rp '1 $\leftarrow \mathrm{rp} \mathrm{p}^{\prime} 1+\mathrm{XA}$		carry
	ADDC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}+(\mathrm{HL})+\mathrm{CY}$	*1	
		XA, rp'	2	2	$X A, C Y \leftarrow X A+r p \prime+C Y$		
		rp'1, XA	2	2	$r p^{\prime} 1, \mathrm{CY} \leftarrow \mathrm{rp}$ '1+XA+CY		
	SUBS	A, @HL	1	1+S	$\mathrm{A} \leftarrow \mathrm{A}-(\mathrm{HL})$	*1	borrow
		XA, rp'	2	2+S	$X A \leftarrow X A-r p \prime$		borrow
		rp'1, XA	2	2+S	rp '1 $\leftarrow \mathrm{rp}$ '1-XA		borrow
	SUBC	A, @HL	1	1	$\mathrm{A}, \mathrm{CY} \leftarrow \mathrm{A}-(\mathrm{HL})-\mathrm{CY}$	*1	
		XA, rp'	2	2	$X A, C Y \leftarrow X A-r p '-C Y$		
		rp'1, XA	2	2	$r p^{\prime} 1, \mathrm{CY} \leftarrow \mathrm{rp}$ '1-XA-CY		
	AND	A, \#n4	2	2	$\mathrm{A} \leftarrow \mathrm{A} \wedge \mathrm{n} 4$		
		A, @HL	1	1	$A \leftarrow A \wedge(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \wedge r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp} \mathrm{p}^{\prime} 1 \wedge \mathrm{XA}$		
	OR	A, \#n4	2	2	$A \leftarrow A \vee n 4$		
		A, @HL	1	1	$A \leftarrow A \vee(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \vee r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 $\vee \vee \mathrm{XA}$		
	XOR	A, \#n4	2	2	$A \leftarrow A \forall n 4$		
		A, @HL	1	1	$A \leftarrow A \forall(H L)$	*1	
		XA, rp'	2	2	$X A \leftarrow X A \forall r p^{\prime}$		
		rp'1, XA	2	2	rp '1 $\leftarrow \mathrm{rp}$ '1 $\forall \mathrm{XA}$		
Accumulator manipulation instructions	RORC	A	1	1	$\mathrm{CY} \leftarrow \mathrm{A}_{0}, \mathrm{~A}_{3} \leftarrow \mathrm{CY}, \mathrm{A}_{\mathrm{n}-1} \leftarrow \mathrm{~A}_{n}$		
	NOT	A	2	2	$\mathrm{A} \leftarrow \overline{\mathrm{A}}$		

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Increment and Decrement instructions	INCS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}+1$		$\mathrm{reg}=0$
		rp1	1	1+S	$\mathrm{rp} 1 \leftarrow \mathrm{rp} 1+1$		$\mathrm{rp} 1=00 \mathrm{H}$
		@HL	2	2+S	$(\mathrm{HL}) \leftarrow(\mathrm{HL})+1$	*1	$(\mathrm{HL})=0$
		mem	2	2+S	$($ mem $) \leftarrow($ mem $)+1$	*3	$(\mathrm{mem})=0$
	DECS	reg	1	1+S	$\mathrm{reg} \leftarrow \mathrm{reg}-1$		$\mathrm{reg}=\mathrm{FH}$
		rp'	2	$2+$ S	$\mathrm{rp}{ }^{\prime} \leftarrow \mathrm{rp}{ }^{\prime}-1$		$\mathrm{rp}{ }^{\prime}=\mathrm{FFH}$
Comparison instruction	SKE	reg, \#n4	2	2+S	Skip if reg $=$ n4		$\mathrm{reg}=\mathrm{n} 4$
		@HL, \#n4	1	$2+S$	Skip if (HL) $=\mathrm{n} 4$	*1	$(\mathrm{HL})=\mathrm{n} 4$
		A, @HL	2	1+S	Skip if $A=(H L)$	*1	$\mathrm{A}=(\mathrm{HL})$
		XA, @HL	2	$2+$ S	Skip if $X A=(H L)$	*1	$X A=(H L)$
		A, reg	2	$2+S$	Skip if $\mathrm{A}=$ reg		$\mathrm{A}=\mathrm{reg}$
		XA, rp'	2	2+S	Skip if $X A=r p^{\prime}$		$X A=r p \prime$
Carry flag manipulation instruction	SET1	CY	1	1	$C Y \leftarrow 1$		
	CLR1	CY	1	1	$\mathrm{CY} \leftarrow 0$		
	SKT	CY	1	1+S	Skip if $\mathrm{CY}=1$		$C Y=1$
	NOT1	CY	1	1	$\mathrm{CY} \leftarrow \overline{\mathrm{CY}}$		
Memory bit manipulation instructions	SET1	mem.bit	2	2	(mem.bit) $\leftarrow 1$	*3	
		fmem.bit	2	2	$($ fmem. bit) $\leftarrow 1$	*4	
		pmem.@L	2	2		*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0}$.bit $) \leftarrow 1$	*1	
	CLR1	mem.bit	2	2	(mem.bit) $\leftarrow 0$	*3	
		fmem.bit	2	2	(fmem. bit) $\leftarrow 0$	*4	
		pmem.@L	2	2		*5	
		@H+mem.bit	2	2	$\left(\mathrm{H}+\right.$ mem $_{3-0}$.bit $) \leftarrow 0$	*1	
	SKT	mem.bit	2	$2+$ S	Skip if (mem. bit) $=1$	*3	$($ mem.bit $)=1$
		fmem.bit	2	$2+$ S	Skip if (fmem.bit) $=1$	*4	$($ fmem. bit $)=1$
		pmem.@L	2	2+S	Skip if $\left(\right.$ pmem $\left.{ }_{7-2+L_{3-2} . \text { bit }}\left(L_{1-0}\right)\right)=1$	*5	$($ pmem.@L) $=1$
		@H+mem.bit	2	2+S	Skip if $\left(\mathrm{H}+\right.$ mem $_{3-\text {-0. }}$ bit $)=1$	*1	$(@ H+m e m$. bit $)=1$
	SKF	mem.bit	2	2+S	Skip if (mem. bit) $=0$	*3	(mem.bit) $=0$
		fmem.bit	2	2+S	Skip if (fmem.bit) $=0$	*4	$($ fmem. bit $)=0$
		pmem.@L	2	2+S	Skip if $\left(\right.$ pmem ${ }_{7-2+\text { L }}$-2.2.bit $\left.\left(L_{1-0}\right)\right)=0$	*5	$($ pmem.@L) $=0$
		@H+mem.bit	2	$2+$ S	Skip if ($\mathrm{H}+$ mem $_{3-\text { - }}$. bit) $=0$	*1	$(@ H+m e m$. bit $)=0$

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Memory bit manipulation instructions	SKTCLR	fmem.bit	2	2+S	Skip if (fmem. bit) = 1 and clear	*4	$($ fmem. bit $)=1$
		pmem.@L	2	2+S		*5	$($ pmem.@L) $=1$
		@H+mem.bit	2	2+S	Skip if ($\mathrm{H}+$ mem $_{3-\text {-. }}$ bit) $=1$ and clear	*1	(@H+mem.bit) = 1
	AND1	CY, fmem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge$ (fmem. bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \wedge\left(\mathrm{H}+\right.$ mem $_{3-0 . \mathrm{bit}}{ }^{\text {a }}$	*1	
	OR1	CY, fmem. bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee$ (fmem. bit)	*4	
		CY, pmem.@L	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\right.$ pmem $_{\left.7-2+\mathrm{L}_{3-2} . \mathrm{bit}\left(\mathrm{L}_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \vee\left(\mathrm{H}+\right.$ mem $_{3-0 . \text { bit }}$)	*1	
	XOR1	CY, fmem.bit	2	2	CY $\leftarrow \mathrm{CY} \forall$ (fmem. bit)	*4	
		CY, pmem.@L	2	2	CY $\leftarrow C Y \forall\left(\right.$ pmem $_{\left.7-2+L^{2}-2 . \operatorname{bit}\left(L_{1-0}\right)\right)}$	*5	
		CY, @H+mem.bit	2	2	$\mathrm{CY} \leftarrow \mathrm{CY} \forall\left(\mathrm{H}+\mathrm{mem}_{3}\right.$-0.bit $)$	*1	
Branch instructions	$\mathrm{BR}^{\text {Note }} 1$	addr	-	-	$\left\lvert\, \begin{aligned} & \mathrm{PC}_{10-0} \leftarrow \text { addr } \\ & \left(\begin{array}{l} \text { Select appropriate instruction among } \\ \text { BR !addr, BRCB !caddr, and BR \$addr } \\ \text { according to the assembler being used. } \end{array}\right) \end{aligned}\right.$	*6	
		addr1	-	-	$\left(\begin{array}{l}\mathrm{PC}_{10-0} \leftarrow \text { addr1 } \\ \left(\begin{array}{l}\text { Select appropriate instruction among } \\ \text { BR laddr, BRA laddr1, BRCB !caddr, and } \\ \text { BR \$addr1 according to the assembler } \\ \text { being used. }\end{array}\right)\end{array}\right.$	*11	
		!addr	3	3	$\mathrm{PC}_{10-0} \leftarrow$ addr	*6	
		\$addr	1	2	$\mathrm{PC}_{10-0} \leftarrow$ addr	*7	
		\$addr1	1	2	$\mathrm{PC}_{10-0} \leftarrow$ addr1		
		PCDE	2	3	$\mathrm{PC}_{10-0} \leftarrow \mathrm{PC}_{10-8}+\mathrm{DE}$		
		PCXA	2	3	$\mathrm{PC}_{10-0} \leftarrow \mathrm{PC}_{10.8} \mathrm{XA}$		
		BCDE	2	3	$\mathrm{PC}_{10-0} \leftarrow \mathrm{BCDE}^{\text {Note } 2}$	*6	
		BCXA	2	3	$\mathrm{PC}_{10-0} \leftarrow \mathrm{BCXA}^{\text {Note }} 2$	*6	
	BRA ${ }^{\text {Note }} 1$	laddr1	3	3	$\mathrm{PC}_{10-0} \leftarrow$ addr1	*11	
	BRCB	!caddr	2	2	$\mathrm{PC}_{10-0} \leftarrow$ caddr $^{10-0}$	*8	

Notes 1. The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the MK I mode.
2. " 0 " must be set to the B register.

Note The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.

Instruction group	Mnemonic	Operand	Number of bytes	Number of machine cycles	Operation	Addressing area	Skip condition
Interrupt control instructions	EI		2	2	IME (IPS.3) $\leftarrow 1$		
		IExxx	2	2	$\operatorname{IEx} \times \times \leftarrow 1$		
	DI		2	2	IME (IPS.3) $\leftarrow 0$		
		IExxx	2	2	$1 \mathrm{E} \times \times \times \leftarrow 0$		
Input/output instructions	$\mathrm{IN}^{\text {Note }} 1$	A, PORTn	2	2	A \leftarrow PORTn $\quad(\mathrm{n}=3,6,7,8)$		
	OUTNote 1	PORTn, A	2	2	PORTn $\leftarrow 4 \quad(\mathrm{n}=3,6,8)$		
CPU control instructions	HALT		2	2	Set HALT Mode (PCC. $2 \leftarrow 1$)		
	STOP		2	2	Set STOP Mode (PCC. $3 \leftarrow 1$)		
	NOP		1	1	No Operation		
Special instructions	SEL	RBn	2	2	RBS $\leftarrow \mathrm{n} \quad(\mathrm{n}=0-3)$		
		MBn	2	2	MBS $\leftarrow \mathrm{n} \quad(\mathrm{n}=0,15)$		
	GET/ ${ }^{\text {Notes } 2,3}$	taddr	1	3	- When TBR instruction $\mathrm{PC}_{10-0} \leftarrow(\text { taddr })_{2-0}+($ taddr +1$)$	*10	
					$\begin{aligned} & \text { - When TCALL instruction } \\ & \text { (SP-4) (SP-1) (SP-2) } \leftarrow 0, \mathrm{PC}_{10-0} \\ & (\mathrm{SP}-3) \leftarrow \mathrm{MBE}, \mathrm{RBE}, 0,0 \\ & \mathrm{PC}_{10-0} \leftarrow(\text { taddr }) 2-0+(\text { taddr }+1) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-4 \end{aligned}$		
					- When instruction other than TBR and TCALL instructions (taddr) (taddr +1) instruction is executed.		Depending on the reference instruction
				3	- When TBR instruction $\mathrm{PC}_{10-0} \leftarrow($ taddr $) 2-0+($ taddr +1$)$	*10	
				4	- When TCALL instruction $\begin{aligned} & (\mathrm{SP}-6)(\mathrm{SP}-3)(\mathrm{SP}-4) \leftarrow \mathrm{PC}_{10-0} \\ & (\mathrm{SP}-5) \leftarrow 0,0,0,0 \\ & (\mathrm{SP}-2) \leftarrow \times, \times, \mathrm{MBE}, \mathrm{RBE} \\ & \mathrm{PC}_{10-0} \leftarrow(\text { taddr }) \\ & \mathrm{SP} \leftarrow \mathrm{SP}-6 \end{aligned}$		
				3	- When instruction other than TBR and TCALL instructions (taddr) (taddr +1) instruction is executed.		Depending on the reference instruction

Notes 1. While the IN instruction and OUT instruction are being executed, MBS must be set to 0 , or MBE must be set to 1 and MBS must be set to 15 .
2. The TBR and TCALL instructions are the table definition assembler pseudo instructions of the GETI instruction.
3. The above operations in the shaded boxes can be performed only in the Mk II mode. The other operations can be performed only in the Mk I mode.
12. ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions		Ratings	Unit
Supply voltage	Vdd			-0.3 to +7.0	V
Input voltage	V			-0.3 to $V_{\text {DD }}+0.3$	V
Output voltage	Vo			-0.3 to $V_{D D}+0.3$	V
Output current, high	IOH	Per pin	Pins except P32	-10	mA
			Only P32	-20	mA
		All pins total		-30	mA
Output current, low	IoL	Per pin		20	mA
		All pins total		90	mA
Operating ambient temperature	TA			-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$			-65 to +150	${ }^{\circ} \mathrm{C}$

Caution If any of the parameters exceeds the absolute maximum ratings, even momentarily, the quality of the product may be impaired. The absolute maximum ratings are values that may physically damage the products. Be sure to use the products within the ratings.

Capacitance $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} D=0 \mathrm{~V}\right)$

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Input capacitance	Cin	$\mathrm{f}=1 \mathrm{MHz}$ Unmeasured pins returned to 0 V			15	pF
Output capacitance	Cout				15	pF
I/O capacitance	Cıo				15	pF

System Clock Oscillator Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=1.8$ to 6.0 V)

Resonator	Recommended Constant	Parameter	Testing Conditions	MIN.	TYP.	MAX.	Unit
Ceramic resonator		Oscillation frequency (fx) Note 1		1.0		6.0 ${ }^{\text {Note } 2}$	MHz
		Oscillation stabilization time ${ }^{\text {Note } 3}$	After Vod reaches MIN. value of oscillation voltage range			4	ms
Crystal resonator		Oscillation frequency (fx) ${ }^{\text {Note }} 1$		1.0		6.0 ${ }^{\text {Note } 2}$	MHz
		Oscillation stabilization time ${ }^{\text {Note } 3}$	$V_{\text {DD }}=4.5$ to 6.0 V			10	ms
						30	ms
External clock	$\begin{array}{\|ll\|} \mathrm{X} 1 & \mathrm{X} 2 \\ \hline \end{array}$	X1 input frequency (fx) Note 1		1.0		6.0 ${ }^{\text {Note } 2}$	MHz
	Δ	X1 input high- and low-level widths (txh, txL)		83.3		500	ns

Notes 1. Only the oscillator characteristics are shown. For the instruction execution time, refer to AC Characteristics.
2. If the oscillation frequency is $4.19 \mathrm{MHz}<\mathrm{fx} \leq 6.0 \mathrm{MHz}$ at $1.8 \mathrm{~V} \leq \mathrm{VDD}<2.7 \mathrm{~V}$, set the processor clock control register (PCC) to a value other than 0011. If the PCC is set to 0011, the rated machine cycle time of $0.95 \mu \mathrm{~s}$ is not satisfied.
3. The oscillation stabilization time is the time required for oscillation to stabilize after application of VDD, or after the STOP mode has been released.

Caution When using the oscillation circuit of the system clock, wire the portion enclosed in dotted lines in the figures as follows to avoid adverse influences on the wiring capacitance:

- Keep the wire length as short as possible.
- Do not cross other signal lines.
- Do not route the wiring in the vicinity of lines though which a high fluctuating current flows.
- Always keep the ground point of the capacitor of the oscillation circuit as the same potential as Vss.
- Do not connect the power source pattern through which a high current flows.
- Do not extract signals from the oscillation circuit.

RECOMMENDED CIRCUIT CONSTANTS

Ceramic Resonator ($\mathrm{T}_{\mathrm{A}}=-20$ to $+80^{\circ} \mathrm{C}$)

Manufacturer	Product	Frequency (MHz)	Circuit constant (pF)		Oscillation voltage range (VDD)		Remark
			C1	C2	MIN.(V)	MAX.(V)	
Murata Mfg. Co., Ltd.	CSB1000J ${ }^{\text {Note }}$	1.0	100	100	2.0	6.0	$\mathrm{Rd}=2.2 \mathrm{k} \Omega$
	CSA2.00MG040	2.0	100	100			-
	CST2.00MG040		-	-			Capacitor incorporated
	CSA4.00MG	4.0	30	30			-
	CST4.00MGW		-	-			Capacitor incorporated
	CSA4.00MGU		30	30	1.8		-
	CST4.00MGWU		-	-			Capacitor incorporated
	CSA4.19MG	4.19	30	30	2.0		-
	CST4.19MGW		-	-			Capacitor incorporated
	CSA4.19MGU		30	30	1.8		-
	CST4.19MGWU		-	-			Capacitor incorporated
	CSA6.00MG	6.0	30	30	2.9		-
	CST6.00MGW		-	-			Capacitor incorporated
	CSA6.00MGU		30	30	2.4		-
	CST6.00MGWU		-	-			Capacitor incorporated
Kyocera Corp.	KBR-1000F/Y	1.0	100	100	1.8	6.0	-
	KBR-2.0MS	2.0	68	68	2.0		
	KBR-4.19MKC	4.19	-	-	1.8		Capacitor incorporated
	KBR-4.19MSB		33	33			-
	PBRC4.19A						
	PBRC4.19B		-	-			Capacitor incorporated
	KBR-6.0MKC	6.0					
	KBR-6.0MSB		33	33			-
	PBRC6.00A						
	PBRC6.00B		-	-			Capacitor incorporated

Note If using Murata's CSB1000J (1.0 MHz) as the ceramic resonator, a limited resistor ($\mathrm{Rd}=2.2 \mathrm{k} \Omega$) is required (see figure below). If using any other recommended resonator, no limited resistor is needed.

Caution The oscillation circuit constants and oscillation voltage range indicate conditions for stable oscillation, but do not guarantee oscillation frequency accuracy. If oscillation frequency accuracy is required for actual circuits, it is necessary to adjust the oscillation frequency of the resonator in the circuit. Please inquire directly to the maker of the resonator for data as needed.

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V)

Parameter	Symbol	Conditions		MIN.	TYP.	MAX.	Unit
High-level output current	Іон	Per pin	Pins except P32			-5	mA
			Only P32, $\begin{aligned} & V_{D D}=3.0 \mathrm{~V}, \\ & V_{O H}=V_{D D}-2.0 \mathrm{~V} \end{aligned}$		-7	-15	mA
		All pins total				-20	mA
Low-level output current	loL	Per pin				15	mA
		All pins total				45	mA
High-level input voltage	$\mathrm{V}_{\mathrm{H} 1}$	Port 3	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0.7 Vdo		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDD		VDD	V
	V ${ }^{\text {H2 }}$	Ports 6-8, KRREN, RESET	$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}} \leq 6.0 \mathrm{~V}$	0.8 VDd		VDD	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.9 VDd		VDD	V
	V ${ }_{\text {н }}$	X1		VdD-0.1		VDD	V
Low-level input voltage	VIL1	Port 3	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	0		0.3 Vdd	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL2	Ports 6-8, KRREN, RESET	$2.7 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	0		0.2 Vdd	V
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0		0.1 VDD	V
	VIL3	X1		0		0.1	V
High-level output voltage	V OH	$\mathrm{V}_{\text {DD }}=4.5$ to 6.0 V , Іон $=-1.0 \mathrm{~mA}$		VDD-1.0			V
		$\mathrm{V}_{\mathrm{dD}}=1.8$ to 6.0 V , $\mathrm{IoH}=-100 \mu \mathrm{~A}$		VdD-0.5			V
Low-level output voltage	Vol	$V_{D D}=4.5$ to 6.0 V	Port 3, lol $=15 \mathrm{~mA}$		0.6	2.0	V
			Ports 6, 8, $\mathrm{loL}=1.6 \mathrm{~mA}$			0.4	V
		$\mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V , lol $=400 \mu \mathrm{~A}$				0.5	V
High-level input leak current	ILIH1	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {DD }}$	Pins except X 1			3.0	$\mu \mathrm{A}$
	ІІІн2		X1			20	$\mu \mathrm{A}$
Low-level input leak current	ILIL1	V IN $=0 \mathrm{~V}$	Pins except X 1			-3.0	$\mu \mathrm{A}$
	ILIL2		X1			-20	$\mu \mathrm{A}$
High-level output leak current	ILOH	Vout $=$ VDD				3.0	$\mu \mathrm{A}$
Low-level output leak current	ILol	Vout $=0 \mathrm{~V}$				-3.0	$\mu \mathrm{A}$
On-chip pull-up resistance	RL1	V IN $=0 \mathrm{~V}$	Ports 3, 6, 8	50	100	200	$\mathrm{k} \Omega$
	RL2		Port 7 (mask option)	15	30	60	$k \Omega$
				50	100	200	$k \Omega$
			$\overline{\text { RESET }}$ (mask option)	50	100	200	$\mathrm{k} \Omega$

DC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V)

Parameter	Symbol	Test Conditions			MIN.	TYP.	MAX.	Unit
Supply current ${ }^{\text {Note } 1}$	IdD1	4.19 MHz Crystal resonator $\mathrm{C} 1=\mathrm{C} 2=22 \mathrm{pF}$	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$ Note 2			1.5	5.0	mA
			$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$ Note 3			0.23	1.0	mA
	IdD2		HALT mode	$V_{D D}=5.0 \mathrm{~V} \pm 10 \%$		0.64	3.0	mA
				$V_{D D}=3.0 \mathrm{~V} \pm 10 \%$		0.20	0.9	mA
	IdD3	$\mathrm{X} 1=0 \mathrm{~V}$ STOP mode	$V_{D D}=1.8$ to 6.0 V				5	$\mu \mathrm{A}$
				$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			1	$\mu \mathrm{A}$
			$V_{\text {dD }}=3.0 \mathrm{~V} \pm 10 \%$			0.1	3	$\mu \mathrm{A}$
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40 \text { to } \\ & +40^{\circ} \mathrm{C} \end{aligned}$		0.1	1	$\mu \mathrm{A}$

Notes 1. Does not include current fed to on-chip pull-up resistor.
2. When processor clock control register (PCC) is set to 0011, during high-speed mode.
3. When PCC is set to 0000, during low-speed mode.

AC Characteristics ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=1.8$ to 6.0 V)

Parameter	Symbol	Test Conditions		MIN.	TYP.	MAX.	Unit
CPU clock cycle time ${ }^{\text {Note } 1}$ (Minimum instruction execution time $=1$ machine cycle)	tcy	When system clock is used	$2.7 \mathrm{~V} \leq \mathrm{V}_{\text {DD }} \leq 6.0 \mathrm{~V}$	0.67		64.0	$\mu \mathrm{s}$
			$1.8 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD}}<2.7 \mathrm{~V}$	0.95		64.0	$\mu \mathrm{S}$
Interrupt input high- and low-level widths	tinth, tintL	INT0	$\mathrm{IM} 02=0$	Note 2			$\mu \mathrm{s}$
			$\mathrm{IM} 02=1$	10			$\mu \mathrm{S}$
		KR4-KR7		10			$\mu \mathrm{s}$
$\overline{\text { RESET }}$ low-level width	trsL			10			$\mu \mathrm{s}$

Notes 1. The CPU clock (Φ) cycle time (minimum instruction execution time) is determined by the oscillation frequency of the connected resonator (and external clock) and the processor clock control register (PCC). The figure on the right shows the cycle time toy characteristics against the supply voltage Vod when the system clock is used.
2. 2 tcy or $128 / f x$ depending on the setting of the interrupt mode register (IM0).

AC Timing Test Points (Excluding X1 Input)

Clock Timing

Interrupt Input Timing

$\overline{\text { RESET Input Timing }}$

Data Memory STOP Mode Low-Supply Voltage Data Retention Characteristics ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $\mathbf{+ 8 5}{ }^{\circ} \mathrm{C}$)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Release signal set time	tsrel		0			$\mu \mathrm{s}$
Oscillation stabilization wait time ${ }^{\text {Note } 1}$	twait	Release by $\overline{\text { RESET }}$		Note 2		ms
		Release by interrupt request		Note 3		ms

Notes 1. The oscillation stabilization wait time is the time during which the CPU operation is stopped to avoid unstable operation at oscillation start.
2. $2^{17} / f x$ and $2^{15} / f x$ can be selected with mask option.
3. Depends on setting of basic interval timer mode register (BTM) (see table below).

BTM3	BTM2	BTM1	BTM0	Wait Time	
				When $\mathrm{fx}=4.19 \mathrm{MHz}$	When $\mathrm{fx}=6.0 \mathrm{MHz}$
-	0	0	0	20/fx (Approx. 250 ms)	220/fx (Approx. 175 ms)
-	0	1	1	217/fx (Approx. 31.3 ms)	$2^{17} / \mathrm{fx}$ (Approx. 21.8 ms)
-	1	0	1	215/fx (Approx. 7.81 ms)	$2^{15} / \mathrm{fx}$ (Approx. 5.46 ms)
-	1	1	1	$2^{13} / \mathrm{fx}$ (Approx. 1.95 ms)	$2^{13 / \mathrm{fx}}$ (Approx. 1.37 ms)

Data Retention Timing (on releasing STOP mode by RESET)

Data Retention Timing (Standby release signal: on releasing STOP mode by interrupt signal)

13. CHARACTERISTIC CURVES (REFERENCE VALUES)

Idd vs Vdd (System clock: 6.0-MHz crystal resonator)

Idd vs Vdd (System clock: 4.19-MHz crystal resonator)

14. PACKAGE DRAWINGS

20 PIN PLASTIC SOP (300 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.
detail of lead end

ITEM	MILLIMETERS	INCHES
A	13.00 MAX.	0.512 MAX.
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.40_{-0.05}^{+0.10}$	$0.016_{-0.003}^{+0.004}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
H	7.7 ± 0.3	0.303 ± 0.012
I	5.6	0.220
J	1.1	0.043
K	$0.20_{-0.05}^{+0.10}$	$0.008_{-0.002}^{+0.004}$
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3^{\circ}{ }_{-3^{\circ}}{ }^{\circ}$	$3_{-3^{\circ}}^{\circ}$
		P20GM-50-300B, C-4

20 PIN PLASTIC SHRINK SOP (300 mil)

NOTE

Each lead centerline is located within 0.12 mm (0.005 inch) of its true position (T.P.) at maximum material condition.

15. RECOMMENDED SOLDERING CONDITIONS

The μ PD754202 should be soldered and mounted under the following recommended conditions.
For the details of the recommended soldering conditions, refer to the document Semiconductor Device Mounting Technology Manual (C10535E).

For soldering methods and conditions other than those recommended below, contact your NEC sales representative.

Table 15-1. Surface Mounting Type Soldering Conditions

Soldering Method	Soldering Conditions	Symbol
Infrared reflow	Package peak temperature: $235{ }^{\circ} \mathrm{C}$, Reflow time: 30 seconds or below $\left(\right.$ at $210^{\circ} \mathrm{C}$ or higher), Number of reflow processes: Twice or less	IR35-00-2
VPS	Package peak temperature: $215^{\circ} \mathrm{C}$, Reflow time: 40 seconds or below (at $200^{\circ} \mathrm{C}$ or higher), Number of reflow processes: Twice or less	VP15-00-2
Wave soldering	Solder temperature: $260^{\circ} \mathrm{C}$ or below, Flow time: 10 seconds or below, Number of flow processes: 1 Preheating temperature: $120^{\circ} \mathrm{C}$ or below (package surface temperature)	WS60-00-1
Partial heating	Pin temperature: $300^{\circ} \mathrm{C}$ or below, Time: 3 seconds or below (per side of device)	-

Caution Do not use different soldering methods together (except for partial heating).

APPENDIX A. μ PD754202, 75F4264 FUNCTION LIST

Item		μ PD754202	μ PD75F4264 ${ }^{\text {Note }}$
Program memory		Mask ROM 0000H-07FFH (2048×8 bits)	Flash memory 0000H-0FFFH $\text { (} 4096 \times 8 \text { bits) }$
Data memory	Static RAM	000H-07FH (128 $\times 4$ bits)	
	EEPROM ${ }^{\text {TM }}$	None	400H-43FH (32 $\times 8$ bits)
CPU		75XL CPU	
General-purpose register		(4 bits $\times 8$ or 8 bits $\times 4$) $\times 4$ banks	
Instruction execution time		- $0.95,1.91,3.81,15.3 \mu \mathrm{~s}$ (system clock: at $4.19-\mathrm{MHz}$ operation) - $0.67,1.33,2.67,10.7 \mu \mathrm{~s}$ (system clock: at $6.0-\mathrm{MHz}$ operation)	
I/O port	CMOS input	4 (on-chip pull-up resistor can be connected by mask option)	
	CMOS input/output	9 (on-chip pull-up resistor can be specified by software)	
	Total	13	
System clock oscillator		Ceramic/crystal oscillator	
Boot time after reset		$2^{17} / f x \text { or } 2^{15} / f x$ (selected by mask option)	$2^{15} / \mathrm{fx}$
Timer		4 channels - 8-bit timer counter: 3 channels (can be used for 16-bit timer counter) - Basic interval timer/watchdog timer: 1 channel	
A/D converter		None	- 8-bit resolution $\times 2$ channels (successive approximation register) - Operable Vdd $=1.8 \mathrm{~V}$ or higher
Programmable threshold port		None	2 channels
Vectored interrupt		External: 1, Internal: 4	External: 1, Internal: 5
Test input		External: 1 (key return reset function provided)	
Supply voltage		$V_{D D}=1.8$ to 6.0 V	
Operating ambient temperature		$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	
Package		- 20-pin plastic SOP ($300 \mathrm{mil}, 1.27-\mathrm{mm}$ pitch) - 20-pin plastic shrink SOP (300 mil, $0.65-\mathrm{mm}$ pitch)	- 20-pin plastic SOP (300 mil, 1.27-mm pitch)

Note Under development

APPENDIX B. DEVELOPMENT TOOLS

The following development tools are provided for system development using the μ PD754202.
In the 75XL Series, the relocatable assembler which is common to the series is used in combination with the device file of each product.

Language processor

RA75X relocatable assembler	Host machine			Part number (product name)
		OS	Supply media	
	PC-9800 Series	MS-DOS ${ }^{\text {TM }}$	3.5-inch 2HD	μ S5A13RA75X
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5-inch 2HD	μ S5A10RA75X
	IBM PC/AT ${ }^{T M}$ and compatible machines	Refer to "OS for IBM PC"	3.5-inch 2HC	μ S7B13RA75X
			5-inch 2HC	μ S7B10RA75X

Device file	Host machine			Part number (product name)
		OS	Supply media	
	PC-9800 Series	MS-DOS	3.5-inch 2HD	μ S5A13DF754202
		$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note }}}$	5-inch 2HD	μ S5A10DF754202
	IBM PC/AT and compatible machines	Refer to "OS for IBM PC"	3.5-inch 2 HC	μ S7B13DF754202
			5-inch 2HC	μ S7B10DF754202

Note Ver. 5.00 or later have the task swap function, but it cannot be used for this software.

Remark Operations of the assembler and device file are guaranteed only on the above host machines and OSs.

Debugging tool

The in-circuit emulators (IE-75000-R and IE-75001-R) are available as the program debugging tool for the μ PD754202.

The system configurations are described as follows.

Hardware	IE-75000-R ${ }^{\text {Note } 1}$	In-circuit emulator for debugging the hardware and software when developing application systems that use the 75X Series and 75XL Series. When developing a μ PD754202, the emulation board IE-75300-R-EM and emulation probe EP-754144GS-R that are sold separately must be used with the IE-75000-R. By connecting with the host machine, efficient debugging can be made. It contains the emulation board IE-75000-R-EM which is connected.			
	IE-75001-R	In-circuit emulator for debugging the hardware and software when developing application systems that use the 75X Series and 75XL Series. When developing a μ PD754202, the emulation board IE-75300-R-EM and emulation probe EP-754144GS-R which are sold separately must be used with the IE-75001-R. By connecting with the host machine, efficient debugging can be made.			
	IE-75300-R-EM	Emulation board for evaluating the application systems that use a μ PD754202. It must be used with the IE-75000-R or IE-75001-R.			
	EP-754144GS-R EV-9500GS-20 EV-9501GS-20	Emulation probe for the μ PD754202. It must be connected to IE-75000-R (or IE-75001-R) and IE-75300-R-EM. It is supplied with the 20-pin flexible boards EV-9500GS-20 (compatible with 20-pin plastic shrink SOP) and EV-9501GS-20 (compatible with 20-pin plastic SOP) which facilitate connection to a target system.			
Software	IE control program	Connects the IE-75000-R or IE-75001-R to a host machine via RS-232-C and Centronics I/F and controls the IE-75000-R or IE-75001-R on a host machine.			
		Host machine	OS	Supply media	Part number (product name)
		PC-9800 Series	MS-DOS	3.5-inch 2HD	μ S5A13IE75X
			$\binom{\text { Ver. } 3.30 \text { to }}{\text { Ver. } 6.2^{\text {Note 2 }}}$	5-inch 2HD	μ S5A10IE75X
		IBM PC/AT and compatible machines	Refer to "OS for IBM PC"	3.5-inch 2HC	μ S7B13IE75X
				5-inch 2HC	μ S7B10IE75X

Notes 1. Maintenance product
2. Ver. 5.00 or later have the task swap function, but it cannot be used for this software.

Remark Operation of the IE control program is guaranteed only on the above host machines and OSs.

OS for IBM PC
The following IBM PC OS's are supported.

OS	Version
PC DOS	Ver. 5.02 to Ver. 6.3 J6.1/VNote to J6.3/V Note
MS-DOS	Ver. 5.0 to Ver. 6.22 $5.0 / V^{\text {Note }}$ to J6.2/VNote
IBM DOS ${ }^{\text {TM }}$	J5.02/V Note

Note Only English mode is supported.

Caution Ver. 5.0 or later have the task swap function, but it cannot be used for this software.

APPENDIX C. RELATED DOCUMENTS

The related documents indicated in this publication may include preliminary versions. However, preliminary versions are not marked as such.

Device related documents

Document Name	Document Number	
	Japanese	English
μ PD754202, 754202(A) Data Sheet	U12181J	This document
μ PD754202 User's Manual	U11132J	U11132E
75XL Series Selection Guide	U10453J	U10453E

Development tool related documents

Other related documents

Document Name	Document Number	
	Japanese	English
IC Package Manual	C10943X	
Semiconductor Device Mounting Technology Manual	C10535J	C10535E
Quality Grades on NEC Semiconductor Devices	C11531J	C11531E
NEC Semiconductor Device Reliability/Quality Control System	C10983J	C10983E
Electrostatic Discharge (ESD) Test	MEM-539	-
Guide to Quality Assurance for Semiconductor Devices	C11893J	MEI-1202
Microcomputer Product Series Guide	U11416J	-

Caution These documents are subject to change without notice. Be sure to read the latest documents for designing, etc.
[MEMO]

(1) PRECAUTION AGAINST ESD FOR SEMICONDUCTORS

Note: Strong electric field, when exposed to a MOS device, can cause destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop generation of static electricity as much as possible, and quickly dissipate it once, when it has occurred. Environmental control must be adequate. When it is dry, humidifier should be used. It is recommended to avoid using insulators that easily build static electricity. Semiconductor devices must be stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement tools including work bench and floor should be grounded. The operator should be grounded using wrist strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken for PW boards with semiconductor devices on it.

(2) HANDLING OF UNUSED INPUT PINS FOR CMOS

Note: No connection for CMOS device inputs can be cause of malfunction. If no connection is provided to the input pins, it is possible that an internal input level may be generated due to noise, etc., hence causing malfunction. CMOS device behave differently than Bipolar or NMOS devices. Input levels of CMOS devices must be fixed high or low by using a pull-up or pull-down circuitry. Each unused pin should be connected to Vod or GND with a resistor, if it is considered to have a possibility of being an output pin. All handling related to the unused pins must be judged device by device and related specifications governing the devices.

(3) STATUS BEFORE INITIALIZATION OF MOS DEVICES

Note: Power-on does not necessarily define initial status of MOS device. Production process of MOS does not define the initial operation status of the device. Immediately after the power source is turned ON, the devices with reset function have not yet been initialized. Hence, power-on does not guarantee out-pin levels, I/O settings or contents of registers. Device is not initialized until the reset signal is received. Reset operation must be executed immediately after power-on for devices having reset function.

Regional Information

Some information contained in this document may vary from country to country. Before using any NEC product in your application, please contact the NEC office in your country to obtain a list of authorized representatives and distributors. They will verify:

- Device availability
- Ordering information
- Product release schedule
- Availability of related technical literature
- Development environment specifications (for example, specifications for third-party tools and components, host computers, power plugs, AC supply voltages, and so forth)
- Network requirements

In addition, trademarks, registered trademarks, export restrictions, and other legal issues may also vary from country to country.

NEC Electronics Inc. (U.S.)
Santa Clara, California
Tel: 800-366-9782
Fax: 800-729-9288
NEC Electronics (Germany) GmbH
Duesseldorf, Germany
Tel: 0211-65 0302
Fax: 0211-65 03490
NEC Electronics (UK) Ltd.
Milton Keynes, UK
Tel: 01908-691-133
Fax: 01908-670-290
NEC Electronics Italiana s.r.1.
Milano, Italy
Tel: 02-66 7541
Fax: 02-66 754299

NEC Electronics (Germany) GmbH
Benelux Office
Eindhoven, The Netherlands
Tel: 040-2445845
Fax: 040-2444580
NEC Electronics (France) S.A.
Velizy-Villacoublay, France
Tel: 01-30-67 5800
Fax: 01-30-67 5899
NEC Electronics (France) S.A.
Spain Office
Madrid, Spain
Tel: 01-504-2787
Fax: 01-504-2860
NEC Electronics (Germany) GmbH
Scandinavia Office
Taeby, Sweden
Tel: 08-63 80820
Fax: 08-63 80388

NEC Electronics Hong Kong Ltd.
Hong Kong
Tel: 2886-9318
Fax: 2886-9022/9044
NEC Electronics Hong Kong Ltd.
Seoul Branch
Seoul, Korea
Tel: 02-528-0303
Fax: 02-528-4411
NEC Electronics Singapore Pte. Ltd.
United Square, Singapore 1130
Tel: 253-8311
Fax: 250-3583
NEC Electronics Taiwan Ltd.
Taipei, Taiwan
Tel: 02-719-2377
Fax: 02-719-5951
NEC do Brasil S.A.
Sao Paulo-SP, Brasil
Tel: 011-889-1680
Fax: 011-889-1689

EEPROM is a trademark of NEC Corporation.
MS-DOS is either a registered trademark or a trademark of Microsoft Corporation in the United States and/ or other countries.
IBM DOS, PC/AT, and PC DOS are trademarks of International Business Machines Corporation.

The export of this product from Japan is regulated by the Japanese government. To export this product may be prohibited without governmental license, the need for which must be judged by the customer. The export or re-export of this product from a country other than Japan may also be prohibited without a license from that country. Please call an NEC sales representative.

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

