QUAD/OCTAL 6BIT D/A CONVERTER CMOS LSI

DESCRIPTION

μ PD6325 Serise are 6 bit D/A Converter for control volumn, brightness, contrast, color or tone of TV set.
The data are transferring serially from micro-computer.

μ PD6325 Serise Line-up	QUAD D/A	OCTAL D/A
D/A output is consist of Emitter follower buffer	μ PD6325C, 6325 G	μ PD6326C
Non buffer output	μ PD6335C, 6335G	μ PD6336C

FEATURES

- R-2R ladder D/A
- Serial Data input (DATA IN, CLOCK, LOAD)
- Power supply voltage of interface is $5 \mathrm{~V}(\mathrm{Vcc})$ and D / A reference voltage is free (Vcc to 15 V).

ORDERING INFORMATION

Part No.	Package
μ PD6325C	16-pin plastic DIP $(300 \mathrm{mil})$
μ PD6325G	16-pin plastic SOP $(300 \mathrm{mil})$
μ PD6326C	16-pin plastic DIP $(300 \mathrm{mil})$
$\mu \mathrm{PD} 6335 \mathrm{C}$	16-pin plastic DIP $(300 \mathrm{mil})$
$\mu \mathrm{PD} 6335 \mathrm{G}$	16-pin plastic SOP $(300 \mathrm{mil})$
$\mu \mathrm{PD} 6336 \mathrm{C}$	16-pin plastic DIP $(300 \mathrm{mil})$

PIN CONNECTION DIAGRAM (Top View)

μ PD6326, μ PD6336

BLOCK DIAGRAM

PIN CONFIGURATION

Pin No.		Symbol	Pin Name	Function
$\mu \mathrm{PD}_{6335}^{6325}$	$\mu \mathrm{PD}_{6336}^{6326}$			
1	1	Voc	Interface Power Supply	This pin is used to interface with the control IC (ex. micro processor). Supply the voltage high level of the control IC.
2	2	DATA IN	Serial Data Input	Control data input terminal. Data is read in synchronization with the clocks input to the CLOCK terminal.
4	3	CLOCK	Shift Clock Input	Data read clock input terminal. The Data input to the DATA IN terminal is read at the leading edge of the clock.
5	4	LOAD	Load Pulse Input	This terminal is used to input Load signals after inputting serial data. 12 bit data is read after leading edge of a pulse input to the LOAD terminal.
7	6	DATA OUT	Serial Data Output	Serial data output terminal. The final stage data of 12 bit shift register appeares on this terminal in synchronization with shift clock.
8	8	Vss	Ground	System ground.
9	-	OPTION 2	Expantion Output Port	D_{7} the data of the shift register appears on this terminal. (Only μ PD6325 and μ PD6335)
10	5	OPTION ${ }_{1}$	Expanttion Output Port	D_{6} the data of the shift register appears on this terminal.
-	7	DA8	Analog Output Channel 8	Analog Output
-	9	DA_{7}	Analog Output Channel 7	Analog Output
-	10	DA_{6}	Analog Output Channel 6	Analog Output
-	11	DA5	Analog Output Channel 5	Analog Output
12	12	DA4	Analog Output Channel 4	Analog Output
13	13	DA_{3}	Analog Output Channel 3	Analog Output
14	14	DA_{2}	Analog Output Channel 2	Analog Output
15	15	DA 1	Analog Output Channel 1	Analog Output
16	16	VDD	Power Supply	Reference Voltage for D/A converters. Analog output voltage range is GND to V_{DD}.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Supply Voltage	Vdd, Vcc	-0.5 to $+18, \mathrm{Vcc} \leq \mathrm{V}$ dD	V
Output Voltage	Vout	-0.5 to Vmd +0.5	V
Input Voltage	Vin	-0.5 to Vcc +0.5	V
Input Current	In	10	mA
Emitter Follower Current	loe	10	mA
Power Dissipation	Pd	500*/200**	mW
Operating Temperature	TA	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg	-65 to +125	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Supply Voltage	VDD	Vcc		15	V	$\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\text {DD }}$
Supply Voltage of Interface	Vcc	4.5	5.0	5.5	V	$\mathrm{V}_{\mathrm{Cc}} \leq \mathrm{V}_{\mathrm{DD}}$
Low Level Input Voltage	VIL			0.8	V	$\mathrm{V} C \mathrm{C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{dd}}=5$ to 15 V
High Level Input Voltage	VIH	3.5			V	$\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}$ dd $=5$ to 15 V
Only μ PD6325 \& μ PD6326 Emitter Follower Power Dissipation 1	$\mathrm{P}_{\mathrm{E} / \text { /unit }}$			5	mW	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
Emitter Follower Power Dissipation 2	Pe/unit			15	mW	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$
Emitter Follower Power Dissipation 3	Pe total			25	mW	$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
Emitter Follower Power Dissipation 4	Pe total			75	mW	$\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}$
CLOCK High Level Width	tch	4.0			$\mu \mathrm{s}$	
CLOCK Low Level Width	tcL	10.0			$\mu \mathrm{s}$	
CLOCK Rise Time	tcr			1.0	$\mu \mathrm{s}$	
CLOCK Fall Time	tcf			1.0	$\mu \mathrm{s}$	
DATA IN Setup Time	tDsetup	2			$\mu \mathrm{s}$	
DATA IN Hold Time	tDhold	10			$\mu \mathrm{s}$	
Pulse Width, LOAD High	tw(LOAD)	4			$\mu \mathrm{s}$	
LOAD Lead Time	tLlead	10			$\mu \mathrm{s}$	
LOAD Lag Time	t Llag	10			$\mu \mathrm{s}$	

ELECTRICAL CHARACTERISTICS

$$
\left(\mathrm{T}_{\mathrm{A}}=-40 \text { to }+85^{\circ} \mathrm{C}, \mathrm{~V} \mathrm{Vs}=0 \mathrm{~V}, \mathrm{Vcc}=4.5 \text { to } 5.5 \mathrm{~V}, \mathrm{~V} D \mathrm{~V}=\mathrm{Vcc} \text { to } 15 \mathrm{~V}\right)
$$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	CONDITION
Current Consumption	Ido			15	mA	No Load, for μ PD6326, 6336
Current Consumption	Ido			10	mA	No Load, for μ PD6325, 6335
Current Consumption of Interface	Icc			10	$\mu \mathrm{A}$	No Load of DATA OUT, Static Consumption
Input Leak Current	IILEAK			± 1	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {cc }}$ or $\mathrm{V}_{\text {ss }}$
$\begin{array}{ll} \text { DATA OUT } & \begin{array}{l} \text { High Level } \\ \text { Output Voltage } \end{array} \end{array}$	Іон	-100			$\mu \mathrm{A}$	Vor $=$ Vdd -0.5 V
$\begin{array}{ll} \text { DATA OUT } & \text { Low Level } \\ \text { Output Voltage } \end{array}$	loL	100			$\mu \mathrm{A}$	V OL $=0.5 \mathrm{~V}$
Emitter Follower Leak Current	loleak			20	$\mu \mathrm{A}$	for μ PD6325, 6326
Setling Time	toa set			10	$\mu \mathrm{s}$	Note

Note $\mu \mathrm{PD} 6325,6326$: $\mathrm{RL}=20 \mathrm{k} \Omega, \mathrm{CL}=50 \mathrm{pF}$ μ PD6335, 6336: No Load.

DATA CONFIGURATION

Data Length is 12 bit.
Last

| LSB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| D_{0} |

D_{1} D_{2}

D/A output CONTROL BIT

D_{11}	D_{10}	D_{9}	D_{8}	Select D/A	Target device
0	0	0	0	$D^{\prime} \mathrm{Don}^{\prime} \mathrm{Care}$	$\mu \mathrm{PD} 6325,6326$ $\mu \mathrm{PD} 6335,6336$
0	0	0	1	DA_{1}	$\mu \mathrm{PD} 6325,6326$ $\mu \mathrm{PD} 6335,6336$
0	0	1	0	DA_{2}	$\mu \mathrm{PD} 6325,6326$ $\mu \mathrm{PD} 6335,6336$
0	0	1	1	DA_{3}	$\mu \mathrm{PD} 6325,6326$ $\mu \mathrm{PD} 6335,6336$
0	1	0	0	DA_{4}	$\mu \mathrm{PD} 6325,6326$ $\mu \mathrm{PD} 6335,6336$
0	1	0	1	DA_{5}	$\mu \mathrm{PD} 6326$ $\mu \mathrm{PD} 6336$
0	1	1	0	DA_{6}	$\mu \mathrm{PD} 6326$ $\mu \mathrm{PD} 6336$
0	1	1	1	DA_{7}	$\mu \mathrm{PD} 6326$ $\mu \mathrm{PD} 6336$
1	0	0	0	DA_{8}	$\mu \mathrm{PD} 6326$ $\mu \mathrm{PD} 6336$
1	\times	\times	\times	$D^{2} \mathrm{Don}^{\prime} \mathrm{Care}$	$\mu \mathrm{PD} 6325,6326$ $\mu \mathrm{PD} 6335,6336$

OPTION output CONTROL BIT

D_{7}	D_{6}	OPTION 1 out.	OPTION 2 out.	Note
0	0	L	L	OPTION2 is only μ PD6325, 6326
0	1	H	L	OPTION2 is only μ PD6325, 6326
1	0	L	H	OPTION2 is only μ PD6325, 6326
1	1	H	H	OPTION2 is only μ PD6325, 6326

D/A Output Voltage CONTROL BIT

D5	D4	D3	D_{2}	D1	Do	Output Voltage
0	0	0	0	0	0	$\fallingdotseq \mathrm{VDD} / 64$
0	0	0	0	0	1	$\fallingdotseq 2 \times \mathrm{VDD} / 64$
0	0	0	0	1	0	$\fallingdotseq 3 \times \mathrm{VD} / 64$
0	0	0	0	1	1	$\fallingdotseq 4 \times \mathrm{VD} / 64$
S	δ	S	δ	δ	S	S
1	1	1	1	1	0	$\fallingdotseq 63 \times \mathrm{VD} / 64$
1	1	1	1	1	1	$\fallingdotseq \mathrm{VDD}$

EQUIVALENT CIRCUIT OF 6 bit D/A

TIMING CHART

LINIARITY OF D/A OUTPUT (μ PD6335, 6336) (TYP.)

- $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$

$$
\cdot \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}
$$

$$
\cdot \mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}
$$

Characteristics of Emitter follower buffer (μ PD6325, 6326)
(1) $V_{b E}-I_{E}$ (including R-2R's resister)

(2) $V_{B E}-T_{A}$

APPLICATION FOR TV SET

APPLICATION FOR CASCADE CONNECTING

16PIN PLASTIC DIP (300 mil)

NOTES

1) Each lead centerline is located within 0.25 mm (0.01 inch) of its true position (T.P.) at maximum material condition.
2) Item "K" to center of leads when formed parallel.

ITEM	MILLIMETERS	INCHES
A	20.32 MAX.	0.800 MAX.
B	1.27 MAX.	0.050 MAX.
C	2.54 (T.P.)	0.100 (T.P.)
D	0.50 ± 0.10	$0.020_{-0.005}^{+0.004}$
F	1.2 MIN.	0.047 MIN.
G	3.5 ± 0.3	0.138 ± 0.012
H	0.51 MIN.	0.020 MIN.
I	4.31 MAX.	0.170 MAX.
J	5.08 MAX.	0.200 MAX.
K	7.62 (T.P.)	0.300 (T.P.)
L	6.4	0.252
M	$0.25_{-0.0}^{+0.10}$	$0.010_{-0.004}^{+0.004}$
N	0.25	0.01
P	1.0 MIN.	0.039 MIN.
R	$0 \sim 15^{\circ}$	$0 \sim 15^{\circ}$
		P16C-100-300A,C-1

16 PIN PLASTIC SOP (300 mil)

NOTE
Each lead centerline is located within $0.12 \mathrm{~mm}(0.005 \mathrm{inch})$ of its true position (T.P.) at maximum material condition.

ITEM	MILLIMETERS	INCHES
A	10.46 MAX.	0.412 MAX.
B	0.78 MAX.	0.031 MAX.
C	1.27 (T.P.)	0.050 (T.P.)
D	$0.40_{-0.05}^{+0.10}$	$0.016_{-0.003}^{+0.004}$
E	0.1 ± 0.1	0.004 ± 0.004
F	1.8 MAX.	0.071 MAX.
G	1.55	0.061
H	7.7 ± 0.3	0.303 ± 0.012
I	5.6	0.220
J	1.1	0.043
K	$0.20_{-0.05}^{+0.10}$	$0.008_{-0.002}^{+0.004}$
L	0.6 ± 0.2	$0.024_{-0.009}^{+0.008}$
M	0.12	0.005
N	0.10	0.004
P	$3^{\circ}+7_{-3^{\circ}}$	$3^{\circ}+7^{\circ}$

P16GM-50-300B-4

REFERENCE

Document Name	Document No.
NEC semiconductor device reliability/quality control system	IEI-1212
Quality grade on NEC semiconductor devices	C11531E
Semiconductor device mounting technology manual	C10535E
Semiconductor device package manual	C10943X
Guide to quality assurance for semiconductor devices	MEI-1202
Semiconductor selection guide	X10679E

NEC μ PD6325, μ PD6326, μ PD6335, μ PD6336
[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

