16-bit Proprietary Microcontroller

CMOS

F²MC-16LX MB90350 Series

MB90F352/S, MB90352/S

- DESCRIPTION

The MB90350-series with 1 channel FULL-CAN* interface and FLASH ROM is especially designed for automotive and industrial applications. Its main feature is the on-board CAN Interface, which conform to V2.0 Part A and Part B, while supporting a very flexible message buffer scheme and so offering more functions than a normal full CAN approach. With the new $0.35 \mu \mathrm{~m}$ CMOS technology, Fujitsu now offers on-chip FLASH-ROM program memory up to 128 Kbytes. An internal voltage booster removes the necessity for a second programming voltage.
An on board voltage regulator provides 3 V to the internal MCU core. This creates a major advantage in terms of EMI and power consumption.

The internal PLL clock frequency multiplier provides an internal 42 ns instruction cycle time from an external 4 MHz clock.
The unit features a 4 channel Output Compare Unit and 6 channel Input Capture Unit with 2 separate 16 -bit free running timers. 2 channels UART constitute additional functionality for communication purposes.

* : Controller Area Network (CAN) - License of Robert Bosch GmbH

Note : F²MC stands for FUJITSU Flexible Microcontroller, a registered trademark of FUJITSU LIMITED.
PACKAGE
(FPT-64P-M09)

MB90350 Series

■ FEATURES

- Clock

- Built-in PLL clock frequency multiplication circuit
- Selection of machine clocks (PLL clocks) is allowed among frequency division by two on oscillation clock, and multiplication of 1 to 6 times of oscillation clock (for 4 MHz oscillation clock, 4 MHz to 24 MHz).
- Operation by sub-clock (up to $50 \mathrm{kHz}: 100 \mathrm{kHz}$ oscillation clock divided by two) is allowed. (devices without S-suffix only)
- Minimum execution time of instruction : 42 ns (when operating with $4-\mathrm{MHz}$ oscillation clock, and 6 -time multiplied PLL clock).
- Built-in clock modulation circuit
- 16 Mbyte CPU memory space
- 24-bit internal addressing
- External Bus Interface
- 4 MByte external memory space
- Instruction system best suited to controller
- Wide choice of data types (bit, byte, word, and long word)
- Wide choice of addressing modes (23 types)
- Enhanced multiply-divide instructions and RETI instructions
- Enhanced high-precision computing with 32-bit accumulator
- Instruction system compatible with high-level language (C language) and multitask
- Employing system stack pointer
- Enhanced various pointer indirect instructions
- Barrel shift instructions
- Increased processing speed
- 4-byte instruction queue
- Powerful interrupt function
- Powerful 8-level, 34-condition interrupt feature
- Up to 8 channels external interrupts are supported
- Automatic data transfer function independent of CPU
- Extended intelligent I/O service function (EI ${ }^{2} \mathrm{OS}$) : up to 16 channels
- DMA : up to 16 channels
- Low power consumption (standby) mode
- Sleep mode (a mode that halts CPU operating clock)
- Main timer mode (a timebase timer mode switched from the main clock mode)
- PLL timer mode (a timebase timer mode switched from the PLL clock mode)
- Watch mode (a mode that operates sub clock and clock timer only)
- Stop mode (a mode that stops oscillation clock and sub clock)
- CPU blocking operation mode
- Process
- CMOS technology
- I/O port
- General-purpose input/output port (CMOS output)
- 49 ports (devices without S-suffix)
- 51 ports (devices with S-suffix)

MB90350 Series

(Continued)

- Timer
- Time-base timer, clock timer, watchdog timer : 1 channel
- 8/16-bit PPG timer : 8-bit $\times 10$ channels, or 16 -bit $\times 6$ channels
- 16-bit reload timer : 4 channels
- 16- bit input/output timer
- 16-bit free run timer : 2 channels (FRT0 : ICU0/1, FRT1 : ICU 4/5/6/7, OCU 4/5/6/7)
- 16- bit input capture: (ICU) : 6 channels
- 16-bit output compare : (OCU) : 4 channels
- Full-CAN interface : 1 channel
- Compliant with Ver2.0A and Ver2.0B CAN specifications
- Flexible message buffering (mailbox and FIFO buffering can be mixed)
- CAN wake-up function
- UART (LIN/SCI) : 2 channels
- Equipped with full-duplex double buffer
- Clock-asynchronous or clock-synchronous serial transmission is available
- ${ }^{2}$ C interface* : 1 channel
- Up to $400 \mathrm{Kbit/s}$ transfer rate
- DTP/External interrupt : 8 channels, CAN wakeup : 1 channel
- Module for activation of extended intelligent I/O service (EIOS), DMA, and generation of external interrupt.
- Delay interrupt generator module
- Generates interrupt request for task switching.
- 8/10-bit A/D converter : $\mathbf{1 5}$ channels
- Resolution is selectable between 8 -bit and 10 -bit.
- Activation by external trigger input is allowed.
- Conversion time : $3 \mu \mathrm{~s}$ (at $24-\mathrm{MHz}$ machine clock, including sampling time)
- Program patch function
- Address matching detection for 6 address pointers.
- Internal voltage regulator
- Supports 3 V MCU core, offering low EMI and low power consumption figures

- Programmable input levels

- Automotive/CMOS-Schmitt (initial level is Automotive in Single chip mode)
- TTL level (initial level for External bus mode)
- Flash security function
- Protects the content of Flash (Flash device only)
* : ${ }^{2} \mathrm{C}$ license :

Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $\mathrm{I}^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

MB90350 Series

PRODUCT LINEUP

Part Number Parameter	MB90F352/S, MB90352/S*1	MB90V340A-101/102
CPU	F²MC-16LX CPU	
System clock	On-chip PLL clock multiplier ($\times 1, \times 2, \times 3, \times 4, \times 6,1 / 2$ when PLL stops) Minimum instruction execution time : 42 ns (4 MHz osc. PLL $\times 6$)	
ROM	Boot-block, Flash memory 128 Kbytes	External
RAM	4 Kbytes	30 Kbytes
Emulator-specific power supply*2	-	Yes
Technology	$0.35 \mu \mathrm{~m}$ CMOS with regulator for internal power supply + Flash memory charge pump for programming voltage	$0.35 \mu \mathrm{~m}$ CMOS with regulator for internal power supply
Operating voltage range	$3.5 \mathrm{~V}-5.5 \mathrm{~V}$: at normal operating (not using A/D converter) $4.0 \mathrm{~V}-5.5 \mathrm{~V}$: at using A/D converter/Flash programming $4.5 \mathrm{~V}-5.5 \mathrm{~V}$: at using external bus	$5 \mathrm{~V} \pm 10 \%$
Temperature range	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$ ($125{ }^{\circ} \mathrm{C}$ up to 16 MHz machine clock)	
Package	LQFP-64	PGA-299
	2 channels	3 channels
UART	Wide range of baud rate settings using a dedicated reload timer Special synchronous options for adapting to different synchronous serial protocols LIN functionality working either as master or slave LIN device	
$1^{2} \mathrm{C}$ ($400 \mathrm{kbit} / \mathrm{s}$)	1 channel	1 channel
	15 channels	
Converter	10-bit or 8-bit resolution Conversion time : Min $3 \mu \mathrm{~s}$ include sample time (per one channel)	
16-bit Reload Timer (4 channels)	Operation clock frequency : fsys/2 ${ }^{1}$, fsys/2 2^{3}, fsys/ $/ 2^{5}$ (fsys = Machine clock frequency) Supports External Event Count function	
16-bit I/O Timer (2 channels)	Signals an interrupt when overflowing Supports Timer Clear when a match with Output Compare (Channel 0, 4) Operation clock freq. : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$, fsys $/ 2^{5}$, fsys $/ 2^{6}$, fsys $/ 2^{7}$ (fsys = Machine clock freq.) I/O Timer 0 (clock input FRCKO) corresponds to ICU 0/1 I/O Timer 1 (clock input FRCK1) corresponds to ICU 4/5/6/7, OCU 4/5/6/7	
16-bit Output Compare (4 channels)	Signals an interrupt when 16-bit I/O Timer match output compare registers. A pair of compare registers can be used to generate an output signal.	
16-bit Input Capture (6 channels)	Rising edge, falling edge or rising \& falling edge sensitive Signals an interrupt upon external event	

(Continued)

MB90350 Series

Part Number Parameter	MB90F352/S, MB90352/S*1	MB90V340A-101/102
8/16-bit Programmable Pulse Generator 6 channels (16 -bit) / 10 channels (8-bit)	Supports 8-bit and 16-bit operation modes 8 -bit reload counters $\times 12$ 8 -bit reload registers for L pulse width $\times 12$ 8 -bit reload registers for H pulse width $\times 12$ A pair of 8 -bit reload counters can be configured as one 16 -bit reload counter or as 8 -bit prescaler +8 -bit reload counter Operation clock freq. : fsys, fsys $/ 2^{1}$, fsys $/ 2^{2}$, fsys $/ 2^{3}$, fsys $/ 2^{4}$ or $128 \mu \mathrm{~s} @$ fosc $=4 \mathrm{MHz}$ (fsys $=$ Machine clock frequency, fosc $=$ Oscillation clock frequency)	
	1 channel	2 channels
CAN Interface	Conforms to CAN Specification Version 2.0 Part A and B Automatic re-transmission in case of error Automatic transmission responding to Remote Frame Prioritized 16 message buffers for data and ID's Supports multiple messages Flexible configuration of acceptance filtering : Full bit compare/Full bit mask/Two partial bit masks Supports up to 1 Mbps	
External Interrupt (8 channels)	Can be used rising edge, falling edge, starting up by H/L level input, external interrupt, extended intelligent I/O services (EI2OS) and DMA	
D/A converter	-	1 channel
Subclock (up to 100 kHz)	devices with 'S'-suffix and MB90V340A-102 : without subclock devices without 'S'-suffix and MB90V340A-101 : with subclock	
I/O Ports	Virtually all external pins can be used as general purpose I/O port All push-pull outputs Bit-wise settable as input/output or peripheral signal Settable as CMOS schmitt trigger/ automotive inputs (default) TTL input level settable for external bus (30 terminals only for external bus)	
Flash Memory	Supports automatic programming, Embedded Algorithm ${ }^{\text {TM }}{ }^{* 3}$ Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of erase cycles: 10,000 times Data retention time : 10 years Boot block configuration Erase can be performed on each block Block protection with external programming voltage Flash Security Feature for protecting the content of the Flash	-

*1: The devices are under development.
*2 : It is setting of Jumper switch (TOOL Vcc) when Emulator (MB2147-01) is used. Please refer to the Emulator hardware manual about details.
*3: Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

MB90350 Series

PIN ASSIGNMENTS

- MB90F352/S, MB90352/S
(TOP VIEW)
(LQFP-64P)

(FPT-64P-M09)

```
*: MB90F352/352 : X0A, X1A
MB90F352S/352S : P40, P41
```


■ PIN DESCRIPTION

Pin No.	Pin name	Circuit type	Function
LQFP64*			
46	X1	A	Oscillation output pin.
47	X0		Oscillation input pin.
45	$\overline{\text { RST }}$	E	Reset input pin.
3 to 8	P62 to P67	1	General purpose I/O ports.
	AN2 to AN7		Analog input pins for A/D converter.
	$\begin{gathered} \text { PPG4, 6, 8, } \\ \text { A, C, E } \end{gathered}$		Output pins for PPGs.
9	P50	0	General purpose I/O port.
	AN8		Analog input pin for A/D converter.
	SIN2		Serial data input pin for UART2.
10	P51	1	General purpose I/O port.
	AN9		Analog input pin for A/D converter.
	SOT2		Serial data output pin for UART2.
11	P52	1	General purpose I/O port.
	AN10		Analog input pin for A/D converter.
	SCK2		Serial data output pin for UART2.
12	P53	1	General purpose I/O port.
	AN11		Analog input pin for A/D converter.
	TIN3		Event input pin for reload timer3.
13	P54	1	General purpose I/O port.
	AN12		Analog input pin for A/D converter.
	TOT3		Output pin for reload timer3.
14, 15	P55, P56	1	General purpose I/O ports.
	AN13, AN14		Analog input pins for A/D converter.
16	P42	F	General purpose I/O port.
	IN6		Data sample input pin for input capture ICU6.
	RX1		RX input pin for CAN1.
	INT9R		External interrupt request input pin for INT9.
17	P43	F	General purpose I/O port.
	IN7		Data sample input pin for input capture ICU7.
	TX1		TX output pin for CAN1.
19, 20	P40, P41	F	General purpose I/O ports (devices with S-suffix and MB90V340A-101).
	X0A, X1A	B	Oscillation input pins for sub clock (devices without S-suffix and MB90V340A-102)

(Continued)

MB90350 Series

Pin No. LQFP64*	Pin name	Circuit type	Function
24 to 31	P00 to P07	G	General purpose I/O ports. The register can be set to select whether to use a pull-up resistor.This function is enabled in single-chip mode.
	AD00 to AD07		Input/output pins of external address data bus lower 8 bit. This function is enabled when the external bus is enabled.
	INT8 to INT15		External interrupt request input pins for INT8 to INT15.
32	P10	G	General purpose I/O port.The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD08		Input/output pin for external bus address data bus bit 8 . This function is enabled when external bus is enabled.
	TIN1		Event input pin for reload timer1.
33	P11	G	General purpose I/O.The register can be set to select whether to use a pull-up resistor.This function is enabled in single-chip mode.
	AD09		Input/output pin for external bus address data bus bit 9 . This function is enabled when external bus is enabled.
	TOT1		Output pin for reload timer1.
34	P12	N	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD10		Input/output pin for external bus address data bus bit 10. This function is enabled when external bus is enabled.
	SIN3		Serial data input pin for UART3.
	INT11R		External interrupt request input pin for INT11
35	P13	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD11		Input/output pin for external bus address data bus bit 11. This function is enabled when external bus is enabled.
	SOT3		Serial data output pin for UART3.
36	P14	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD12		Input/output pin for external bus address data bus bit 12. This function is enabled when external bus is enabled.
	SCK3		Clock input/output pin for UART3.
37	P15	N	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD13		Input/output pin for external bus address data bus bit 13. This function is enabled when external bus is enabled.
38	P16	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD14		Input/output pin for external bus address data bus bit 14. This function is enabled when external bus is enabled.

(Continued)

MB90350 Series

Pin No.	Pin name	Circuit type	Function
39	P17	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	AD15		Input/output pin for external bus address data bus bit 15 . This function is enabled when external bus is enabled.
40 to 43	P20 to P23	G	General purpose I/O ports. The register can be set to select whether to use a pull-up resistor. In external bus mode, the pin is enabled as a generalpurpose I/O port when the corresponding bit in the external address output control register (HACR) is 1 .
	A16 to A19		Output pins for A16 to A19 of the external address bus. When the corresponding bit in the external address output control register (HACR) is 0 , the pins are enabled as high address output pins A16 to A19.
	PPG9, PPGB, PPGD, PPGF		Output pins for PPGs.
44	P24	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. In external bus mode, the pin is enabled as a generalpurpose I/O port when the corresponding bit in the external address output control register (HACR) is 1 .
	A20		Output pins for A20 of the external address bus. When the corresponding bit in the external address output control register (HACR) is 0 , the pin is enabled as high address output pins A20.
	IN0		Data sample input pin for input capture ICU0.
51	P25	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. In external bus mode, the pin is enabled as a generalpurpose I/O port when the corresponding bit in the external address output control register (HACR) is 1 .
	A21		Output pin for A21 of the external address bus. When the corresponding bit in the external address output control register (HACR) is 0 , the pin is enabled as high address output pin A21.
	IN1		Data sample input pin for input capture ICU1.
	ADTG		Trigger input pin for A/D converter.
52	P44	H	General purpose I/O port
	SDA0		Serial data I/O pin for ${ }^{2} \mathrm{C} 0$
	FRCK0		Input pin for the 16-bit I/O Timer 0
53	P45	H	General purpose I/O port.
	SCL0		Serial clock I/O pin for ${ }^{2} \mathrm{C} 0$
	FRCK1		Input for the 16-bit I/O Timer 1
54	P30	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	ALE		Address latch enable output pin. This function is enabled when external bus is enabled.
	IN4		Data sample input pin for input capture ICU4.

(Continued)

MB90350 Series

Pin No. ${ }_{\text {LQFP64* }}$	Pin name	Circuit type	Function
55	P31	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled in single-chip mode.
	$\overline{\mathrm{RD}}$		Read strobe output pin for data bus. This function is enabled when external bus is enabled.
	IN5		Data sample input pin for input capture ICU5.
56	P32	G	General purpose I/O port. The register can be set to select whether to use pull-up resistor. This function is enabled either in single-chip mode or with the $\overline{W R} / \overline{W R L}$ pin output disabled.
	$\overline{\mathrm{WR}} / \overline{\mathrm{WRL}}$		Write strobe output pin for the data bus. This function is enabled when both the external bus and the WR/WRL pin output are enabled. WRL is used to write-strobe 8 lower bits of the data bus in 16 -bit access. $\overline{W R}$ is used to write-strobe 8 bits of the data bus in 8 -bit access.
	INT10R		External interrupt request input pin for INT10.
57	P33	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the $\overline{W R H}$ pin output disabled.
	WRH		Write strobe output pin for the 8 higher bits of the data bus. This function is enabled when the external bus is enabled, when the external bus 16 -bit mode is selected, and when the WRH output pin is enabled.
58	P34	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled.
	HRQ		Hold request input pin. This function is enabled when both the external bus and the hold function are enabled.
	OUT4		Waveform output pin for output compare OCU4.
59	P35	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the hold function disabled.
	HAK		Hold acknowledge output pin. This function is enabled when both the external bus and the hold function are enabled.
	OUT5		Waveform output pin for output compare OCU5.
60	P36	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the external ready function disabled.
	RDY		Ready input pin. This function is enabled when both the external bus and the external ready function are enabled.
	OUT6		Waveform output pin for output compare OCU6.
61	P37	G	General purpose I/O port. The register can be set to select whether to use a pull-up resistor. This function is enabled either in single-chip mode or with the CLK output disabled.
	CLK		CLK output pin. This function is enabled when both the external bus and CLK output are enabled.
	OUT7		Waveform output pin for output compare OCU7.

(Continued)

MB90350 Series

(Continued)

Pin No. LQFP64*	Pin name	Circuit type	Function
62, 63	P60, P61	1	General purpose I/O ports.
	AN0, AN1		Analog input pins for A/D converter.
64	AVcc	K	Vcc power input pin for analog circuits.
2	AVRH	L	Reference voltage input for the A/D converter. This power supply must be turned on or off while a voltage higher than or equal to AVRH is applied to AV cc.
1	AVss	K	Vss power input pin for analog circuits.
22, 23	MD1, MD0	C	Input pins for specifying the operating mode.
21	MD2	D	Input pins for specifying the operating mode.
49	Vcc	-	Power (3.5 V to 5.5 V) input pin.
18, 48	Vss	-	Power (0 V) input pins.
50	C	K	This is the power supply stabilization capacitor pin. It should be connected to a higher than or equal to $0.1 \mu \mathrm{~F}$ ceramic capacitor.

*: FPT-64P-M09

MB90350 Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		Oscillation circuit - High-speed oscillation feedback resistor $=$ approx. $1 \mathrm{M} \Omega$
B		Oscillation circuit - Low-speed oscillation feedback resistor $=$ approx. $10 \mathrm{M} \Omega$
C		Mask ROM device: - CMOS Hysteresis input pin Flash device: - CMOS input pin
D		Mask ROM device: - CMOS Hysteresis input pin - Pull-down resistor valule: approx. $50 \mathrm{k} \Omega$ Flash device: - CMOS input pin - No Pull-down
E		CMOS Hysteresis input pin - Pull-up resistor valule: approx. $50 \mathrm{k} \Omega$

(Continued)

MB90350 Series

Type	Circuit	Remarks
F		- CMOS level output $(\mathrm{loL}=4 \mathrm{~mA}, \mathrm{IoH}=-4 \mathrm{~mA})$ - CMOS hysteresis inputs (With the stand-by-time input shutdown function) - Automotive input (With the standby-time input shutdown function)
G		- CMOS level output $(\mathrm{IOL}=4 \mathrm{~mA}, \mathrm{IOH}=-4 \mathrm{~mA})$ - CMOS hysteresis inputs (With the stand-by-time input shutdown function) - Automotive input (With the standby-time input shutdown function) - TTL input (With the standby-time input shutdown function) - Programmalble pullup resistor: $50 \mathrm{k} \Omega$ approx.
H		- CMOS level output $(\mathrm{loL}=3 \mathrm{~mA}, \mathrm{O} \mathrm{OH}=-3 \mathrm{~mA})$ - CMOS hysteresis inputs (With the stand-by-time input shutdown function) - Automotive input (With the standby-time input shutdown function)

(Continued)

MB90350 Series

Type	Circuit	Remarks
1		- CMOS level output(loL = 4 mA) - CMOS hysteresis inputs (With the stand-by-time input shutdown function) - Automotive input (With the standby-time input shutdown function) - A/D analog input
K		- Power supply input protection circuit
L		- A/D converter reference voltage power supply input pin, with the protection circuit - Flash devices do not have a protection circuit against Vcc for pin AVRH

(Continued)

MB90350 Series

(Continued)

Type	Circuit	Remarks
N		- CMOS level output $(\mathrm{loL}=4 \mathrm{~mA}, \mathrm{loH}=-4 \mathrm{~mA})$ - CMOS inputs (With the standby-time input shutdown function) - Automotive input (With the standby-time input shutdown function) - TTL input (With the standby-time input shutdown function) - Programmable pull-up registor:50 k Ω approx
0		- CMOS level output ($\mathrm{loL}=4 \mathrm{~mA}$, Іон $=-4 \mathrm{~mA}$) - CMOS inputs (With the standby-time input shutdown function) - Automotive input (With the standby-time input shutdown function) - A/D analog input

MB90350 Series

■ HANDLING DEVICES

Special care is required for the following when handling the device :

- Preventing latch-up
- Treatment of unused pins
- Using external clock
- Precautions for when not using a sub clock signal
- Notes on during operation of PLL clock mode
- Power supply pins (Vcc/Vss)
- Pull-up/down resistors
- Crystal Oscillator Circuit
- Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs
- Connection of Unused Pins of A/D Converter
- Notes on Energization
- Stabilization of power supply voltage
- Initialization
- Port0 to port3 output during Power-on (External-bus mode)
- Notes on using CAN Function
- Flash security Function

1. Preventing latch-up

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than V_{cc} or lower than $\mathrm{V}_{\text {ss }}$ is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between Vcc and Vss.
- The AV cc power supply is applied before the Vcc voltage.

Latch-up may increase the power supply current drastically, causing thermal damage to the device.
For the same reason, also be careful not to let the analog power-supply voltage (AV cc, AVRH) exceed the digital power-supply voltage.

2. Handling unused pins

Leaving unused input pins open may result in misbehavior or latch up and possible permanent damage of the device. Therefore they must be pulled up or pulled down through resistors. In this case those resistors should be more than $2 \mathrm{k} \Omega$.

Unused bidirectional pins should be set to the output state and can be left open, or the input state with the above described connection.

3. Using external clock

To use external clock, drive the X0 pin and leave X1 pin open.

4. Precautions for when not using a sub clock signal

If you do not connect pins X0A and X1A to an oscillator, use pull-down handling on the X0A pin, and leave the X1A pin open.

MB90350 Series

5. Notes on during operation of PLL clock mode

If the PLL clock mode is selected, the microcontroller attempt to be working with the self-oscillating circuit even when there is no external oscillator or external clock input is stopped. Performance of this operation, however, cannot be guaranteed.
6. Power supply pins ($\mathrm{Vcc} / \mathrm{Vss}$)

- If there are multiple V_{cc} and $\mathrm{V}_{\text {ss }}$ pins, from the point of view of device design, pins to be of the same potential are connected inside of the device to prevent such malfunctioning as latch up.
To reduce unnecessary radiation, prevent malfunctioning of the strobe signal due to the rise of ground level, and observe the standard for total output current, be sure to connect the V_{cc} and $\mathrm{V}_{\text {ss }}$ pins to the power supply and ground externally.
- Connect V_{cc} and $\mathrm{V}_{\text {ss }}$ to the device from the current supply source at a low impedance.
- As a measure against power supply noise, connect a capacitor of about $0.1 \mu \mathrm{~F}$ as a bypass capacitor between $\mathrm{V}_{c c}$ and $\mathrm{V}_{s s}$ in the vicinity of $\mathrm{V}_{c c}$ and $\mathrm{V}_{s s}$ pins of the device

7. Pull-up/down resistors

The MB90350 Series does not support internal pull-up/down resistors (Port 0 to Port 3: built-in pull-up resistors). Use external components where needed.

8. Crystal Oscillator Circuit

Noises around X0 or X1 pins may be possible causes of abnormal operations. Make sure to provide bypass capacitors via shortest distance from X0, X1 pins, crystal oscillator (or ceramic resonator) and ground lines, and make sure, to the utmost effort, that lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0 and X1 pins with a ground area for stabilizing the operation.
9. Turning-on Sequence of Power Supply to A/D Converter and Analog Inputs

Make sure to turn on the A/D converter power supply (AVcc, AVRH) and analog inputs (ANO to AN14) after turning-on the digital power supply $\left(\mathrm{V}_{\mathrm{cc}}\right)$.
Turn-off the digital power after turning off the A / D converter supply and analog inputs. In this case, make sure that the voltage does not exceed AVRH or AVcc (turning on/off the analog and digital power supplies simultaneously is acceptable).
10. Connection of Unused Pins of A / D Converter if A / D Converter is used

Connect unused pins of A / D converter to $\mathrm{AV} \mathrm{cc}=\mathrm{V} c \mathrm{c}, \mathrm{AV} \mathrm{ss}=\mathrm{AVRH}=\mathrm{V}_{\mathrm{ss}}$.

MB90350 Series

11. Notes on Energization

To prevent the internal regulator circuit from malfunctioning, set the voltage rise time during energization at 50 or more $\mu \mathrm{s}$ (0.2 V to 2.7 V)

12. Stabilization of power supply voltage

A sudden change in the supply voltage may cause the device to malfunction even within the specified V cc supply voltage operating range. Therefore, the Vcc supply voltage should be stabilized.
For reference, the supply voltage should be controlled so that V_{cc} ripple variations (peak-to-peak value) at commercial frequencies (50 Hz to 60 Hz) fall below 10% of the standard V_{cc} supply voltage and the coefficient of fluctuation does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ at instantaneous power switching.

13. Initialization

In the device, there are internal registers which are initialized only by a power-on reset. To initialize these registers, turn on the power again.

14. Port 0 to port 3 output during Power-on (External-bus mode)

As shown below, when power is turned on in External-Bus mode, there is a possibility that output signal of Port 0 to Port 3 might be unstable.
\square

15. Notes on using CAN Function

To use CAN function, please set '1' to DIRECT bit of CAN Direct Mode Register (CDMR).
If DIRECT bit is set to ' 0 ' (initial value), wait states will be performed when accessing CAN registers.
Please refer to Hardware Manual of MB90350 series for detail of CAN Direct Mode Register.

16. Flash security Function

The security byte is located in the area of the flash memory.
If protection code 01 H is written in the security bit, the flash memory is in the protected state by security.
Therefore please do not write 01н in this address if you do not use the security function.
Please refer to following table for the address of the security bit.

	Flash memory size	Address for security bit
MB90F352	Embedded 1 Mbit Flash Memory	FE0001H

MB90350 Series

- BLOCK DIAGRAMS

- MB90V340A-101/102

MB90350 Series

- MB90F352/S, MB90352/S

[^0]
MB90350 Series

MEMORY MAP

Note : The high-order portion of bank 00 gives the image of the FF bank ROM to make the small model of the C compiler effective. Since the low-order 16 bits are the same, the table in ROM can be referenced without using the far specification in the pointer declaration.
For example, an attempt to access 00 COOO н accesses the value at FFCOOOH in ROM.
The ROM area in bank FF exceeds 32 Kbytes, and its entire image cannot be shown in bank 00.
The image between FF8000 ${ }_{\boldsymbol{H}}$ and FFFFFFH is visible in bank 00 , while the image between $F F 0000^{H}$ and FF7FFFH is visible only in bank FF.

MB90350 Series

■ I/O MAP

Address	Register	Abbreviation	Access	Resource name	Initial value
00н	Port 0 Data Register	PDR0	R/W	Port 0	XXXXXXXX
01н	Port 1 Data Register	PDR1	R/W	Port 1	XXXXXXXX
02н	Port 2 Data Register	PDR2	R/W	Port 2	XXXXXXXX
03н	Port 3 Data Register	PDR3	R/W	Port 3	XXXXXXXX
04	Port 4 Data Register	PDR4	R/W	Port 4	XXXXXXXX
05	Port 5 Data Register	PDR5	R/W	Port 5	XXXXXXXX
06н	Port 6 Data Register	PDR6	R/W	Port 6	XXXXXXXX
07н to 0Ан	Reserved				
OBн	Analog Input Enable Register 5	ADER5	R/W	Port 5, A/D	11111111
0 CH	Analog Input Enable Register 6	ADER6	R/W	Port 6, A/D	11111111
0Dн	Reserved				
ОЕн	Input Level Select Register 0	ILSR0	R/W	Ports	00000000
ОFн	Input Level Select Register 1	ILSR1	R/W	Ports	00000000
10 н	Port 0 Direction Register	DDR0	R/W	Port 0	00000000
11н	Port 1 Direction Register	DDR1	R/W	Port 1	00000000
12н	Port 2 Direction Register	DDR2	R/W	Port 2	XX000000
13н	Port 3 Direction Register	DDR3	R/W	Port 3	00000000
14н	Port 4 Direction Register	DDR4	R/W	Port 4	XX000000
15 н	Port 5 Direction Register	DDR5	R/W	Port 5	XX000000
16н	Port 6 Direction Register	DDR6	R/W	Port 6	00000000
17 H to 19 ${ }_{\text {H }}$	Reserved				
$1 \mathrm{AH}^{\text {}}$	SIN input Level Setting Register	DDRA	W	UART2, UART3	X00XXXXX
1Bн	Reserved				
1 CH	Port 0 Pull-up Control Register	PUCR0	R/W	Port 0	00000000
1D ${ }_{\text {H }}$	Port 1 Pull-up Control Register	PUCR1	R/W	Port 1	00000000
1 Ен $^{\text {¢ }}$	Port 2 Pull-up Control Register	PUCR2	R/W	Port 2	00000000
1 F н	Port 3 Pull-up Control Register	PUCR3	R/W	Port 3	00000000
20н to 37н	Reserved				
38н	PPG 4 Operation Mode Control Register	PPGC4	W, R/W	16-bit Programable Pulse Generator 4/5	0X000XX1
39н	PPG 5 Operation Mode Control Register	PPGC5	W, R/W		0X000001
ЗАн	PPG 45 Clock Select Register	PPG45	R/W		000000X0
3Вн	Program Address Detection Control Status Register 1	PACSR1	R/W	Address Match Detection 1	00000000

(Continued)

MB90350 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
3Сн	PPG 6 Operation Mode Control Register	PPGC6	W, R/W	16-bit Programable Pulse Generator 6/7	0X000XX1
3D	PPG 7 Operation Mode Control Register	PPGC7	W, R/W		0X000001
ЗЕн	PPG 67 Clock Select Register	PPG67	R/W		000000X0
$3 \mathrm{~F}_{\mathrm{H}}$	Reserved				
40н	PPG 8 Operation Mode Control Register	PPGC8	W, R/W	16-bit Programable Pulse Generator 8/9	0X000XX1
41н	PPG 9 Operation Mode Control Register	PPGC9	W, R/W		0X000001
42н	PPG 89 Clock Select Register	PPG89	R/W		000000X0
43н	Reserved				
44н	PPG A operation mode control register	PPGCA	W, R/W	16-bit Programable Pulse Generator A/B	0X000XX1
45	PPG B operation mode control register	PPGCB	W, R/W		0X000001
46	PPG AB clock select register	PPGAB	R/W		000000X0
47 ${ }^{\text {H}}$	Reserved				
48н	PPG C Operation Mode Control Register	PPGCC	W,R/W	16-bit Programable Pulse Generator C/D	0X000XX1
49	PPG D Operation Mode Control Register	PPGCD	W,R/W		0X000001
4 Ан $^{\text {¢ }}$	PPG CD Clock Select Register	PPGCD	R/W		000000X0
4Вн	Reserved				
4С	PPG E Operation Mode Control Register	PPGCE	W,R/W	16-bit Programable Pulse Generator E/F	0X000XX1
4D	PPG F Operation Mode Control Register	PPGCF	W,R/W		0X000001
4Ен	PPG EF Clock Select Register	PPGEF	R/W		000000X0
4F\%	Reserved				
50н	Input Capture Control Status Register 0/1	ICS01	R/W	Input Capture 0/1	00000000
51н	Input Capture Edge Register 0/1	ICE01	R/W, R		XXX0X0XX
52н, 53	Reserved				
54	Input Capture Control Status Register 4/5	ICS45	R/W	Input Capture 4/5	00000000
55	Input Capture Edge Register 4/5	ICE45	R		XXXXXXXX
56н	Input Capture Control Status Register 6/7	ICS67	R/W	Input Capture 6/7	00000000
57	Input Capture Edge Register 6/7	ICE67	R/W, R		XXX000XX
58н to 5Вн	Reserved				
5 CH	Output Compare Control Status Register 4	OCS4	R/W	Output Compare 4/5	0000XX00
5Dн	Output Compare Control Status Register 5	OCS5	R/W		0XX00000

(Continued)

MB90350 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
5Ен	Output Compare Control Status Register 6	OCS6	R/W	Output Compare 6/7	0000XX00
5F\%	Output Compare Control Status Register 7	OCS7	R/W		0XX00000
60н	Timer Control Status Register 0	TMCSR0	R/W	16-bit Reload Timer 0	00000000
61н	Timer Control Status Register 0	TMCSR0	R/W		XXXX0000
62н	Timer Control Status Register 1	TMCSR1	R/W	16-bit Reload Timer 1	00000000
63н	Timer Control Status Register 1	TMCSR1	R/W		XXXX0000
64	Timer Control Status Register 2	TMCSR2	R/W	16-bit Reload Timer 2	00000000
65 н	Timer Control Status Register 2	TMCSR2	R/W		XXXX0000
66н	Timer Control Status Register 3	TMCSR3	R/W	16-bit Reload Timer 3	00000000
67 H	Timer Control Status Register 3	TMCSR3	R/W		XXXX0000
68н	A/D Control Status Register 0	ADCS0	R/W	A/D Converter	000XXXX0
69н	A/D Control Status Register 1	ADCS1	R/W		0000000X
6Ан	Data Register 0	ADCR0	R		00000000
6Вн	Data Register 1	ADCR1	R		XXXXXX00
6С	A/D Setting Register 0	ADSR0	R/W		00000000
6Dн	A/D Setting Register 1	ADSR1	R/W		00000000
6Ен	Reserved				
6F\%	ROM Mirroring Register	ROMM	W	ROM Mirror	XXXXXXX1
70н to 7F ${ }^{\text {H }}$	Reserved				
80н to 8Fн	Reserved for CAN Interface 1. Refer to "■ CAN CONTROLLERS"				
90н to 9Ан	Reserved				
9Вн	DMA Descriptor Channel Specification Register	DCSR	R/W	DMA	00000000
9С	DMA Status Register L	DSRL	R/W		00000000
9Dн	DMA Status Register H	DSRH	R/W		00000000
9Ен	Program Address Detection Control Status Register 0	PACSR0	R/W	Address Match Detection 0	00000000
9F\%	Delayed Interrupt/Release	DIRR	R/W	Delayed Interrupt	00000000
AOH	Low-power Mode Control Register	LPMCR	W,R/W	Low Power Control Circuit	00011000
A1н	Clock Selection Register	CKSCR	R,R/W	Low Power Control Circuit	11111100
А2н, АЗ ${ }^{\text {, }}$	Reserved				
A4н	DMA Stop Status Register	DSSR	R/W	DMA	00000000

(Continued)

MB90350 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
А5	Automatic Ready Function Selection Register	ARSR	W	External Memory Access	0011XX00
A6 ${ }^{\text {r }}$	External Address Output Control Register	HACR	W		00000000
A7 ${ }^{\text {H}}$	Bus Control Signal Selection Register	ECSR	W		0000000X
A8 ${ }^{\text {}}$	Watchdog Timer Control Register	WDTC	R,W	Watchdog Timer	XXXXX111
A9 ${ }^{\text {}}$	Timebase Timer Control Register	TBTC	W,R/W	Time base timer	1XX00100
ААн	Watch Timer Control Register	WTC	R,R/W	Watch timer	1X001000
ABH	Reserved				
ACH	DMA Enable Register L	DERL	R/W	DMA	00000000
AD	DMA Enable Register H	DERH	R/W		00000000
АЕн	Flash Control Status Register (Flash Devices only. Otherwise reserved)	FMCS	R,R/W	Flash Memory	000X0000
AFH	Reserved				
BOH	Interrupt Control Register 00	ICROO	W,R/W	Interrupt Control	00000111
B1 ${ }^{\text {H}}$	Interrupt Control Register 01	ICR01	W,R/W		00000111
В2н	Interrupt Control Register 02	ICR02	W,R/W		00000111
В3н	Interrupt Control Register 03	ICR03	W,R/W		00000111
B4 ${ }^{\text {¢ }}$	Interrupt Control Register 04	ICR04	W,R/W		00000111
B5 ${ }^{\text {}}$	Interrupt Control Register 05	ICR05	W,R/W		00000111
B6	Interrupt Control Register 06	ICR06	W,R/W		00000111
B7 ${ }^{\text {}}$	Interrupt Control Register 07	ICR07	W,R/W		00000111
B8н	Interrupt Control Register 08	ICR08	W,R/W		00000111
B9	Interrupt Control Register 09	ICR09	W,R/W		00000111
ВАн	Interrupt Control Register 10	ICR10	W,R/W		00000111
ВВн	Interrupt Control Register 11	ICR11	W,R/W		00000111
BCH	Interrupt Control Register 12	ICR12	W,R/W		00000111
BD	Interrupt Control Register 13	ICR13	W,R/W		00000111
ВЕн	Interrupt Control Register 14	ICR14	W,R/W		00000111
BF_{H}	Interrupt Control Register 15	ICR15	W,R/W		00000111
C0н to C9н	Reserved				

(Continued)

MB90350 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
САн	External Interrupt Request Enable Register 1	ENIR1	R/W	External Interrupt 1	00000000
СВ	External Interrupt Request Register 1	EIRR1	R/W		XXXXXXXX
ССН	External Interrupt Level Register 1	ELVR1	R/W		00000000
CD	External Interrupt Level Register 1	ELVR1	R/W		00000000
СЕн	External Interrupt Source Select Register	EISSR	R/W		00000000
CFH	PLL/Subclock Control register	PSCCR	W	PLL	XXXX0000
DOH	DMA Buffer Address Pointer L	BAPL	R/W	DMA	XXXXXXXX
D1н	DMA Buffer Address Pointer M	BAPM	R/W		XXXXXXXX
D2н	DMA Buffer Address Pointer H	BAPH	R/W		XXXXXXXX
D3 ${ }^{\text {¢ }}$	DMA Control Register	DMACS	R/W		XXXXXXXX
D4н	I/O Register Address Pointer L	IOAL	R/W		XXXXXXXX
D5	I/O Register Address Pointer H	IOAH	R/W		XXXXXXXX
D6	Data Counter L	DCTL	R/W		XXXXXXXX
D7 ${ }^{\text {}}$	Data Counter H	DCTH	R/W		XXXXXXXX
D8н	Serial Mode Register 2	SMR2	W,R/W	UART2	00000000
D9 ${ }^{\text {}}$	Serial Control Register 2	SCR2	W,R/W		00000000
DАн	Reception/Transmission Data Register 2	RDR2/ TDR2	R/W		00000000
DBH	Serial Status Register 2	SSR2	R,R/W		00001000
DCH	Extended Communication Control Register 2	ECCR2	$\begin{aligned} & \hline R, W, \\ & R / W \end{aligned}$		000000XX
DD	Extended Status/Control Register 2	ESCR2	R/W		00000100
DEн	Baud Rate Reload Register 20	BGR20	R/W		00000000
DFH	Baud Rate Reload Register 21	BGR21	R/W		00000000
EOr to EFH	Reserved				
FOr to FF_{H}	External				
$\begin{gathered} \text { 7900н to } \\ 7907 \mathrm{H} \end{gathered}$	Reserved				

(Continued)

MB90350 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
7908н	Reload Register L4	PRLL4	R/W	16-bit Programable Pulse Generator 4/5	XXXXXXXX
7909н	Reload Register H4	PRLH4	R/W		XXXXXXXX
790Ан	Reload Register L5	PRLL5	R/W		XXXXXXXX
790Вн	Reload Register H5	PRLH5	R/W		XXXXXXXX
790 CH	Reload Register L6	PRLL6	R/W	16-bit Programable Pulse Generator 6/7	XXXXXXXX
790D	Reload Register H6	PRLH6	R/W		XXXXXXXX
790Ен	Reload Register L7	PRLL7	R/W		XXXXXXXX
790F	Reload Register H7	PRLH7	R/W		XXXXXXXX
7910н	Reload Register L8	PRLL8	R/W	16-bit Programable Pulse Generator 8/9	XXXXXXXX
7911H	Reload Register H8	PRLH8	R/W		XXXXXXXX
7912н	Reload Register L9	PRLL9	R/W		XXXXXXXX
7913н	Reload Register H9	PRLH9	R/W		XXXXXXXX
7914	Reload Register LA	PRLLA	R/W	16-bit Programable Pulse Generator A/B	XXXXXXXX
7915	Reload Register HA	PRLHA	R/W		XXXXXXXX
7916н	Reload Register LB	PRLLB	R/W		XXXXXXXX
7917 ${ }_{\text {H }}$	Reload Register HB	PRLHB	R/W		XXXXXXXX
7918н	Reload Register LC	PRLLC	R/W	16-bit Programable Pulse Generator C/D	XXXXXXXX
7919н	Reload Register HC	PRLHC	R/W		XXXXXXXX
791Ан	Reload Register LD	PRLLD	R/W		XXXXXXXX
	Reload Register HD	PRLHD	R/W		XXXXXXXX
$791 \mathrm{CH}_{\mathrm{H}}$	Reload Register LE	PRLLE	R/W	16-bit Programable Pulse Generator E/F	XXXXXXXX
	Reload Register HE	PRLHE	R/W		XXXXXXXX
791Eн	Reload Register LF	PRLLF	R/W		XXXXXXXX
791F	Reload Register HF	PRLHF	R/W		XXXXXXXX
7920н	Input Capture Data Register 0	IPCP0	R	Input Capture 0/1	XXXXXXXX
7921H	Input Capture Data Register 0	IPCP0	R		XXXXXXXX
7922н	Input Capture Data Register 1	IPCP1	R		XXXXXXXX
7923н	Input Capture Data Register 1	IPCP1	R		XXXXXXXX
$\begin{gathered} \hline 7924_{\mathrm{H}} \text { to } \\ 7927 \mathrm{H} \end{gathered}$	Reserved				
7928н	Input Capture Data Register 4	IPCP4	R	Input Capture 4/5	XXXXXXXX
7929н	Input Capture Data Register 4	IPCP4	R		XXXXXXXX
792Ан	Input Capture Data Register 5	IPCP5	R		XXXXXXXX
792Вн	Input Capture Data Register 5	IPCP5	R		XXXXXXXX

(Continued)

MB90350 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
792Cн	Input Capture Data Register 6	IPCP6	R	Input Capture 6/7	XXXXXXXX
792D	Input Capture Data Register 6	IPCP6	R		XXXXXXXX
792Ен	Input Capture Data Register 7	IPCP7	R		XXXXXXXX
792Fн	Input Capture Data Register 7	IPCP7	R		XXXXXXXX
$\begin{aligned} & \text { 7930H to } \\ & 7937_{\mathrm{H}} \end{aligned}$	Reserved				
7938н	Output Compare Register 4	OCCP4	R/W	Output Compare 4/5	XXXXXXXX
7939н	Output Compare Register 4	OCCP4	R/W		XXXXXXXX
793 Ан	Output Compare Register 5	OCCP5	R/W		XXXXXXXX
793Вн	Output Compare Register 5	OCCP5	R/W		XXXXXXXX
793C	Output Compare Register 6	OCCP6	R/W	Output Compare 6/7	XXXXXXXX
793D	Output Compare Register 6	OCCP6	R/W		XXXXXXXX
793Eн	Output Compare Register 7	OCCP7	R/W		XXXXXXXX
793FH	Output Compare Register 7	OCCP7	R/W		XXXXXXXX
7940н	Data Register 0	TCDT0	R/W	I/O Timer 0	00000000
7941н	Data Register 0	TCDT0	R/W		00000000
7942н	Control status Register 0	TCCSL0	R/W		00000000
7943н	Control status Register 0	TCCSH0	R/W		0XXXXXXX
7944н	Data Register 1	TCDT1	R/W	I/O Timer 1	00000000
7945	Data Register 1	TCDT1	R/W		00000000
7946н	Control status Register 1	TCCSL1	R/W		00000000
7947H	Control status Register 1	TCCSH1	R/W		0XXXXXXX
7948н	Timer Register 0/Reload Register 0	TMR0/ TMRLR0	R/W	16-bit Reload Timer 0	XXXXXXXX
7949н			R/W		XXXXXXXX
794Ан	Timer Register 1/Reload Register 1	TMR1/ TMRLR1	R/W	16-bit Reload Timer 1	XXXXXXXX
794Вн			R/W		XXXXXXXX
794CH	Timer Register 2/Reload Register 2	TMR2/ TMRLR2	R/W	16-bit Reload Timer 2	XXXXXXXX
794D			R/W		XXXXXXXX
794Eн	Timer Register 3/Reload Register 3	TMR3/ TMRLR3	R/W	16-bit Reload Timer 3	XXXXXXXX
794FH			R/W		XXXXXXXX

(Continued)

MB90350 Series

Address	Register	Abbreviation	Access	Resource name	Initial value
7950н	Serial Mode Register 3	SMR3	W, R/W	UART3	00000000
7951н	Serial Control Register 3	SCR3	W, R/W		00000000
7952н	Reception/Transmission Data Register 3	$\begin{aligned} & \hline \text { RDR3/ } \\ & \text { TDR3 } \end{aligned}$	R/W		00000000
7953н	Serial Status Register 3	SSR3	R,R/W		00001000
7954H	Extended Communication Control Register 3	ECCR3	$\begin{aligned} & \text { R,W, } \\ & \text { R/W } \end{aligned}$		000000XX
7955	Extended Status/Control Register 3	ESCR3	R/W		00000100
7956н	Baud Rate Reload Register 30	BGR30	R/W		00000000
7957	Baud Rate Reload Register 31	BGR31	R/W		00000000
$\begin{aligned} & \text { 7958 to } \\ & \text { 796Dн } \end{aligned}$	Reserved				
796Ен	CAN Direct Mode Register	CDMR	R/W	CAN clock sync	XXXXXXX0
796F	Reserved				
7970н	${ }^{1} 2 \mathrm{C}$ Bus Status Register 0	IBSR0	R	${ }^{12} \mathrm{C}$ Interface 0	00000000
7971н	${ }^{1} \mathrm{C}$ C Bus Control Register 0	IBCR0	W,R/W		00000000
7972н	${ }^{2} \mathrm{C} 10$ bit Slave Address Register 0	ITBALO	R/W		00000000
7973н		ITBAH0	R/W		00000000
7974	$I^{2} \mathrm{C} 10$ bit Slave Address Mask Register 0	ITMKL0	R/W		11111111
7975		ITMKH0	R/W		0011111
7976н	$1^{2} \mathrm{C} 7$ bit Slave Address Register 0	ISBA0	R/W		00000000
7977	$1^{2} \mathrm{C} 7$ bit Slave Address Mask Register 0	ISMK0	R/W		01111111
7978н	${ }^{2} \mathrm{C}$ data register 0	IDAR0	R/W		00000000
$\begin{aligned} & \text { 7979н, } \\ & 797 \mathrm{~A}_{\mathrm{H}} \end{aligned}$	Reserved				
797Вн	${ }^{2} \mathrm{C}$ C Clock Control Register 0	ICCR0	R/W	${ }^{2} \mathrm{C}$ Interface 0	00011111
$\begin{aligned} & \text { 797CH to } \\ & 79 \mathrm{C} 1 \mathrm{H} \end{aligned}$	Reserved				
79С2н	Clock Modulator Control Register	CMCR	R,R/W	Clock Modulator	0001X000
$\begin{gathered} \hline 79 \mathrm{C} 3 \mathrm{H} \text { to } \\ \text { 79DFн } \end{gathered}$	Reserved				

(Continued)
(Continued)

Address	Register	Abbreviation	Access	Resource name	Initial value
79E0н	Program Address Detection Register 0	PADR0	R/W	Address Match Detection 0	XXXXXXXX
79E1н	Program Address Detection Register 0	PADR0	R/W		XXXXXXXX
79E2н	Program Address Detection Register 0	PADR0	R/W		XXXXXXXX
79Е3н	Program Address Detection Register 1	PADR1	R/W		XXXXXXXX
79E4H	Program Address Detection Register 1	PADR1	R/W		XXXXXXXX
79E5н	Program Address Detection Register 1	PADR1	R/W		XXXXXXXX
79E6н	Program Address Detection Register 2	PADR2	R/W		XXXXXXXX
79E7H	Program Address Detection Register 2	PADR2	R/W		XXXXXXXX
79E8н	Program Address Detection Register 2	PADR2	R/W		XXXXXXXX
$\begin{gathered} \hline 79 \mathrm{E}_{\mathrm{H}} \text { to } \\ 79 \mathrm{EF} \mathrm{~F} \end{gathered}$	Reserved				
79F0н	Program Address Detection Register 3	PADR3	R/W	Address Match Detection 1	XXXXXXXX
79F1н	Program Address Detection Register 3	PADR3	R/W		XXXXXXXX
79F2н	Program Address Detection Register 3	PADR3	R/W		XXXXXXXX
79F3н	Program Address Detection Register 4	PADR4	R/W		XXXXXXXX
79F4	Program Address Detection Register 4	PADR4	R/W		XXXXXXXX
79F5н	Program Address Detection Register 4	PADR4	R/W		XXXXXXXX
79F6н	Program Address Detection Register 5	PADR5	R/W		XXXXXXXX
79F7н	Program Address Detection Register 5	PADR5	R/W		XXXXXXXX
79F8н	Program Address Detection Register 5	PADR5	R/W		XXXXXXXX
$\begin{aligned} & \text { 79F9н to } \\ & \text { 7BFFн } \end{aligned}$	Reserved				
$\begin{aligned} & \text { 7COOH to } \\ & \text { 7CFFF } \end{aligned}$	Reserved for CAN Interface 1. Refer to "■ CAN CONTROLLERS"				
$\begin{aligned} & \text { 7DOOH to } \\ & \text { 7DFFH } \end{aligned}$	Reserved for CAN Interface 1. Refer to "■ CAN CONTROLLERS"				
$\begin{aligned} & \text { 7EOOH to } \\ & \text { 7FFFH } \end{aligned}$	Reserved				

Notes : • Initial value of " X " represents unknown value.

- Addresses in the range 0000_{H} to 00 BF H , which are not listed in the table, are reserved for the primary functions of the MCU. A read access to these reserved addresses results reading " X " and any write access should not be performed.

MB90350 Series

- CAN CONTROLLERS

The CAN controller has the following features :

- Conforms to CAN Specification Version 2.0 Part A and B
- Supports transmission/reception in standard frame and extended frame formats
- Supports transmitting of data frames by receiving remote frames
- 16 transmitting/receiving message buffers
- 29-bit ID and 8-byte data
- Multi-level message buffer configuration
- Provides full-bit comparison, full-bit mask, acceptance register 0/acceptance register 1 for each message buffer as ID acceptance mask
- Two acceptance mask registers in either standard frame format or extended frame formats
- Bit rate programmable from $10 \mathrm{Kbits} / \mathrm{s}$ to $2 \mathrm{Mbits} / \mathrm{s}$ (when input clock is at 16 MHz)

List of Control Registers (1)

Address	Register	Abbreviation	Access	Initial Value
000080н	Message buffer enable register	BVALR	R/W	00000000
000081н				00000000
000082н	Transmit request register	TREQR	R/W	00000000
000083н				00000000
000084н	Transmit cancel register	TCANR	W	00000000
000085н				00000000
000086н	Transmission complete register	TCR	R/W	00000000
000087 ${ }^{\text {H }}$				00000000
000088н	Receive complete register	RCR	R/W	00000000
000089н				00000000
00008Ан	Remote request receiving register	RRTRR	R/W	00000000
00008Вн				00000000
00008CH	Receive overrun register	ROVRR	R/W	00000000
00008D				00000000
00008Ен	Reception interrupt enable register	RIER	R/W	00000000
00008F\%				00000000

MB90350 Series

List of Control Registers (2)

Address	Register	Abbreviation	Access	Initial Value
007D00H	Control status register	CSR	R/W, W R/W, R	$\begin{aligned} & \hline 0 \times X X X 0 \times 1 \\ & 00 X X X 000 \end{aligned}$
007D01н				
007D02н	Last event indicator register	LEIR	R/W	$\begin{aligned} & 000 X 0000 \\ & \text { XXXXXXXX } \end{aligned}$
007D03н				
007D04H	Receive/transmit error counter	RTEC	R	$\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$
007D05н				
007D06н	Bit timing register	BTR	R/W	$\begin{aligned} & 11111111 \\ & \text { X1111111 } \end{aligned}$
007D07н				
007D08н	IDE register	IDER	R/W	$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXXX } \end{aligned}$
007D09н				
007D0Ан	Transmit RTR register	TRTRR	R/W	$\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$
007D0Вн				
007D0С ${ }_{\text {¢ }}$	Remote frame receive waiting register	RFWTR	R/W	$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXXX } \end{aligned}$
007D0D				
007D0Ен	Transmit interrupt enable register	TIER	R/W	$\begin{aligned} & 00000000 \\ & 00000000 \end{aligned}$
007D0F\%				
007D10н	Acceptance mask select register	AMSR	R/W	$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXXX } \end{aligned}$
007D11н				
007D12н				XXXXXXXX
007D13н				XXXXXXXX
007D14н	Acceptance mask register 0	AMRO	R/W	$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXXX } \end{aligned}$
007D15н				
007D16н				XXXXXXXX
007D17н				XXXXXXXX
007D18H	Acceptance mask register 1	AMR1	R/W	$\begin{aligned} & \text { XXXXXXXX } \\ & \text { XXXXXXX } \end{aligned}$
007D19н				
007D1Aн				XXXXXXXX
007D1B				XXXXXXXX

MB90350 Series

List of Message Buffers (ID Registers) (1)

Address	Register	Abbreviation	Access	Initial Value
$\begin{aligned} & \text { 007C00н } \\ & \text { to } \\ & 007 \mathrm{C} 1 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	General-purpose RAM	-	R/W	$\begin{gathered} X X X X X X X X \\ \text { to } \\ X X X X X X X \end{gathered}$
007C20н	ID register 0	IDR0	R/W	XXXXXXXX
007C21н				XXXXXXXX
007C22н				XXXXXXXX
007C23н				XXXXXXXX
007C24н	ID register 1	IDR1	R/W	XXXXXXXX
007C25				XXXXXXXX
007C26 ${ }^{\text {¢ }}$				XXXXXXXX
007С27н				XXXXXXXX
007C28	ID register 2	IDR2	R/W	XXXXXXXX
007C29н				XXXXXXXX
007С2Ан				XXXXXXXX
007C2B				XXXXXXXX
007C2CH	ID register 3	IDR3	R/W	XXXXXXXX
007C2D				XXXXXXXX
007C2Ен				XXXXXXXX
007C2F ${ }_{\text {н }}$				XXXXXXXX
007C30н	ID register 4	IDR4	R/W	
007C31н				XXXXXXXX
007С32н				XXXXXXXX
007С33н				XXXXXXXX
007C34н	ID register 5	IDR5	R/W	
007C35				XXXXXXXX
007С36				XXXXXXXX
007С37н				XXXXXXXX
007С38н	ID register 6	IDR6	R/W	XXXXXXXX
007С39н				XXXXXXXX
007С3Ан				XXXXXXXX
007С3Вн				XXXXXXXX
007C3CH	ID register 7	IDR7	R/W	XXXXXXXX
007C3D				XXXXXXXX
007С3Ен				XXXXXXXX
007C3F ${ }_{\text {H }}$				XXXXXXXX

MB90350 Series

List of Message Buffers (ID Registers) (2)

Address	Register	Abbreviation	Access	Initial Value
CAN1				
007C40н	ID register 8	IDR8	R/W	XXXXXXXX
007C41н				XXXXXXXX
007С42н				XXXXXXXX
007C43н				XXXXXXXX
007C44н	ID register 9	IDR9	R/W	XXXXXXXX
007C45				XXXXXXXX
007C46н				XXXXXXXX
007C47 ${ }_{\text {H }}$				XXXXXXXX
007C48	ID register 10	IDR10	R/W	XXXXXXXX
007C49н				XXXXXXXX
007С4Ан				XXXXXXXXX
007С4Вн				XXXXXXXX
007C4CH	ID register 11	IDR11	R/W	XXXXXXXX
007C4D				XXXXXXXX
007C4Eн				XXXXXXXX
007C4FH				XXXXXXXX
007C50н	ID register 12	IDR12	R/W	XXXXXXXX
007C51н				XXXXXXXX
007С52н				XXXXXXXX
007C53н				XXXXXXXX
007C54н	ID register 13	IDR13	R/W	XXXXXXXX
007C55				XXXXXXXX
007C56н				XXXXXXXX
007C57 ${ }_{\text {H }}$				XXXXXXXX
007C58н	ID register 14	IDR14	R/W	XXXXXXXX
007C59н				XXXXXXXX
007С5Ан				XXXXXXXX
007C5Bн				XXXXXXXX
$007 \mathrm{C} 5 \mathrm{C}_{\text {н }}$	ID register 15	IDR15	R/W	XXXXXXXX
007C5D				XXXXXXXX
007С5Ен				XXXXXXXX
007C5FH				XXXXXXXX

MB90350 Series

List of Message Buffers (DLC Registers and Data Registers) (1)

Address	Register	Abbreviation	Access	Initial Value
007C60н	DLC register 0	DLCR0	R/W	XXXXXXXX
007C61н				
007C62н	DLC register 1	DLCR1	R/W	XXXXXXXX
007C63н				
007C644	DLC register 2	DLCR2	R/W	XXXXXXXX
007C65				
007C66н	DLC register 3	DLCR3	R/W	XXXXXXXX
007C67				
007C68н	DLC register 4	DLCR4	R/W	XXXXXXXX
007C69н				
007С6Ан	DLC register 5	DLCR5	R/W	XXXXXXXX
007C6Bн				
007C6CH	DLC register 6	DLCR6	R/W	XXXXXXXX
007C6D				
007C6Eн	DLC register 7	DLCR7	R/W	XXXXXXXX
007C6F				
007C70н	DLC register 8	DLCR8	R/W	XXXXXXXX
007C71н				
007C72н	DLC register 9	DLCR9	R/W	XXXXXXXX
007C73н				
007C74	DLC register 10	DLCR10	R/W	XXXXXXXX
007C75				
007C76	DLC register 11	DLCR11	R/W	XXXXXXXX
007C77 ${ }_{\text {H }}$				
007C78н	DLC register 12	DLCR12	R/W	XXXXXXXX
007C79н				
$007 \mathrm{C7}$ Ан	DLC register 13	DLCR13	R/W	XXXXXXXX
007С7Вн				
007 C 7 C н	DLC register 14	DLCR14	R/W	XXXXXXXX
007C7D				
$007 \mathrm{C} 7 \mathrm{EH}^{\text {¢ }}$	DLC register 15	DLCR15	R/W	XXXXXXXX
007C7F ${ }_{\text {H }}$				

MB90350 Series

List of Message Buffers (DLC Registers and Data Registers) (2)

Address	Register	Abbreviation	Access	Initial Value
CAN1				
$\begin{gathered} \hline 007 \mathrm{C} 80_{\mathrm{H}} \\ \text { to } \\ 007 \mathrm{C} 87 \mathrm{H} \end{gathered}$	Data register 0 (8 bytes)	DTR0	R/W	$\begin{gathered} \hline \mathrm{XXXXXXXX} \\ \text { to } \\ \mathrm{XXXXXXXX} \end{gathered}$
$\begin{gathered} \hline 007 \mathrm{C} 88 \mathrm{H} \\ \text { to } \\ 007 \mathrm{C} 8 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	Data register 1 (8 bytes)	DTR1	R/W	$\begin{gathered} \mathrm{XXXXXXXX} \\ \text { to } \\ X X X X X X X X \end{gathered}$
$\begin{gathered} \text { 007С90н } \\ \text { to } \\ 007 \mathrm{C} 97 \mathrm{H} \end{gathered}$	Data register 2 (8 bytes)	DTR2	R/W	$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$
$\begin{gathered} \hline 007 \mathrm{C} 98 \mathrm{H} \\ \text { to } \\ 007 \mathrm{C} 9 \mathrm{~F}_{\mathrm{H}} \end{gathered}$	Data register 3 (8 bytes)	DTR3	R/W	$\begin{gathered} \mathrm{XXXXXXXX} \\ \text { to } \\ X X X X X X X X \end{gathered}$
007CA0н to 007CA7H	Data register 4 (8 bytes)	DTR4	R/W	$\begin{gathered} \mathrm{XXXXXXXX} \\ \text { to } \\ \mathrm{XXXXXXXX} \end{gathered}$
007СА8н to 007CAFH	Data register 5 (8 bytes)	DTR5	R/W	$\begin{gathered} \mathrm{XXXXXXXX} \\ \text { to } \\ X X X X X X X X \end{gathered}$
$\begin{gathered} \hline 007 \mathrm{CBO} \\ \text { to } \\ 007 \mathrm{CB} 7 \boldsymbol{H} \end{gathered}$	Data register 6 (8 bytes)	DTR6	R/W	$\begin{gathered} \mathrm{XXXXXXXX} \\ \text { to } \\ \mathrm{XXXXXXXX} \end{gathered}$
$\begin{gathered} \hline 007 \mathrm{CB8} \\ \text { to } \\ 007 \mathrm{CBF} \end{gathered}$	Data register 7 (8 bytes)	DTR7	R/W	$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$
$\begin{gathered} \hline 007 \mathrm{CCOH} \\ \text { to } \\ 007 \mathrm{CC} 7 \mathrm{H} \end{gathered}$	Data register 8 (8 bytes)	DTR8	R/W	$\begin{gathered} \mathrm{XXXXXXXX} \\ \text { to } \\ X X X X X X X X \end{gathered}$
$\begin{gathered} \hline 007 \mathrm{CC8H} \\ \text { to } \\ 007 \mathrm{CCF}_{\mathrm{H}} \end{gathered}$	Data register 9 (8 bytes)	DTR9	R/W	$\begin{gathered} \mathrm{XXXXXXXX} \\ \text { to } \\ \mathrm{XXXXXXXX} \end{gathered}$
$\begin{gathered} 007 \mathrm{CDOH} \\ \text { to } \\ 007 \mathrm{CD} 7 \text { н } \end{gathered}$	Data register 10 (8 bytes)	DTR10	R/W	$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$
$\begin{gathered} \hline 007 \mathrm{CD8H} \\ \text { to } \\ 007 \mathrm{CDF}_{\mathrm{H}} \end{gathered}$	Data register 11 (8 bytes)	DTR11	R/W	$\begin{gathered} \mathrm{XXXXXXXX} \\ \text { to } \\ X X X X X X X X \end{gathered}$
$\begin{gathered} \text { 007CEOH } \\ \text { to } \\ 007 \mathrm{CE} 7_{\mathrm{H}} \end{gathered}$	Data register 12 (8 bytes)	DTR12	R/W	$\begin{gathered} \mathrm{XXXXXXXX} \\ \text { to } \\ \text { XXXXXXX } \end{gathered}$
$\begin{aligned} & \text { 007CE8H } \\ & \text { to } \\ & 007 \mathrm{CEFH} \end{aligned}$	Data register 13 (8 bytes)	DTR13	R/W	$\begin{gathered} \text { XXXXXXXX } \\ \text { to } \\ \text { XXXXXXXX } \end{gathered}$

MB90350 Series

List of Message Buffers (DLC Registers and Data Registers) (3)

Address	Register	Abbreviation	Access	Initial Value
CAN1	DTR14	R/W	XXXXXXXX to	
007CF0H to 007CF7H	Data register 14 (8 bytes)	DTR15	R/W	XXXXXXXX to XXXXXXXX
007CF8H to 007CFFH	Data register 15 (8 bytes)			

MB90350 Series

■ INTERRUPT FACTORS, INTERRUPT VECTORS, INTERRUPT CONTROL REGISTER

Interrupt cause	$\mathrm{El}^{2} \mathrm{OS}$ clear	DMA ch number	Interrupt vector		Interrupt control register	
			Number	Address	Number	Address
Reset	N	-	\#08	FFFFDCH	-	-
INT9 instruction	N	-	\#09	FFFFD8 ${ }_{\text {н }}$	-	-
Exception	N	-	\#10	FFFFD4 ${ }_{\text {н }}$	-	-
Reserved	N	-	\#11	FFFFD0н	ICR00	0000B0н
Reserved	N	-	\#12	FFFFCCH		
CAN 1 RX / Input Capture 6	Y1	-	\#13	FFFFC8H	ICR01	0000B1н
CAN 1 TX/NS / Input Capture 7	Y1	-	\#14	FFFFC4 ${ }_{\text {¢ }}$		
${ }^{12} \mathrm{C}$	N	-	\#15	FFFFCOH	ICR02	0000B2н
Reserved	N	-	\#16	FFFFBCH		
16-bit Reload Timer 0	Y1	0	\#17	FFFFB8\%	ICR03	0000B3 ${ }^{\text {H }}$
16-bit Reload Timer 1	Y1	1	\#18	FFFFB4 ${ }_{\text {H }}$		
16-bit Reload Timer 2	Y1	2	\#19	FFFFB0н	ICR04	0000B4н
16-bit Reload Timer 3	Y1	-	\#20	FFFFACH		
PPG 4/5	N	-	\#21	FFFFA8\%	ICR05	0000B5
PPG 6/7	N	-	\#22	FFFFA4		
PPG 8/9/C/D	N	-	\#23	FFFFA0н	ICR06	0000B6н
PPG A/B/E/F	N	-	\#24	FFFF9C ${ }_{\text {н }}$		
Time Base Timer	N	-	\#25	FFFF98	ICR07	0000B7н
External Interrupt 8 to 11	Y1	3	\#26	FFFF94		
Watch Timer	N	-	\#27	FFFF90н	ICR08	0000B8H
External Interrupt 12 to 15	Y1	4	\#28	FFFF8C ${ }_{\text {H }}$		
A/D Converter	Y1	5	\#29	FFFF88н	ICR09	0000B9н
I/O Timer 0 / I/O Timer 1	N	-	\#30	FFFF84		
Input Capture 4/5	Y1	6	\#31	FFFF80н	ICR10	0000ВАн
Output Compare 4/5	Y1	7	\#32	FFFFF7C		
Input Capture 0/1	Y1	8	\#33	FFFF78н	ICR11	0000ВВн
Output Compare 6/7	Y1	9	\#34	FFFF74		
Reserved	N	10	\#35	FFFF70н	ICR12	0000BCH
Reserved	N	11	\#36	FFFF6C ${ }_{\text {H }}$		
UART 3 RX	Y2	12	\#37	FFFF68н	ICR13	0000BD ${ }_{\text {н }}$
UART 3 TX	Y1	13	\#38	FFFF64		

(Continued)

MB90350 Series

(Continued)

Interrupt cause	$\mathrm{El}^{2} \mathrm{OS}$ clear	DMA ch number	Interrupt vector		Interrupt control register	
			Number	Address	Number	Address
UART 2 RX	Y2	14	\#39	FFFF60н	ICR14	0000ВЕн
UART 2 TX	Y1	15	\#40	FFFF5C ${ }_{\text {H }}$		
Flash Memory	N	-	\#41	FFFF58	ICR15	0000BFH
Delayed interrupt	N	-	\#42	FFFF54н		

Y1 : Usable
Y2 : Usable, with El²OS stop function
N : Unusable
Notes : - The peripheral resources sharing the ICR register have the same interrupt level.

- When two peripheral resources share the ICR register, only one can use Extended Intelligent I/O Service at a time.
- When either of the two peripheral resources sharing the ICR register specifies Extended Intelligent I/O Service, the other one cannot use interrupts.

MB90350 Series

ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

$$
\left(V_{s s}=A V_{s s}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Rating		Unit	Remarks	
		Min	Max			
Power supply voltage	V cc	Vss - 0.3	Vss +6.0	V		
	AVcc	Vss -0.3	Vss +6.0	V	$\mathrm{Vcc}=\mathrm{AV}_{\text {cc* }}{ }^{\text {c }}$	
	AVRH	Vss - 0.3	Vss +6.0	V	$\mathrm{AV} \mathrm{cc} \geq \mathrm{AVRH}^{* 1}$	
Input voltage	V_{1}	Vss - 0.3	Vss +6.0	V	*2	
Output voltage	Vo	Vss -0.3	Vss +6.0	V	*2	
Maximum Clamp Current	Iclamp	-4.0	+4.0	mA	* 4	
Total Maximum Clamp Current	$\Sigma \mid$ \|clamp		-	40	mA	* 4
"L" level maximum output current	loL	-	15	mA	* 3	
"L" level average output current	lolav	-	4	mA	* 3	
"L" level maximum overall output current	EloL	-	100	mA	* 3	
"L" level average overall output current	Elolav	-	50	mA	* 3	
"H" level maximum output current	Іон	-	-15	mA	* 3	
"H" level average output current	lohav	-	-4	mA	* 3	
"H" level maximum overall output current	Гloh	-	-100	mA	* 3	
"H" level average overall output current	Σ Iohav	-	-50	mA	* 3	
Power consumption	PD	-	240	mW	$+105^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$, Normal operation : maximum frequency 16 MHz	
		-	320	mW	$-40^{\circ} \mathrm{C}<\mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$, Normal operation : maximum frequency 24 MHz	
Operating temperature	TA	-40	+105	${ }^{\circ} \mathrm{C}$		
		-40	+125	${ }^{\circ} \mathrm{C}$	*5	
Storage temperature	Tsta	-55	+150	${ }^{\circ} \mathrm{C}$		

(Continued)

MB90350 Series

(Continued)
*1: Set AV cc and V cc to the same voltage. Make sure that AV cc does not exceed V_{cc} and that the voltage at the analog inputs does not exceed $A V c c$ when the power is switched on.
*2: V_{1} and V_{0} should not exceed $\mathrm{V}_{c c}+0.3 \mathrm{~V}$. V_{1} should not exceed the specified ratings. However if the maximun current to/from an input is limited by some means with external components, the Iclamp rating supercedes the $\mathrm{V}_{\text {}}$ rating.
*3: Applicable to pins: P00 to P07, P10 to P17, P20 to P25, P30 to P37, P40 to P45, P50 to P56, P60 to P67
*4: - Applicable to pins: P00 to P07, P10 to P17, P20 to P25, P30 to P37, P40 to P45, P50 to P56 (for evaluation: P50 to P55), P60 to P67

- Use within recommended operating conditions.
- Use at DC voltage (current)
- The $+B$ signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{cc} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the +B input pin open.
- Sample recommended circuits:
- Input/output equivalent circuits

*5 : If used exceeding $T_{A}=+105^{\circ} \mathrm{C}$, be sure to contact Fujitsu for reliability limitations.
WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB90350 Series

2. Recommended Conditions

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{~V}_{\mathrm{ss}}=0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Power supply voltage	Vcc, AVcc	4.0	5.0	5.5	V	Under normal operation
		3.5	5.0	5.5	V	Under normal operation, when not using the A/D converter and not Flash programming.
		4.5	5.0	5.5	V	When External bus is used.
		3.0	-	5.5	V	Maintains RAM data in stop mode
Smooth capacitor	Cs	0.1	-	1.0	$\mu \mathrm{F}$	Use a ceramic capacitor or capacitor of better AC characteristics. Capacitor at the V_{cc} should be greater than this capacitor.
Operating temperature	TA	-40	-	+105	${ }^{\circ} \mathrm{C}$	
		-40	-	+125	${ }^{\circ} \mathrm{C}$	*

*: If used exceeding $\mathrm{T}_{\mathrm{A}}=+105^{\circ} \mathrm{C}$, be sure to contact Fujitsu for reliability limitations.

C Pin Connection Diagram

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB90350 Series

3. DC Characteristics

$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%$, fcp $\leq 24 \mathrm{MHz}, \mathrm{V}$ ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}$)
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 16 \mathrm{MHz}, \mathrm{V} \mathrm{Ss}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Input H voltage (At $\mathrm{V}_{\mathrm{cc}}=$ $5 \mathrm{~V} \pm 10 \%)$	Vihs	-	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Port inputs if CMOS hysteresis input levels are selected (except P12, P15, P44, P45, P50)
	VIHA	-	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Port inputs if AUTOMOTIVE input levels are selected
	Viht	-	-	2.0	-	$\mathrm{Vcc}+0.3$	V	Port inputs if TTL input levels are selected
	Vihs	-	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	P12, P15, P50 inputs if CMOS input levels are selected
	VIHI	-	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	P44, P45 inputs if CMOS hysteresis input levels are selected
	V'hr	-	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	$\overline{\text { RST input pin (CMOS }}$ hysteresis)
	$\mathrm{V}_{\text {HM }}$	-	-	Vcc-0.3	-	V cc +0.3	V	MD input pin
Input L voltage (At $\mathrm{Vcc}=$ $5 \mathrm{~V} \pm 10 \%)$	Vıss	-	-	Vss - 0.3	-	0.2 Vcc	V	Port inputs if CMOS hysteresis input levels are selected (except P12, P15, P44, P45, P50)
	VILA	-	-	Vss - 0.3	-	0.5 Vcc	V	Port inputs if AUTOMOTIVE input levels are selected
	VItt	-	-	Vss - 0.3	-	0.8	V	Port inputs if TTL input levels are selected
	Vıss	-	-	Vss - 0.3	-	0.3 Vcc	V	P12, P15, P50 inputs if CMOS input levels are selected
	VILI	-	-	Vss - 0.3	-	0.3 Vcc	V	P44, P45 inputs if CMOS hysteresis input levels are selected
	VILR	-	-	Vss - 0.3	-	0.2 Vcc	V	RST input pin (CMOS hysteresis)
	VILM	-	-	Vss - 0.3	-	Vss +0.3	V	MD input pin
Output H voltage	Vон	Normal outputs	$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-4.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	
Output H voltage	Vоні	${ }^{12} \mathrm{C}$ current outputs	$\begin{aligned} & \mathrm{Vcc}=4.5 \mathrm{~V}, \\ & \mathrm{loH}=-3.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V} c \mathrm{c}-0.5$	-	-	V	
Output L voltage	Vob	Normal outputs	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	
Output L voltage	Volı	${ }^{12} \mathrm{C}$ current outputs	$\begin{aligned} & \mathrm{V} \mathrm{cc}=4.5 \mathrm{~V}, \\ & \mathrm{loL}=3.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	

(Continued)

MB90350 Series

(Continued)

$$
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{~V} \mathrm{Ss}=\mathrm{AV} \text { Ss }=0 \mathrm{~V}\right) \\
& \left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{VC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 16 \mathrm{MHz}, \mathrm{~V} \mathrm{Vs}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right)
\end{aligned}
$$

*: The power supply current is measured with an external clock.

MB90350 Series

4. AC Characteristics

(1) Clock Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{Vss}=\mathrm{AV}$ ss $\left.=0 \mathrm{~V}\right)$
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%$, fcp $\leq 16 \mathrm{MHz}, \mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Clock frequency	fc	X0, X1	3	-	16	MHz	When using an oscillation circuit
		X0	3	-	24	MHz	When using an external clock*
	fcL	X0A, X1A	-	32.768	100	kHz	
Clock cycle time	toyı	X0, X1	62.5	-	333	ns	When using an oscillation circuit
		X0	41.67	-	333	ns	When using an external clock
	tcyll	X0A, X1A	10	30.5	-	$\mu \mathrm{s}$	
Input clock pulse width	Pwh, PwL	X0	10	-	-	ns	Duty ratio is about 30\% to 70\%.
	Pwhl, PwLL	XOA	5	15.2	-	$\mu \mathrm{S}$	
Input clock rise and fall time	tcr, tcF	X0	-	-	5	ns	When using external clock
Internal operating clock frequency (machine clock)	fcp	-	1.5	-	24	MHz	When using main clock at $\mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$
					16		When using main clock at $\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
	fcpl	-		8.192	50	kHz	When using sub clock
Internal operating clock cycle time (machine clock)	tcp	-	41.67	-	666	ns	When using main clock at $\mathrm{T}_{\mathrm{A}} \leq+105^{\circ} \mathrm{C}$
			62.5				When using main clock at $\mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C}$
	tcPL	-	20	122.1	-	$\mu \mathrm{s}$	When using sub clock

*: When selecting the PLL clock, the range of clock frequency is limited. Use this product within range as mentioned in "Relation among external clock frequency and machine clock frequency".

MB90350 Series

Guaranteed operation range of MB90350 series

*: When using the oscillation circuit, the maximum oscillation clock frequency is 16 MHz
External clock frequency and Machine clock frequency

MB90350 Series

(2) Reset Standby Input

$$
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{~V} \mathrm{Ss}=\mathrm{AV} \text { Ss }=0 \mathrm{~V}\right) \\
& \left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{Vc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 16 \mathrm{MHz}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \text { Ss }=0 \mathrm{~V}\right)
\end{aligned}
$$

Parameter	Symbol	Pin	Value		Unit	Remarks
			Min	Max		
Reset input time	trsti	$\overline{\mathrm{RST}}$	500	-	ns	Under normal operation
			Oscillation time of oscillator* $+100 \mu \mathrm{~s}$	-	$\mu \mathrm{s}$	In Stop mode, Sub Clock mode, Sub Sleep mode and Watch mode
			100	-	$\mu \mathrm{S}$	In Main timer mode and PLL timer mode

*: Oscillation time of oscillator is the time that the amplitude reaches 90%.
In the crystal oscillator, the oscillation time is between several ms to tens of ms. In FAR / ceramic oscillators, the oscillation time is between hundreds of $\mu \mathrm{s}$ to several ms . With an external clock, the oscillation time is 0 ms .

Under normal operation:

In Stop mode, Sub Clock mode, Sub Sleep mode, Watch mode:

MB90350 Series

(3) Power On Reset

$$
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{~V} \mathrm{Ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}\right) \\
& \left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 16 \mathrm{MHz}, \mathrm{Vss}=\mathrm{AVss}=0 \mathrm{~V}\right)
\end{aligned}
$$

Parameter	Symbol	Pin	Condition	Value		Remarks	
				Min	Max		
Power on rise time	t_{R}	V_{cc}	-	0.05	30	ms	
				-	ms	Due to repetitive operation	

If you change the power supply voltage too rapidly, a power on reset may occur. We recommend that you startup smoothly by restraining voltages when changing the power supply voltage during operation, as shown in the figure below. Perform while not using the PLL clock. However, if voltage drops are within $1 \mathrm{~V} / \mathrm{s}$, you can operate while using the PLL clock.

(4) Clock Output Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{fcp} \leq 24 \mathrm{MHz}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Cycle time	torc	CLK	-	62.5	-	ns	$\mathrm{ffP}^{\text {e }} 16 \mathrm{MHz}$
				41.76	-	ns	$\mathrm{fcP}=24 \mathrm{MHz}$
CLK $\uparrow \rightarrow$ CLK \downarrow	tchсL	CLK	-	20	-	ns	$\mathrm{fcp}=16 \mathrm{MHz}$
				13	-	ns	$\mathrm{fcP}=24 \mathrm{MHz}$

MB90350 Series

(5) Bus Timing (Read)
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} \mathrm{ss}=0.0 \mathrm{~V}$, fcp $\left.\leq 24 \mathrm{MHz}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
ALE pulse width	tLнLL	ALE	-	tcp/2-10	-	ns	
Valid address \Rightarrow ALE \downarrow time	tavLL	ALE, A21 to A16, AD15 to AD00		tcp/2-20	-	ns	
ALE $\downarrow \Rightarrow$ Address valid time	tıLax	ALE, AD15 to AD00		tcp/2-15	-	ns	
Valid address $\Rightarrow \overline{\mathrm{RD}} \downarrow$ time	tavkl	A21 toA16, AD15 to AD00, $\overline{R D}$		tcp - 15	-	ns	
Valid address \Rightarrow Valid data input	tavov	$\begin{aligned} & \text { A21 to A16, } \\ & \text { AD15 to } \\ & \text { AD00 } \end{aligned}$		-	5 tcp/2-60	ns	
$\overline{\mathrm{RD}}$ pulse width	trLRH	$\overline{\mathrm{RD}}$		$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{RD}} \downarrow \Rightarrow$ Valid data input	trldv	$\begin{aligned} & \overline{\mathrm{RD}}, \mathrm{AD} 15 \text { to } \\ & \text { AD00 } \end{aligned}$		-	3 tcp/2-50	ns	
$\overline{\mathrm{RD}} \uparrow \Rightarrow$ Data hold time	trhox	$\begin{aligned} & \overline{\mathrm{RD}}, \mathrm{AD} 15 \text { to } \\ & \text { AD00 } \end{aligned}$		0	-	ns	
$\overline{\mathrm{RD}} \downarrow \Rightarrow \mathrm{ALE} \uparrow$ time	trнLH	$\overline{\mathrm{RD}}$, ALE		tcp/2-15	-	ns	
$\overline{\mathrm{RD}} \uparrow \Rightarrow$ Address valid time	trhax	$\begin{aligned} & \overline{\mathrm{RD}}, \mathrm{~A} 21 \text { to } \\ & \mathrm{A} 16 \end{aligned}$		tcp/2-10	-	ns	
Valid address \Rightarrow CLK \uparrow time	tavch	A21 to A16, AD15 to AD00, CLK		tcp/2-16	-	ns	
$\overline{\overline{R D}} \downarrow \Rightarrow$ CLK \uparrow time	trLCH	$\overline{\mathrm{RD}}, \mathrm{CLK}$		tcp/2-15	-	ns	
ALE $\downarrow \Rightarrow \overline{\mathrm{RD}} \downarrow$ time	tLlRL	ALE, $\overline{\mathrm{RD}}$		ttp/2-15	-	ns	

MB90350 Series

MB90350 Series

(6) Bus Timing (Write)
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{fcp} \leq 24 \mathrm{MHz}$)

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Valid address $\Rightarrow \overline{\mathrm{WR}} \downarrow$ time	tavwL	A21 to A16, AD15 to AD00, WR	-	tcp-15	-	ns	
$\overline{\text { WR }}$ pulse width	twwwh	$\overline{\mathrm{WR}}$		$3 \mathrm{tcp} / 2-20$	-	ns	
Valid data output $\Rightarrow \overline{\mathrm{WR}} \uparrow$ time	tovw	AD15 to AD00, WR		$3 \mathrm{tcp} / 2-20$	-	ns	
$\overline{\mathrm{WR}} \uparrow \Rightarrow$ Data hold time	twhox	AD15 to AD00, WR		15	-	ns	
$\overline{\mathrm{WR}} \uparrow \Rightarrow$ Address valid time	twhax	$\frac{\mathrm{A} 21}{\mathrm{WR}} \text { to A16, }$		tcp/2-10	-	ns	
$\overline{\mathrm{WR}} \uparrow \Rightarrow$ ALE \uparrow time	twнLH	WR, ALE		ttcp/2-15	-	ns	
$\overline{\mathrm{WR}} \downarrow \Rightarrow$ CLK \uparrow time	twLCH	$\overline{\mathrm{WR}}$, CLK		tcp/2-15	-	ns	

MB90350 Series

(7) Ready Input Timing
($\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}$, fcp $\leq 24 \mathrm{MHz}$)

Parameter	Symbol	Pin	Test Condition	Rated Value		Units	Remarks
				Min	Max		
RDY setup time	tryhs	RDY	-	45	-	ns	$\mathrm{fcp}=16 \mathrm{MHz}$
				32	-	ns	$\mathrm{fcP}=24 \mathrm{MHz}$
RDY hold time	tRYнH	RDY		0	-	ns	

Note : If the RDY setup time is insufficient, use the auto-ready function.

MB90350 Series

(8) Hold Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V} \mathrm{SS}=0.0 \mathrm{~V}, \mathrm{f}_{\mathrm{CP}} \leq 24 \mathrm{MHz}\right)$

Parameter	Symbol	Pin	Condition	Value		Units	Remarks
				Min	Max		
Pin floating $\Rightarrow \overline{\text { HAK }} \downarrow$ time	txhal	$\overline{\text { HAK }}$	-	30	tcp	ns	
$\overline{\text { HAK }} \uparrow$ time \Rightarrow Pin valid time	thahv	$\overline{\text { HAK }}$		tcp	2 tcp	ns	

Note : There is more than 1 cycle from when HRQ reads in until the $\overline{\mathrm{HAK}}$ is changed.

MB90350 Series

(9) UART $2 / 3$
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%$, $\left.\mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}\right)$ $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 16 \mathrm{MHz}, \mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Serial clock cycle time	tscyc	SCK2, SCK3	Internal clock operation output pins are $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$	8 tcp*	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tstov	$\begin{aligned} & \text { SCK2, SCK3, } \\ & \text { SOT2, SOT3 } \end{aligned}$		-80	+80	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK2, SCK3, SIN0 to SIN4		100	-	ns	
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshix	$\begin{aligned} & \text { SCK2, SCK3, } \\ & \text { SIN2, SIN3 } \end{aligned}$		60	-	ns	
Serial clock "H" pulse width	tshsL	SCK2, SCK3	External clock operation output pins are $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}+1 \mathrm{TTL}$	4 tcp*	-	ns	
Serial clock "L" pulse width	tsLsh	SCK2, SCK3		4 tcp*	-	ns	
SCK $\downarrow \rightarrow$ SOT delay time	tslov	$\begin{aligned} & \text { SCK2, SCK3, } \\ & \text { SOT2, SOT3 } \end{aligned}$		-	150	ns	
Valid SIN \rightarrow SCK \uparrow	tivsh	$\begin{gathered} \text { SCK2, SCK3, } \\ \text { SIN2, SIN3 } \end{gathered}$		60	-	ns	
SCK $\uparrow \rightarrow$ Valid SIN hold time	tshix	$\begin{gathered} \text { SCK2, SCK3, } \\ \text { SIN2, SIN3 } \end{gathered}$		60	-	ns	

* : Refer to " (1) Clock timing" rating for tcp (internal operating clock cycle time).

Notes: - AC characteristic in CLK synchronized mode.

- C_{L} is load capacity value of pins when testing.
- tcp is the machine cycle (Unit : ns)

MB90350 Series

(10) Trigger Input Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{Cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{f} \mathrm{CP} \leq 24 \mathrm{MHz}, \mathrm{V}_{\mathrm{Ss}}=0.0 \mathrm{~V}\right)$ $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{f}_{\mathrm{CP}} \leq 16 \mathrm{MHz}, \mathrm{V} \mathrm{Ss}=0.0 \mathrm{~V}\right)$

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttrgh ttrgl	INT8 to INT15, INT9R to INT11R, ADTG	-	5 tcp	-	ns	

MB90350 Series

(11) Timer Related Resource Input Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+105^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{V}$ ss $=0.0 \mathrm{~V}$) $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcp} \leq 16 \mathrm{MHz}, \mathrm{V} \mathrm{ss}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				Min	Max		
Input pulse width	tтwh	TIN1, TIN3, INO, IN1, IN4 to IN7					
	ttiwL		-	4 tcp	-	ns	

TIN1, TIN3, INO, IN1, IN4 to IN7

(12) Timer Related Resource Output Timing
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+105^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{V} \mathrm{Ss}=0.0 \mathrm{~V}\right)$
$\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+125^{\circ} \mathrm{C}, \mathrm{V} \mathrm{CC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 16 \mathrm{MHz}, \mathrm{V} \mathrm{SS}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin	Condition	Value		Unit	Remarks
				30	-		

MB90350 Series

(13) $I^{2} C$ Timing

$\begin{aligned} & \left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 24 \mathrm{MHz}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \text { Ss }=0.0 \mathrm{~V}\right) \\ & \left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{cc}}=\mathrm{AV} \mathrm{VC}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 16 \mathrm{MHz}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV}=0.0 \mathrm{~V}\right) \end{aligned}$							
Parameter	Symbol	Condition	Standard-mode		Fast-mode*4		Unit
			Min	Max	Min	Max	
SCL clock frequency	fscl	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	0	100	0	400	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$
"L" width of the SCL clock	tow		4.7	-	1.3	-	$\mu \mathrm{s}$
"H" width of the SCL clock	thigh		4.0	-	0.6	-	$\mu \mathrm{s}$
Set-up time for a repeated START condition $S C L \uparrow \rightarrow S D A \downarrow$	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thdot		0	$3.45{ }^{* 2}$	0	0.9*3	$\mu \mathrm{s}$
Data set-up time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsudat		250	-	100	-	ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	tbus		4.7	-	1.3	-	$\mu \mathrm{s}$

*1: R,C : Pull-up resistor and load capacitor of the SCL and SDA lines.
*2 : The maximum thddat have only to be met if the device does not stretch the "L" width (tlow) of the SCL signal.
*3: A Fast-mode $I^{2} C$-bus device can be used in a Standard-mode $I^{2} C$-bus system, but the requirement tsudat ≥ 250 ns must then be met.
*4 : For use at over 100 kHz , set the machine clock to at least 6 MHz .

MB90350 Series

5. A/D Converter

$$
\begin{aligned}
& \left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+105^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{AVRH}, \mathrm{~V} \mathrm{cc}=\mathrm{AV} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \% \text {, } \mathrm{fcp} \leq 24 \mathrm{MHz}, \mathrm{~V} s \mathrm{ss}=\mathrm{AV} \text { ss }=0 \mathrm{~V}\right) \\
& \left(T_{A}=-40^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}, 3.0 \mathrm{~V} \leq \mathrm{AVRH}, \mathrm{~V} c \mathrm{c}=\mathrm{AV} \mathrm{Cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{fcP} \leq 16 \mathrm{MHz}, \mathrm{~V} s \mathrm{ss}=\mathrm{AV} \mathrm{Ss}=0 \mathrm{~V}\right. \text {) }
\end{aligned}
$$

Parameter	Symbol	Pin	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error	-	-	-	-	± 3.0	LSB	
Nonlinearity error	-	-	-	-	± 2.5	LSB	
Differential nonlinearity error	-	-	-	-	± 1.9	LSB	
Zero reading voltage	Vот	AN0 to AN14	AVss - 1.5	$\mathrm{AV}_{\text {ss }}+0.5$	AVss + 2.5	LSB	
Full scale reading voltage	$V_{\text {fst }}$	ANO to AN14	AVRH - 3.5	AVRH-1.5	AVRH + 0.5	LSB	
Compare time	-	-	1.0	-	16,500	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 5.5 \mathrm{~V}$
			2.0				$4.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{cc}}<4.5 \mathrm{~V}$
Sampling time	-	-	0.5	-	∞	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{AV}$ cc $\leq 5.5 \mathrm{~V}$
			1.2				$4.0 \mathrm{~V} \leq \mathrm{AV}_{\mathrm{cc}}<4.5 \mathrm{~V}$
Analog port input current	Iain	ANO to AN14	-0.3	-	+0.3	$\mu \mathrm{A}$	
Analog input voltage range	Vain	AN0 to AN14	AVss	-	AVRH	V	
Reference voltage range	-	AVRH	$\mathrm{AVss}+2.7$	-	AVcc	V	
Power supply current	IA	AV ${ }_{\text {cc }}$	-	3.5	7.5	mA	
	ІА	AVcc	-	-	5	$\mu \mathrm{A}$	*
Reference voltage current	IR	AVRH	-	600	900	$\mu \mathrm{A}$	
	IRH	AVRH	-	-	5	$\mu \mathrm{A}$	*
Offset between input channels	-	AN0 to AN14	-	-	4	LSB	

*: IF A/D convertor is not operating, a current when CPU is stopped is applicable $(\mathrm{V} c \mathrm{cc}=\mathrm{AV} c \mathrm{c}=\mathrm{AVRH}=5.0 \mathrm{~V})$.
Note : The accuracy gets worse as |AVRH - AVss| becomes smaller.

MB90350 Series

6. Definition of A/D Converter Terms

Resolution : Analog variation that is recognized by an A/D converter.
Non linearity error

Differential linearity error
Total error
: Deviation between a line across zero-transition line ("00 00000000 " $\leftarrow \rightarrow$ "00 0000 0001") and full-scale transition line ("111111 1110" $\leftarrow \rightarrow$ "1111111111") and actual conversion characteristics.

Zero reading
: Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
: Difference between an actual value and an ideal value. A total error includes zero transition error, full-scale transition error, and linear error.
voltage
Full scale : Input voltage which results in the maximum conversion value. reading voltage
: Input voltage which results in the minimum conversion value.

Total error of digital output " N " $=\frac{\mathrm{V}_{\mathrm{NT}}-\{1 \mathrm{LSB} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}\}}{1 \mathrm{LSB}}$ [LSB]
$1 \mathrm{LSB}=($ Ideal value $) \frac{\mathrm{AVRH}-\mathrm{AV}_{\text {ss }}}{1024}[\mathrm{~V}]$
Vот (Ideal value) $=\mathrm{AV}$ ss $+0.5 \mathrm{LSB}[\mathrm{V}]$
$\mathrm{V}_{\text {FST }}$ (Ideal value) $=\mathrm{AVRH}-1.5 \mathrm{LSB}$ [V]
V_{NT} : A voltage at which digital output transitions from $(\mathrm{N}-1)$ to N .

MB90350 Series

(Continued)

MB90350 Series

7. Notes on A/D Converter Section

Use the device with external circuits of the following output impedance for analog inputs :
Recommended output impedance of external circuits are : Approx. $1.5 \mathrm{k} \Omega$ or lower ($4.0 \mathrm{~V} \leq \mathrm{AV} \mathrm{cc} \leq 5.5 \mathrm{~V}$, sampling period $\leq 0.5 \mu \mathrm{~s}$)
If an external capacitor is used, in consideration of the effect by tap capacitance caused by external capacitors and on-chip capacitors, capacitance of the external one is recommended to be several thousand times as high as internal capacitor.

If output impedance of an external circuit is too high, a sampling period for an analog voltage may be insufficient.

- Analog input circuit model

Note : Use the values in the figure only as a guideline.
8. Flash Memory Program/Erase Characteristics

Parameter	Conditions	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V} \end{aligned}$	-	1	15	s	Excludes programming prior to erasure
Chip erase time		-	9	-	s	Excludes programming prior to erasure
Word (16 bit width) programming time		-	16	3,600	$\mu \mathrm{S}$	Except for the overhead time of the system
Program/Erase cycle	-	10,000	-	-	cycle	
Flash Data Retention Time	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	20	-	-	Years	*

*: This value comes from the technology qualification.
(Using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$)

MB90350 Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB90F352PFM	64-pin Plastic LQFP (FPT-64P-M09)	
MB90F352SPFM	64-pin Plastic LQFP (FPT-64P-M09)	
MB90352PFM	299-pin Ceramic PGA (PGA-299C-A01)	For evaluation
MB90352SPFM	MB90V340A-101	
MB90V340A-102		

MB90350 Series

PACKAGE DIMENSIONS

64-pin Plastic LQFP (FPT-64P-M09)

Note 1) * : These dimensions do not include resin protrusion.
Note 2) Pins width and pins thickness including plating thickness.
Note 3) Pins width do not include tie bar cutting remainder.

© 2003 FUUTSU LIMTED F640188:-9.5.5
Dimensions in mm (inches)
Note : The values in parentheses are reference values.

MB90350 Series

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

[^0]: * : Only for devices without 'S' Suffix

